
Compilers for Embedded Systems

Summer Term 2022

Heiko Falk

Institute of Embedded Systems

Electrical Engineering, Computer Science and Mathematics

Hamburg University of Technology

Chapter 3

Internal Structure of Compilers

Compilers for Embedded Systems (CfES) SoSe 2022Slide 3/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Outline

1. Introduction & Motivation

2. Compilers for Embedded Systems – Requirements & Dependencies

3. Internal Structure of Compilers

4. Pre-Pass Optimizations

5. HIR Optimizations and Transformations

6. Code Generation

7. LIR Optimizations and Transformations

8. Register Allocation

9. WCET-Aware Compilation

10.Outlook

Compilers for Embedded Systems (CfES) SoSe 2022Slide 4/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Chapter Contents

3. Internal Structure of Compilers

– Compiler Stages

– Front-End: Lexical Analysis, Syntactical Analysis, Semantical
Analysis

– Back-End: Code Generation, Register Allocation, Instruction
Scheduling

– Intermediate Representations

– High-Level, Medium-Level & Low-Level IRs

– Case Studies: ICD-C, MIR, LLIR

– Structure of a Highly-Optimizing Compiler

– Optimizations & Objectives

– Abstraction Levels of Optimizations

– Average-Case & Worst-Case Execution Time

– Code Size

– Energy Consumption

Compilers for Embedded Systems (CfES) SoSe 2022Slide 5/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

The Front-End (1)

Lexical Analysis (Scanner)

– Decomposition of the source code in lexical units (tokens)

– Detection of tokens (regular expressions, finite automata)

– Tokens represent strings of specific significance for the source language

(e.g., identifier, constants, keywords)

Lexical
Analysis

Source
Code

Token

Sequence

Compilers for Embedded Systems (CfES) SoSe 2022Slide 6/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

The Front-End (2)

Syntactical Analysis (Parser)

– Let G be the grammar of the source language

– Decides whether token sequence can be inferred from G.

– Syntax tree: Tree-like code representation based on the production rules

of G used during inference

– Error processing

Lexical
Analysis

Source
Code

Token

Sequence
Syntactical

Analysis

Syntax

Tree

Compilers for Embedded Systems (CfES) SoSe 2022Slide 7/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

The Front-End (3)

Semantical Analysis (IR Generator)

– Name and scope analysis of symbols

– Type analysis

– Creation of symbol tables (mapping of identifiers to their types and

locations)

– Generation of an intermediate representation (IR)

Lexical
Analysis

Source
Code

Token

Sequence
Syntactical

Analysis

Syntax

Tree
Semantical

Analysis

IR

Compilers for Embedded Systems (CfES) SoSe 2022Slide 8/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

The Back-End (1)

Code Generation (Instruction Selection)

– Selection of machine instructions to implement the given IR

– Often – Generation of virtual code: non-executable assembler code;

assumes an infinite amount of virtual registers, instead of a processor’s

limited/finite amount of physical registers

– Alternatively – Generation of code with stack accesses: executable

assembler code; very restricted use of registers; variables are kept in

memory (e.g., older GCCs at optimization level O0)

Code
Generation

Virtual

Code

IR

Compilers for Embedded Systems (CfES) SoSe 2022Slide 9/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

The Back-End (2)

Register Allocation

– Either: Mapping of virtual to physical registers

– Or: Replacement of stack accesses by keeping data in registers

– Insertion of memory transfers (spilling) if number of available physical

registers is insufficient

Code
Generation

Virtual

Code

IR Register
Allocation

ASM

Code

Compilers for Embedded Systems (CfES) SoSe 2022Slide 10/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

The Back-End (3)

Instruction Scheduling

– Rearrangement of machine instructions in order to increase instruction-

level parallelism

– Dependence analysis between machine instructions (data- & control-flow

dependencies)

Code
Generation

Virtual

Code

IR Register
Allocation

ASM

Code
ASM
Code

Instruction
Scheduling

Compilers for Embedded Systems (CfES) SoSe 2022Slide 11/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Putting It All Together

Course “Compilers for Embedded Systems”

– Front-end not considered any further

(Course “Compiler Construction”)

– Focus: Back-end & compiler optimizations

Lexical
Analysis

Source
Code

Syntactical
Analysis

Syntax

Tree

Code
Generation

Register
Allocation

Instruction
Scheduling

ASM
Code

ASM

Code

Semantical
Analysis

IR

Virtual

Code

Token

Sequence

Compilers for Embedded Systems (CfES) SoSe 2022Slide 12/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Open Question

Where should optimizations be placed inside the compiler?

