TUHH

Hamburg University of Technology

Compilers for Embedded Systems

Summer Term 2022

Heiko Falk

Institute of Embedded Systems
Electrical Engineering, Computer Science and Mathematics
Hamburg University of Technology

TUHH

Hamburg U sity of Technology

Chapter 10

Outlook

SICKIAYE Compilers for Embedded Systems (CfES) SoSe 2022

Outline

Introduction & Motivation

Compilers for Embedded Systems — Requirements & Dependencies
Internal Structure of Compilers

Pre-Pass Optimizations

HIR Optimizations and Transformations

Code Generation

LIR Optimizations and Transformations

Register Allocation

WCET-Aware Compilation

10.Outlook

© 0N Ok wDdhRE

© H. Falk | 17.03.2022 10 - Outlook

SICEIAYE Compilers for Embedded Systems (CfES) SoSe 2022

Chapter Contents

10. Outlook

— Retargetability

© H. Falk | 17.03.2022 10 - Outlook

SICEETAYE Compilers for Embedded Systems (CfES) SoSe 2022

Motivation
Source Lexical CM) Syntactical | Syntax | Semantical
Code Analysis Sequence Analysis | Tree Analysis | .
o
T
Low- iqh-
Code | _Low Code | High Code |
. |X |Optimization|Level IR| Generation |Level IR|Optimization
] - .
=, Register | Low- Jinstruction | | AsMm
Allocation |Level IR| Scheduling Code

Instruction Scheduling

— Rearrangement of machine instructions in order to increase instruction-
level parallelism

— Insertion of NOP operations to keep code correct

— Due to shortage of time not treated in detail here

© H. Falk | 17.03.2022 10 - Outlook

Level IR

SICEEAYE Compilers for Embedded Systems (CfES) SoSe 2022

Pipeline Processing (1)

A simple Processor Pipeline

Fetch —— Decode +——| Execute +——| Write Back

— Fetch: Fetches the instruction to be executed next from memory
— Decode: Decodes the fetched instruction and deconstructs it in opcodes,

operands, addressing modes, ...
— EXxecute: Executes an instruction according to its opcodes and operands.
The result of the execution is temporarily stored in an internal buffer

register
— Write Back: Writes back the content of the internal buffer register into the

processor’s register file

© H. Falk | 17.03.2022 10 - Outlook

SICCH/YE Compilers for Embedded Systems (CfES) SoSe 2022

Pipeline Processing (2)

A simple Processor Pipeline

Fetch —— Decode +——| Execute +——| Write Back

— Each pipeline stage usually operates within one clock cycle

— At some point in time t, the pipeline can process four different instructions
In parallel:
Instruction i, in Fetch stage, I,: Decode, I;: Execute, i,: Write Back

— ldeally, a fully loaded pipeline finishes the execution of one instruction in
each clock cycle

— However, this ideal case can be perturbed rather easily...

© H. Falk | 17.03.2022 10 - Outlook

SICKTNYE Compilers for Embedded Systems (CfES) SoSe 2022

Potential Perturbations of Pipeline Processing

Data Dependencies of Instructions

— An instruction i, producing a value in register r is in the execute stage.
Another instruction i, that requires that register r is in the decode stage.

— Since i; has not yet written back its result in r, the pipeline has to be
stalled before I, can proceed to the execute stage itself.

Branches

— A branch is taken during the execute stage so that other instructions
directly following the branch have already been loaded into the fetch and
decode stages of the pipeline.

— If the branch is taken, the fetch and decode stages have to be flushed
and to be re-filled from the address of the branch target.

© H. Falk | 17.03.2022 10 - Outlook

SICCR/NYE Compilers for Embedded Systems (CfES) SoSe 2022

Re-Ordering of Instructions

Basic Idea
— Machine instructions can be ordered arbitrarily within a program, as long

as for any pair of instructions i, and i, ...
— ... data dependencies are respected.
If, e.g., I, uses a register that i, defines, i; must not be placed after i,
In the code.

— ... control dependencies are respected.
If, e.g., a program’s control flow defines that an execution of i; always
entails the execution of i,, I; and i, must not be re-ordered such that

this relationship is violated.

