
Compilers for Embedded Systems

Summer Term 2022

Heiko Falk

Institute of Embedded Systems

Electrical Engineering, Computer Science and Mathematics

Hamburg University of Technology

Chapter 2

Compilers for Embedded Systems

–

Requirements & Dependencies

Compilers for Embedded Systems (CfES) SoSe 2022Slide 3/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Outline

1. Introduction & Motivation

2. Compilers for Embedded Systems – Requirements & Dependencies

3. Internal Structure of Compilers

4. Pre-Pass Optimizations

5. HIR Optimizations and Transformations

6. Code Generation

7. LIR Optimizations and Transformations

8. Register Allocation

9. WCET-Aware Compilation

10.Outlook

Compilers for Embedded Systems (CfES) SoSe 2022Slide 4/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Chapter Contents

2. Compilers for Embedded Systems – Requirements &

Dependencies

– Code Generation Tools

– Compiler, Assembler, Linker

– Source Code, Assembly Code, Object Code, Binary Code

– Source Languages for Compilers for Embedded Systems

– C, C++, Java

– Embedded Processors

– Digital Signal Processors

– Multimedia Processors

– Very Long Instruction Word Machines

– Network Processors

– Requirements on Compilers for Embedded Systems

– Code Quality vs. Compilation Times

Compilers for Embedded Systems (CfES) SoSe 2022Slide 5/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Design Process of Embedded Systems

Validation; Evaluation (Efficiency, Real-Time aspects, Energy, ...)

A
p

p
li
c
a
ti

o
n

 K
n

o
w

-H
o

w

Specifi-
cation

HW & SW
Specifi-
cation

HW De-
sign

Binary
Code

Standard-SW
(RTOS, ...)

HW com-
ponents

HW/SW Co-Design
– Task scheduling
– Design space exploration
– HW/SW Partitioning
– ...

– HW Synthesis
– SW Code generation

HW/SW Co-Synthesis

Compilers for Embedded Systems (CfES) SoSe 2022Slide 6/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Code Generation Tools

Assembly
Code

Object
Code

Binary
Code

Source
Code

Linker

Assembler

Compiler

Compilers for Embedded Systems (CfES) SoSe 2022Slide 7/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Source Code

– Programming language, legible and comprehensible for humans

– Standard constructs: Loops, procedures, variables, ...

– High abstraction level: Machine-independent algorithms

Assembly Code

– Symbolic machine code

– Limited legibility and comprehensibility for humans

– Machine language constructs: ALU operations, registers, …

– Low abstraction level: Machine-specific representation

Assembly
Code

Source
Code

Compiler

Compilers for Embedded Systems (CfES) SoSe 2022Slide 8/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

– Readable plain text

– No / few real addresses

– Instead: Symbolic addresses
e.g., encode, h, tqmf

Assembly
Code

.align 1

.global encode

.type encode,@function

encode:

mov %d15, %d5

mov %d12, %d4

movh.a %a12, HI:h

lea %a12, [%a12] LO:h

movh.a %a13, HI:tqmf

lea %a13, [%a13] LO:tqmf

ld.w %d14, [%a13] 4

ld.w %d10, [%a12] 4

mul %d14, %d10

Load address of array h to A12

Load address of array tqmf to A13

Load tqmf[1] to D14

Load h[1] to D10

Multiply

Compilers for Embedded Systems (CfES) SoSe 2022Slide 9/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Object Code

– Binary representation of assembly code, no longer legible

– No plain text mnemonics, 0/1 bit sequences instead

– Whenever possible, symbolic addresses replaced by real ones

Assembler

– Line-by-line translation

Assembly instructions → machine instructions

– Within a single assembly file: Address Resolution

Object
Code

Assembly
Code

Assembler

Compilers for Embedded Systems (CfES) SoSe 2022Slide 10/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Translation (Example: Infineon TriCore 1.3)

Address Resolution

– Symbolic address h declared in very same assembly file:

– Symbol h is known to assembler

– Replacement of h by relative address, relative within the object file

– h is unknown to assembler:

– Defer address resolution at a later point in time

Object
Code

MUL D[a], D[b] (SRR)

b a 0xE2

15 12 11 8 7 0

mul %d14, %d10

1010 1110 11100010

Compilers for Embedded Systems (CfES) SoSe 2022Slide 11/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Binary Code