Lexical
Analysis

Source
Code

Syntactical
Analysis

Syntax

Tree

Code
Generation

Register
Allocation

Instruction
Scheduling

ASM
Code

ASM

Code

Semantical
Analysis

IR

Virtual

Code

Code
Optimization

Token

Sequence

Compilers for Embedded Systems (CfES) SoSe 2022Slide 13/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Code Optimization

Definition

– Compiler stage that reads code, modifies it and outputs it.

– Code modification aims to improve the code.

Remarks

– Optimizations usually do not generate optimal code (often undecidable),

but (hopefully) better code.

– Code improvement is done subject to an objective function.

Existence of Formal Code Analyses

– Code modifications must not break correctness of the code.

– Optimizations must decide whether modifications of the code are legal or

not.

– Formal code analyses are used to take these decisions.

– Examples: Control & data flow analyses, dependence analyses, ...

Compilers for Embedded Systems (CfES) SoSe 2022Slide 14/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Prerequisites for Code Optimization

Required Compiler Infrastructure

– Effective internal representation of code that

– easily supports code manipulation and

– provides all necessary analyses for optimizations.

 Intermediate code Representations (IR)

Where should Optimizations be placed inside the Compiler?

– Optimizations (usually) take place at the IR level within a compiler.

Intermediate Representations (IRs)

– Compiler-internal data structures that model/represent the code to be

translated or to be optimized.

– Good IRs also provide required code analyses, in addition to

optimizations.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 15/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Chapter Contents

3. Internal Structure of Compilers

– Compiler Stages

– Front-End: Lexical Analysis, Syntactical Analysis, Semantical
Analysis

– Back-End: Instruction Selection, Register Allocation, Instruction
Scheduling

– Intermediate Representations

– High-Level, Medium-Level & Low-Level IRs

– Case Studies: ICD-C, MIR, LLIR

– Structure of a Highly-Optimizing Compiler

– Optimizations & Objectives

– Abstraction Levels of Optimizations

– Average-Case & Worst-Case Execution Time

– Code Size

– Energy Consumption

Compilers for Embedded Systems (CfES) SoSe 2022Slide 16/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Abstraction Levels of IRs (1)

– High-Level

float a[20][10];

... a[i][j+2] ...;

t1 a[i,j+2] r1 [fp-4]

r2 r1+2

r3 [fp-8]

r4 r3*10

r5 r4+r2

r6 4*r5

r7 fp-216

f1 [r7+r6]

t1 j+2

t2 i*10

t3 t1+t2

t4 4*t3

t5 addr a

t6 t5+t4

t7 *t6

– Medium-Level – Low-Level

Compilers for Embedded Systems (CfES) SoSe 2022Slide 17/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Abstraction Levels of IRs (2)

High-Level IRs

– Representation very close to source code

– Often: Abstract syntax trees

– Variables & types used to store and represent data

– Preservation of complex control & data flow operations (esp. loops, if-

then / if-else statements, Array accesses [])

– Back-transformation of a high-level IR into source code easy

[S. S. Muchnick. Advanced Compiler Design & Implementation.

