
Compilers for Embedded Systems

Summer Term 2022

Heiko Falk

Institute of Embedded Systems

Electrical Engineering, Computer Science and Mathematics

Hamburg University of Technology

Chapter 10

Outlook

Compilers for Embedded Systems (CfES) SoSe 2022Slide 3/17

© H. Falk | 17.03.2022 10 - Outlook

Outline

1. Introduction & Motivation

2. Compilers for Embedded Systems – Requirements & Dependencies

3. Internal Structure of Compilers

4. Pre-Pass Optimizations

5. HIR Optimizations and Transformations

6. Code Generation

7. LIR Optimizations and Transformations

8. Register Allocation

9. WCET-Aware Compilation

10.Outlook

Compilers for Embedded Systems (CfES) SoSe 2022Slide 4/17

© H. Falk | 17.03.2022 10 - Outlook

Chapter Contents

10. Outlook

– Instruction Scheduling

– Retargetability

Compilers for Embedded Systems (CfES) SoSe 2022Slide 5/17

© H. Falk | 17.03.2022 10 - Outlook

Motivation

Instruction Scheduling

– Rearrangement of machine instructions in order to increase instruction-

level parallelism

– Insertion of NOP operations to keep code correct

– Due to shortage of time not treated in detail here

Lexical
Analysis

Source
Code

Syntactical
Analysis

Syntax

Tree

H
ig

h
-

L
e

v
e

l
IR

Code
Generation

Register
Allocation

Instruction
Scheduling

ASM
Code

Code
Optimization

High-

Level IR

Low-

Level IR

Code
Optimization

L
o

w
-

L
e

v
e

l
IR

Low-

Level IR

Semantical
Analysis

Token

Sequence

Compilers for Embedded Systems (CfES) SoSe 2022Slide 6/17

© H. Falk | 17.03.2022 10 - Outlook

Pipeline Processing (1)

A simple Processor Pipeline

– Fetch: Fetches the instruction to be executed next from memory

– Decode: Decodes the fetched instruction and deconstructs it in opcodes,

operands, addressing modes, ...

– Execute: Executes an instruction according to its opcodes and operands.

The result of the execution is temporarily stored in an internal buffer

register

– Write Back: Writes back the content of the internal buffer register into the

processor’s register file

Write BackFetch ExecuteDecode

Compilers for Embedded Systems (CfES) SoSe 2022Slide 7/17

© H. Falk | 17.03.2022 10 - Outlook

Pipeline Processing (2)

A simple Processor Pipeline

– Each pipeline stage usually operates within one clock cycle

– At some point in time t, the pipeline can process four different instructions

in parallel:

Instruction i1 in Fetch stage, i2: Decode, i3: Execute, i4: Write Back

– Ideally, a fully loaded pipeline finishes the execution of one instruction in

each clock cycle

– However, this ideal case can be perturbed rather easily...

Write BackFetch ExecuteDecode

Compilers for Embedded Systems (CfES) SoSe 2022Slide 8/17

© H. Falk | 17.03.2022 10 - Outlook

Potential Perturbations of Pipeline Processing

Data Dependencies of Instructions

– An instruction i1 producing a value in register r is in the execute stage.

Another instruction i2 that requires that register r is in the decode stage.

– Since i1 has not yet written back its result in r, the pipeline has to be

stalled before i2 can proceed to the execute stage itself.

Branches

– A branch is taken during the execute stage so that other instructions

directly following the branch have already been loaded into the fetch and

decode stages of the pipeline.

– If the branch is taken, the fetch and decode stages have to be flushed

and to be re-filled from the address of the branch target.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 9/17

© H. Falk | 17.03.2022 10 - Outlook

Re-Ordering of Instructions

Basic Idea

– Machine instructions can be ordered arbitrarily within a program, as long

as for any pair of instructions i1 and i2 ...

– ... data dependencies are respected.

If, e.g., i2 uses a register that i1 defines, i1 must not be placed after i2

in the code.

– ... control dependencies are respected.

If, e.g., a program’s control flow defines that an execution of i1 always

entails the execution of i2, i1 and i2 must not be re-ordered such that

this relationship is violated.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 10/17

© H. Falk | 17.03.2022 10 - Outlook

Instruction Scheduling inside a Compiler

Basic Idea

– For each instruction i, an interval [f, b] can be determined:

By how many instructions can i be moved to front (f) / back (b) in the

code without violating the correctness of the program?