– Executable program representation

– All symbolic addresses replaced by real addresses

– Lowest possible abstraction level

Linker

– Union of many object files and libraries to a single, executable program

– Address resolution using libraries of object code

– Layout of code in memory

Binary
Code

Object
Code

Linker

Compilers for Embedded Systems (CfES) SoSe 2022Slide 12/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Example Address Resolution

– Object code contains jump to external function: call abs

– Search abs in all other object files and libraries

– Add code of abs to binary executable file

Example Memory Layout of Binary Code

– Binary code consists of functions decode, encode, abs, main

– Memory layout finally defines effective addresses

Binary
Code

decode encode abs main

decode encodeabsmain

Compilers for Embedded Systems (CfES) SoSe 2022Slide 13/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Chapter Contents

2. Compilers for Embedded Systems – Requirements &

Dependencies

– Code Generation Tools

– Compiler, Assembler, Linker

– Source Code, Assembly Code, Object Code, Binary Code

– Source Languages for Compilers for Embedded Systems

– C, C++, Java

– Embedded Processors

– Digital Signal Processors

– Multimedia Processors

– Very Long Instruction Word Machines

– Network Processors

– Requirements on Compilers for Embedded Systems

– Code Quality vs. Compilation Times

Compilers for Embedded Systems (CfES) SoSe 2022Slide 14/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Source Languages for Compilers for Embedded Systems

In the following

– Brief digest of most common programming languages

– No claim to be complete!

Imperative Programming Languages

– C

Object-Oriented Programming Languages

– C++

– Java

Compilers for Embedded Systems (CfES) SoSe 2022Slide 15/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

ANSI-C: Properties (1)

– Purely Imperative

– No object-orientation: No classes, no objects

– C-Program: Set of functions

– Function main: Standardized starting point

– Functions: Sequence of statements, execution in sequential order

int filtep(int rlt1, int al1, int rlt2, int al2)

{

long pl, pl2;

pl = 2 * rlt1;

pl = (long) al1 * pl;

pl2 = 2 * rlt2;

pl += (long) al2 * pl2;

return((int)(pl >> 15));

}

Compilers for Embedded Systems (CfES) SoSe 2022Slide 16/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

ANSI-C: Properties (2)

– Standardized Programming Language

– ISO/IEC 9899:1999 (E)

– Standard Data Types

– signed / unsigned char

– signed / unsigned short

– signed / unsigned int

– signed / unsigned long

– signed / unsigned long long

– float, double, long double, _Bool

Compilers for Embedded Systems (CfES) SoSe 2022Slide 17/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

ANSI-C: Properties (3)

– Composed Data Types

– Arrays

– Structures

– Variants

int h[3];

h[1] = 42;
h

0 1 2

struct point { int x; char y; } p;

p.x = 42;
p

x y

union point { int x; char y; } p;

p.y = 42;
p

x / y

42

42

42

Compilers for Embedded Systems (CfES) SoSe 2022Slide 18/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

ANSI-C: Properties (4)

– Pointers and Memory Management

– Pointers

int h[3];

int *p = &h[1];

h[1] = 42;

*p = 12;

h

0 1 2

42

p

Compilers for Embedded Systems (CfES) SoSe 2022Slide 19/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

ANSI-C: Properties (5)

– Pointers and Memory Management

– Pointers

– Dynamic memory management

int h[3];

int *p = &h[1];

h[1] = 42;

*p = 12;

h

0 1 2

12

p

char *p = (char *) malloc(100);

p[1] = 42;

free(p);

/* Allocation of 100 Bytes */

/* Memory deallocation */

Dynamic memory management explicitly by programmer!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 20/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

ANSI-C: Properties (6)

– Architecture-Dependence & Unspecified Behavior

– Bit-width of int word-length of a CPU

int on 16-bit machine: [-32768, 32767]

int on 32-bit machine: [-2147483648, 2147483647]

– Behavior of >> operator (shift right)

logic shift – Most Significant Bit (MSB) filled with ‘0’:

arithmetic shift – MSB filled with old MSB:

– Signedness of char:

signed char [-128, 127] vs. unsigned char [0, 255]

-8 >>l 1 = 1000 >>l 1 = 0100 = 4

-8 >>a 1 = 1000 >>a 1 = 1100 = -4

Compilers for Embedded Systems (CfES) SoSe 2022Slide 21/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

ANSI-C: Discussion

Pros

– Standardized, widespread programming language

– Many (freely available) existing code generation tools

– Large already existing source code base (open source & proprietary)

– Despite high abstraction level: Low-level programming still possible

– Machine-orientation

– Effort to construct a compiler still acceptable

Cons

– Machine-orientation, lacking portability of source code

– Programmer-responsible memory management error-prone

– No object-orientation

Compilers for Embedded Systems (CfES) SoSe 2022Slide 22/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

ANSI-C++: Properties

ANSI-C + Object-Orientation + …

– Classes & Objects

– Elements, member functions/methods

– Constructors & destructors

– Inheritance

– Protection of class elements: public, protected, private

– Virtual methods & polymorphic classes

– Exception handling

– Generic programming: Templates

– Standard Template Library (STL)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 23/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

ANSI-C++: Pros

– Higher-order programming language, fulfills desire for OO in Embedded

Systems

– Existing ANSI-C source codes can often be adopted

– Wide dissemination

– Many (freely available) existing code generation tools

– Large already existing source code base (open source & proprietary)

– Despite high abstraction level: Low-level programming still possible

– Machine-orientation

Compilers for Embedded Systems (CfES) SoSe 2022Slide 24/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

ANSI-C++: Cons (1)

– Some C++ constructs lead to high overheads, too high for Embedded

Systems

– Time between throwing and catching unclear due to destructors

– Increased memory consumption due to internal data structures

Example Exceptions:

try {

object o;

...

Code…;

}

catch(E) {

// Error handling

}

Exception E is thrown here...

... and caught here

o must

be

destroyed!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 25/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

ANSI-C++: Cons (2)

– B and C both feature a very own implementation of bar().

– High run-times due to dynamic type checking and method lookup.

Example Purely Virtual Classes:

class A {

virtual bar() = 0;

}

class B : public A { class C : public A {

virtual bar(); virtual bar();

} }

A *foo; ...; foo->bar(); // B::bar()?? C::bar???

Compilers for Embedded Systems (CfES) SoSe 2022Slide 26/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Embedded C++

Subset of C++, Specifically Designed for Embedded Systems

– No purely virtual classes

– No exceptions

– No templates

– No namespaces

(“Features such as namespaces […] are difficult to understand,

increasing the chances of programmer errors.”)

– No multiple inheritance

– No STL data structures (Standard Template Library)

[Embedded C++ Slashes Code Size And Boosts Execution.

www.ghs.com/wp/ec++article2.html]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 27/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Java: Pros

Programming Language with consequent object-oriented design

– Modular structure, allows for excellent SW abstraction

– Good type mechanisms

– Good language constructs for modelling of behavior and control

– Mathematical model similar to C++, but said to be better

– Transparent memory protection, automatic Garbage Collection

– Code said to be better legible than C++

– No pointers

– Java Byte Code Interpreter: High portability of Java source code

Compilers for Embedded Systems (CfES) SoSe 2022Slide 28/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Java: Cons

Enormous Resource Demands

– Disadvantages of Java’s OO constructs similar to C++

– Byte code interpretation during run-time

– Just-In-Time translation often infeasible for Embedded Systems

– Real-time behavior of Garbage Collection?

– Today: Even lean Java (EmbeddedJava) unsuitable for systems that

have to be fast and are resource-constrained

Excerpt from Sun’s (ancient) license agreement for Java:

”Software is not designed or licensed for use in on-line control of aircraft,

air traffic, aircraft navigation or aircraft communications; or in the design,

construction, operation or maintenance of any nuclear facility.”