Morgan Kaufmann, 1997]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 18/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Abstraction Levels of IRs (3)

Medium-Level IRs

– Three-address code: a1 a2 op a3;

– IR independent of source language & target processor

– Temporary variables used to store data

– Complex control & data flow operations simplified and broken down

(labels & branches, pointer arithmetic)

– Control flow in form of basic blocks

Definition: A basic block B=(I1, ..., In) is an instruction sequence of maximal

length such that

– B is entered only via its very first instruction I1 and

– B is left only via its very last instruction In.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 19/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Abstraction Levels of IRs (4)

Low-Level IRs

– Representation of machine code

– Operations correspond to machine instructions

– Registers used to store data

– Transformation of a low-level IR into assembly code easy

Compilers for Embedded Systems (CfES) SoSe 2022Slide 20/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

High-Level IR: ICD-C (1)

Compilation

Unit

IR

Function

Statement

Expression

– 1 C file when simultaneously translating
several source code files

– Loop Statements (for, do-while, while-do)
– Selection Statements (if, if-else, switch)
– Jump Statements (return, break, continue, ...)
– ...
– Binary & Unary Expressions (+, -, *, /, ...)
– Assignment operators (=, +=, -=, ...)
– Index & component accesses (a[x], a.x, ...)
– ...

Compilers for Embedded Systems (CfES) SoSe 2022Slide 21/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

High-Level IR: ICD-C (2)

Compilation

Unit

IR

Function

Statement

Expression

Global ST

File ST

Funct. ST

Local ST

Basic

Block

associated

symbol tables

[Informatik Centrum Dortmund e.V.

www.icd.de/en/es/icd-c-compiler, Dortmund, 2015]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 22/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

ICD-C: Code Example

struct A {

int b;

...

} a;

int c;

...

a.b += c*3;

IR_ExpStmt

IR_AssignExp

IR_BinaryExpIR_ComponentAccessExp

IR_IntConstExpIR_SymbolExpIR_SymbolExpIR_SymbolExp

+=

. *

b ca 3

IR_SymbolTable
a: IR_ComposedType

c: IR_BuiltinType (int)

IR_ComposedType
(struct A)

components:

IR_SymbolTable

IR_SymbolTable
b: IR_BuiltinType (int)

...

Compilers for Embedded Systems (CfES) SoSe 2022Slide 23/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

ICD-C: Features

– ANSI-C Compiler Front-end: C89 + C99 standards

GNU Inline-assembly

– Included Analyses: Data flow analyses

Control flow analyses

Loop analyses

Pointer analyses

– Interfaces:

– ANSI-C dump of the IR as interface to external tools

– Interface to code selector in compiler back-ends

– Internal Structure:

– Object-oriented design (C++)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 24/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Medium-Level IR: MIR (1)

– MIR Program: 1 – N Program Units (i.e., functions)

– Program Unit: begin MIRInst* end

– MIR Instructions:

– Quadruples: 1 operator, 3 operands (3-address code)

– Types of instructions:
Assignments, jumps (goto), conditions (if),

function call & return (call, return),

parameter passing (receive)

– Can contain MIR expressions

Compilers for Embedded Systems (CfES) SoSe 2022Slide 25/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Medium-Level IR: MIR (2)

– MIR Expressions:

– Binary operators: +, -, *, /, mod, min, max

– Comparison operators: =, !=, <, <=, >, >=

– Shift & logical operators: shl, shr, shra, and, or, xor

– Unary operators: -, !, addr, cast, *

– Symbol Table:

– Contains variables and symbolic registers

– Entries have types: integer, float, boolean

[S. S. Muchnick. Advanced Compiler Design & Implementation.

Morgan Kaufmann, 1997]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 26/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

MIR: Properties

– MIR is not a High-Level IR

– Closeness to source language lacking

– High-level constructs are missing: Loops, array accesses, ...

– Only few and mostly simple operators present

– MIR is not a Low-Level IR

– Closeness to target architecture lacking: Behavior of operands is

defined in machine-independent way

– Concepts of symbol tables, variables and types not low-level

– Abstract mechanisms for function calls, returns, and parameter

passing

 MIR is a Medium-Level IR.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 27/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Low-Level IR: LLIR (1)

LLIR

Function

Instruction

Operation

Basic

Block

– Machine instruction
– Contains 1-N machine operations
– Operations are executed in parallel (VLIW)

– Machine operation
– Contains assembly opcode (e.g., ADD, MUL, ...)
– Contains 0-M parameters

Compilers for Embedded Systems (CfES) SoSe 2022Slide 28/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Low-Level IR: LLIR (2)

LLIR

Function

Instruction

Operation

Basic

Block

Parameter

– Registers
– Integer constants & labels
– Addressing modes
– ...