– A scheduler inside a compiler can exploit such intervals to re-order the

code such that the processor’s pipeline is perturbed as little as possible

– Example Data dependencies: Move some other instruction i3 between

load instruction i1 and i2

– Example Branches: Move 1 or 2 instructions from which the branch i is

not data or control dependent after i to fill the so-called delay slots

– Example TriCore: Schedule instructions such that all three pipelines are

always kept busy

Compilers for Embedded Systems (CfES) SoSe 2022Slide 11/17

© H. Falk | 17.03.2022 10 - Outlook

Chapter Contents

10. Outlook

– Instruction Scheduling

– Retargetability

Compilers for Embedded Systems (CfES) SoSe 2022Slide 12/17

© H. Falk | 17.03.2022 10 - Outlook

Motivation

Current View on a Compiler

– A target processor P is given fixed.

Then, we focused on the task to construct a compiler that translates the

source language into P’s machine language and produces highest code

quality.

– Most compiler components required detailed knowledge about the

architecture of P. This knowledge is hard-coded into the different

phases / optimizations of the compiler.

– What if we now need a compiler for P’ instead of one for P?

Re-implement all compiler components

from scratch for P’ ?

Compilers for Embedded Systems (CfES) SoSe 2022Slide 13/17

© H. Falk | 17.03.2022 10 - Outlook

Retargetability

Retargetability

Is the ability to adapt a compiler to another target architecture.

Current Compiler Structure

The structure of compilers considered so far during this course (cf. slide

5) is poorly retargetable. In order to retarget such a compiler,

– code generator,

– all LIR optimizations,

– register allocator and

– scheduler

need to be re-implemented in large part.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 14/17

© H. Falk | 17.03.2022 10 - Outlook

A better retargetable Compiler

Properties

– Instead of an HIR, such a compiler features an MIR and an LIR

– All optimizations take place at MIR level and are thus processor-

independent and do not need to be retargeted

– Highly specific optimizations that exploit complex processor features are

difficult to integrate, if at all.

– Overhead to retarget the back-end remains

Front-EndSource
Code

Medium-

Level IR
Code

Optimization

Medium-

Level IR

L
o

w
-

L
e

v
e

l
IR

Instruction
Scheduling

ASM
Code

Register
Allocation

Low-

Level IR

Code
Generation

Compilers for Embedded Systems (CfES) SoSe 2022Slide 15/17

© H. Falk | 17.03.2022 10 - Outlook

Automatic Compiler Construction (1)

Compiler Construction

– Starting point is a description of the target processor

– either in a hardware description language (e.g., VHDL) or

– in a system description language (e.g., SystemC or Lisa)

– From this description, a compiler back-end is generated automatically.

Description
Target

Architecture

Compiler Construction

Framework

CG
Generator

RA
Generator

IS
Generator

Compiler

Compilers for Embedded Systems (CfES) SoSe 2022Slide 16/17

© H. Falk | 17.03.2022 10 - Outlook

Automatic Compiler Construction (2)

Compiler Construction (ctd.)

– From the processor description, the entire instruction set of the processor

can be extracted. Using this information, a complete tree grammar for a

code generator generator is produced.

– Analogously, properties of the register file are extracted to generate a

register allocator. (Same for scheduler)

Description
Target

Architecture

Compiler Construction

Framework

CG
Generator

RA
Generator

IS
Generator

Compiler

Compilers for Embedded Systems (CfES) SoSe 2022Slide 17/17

© H. Falk | 17.03.2022 10 - Outlook

Automatic Compiler Construction (3)

Compiler Construction (ctd.)

– These generated back-end modules are coupled with „ready-made“

standard components that provide the central IR, the front-end, IR

optimizations and run-time libraries.

– Besides a compiler, such a framework can additionally produce

assemblers, linkers and cycle-true simulators.

Description
Target

Architecture

Compiler Construction

Framework

Front-endRT-Libs

CG
Generator

RA
Generator

IS
Generator

Optimiza-
tions

IR

…

Compiler

Simulator

Assembler

Linker