[Formerly at java.sun.com/products/plugin/1.2/license.txt]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 29/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Chapter Contents

2. Compilers for Embedded Systems – Requirements &

Dependencies

– Code Generation Tools

– Compiler, Assembler, Linker

– Source Code, Assembly Code, Object Code, Binary Code

– Source Languages for Compilers for Embedded Systems

– C, C++, Java

– Embedded Processors

– Digital Signal Processors

– Multimedia Processors

– Very Long Instruction Word Machines

– Network Processors

– Requirements on Compilers for Embedded Systems

– Code Quality vs. Compilation Times

Compilers for Embedded Systems (CfES) SoSe 2022Slide 30/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Digital Signal Processors

Properties

– Optimized for digital signal processing

(e.g., filters, Fourier transformation, ...)

– Heterogeneous register files, grouped for special purposes

– Limited parallelism during instruction execution

– Dedicated address generation units / addressing modes

– Multiply-Accumulate instruction (a = a + b * c)

– Zero-Overhead Loops

– Saturating arithmetic

– Efficiency and real-time capabilities extremely important

Compilers for Embedded Systems (CfES) SoSe 2022Slide 31/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

DSPs: Heterogeneous Register Files (1)

Example Infineon TriCore 1.3:

– Separate address & data

registers

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

Address Registers Data Registers
D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Compilers for Embedded Systems (CfES) SoSe 2022Slide 32/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

DSPs: Heterogeneous Register Files (2)

Example Infineon TriCore 1.3:

– Separate address & data

registers

– Registers with particular

meaning

– 64-bit data registers

(extended Registers)

– Upper & lower context (UC &

LC): UC automatically saved

during function call, LC not

A15 (Implicit AREG)

A14

A13

A12

A11 (Return Addr)

A10 (Stack Ptr)

A9 (Global AREG)

A8 (Global AREG)

A7

A6

A5

A4

A3

A2

A1 (Global AREG)

A0 (Global AREG)

Address Registers Data Registers
D15 (Implicit DREG)

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

E14

E12UC

E8

E6

E4

E2

E0

LC

E10

[Infineon AG. TriCore User’s

Manual, Volume 1. 2008]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 33/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

DSPs: Limited Parallelism

Example Infineon TriCore 1.3:

– Integer Pipeline: Arithmetical/logical instructions,

conditional branches

– Load/Store Pipeline: Memory accesses, address computations,

unconditional branches, function calls

– Loop Pipeline: Loop instructions

– Limited Parallelism:

– Pipelines work independently / parallel in the ideal case

– If not the ideal case:

Stall in L/S Pipeline → Stall in I-Pipeline and vice versa

Compilers for Embedded Systems (CfES) SoSe 2022Slide 34/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

DSPs: Address Generation Units (AGUs)

General Structure of Address Generation Units:

Address
register Effective

address

AR
pointer

Immediate
value

– Address registers (AR)

contain effective

addresses for memory

accesses

– Instruction word encodes

which AR to use (AR

pointer)

– ARs can be loaded with

constants explicitly

encoded in the machine

instruction (immediate

operands)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 35/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

DSPs: Address Generation Units (AGUs)

General Structure of Address Generation Units:

– ARs can be in-/decreased

via a simple ALU

– Increment / decrement by

offset given as immediate

operand

– Increment / decrement by

constant “1” as offset

+ -

”1”

Address
register Effective

address

AR
pointer

Immediate
value

Offset

Compilers for Embedded Systems (CfES) SoSe 2022Slide 36/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

DSPs: Address Generation Units (AGUs)

General Structure of Address Generation Units:

– Increment / decrement by

contents of Modifier

Register (MR)

– Instruction word encodes

which MR to use (MR

pointer)

– MRs can be loaded

explicitly with immediate

values

+ -

”1”

Modifier
register

Address
register Effective

address

AR
pointer

MR
pointer

Immediate
value

Offset

Compilers for Embedded Systems (CfES) SoSe 2022Slide 37/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

DSPs: Address Generation Units (AGUs)

General Structure of Address Generation Units:

– Load AR: AR = <const>

– Load MR: MR = <const>

– Modify AR: AR <const>

– Auto-Increment: AR “1”

– Auto-Modify: AR MR

– “Auto”-operations: Parallel

to data path, no extra run-

time, highly efficient!

– All others: Need extra

instruction for data path,

less efficient.

