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Motivation

Instruction Scheduling

– Rearrangement of machine instructions in order to increase instruction-

level parallelism

– Insertion of NOP operations to keep code correct

– Due to shortage of time not treated in detail here
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Pipeline Processing (1)

A simple Processor Pipeline

– Fetch: Fetches the instruction to be executed next from memory

– Decode: Decodes the fetched instruction and deconstructs it in opcodes, 

operands, addressing modes, ...

– Execute: Executes an instruction according to its opcodes and operands. 

The result of the execution is temporarily stored in an internal buffer 

register

– Write Back: Writes back the content of the internal buffer register into the 

processor’s register file

Write BackFetch ExecuteDecode
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Pipeline Processing (2)

A simple Processor Pipeline

– Each pipeline stage usually operates within one clock cycle

– At some point in time t, the pipeline can process four different instructions 

in parallel:

Instruction i1 in Fetch stage, i2: Decode, i3: Execute, i4: Write Back

– Ideally, a fully loaded pipeline finishes the execution of one instruction in 

each clock cycle

– However, this ideal case can be perturbed rather easily...

Write BackFetch ExecuteDecode
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Potential Perturbations of Pipeline Processing

Data Dependencies of Instructions

– An instruction i1 producing a value in register r is in the execute stage. 

Another instruction i2 that requires that register r is in the decode stage.

– Since i1 has not yet written back its result in r, the pipeline has to be 

stalled before i2 can proceed to the execute stage itself.

Branches

– A branch is taken during the execute stage so that other instructions 

directly following the branch have already been loaded into the fetch and 

decode stages of the pipeline.

– If the branch is taken, the fetch and decode stages have to be flushed 

and to be re-filled from the address of the branch target.
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Re-Ordering of Instructions

Basic Idea

– Machine instructions can be ordered arbitrarily within a program, as long 

as for any pair of instructions i1 and i2 ...

– ... data dependencies are respected.

If, e.g., i2 uses a register that i1 defines, i1 must not be placed after i2

in the code.

– ... control dependencies are respected.

If, e.g., a program’s control flow defines that an execution of i1 always 

entails the execution of i2, i1 and i2 must not be re-ordered such that 

this relationship is violated.
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Instruction Scheduling inside a Compiler

Basic Idea

– For each instruction i, an interval [f, b] can be determined:

By how many instructions can i be moved to front (f) / back (b) in the 

code without violating the correctness of the program?

– A scheduler inside a compiler can exploit such intervals to re-order the 

code such that the processor’s pipeline is perturbed as little as possible

– Example Data dependencies: Move some other instruction i3 between 

load instruction i1 and i2

– Example Branches: Move 1 or 2 instructions from which the branch i is 

not data or control dependent after i to fill the so-called delay slots

– Example TriCore: Schedule instructions such that all three pipelines are 

always kept busy
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Motivation

Current View on a Compiler

– A target processor P is given fixed.

Then, we focused on the task to construct a compiler that translates the 

source language into P’s machine language and produces highest code 

quality.

– Most compiler components required detailed knowledge about the 

architecture of P. This knowledge is hard-coded into the different

phases / optimizations of the compiler.

– What if we now need a compiler for P’ instead of one for P?

Re-implement all compiler components

from scratch for P’ ?
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Retargetability

Retargetability

Is the ability to adapt a compiler to another target architecture.

Current Compiler Structure

The structure of compilers considered so far during this course ( cf. slide 

5) is poorly retargetable. In order to retarget such a compiler,

– code generator,

– all LIR optimizations,

– register allocator and

– scheduler

need to be re-implemented in large part.
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A better retargetable Compiler

Properties

– Instead of an HIR, such a compiler features an MIR and an LIR

– All optimizations take place at MIR level and are thus processor-

independent and do not need to be retargeted

– Highly specific optimizations that exploit complex processor features are 

difficult to integrate, if at all.

– Overhead to retarget the back-end remains
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Automatic Compiler Construction (1)

Compiler Construction

– Starting point is a description of the target processor

– either in a hardware description language (e.g., VHDL) or

– in a system description language (e.g., SystemC or Lisa)

– From this description, a compiler back-end is generated automatically.
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Automatic Compiler Construction (2)

Compiler Construction (ctd.)

– From the processor description, the entire instruction set of the processor 

can be extracted. Using this information, a complete tree grammar for a 

code generator generator is produced.

– Analogously, properties of the register file are extracted to generate a 

register allocator. (Same for scheduler)
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Automatic Compiler Construction (3)

Compiler Construction (ctd.)

– These generated back-end modules are coupled with „ready-made“ 

standard components that provide the central IR, the front-end, IR 

optimizations and run-time libraries.

– Besides a compiler, such a framework can additionally produce  

assemblers, linkers and cycle-true simulators.
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