© H. Falk | 17.03.2022 10 - Outlook

SICHVEYE Compilers for Embedded Systems (CfES) SoSe 2022

Instruction Scheduling inside a Compiler

Basic Idea

For each instruction i, an interval [f, b] can be determined:

By how many instructions can i be moved to front (f) / back (b) in the
code without violating the correctness of the program?

A scheduler inside a compiler can exploit such intervals to re-order the
code such that the processor’s pipeline is perturbed as little as possible
Example Data dependencies: Move some other instruction i; between
load instruction i, and i,

Example Branches: Move 1 or 2 instructions from which the branch i is
not data or control dependent after i to fill the so-called delay slots
Example TriCore: Schedule instructions such that all three pipelines are
always kept busy

© H. Falk | 17.03.2022 10 - Outlook

SICCHMVAYE Compilers for Embedded Systems (CfES) SoSe 2022

Chapter Contents

10. Outlook
— Instruction Scheduling

© H. Falk | 17.03.2022 10 - Outlook

SICHIEYE Compilers for Embedded Systems (CfES) SoSe 2022

Motivation

Current View on a Compiler

— A target processor P is given fixed.
Then, we focused on the task to construct a compiler that translates the
source language into P’s machine language and produces highest code
quality.

— Most compiler components required detailed knowledge about the
architecture of P. This knowledge is hard-coded into the different
phases / optimizations of the compiler.

— What if we now need a compiler for P’ instead of one for P?

% Re-implement all compiler components m
from scratch for P’ ?

© H. Falk | 17.03.2022 10 - Outlook

SICHEIAYE Compilers for Embedded Systems (CfES) SoSe 2022

Retargetability

Retargetability
Is the ability to adapt a compiler to another target architecture.

Current Compiler Structure
The structure of compilers considered so far during this course (< cf. slide

5) is poorly retargetable. In order to retarget such a compiler,
— code generator,

— all LIR optimizations,

— register allocator and

— scheduler

need to be re-implemented in large part.

© H. Falk | 17.03.2022 10 - Outlook

SICHEIAYE Compilers for Embedded Systems (CfES) SoSe 2022

A better retargetable Compiler

=

o

-l
h

Source) Medium- Code Medium- Code
Code picnLEln Level Iﬁ Optimization|Level Iﬁ Generation
ASM Instruction _Low- Register
Code Scheduling [Level IR| Allocation
Properties

©

Instead of an HIR, such a compiler features an MIR and an LIR
All optimizations take place at MIR level and are thus processor-

independent and do not need to be retargeted

Highly specific optimizations that exploit complex processor features are

difficult to integrate, if at all.
Overhead to retarget the back-end remains

H. Falk | 17.03.2022 10 - Outlook

Level IR

SICHETAYE Compilers for Embedded Systems (CfES) SoSe 2022

Automatic Compiler Construction (1)

Compiler Construction
Framework

CG RA IS
Generator/ \Generator/ \Generator.

Compiler Construction
— Starting point is a description of the target processor
— either in a hardware description language (e.g., VHDL) or

— In a system description language (e.g., SystemC or Lisa)
— From this description, a compiler back-end is generated automatically.

— Compiler

Description
Target
Architecture

© H. Falk | 17.03.2022 10 - Outlook

SICHTAYE Compilers for Embedded Systems (CfES) SoSe 2022

Automatic Compiler Construction (2)

Compiler Construction N
Framework

CG RA IS
Generator/ \Generator/ \Generator.

Compiler Construction (ctd.)
— From the processor description, the entire instruction set of the processor

can be extracted. Using this information, a complete tree grammar for a

code generator generator is produced.
— Analogously, properties of the register file are extracted to generate a

register allocator. (Same for scheduler)

Compiler

Description
Target
Architecture

© H. Falk | 17.03.2022 10 - Outlook

SICCHY/AYE Compilers for Embedded Systems (CfES) SoSe 2022

Automatic Compiler Construction (3)

Compiler Construction

— Compiler
Framework P

Description
Target
Architecture

Front-end| [azsembler

CG RA 1S) :

(Optimizay .~ i simulator

Compiler Construction (ctd.)

— These generated back-end modules are coupled with ,ready-made”
standard components that provide the central IR, the front-end, IR
optimizations and run-time libraries.

— Besides a compiler, such a framework can additionally produce
assemblers, linkers and cycle-true simulators.

© H. Falk | 17.03.2022 10 - Outlook