+ -

”1”

Modifier
register

Address
register Effective

address

AR
pointer

MR
pointer

Immediate
value

Offset

Compilers for Embedded Systems (CfES) SoSe 2022Slide 38/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

DSPs: Conventional Loop Code

C-Code of a Loop: Conventional Assembly Code:
(TriCore 1.3)

Properties

– Decrement & conditional branch: Both in Integer Pipeline

 no parallel execution of these instructions

– 2 clock cycles * 10 iterations = 20 cycles (min.) loop overhead

– In presence of delay slots for branches even worse!

int i = 10;

do {

...

i--;

} while (i);

mov %d8, 10;

.L0:

...

add %d8, -1;

jnz %d8, .L0;

Compilers for Embedded Systems (CfES) SoSe 2022Slide 39/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

DSPs: Optimized Loop Code

C-Code of a Loop: Zero-Overhead Loops:
(TriCore 1.3)

Properties

– Decrement & conditional branch: Parallel in Loop Pipeline

– loop instruction: Consumes run-time only in 1st and last iteration

 only 2 clock cycles loop overhead

int i = 10;

do {

...

i--;

} while (i);

mov %a12, 10;

.L0:

...

loop %a12, .L0;

Compilers for Embedded Systems (CfES) SoSe 2022Slide 40/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Problem of Standard Wrap-Around Computer Arithmetic (1)

Standard Arithmetic leads to Wrap-Around in case of Over-/Underflows

– Problem: Computed results with Wrap-Around are…

…not only incorrect

…but also implausible / not even close to the correct solution

– The resulting error is maximal (most-significant bit position 2n gets lost),

not minimal! Example:

(4 bits, 2’s compl.): |(7 +wrap 1) –exact (7 +exact 1)| =

|(0111(2) +wrap 0001(2)) –exact 8)| =

|1000(2) –exact 8| =

|-8 –exact 8| = 16

Compilers for Embedded Systems (CfES) SoSe 2022Slide 41/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Problem of Standard Wrap-Around Computer Arithmetic (2)

– Large deviation between computed result (with overflow) and desired

result, highly dramatic during signal processing (e.g., amplifying of an

audio signal / luminance adjustment of an image pixel)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 42/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Lesser Error with Saturating Arithmetic

Saturating arithmetic for additions or multiplications yields the

maximally/minimally representable value in case of over-/underflows.

Examples

– Absolute value representation (4 bits, unsigned):

8 +sat 8 = 1000(2) +sat 1000(2) = 7 +sat 11 → 15 ≠ 18

10000(2) → 1111(2) = 15 ≠ 16

– 2’s complement representation (4 bits, signed):

7 +sat 1 = 0111(2) +sat 0001(2) = -5 –sat 7 → -8 ≠ -12

1000(2) → 0111(2) = 7 ≠ 8

In particular, saturating arithmetic never produces sign inversions!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 43/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Another Example

– a 0111

b + 1001

Standard Wrap-Around arithmetic (1)0000

Saturating arithmetic 1111

(a+b)/2: correct 1000

Wrap-Around arithmetic 0000

Saturating arithmetic using >> 0111 „almost correct“

– Suitable for DSP / multimedia applications

– Interrupts generated by overflows

 Real-time requirements violated…?

– Exact values of less importance anyway

– Wrap-Around arithmetic produces inferior results

Compilers for Embedded Systems (CfES) SoSe 2022Slide 44/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Saturating Arithmetic: Discussion

Pros

– More plausible results in case of over-/underflows

Cons

– More time-consuming to compute

– Associativity and other laws violated

DSPs usually allow to choose between saturating and standard arithmetic

(they feature correspondent variants of machine instructions)

“Saturation” in IEEE 754 floating point standard:

– Over-/underflows produce ± infinity as result

– Further IEEE 754 operations do not change this result!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 45/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

DSPs: Real-Time Capabilities

The Timing Behavior of a Processor should be predictable!

Properties causing trouble:

– Accesses to shared hardware resources

– Caches with replacement strategies with problematic timing behavior

– Unified caches for both code and data (conflicts between data and

instructions)

– Pipelines with stall cycles (“bubbles”)

– Multi-cores with unpredictable communication/bus delays

– Branch prediction, speculative instruction execution

– Interrupts that can happen at any time

– Memory refreshes at any time

– Machine instructions with data-dependent execution latencies

 Avoid as many of these problematic properties as possible

Compilers for Embedded Systems (CfES) SoSe 2022Slide 46/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Multimedia Processors

Properties

– Optimized for, e.g., image and audio processing

– Well-known commercial products:

Intel MMX, SSE or SSE2; AMD 3DNow!; Sun VIS;

PowerPC AltiVec; HP MAX

– Motivation: Multimedia software often does not use the full word-length of

a processor (i.e., int), but only parts of it (e.g., short or char).

– SIMD principle: Single Instruction, Multiple Data

– Parallel handling of several “little” pieces of data by 1 machine instruction

Compilers for Embedded Systems (CfES) SoSe 2022Slide 47/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

SISD vs. SIMD Execution

Exercise: Perform two Additions of 2 short Variables each

– SISD principle (Single Instruction, Single Data):

Load first 2 summands in registers,

int addition,

Load second 2 summands in registers,

int addition

 Costs: 2 full additions

– SIMD principle (Single Instruction, Multiple Data):

Load first 2 summands in upper halves of registers,

Load second 2 summands in lower halves of registers,

SIMD addition

 Costs: 1 addition

Compilers for Embedded Systems (CfES) SoSe 2022Slide 48/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Illustration SIMD Addition

SIMD Half-Word Addition:

– SIMD instructions also common for quarter-words:

4 parallel char additions for a 32-bit processor

+

Subword 1 Subword 0

+

Subword 1 Subword 0

Destination 1 Destination 0

Operand m

Operand n

Operation

Result

Compilers for Embedded Systems (CfES) SoSe 2022Slide 49/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Very Long Instruction Word (VLIW)

Motivation

Performance boost by exploiting instruction-level parallelism

Conventional Processors:

– 1 integer ALU

– 1 multiplier

– 1 (heterogeneous) register file

VLIW Processors:

– n integer ALUs

– n multipliers

– n (heterogeneous) register files

– Interconnection network

Compilers for Embedded Systems (CfES) SoSe 2022Slide 50/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Example: M3 VLIW Processor

MAC

ALU

REG

Slice 0

MAC

ALU

REG

Slice 1

MAC

ALU

REG

Slice 15

Interconnection Network

Group Memory

Compilers for Embedded Systems (CfES) SoSe 2022Slide 51/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

VLIW Instruction Word

– 1 instruction word contains 1 VLIW machine instruction

– 1 VLIW instruction contains n VLIW operations

– Each operation controls exactly one Functional Unit (FU)

– Fixed matching of operations in the instruction with FUs:

Operation 0 FU 0, Operation 1 FU 1, ...

Slice 0 Slice 1 Slice 15

Interconnection Network

Group Memory

Op0 Op1 Op15
VLIW instruction

Compilers for Embedded Systems (CfES) SoSe 2022Slide 52/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Network Protocols

Communication between distant Processors

– Communication media error-prone

– Payload is divided into packets

– Packets are augmented with additional information (Header)

Example IPv4 Header:

Version Length Service Code Total Packet Length

Identification Flags Fragment Offset

Time To Live Protocol Header Checksum

Source IP Address

Destination IP Address

0 7 15 23 26 31

Compilers for Embedded Systems (CfES) SoSe 2022Slide 53/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Bit Packets (1)

Bit Packets in Protocol Headers

– Headers are divided in regions with different meaning

– These bit regions are not aligned with processor word-lengths

– Bit packet:

– Sequence of consecutive bits

– of arbitrary length

– starting at arbitrary bit positions

– and eventually crossing word boundaries

 Efficient manipulation of data at bit-level necessary!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 54/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Bit Packets (2)

Network Processing Units (NPUs)

– Software for network protocol processing:

High amount of code dealing with processing of bit packets

– Typical C-Code (GSM kernel, TU Berlin):

– Instruction set of NPUs:

Special-purpose machine instructions to extract, insert & manipulate bit

packets

xmc[0] = (*c >> 4) & 0x7;

xmc[1] = (*c >> 1) & 0x7;

xmc[2] = (*c++ & 0x1) << 2;

xmc[2] |= (*c >> 6) & 0x3;

xmc[3] = (*c >> 3) & 0x7;

Compilers for Embedded Systems (CfES) SoSe 2022Slide 55/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Operations on Bit Packets

Extraction of Bit Packets

Insertion of Bit Packets

extr R2, R0, <Offset1>, <size>;

Register R0Register R1

Register R2

Offset1Size

insert R0, R2, <Offset2>, <size>;

Register R0Register R1

Offset2

Size

Register R2

Compilers for Embedded Systems (CfES) SoSe 2022Slide 56/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Chapter Contents

2. Compilers for Embedded Systems – Requirements &

Dependencies

– Code Generation Tools

– Compiler, Assembler, Linker

– Source Code, Assembly Code, Object Code, Binary Code

– Source Languages for Compilers for Embedded Systems

– C, C++, Java

– Embedded Processors

– Digital Signal Processors

– Multimedia Processors

– Very Long Instruction Word Machines

– Network Processors

– Requirements on Compilers for Embedded Systems

– Code Quality vs. Compilation Times

Compilers for Embedded Systems (CfES) SoSe 2022Slide 57/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Most Important Requirements on Compilers for ES

Maximal Code Quality

– Run-time efficiency

– Low energy consumption

– Low code size

Meaningful Measures

– Best-possible mapping of source language to machine language

– Exploitation of strong compiler optimizations

– Reuse of code fragments

– Maximal exploitation of fast and small memories

– Consideration of the WCET (Worst-Case Execution Time)

– ...

– Maximal parallelization

– Real-time ability

– ...

Compilers for Embedded Systems (CfES) SoSe 2022Slide 58/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Less Important Requirements

Speed of the Compiler Itself

– Situation for “standard” desktop computers:

 Large amount of available resources

 Code quality of less interest

 Compilers shall quickly generate correct code

– Situation for Embedded Systems:

❑ Code quality of utmost importance

❑ Compiler shall generate highly-optimized code

❑ In the design process of Embedded Systems, compilers are called

less frequently than when programming for desktop computers

 High Run-Times of Optimizing Compilers are acceptable!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 59/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

References

Code Generation Tools

– John R. Levine. Linkers & Loaders.

Morgan Kaufmann, 2000.

ISBN 1-55860-496-0

Programming Languages

– Brian W. Kernighan, Dennis M. Ritchie. The C Programming Language.

Prentice Hall, 1988.

ISBN 0-13-110362-8

– Embedded C++ Home Page.

http://www.caravan.net/ec2plus, 2002.

– The Real-Time Specification for Java.

http://www.rtsj.org, 2007.

http://www.caravan.net/ec2plus
http://www.rtsj.org/

Compilers for Embedded Systems (CfES) SoSe 2022Slide 60/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

References

Processors & Instruction Sets

– Peter Marwedel. Embedded System Design. Springer, 2011.

ISBN 978-94-007-0256-1

– Rainer Leupers. Code Optimization Techniques for Embedded

Processors. Kluwer Academic Publishers, 2000.

ISBN 0-7923-7989-6

– Jens Wagner. Retargierbare Ausnutzung von Spezialoperationen für

Eingebettete Systeme mit Hilfe bitgenauer Wertflussanalyse. Dissertation

University of Dortmund, Computer Science 12, 2006.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 61/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Summary (1)

Code Generation Tools

– Assembler and linker as further important tools besides compilers

– Address resolution, memory layout and libraries

Source Languages for Compilers for Embedded Systems

– ANSI-C: widespread imperative programming language; allows machine-

oriented low-level programming; error-prone memory management;

unspecified language details

– C++: similar to C; high overhead due to some object-oriented language

constructs

– Java: very high overhead due to byte code interpretation; no real-time

capabilities due to dynamic garbage collection during run-time

– ANSI-C most common programming language for Embedded Systems

Compilers for Embedded Systems (CfES) SoSe 2022Slide 62/62

© H. Falk | 17.03.2022 2 - Compilers for Embedded Systems

Summary (2)

Embedded Processors

– Partially highly specialized instruction sets (multiply-accumulate,

insert/extract, SIMD)

– Special registers and address generation units

– High degree of parallelism (several pipelines, multitude of functional

units)

Requirements on Compilers for Embedded Systems

– Code quality primary concern

– Compile-times only secondary, in contrast to compilers for desktop

computers