This LLIR structure is completely processor-

independent:

– An LLIR consists of some arbitrary,

generic functions

– An LLIR function consists of...

– An LLIR operation consists of some

arbitrary, generic parameters

Compilers for Embedded Systems (CfES) SoSe 2022Slide 29/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Low-Level IR: LLIR (3)

LLIR

Function

Instruction

Operation

Basic

Block

Parameter

LLIR becomes processor-specific by providing

a processor description:

TriCore 1.3:

– Registers = {D0, ..., D15, A0, ..., A15}

– Mnemonics = {ABS, ABS.B, ..., XOR.T}

– Status flags = {C, V, ..., SAV}

– ...

[Informatik Centrum Dortmund e.V.

www.icd.de/en/es/icd-c-compiler,

Dortmund, 2015]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 30/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

LLIR: Code Example (Infineon TriCore 1.3)

ld.w %d_0, [%A10] 12;

– Load memory contents from address [%A10] 12 in register d_0

– Recall: Register A10 = Stack pointer Physical register

– Address [%A10] 12 = Stack pointer + 12 Bytes

(so-called Base + Offset Addressing)

– TriCore features no register d_0 Virtual data register

LLIR_Operation

LLIR_Parameter

PARAM_REGISTER

ld.w

LLIR_Parameter

PARAM_CONSTANT

LLIR_Parameter

PARAM_OPERATOR

LLIR_Parameter

PARAM_REGISTER

LLIR_Register d_0 LLIR_Register A10

OPER_BASE 12

Compilers for Embedded Systems (CfES) SoSe 2022Slide 31/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

LLIR: Features

– Retargetability:

– Adaptability to support various distinct processors (e.g., DSPs,

VLIWs, NPUs, ...)

Modelling of various instruction set architectures (ISAs)

Modelling of various kinds of register sets

– Included Analyses:

– Data flow analyses

– Control flow analyses

– Interfaces:

– Import and export of assembly files

– Interface to code generation

Compilers for Embedded Systems (CfES) SoSe 2022Slide 32/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Back to the Open Question...

Where should Optimizations be placed inside the Compiler?

– Optimizations (usually) take place at the IR level within a compiler.

 Structure of an Optimizing Compiler with 2 IRs:

Lexical
Analysis

Source
Code

Syntactical
Analysis

Syntax

Tree

H
ig

h
-

L
e

v
e

l
IR

Code
Generation

Register
Allocation

Instruction
Scheduling

ASM
Code

Code
Optimization

High-

Level IR

Low-

Level IR

Code
Optimization

L
o

w
-

L
e

v
e

l
IR

Low-

Level IR

Semantical
Analysis

Token

Sequence

Compilers for Embedded Systems (CfES) SoSe 2022Slide 33/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Chapter Contents

3. Internal Structure of Compilers

– Compiler Stages

– Front-End: Lexical Analysis, Syntactical Analysis, Semantical
Analysis

– Back-End: Instruction Selection, Register Allocation, Instruction
Scheduling

– Intermediate Representations

– High-Level, Medium-Level & Low-Level IRs

– Case Studies: ICD-C, MIR, LLIR

– Structure of a Highly-Optimizing Compiler

– Optimizations & Objectives

– Abstraction Levels of Optimizations

– Average-Case & Worst-Case Execution Time

– Code Size

– Energy Consumption

Compilers for Embedded Systems (CfES) SoSe 2022Slide 34/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Abstraction Levels of Optimizations (1)

Processor-specific Compiler Optimization

Processor-independent Compiler Optimization

Processor-specific Source
Code Optimization

Processor-independent Global
Source Code Optimization

Memory Transfer
Optimization

Algorithm
Selection

Spe-
cification

Optimization

N
o
w

R
e
s
e
a
rc

h
low

high

L
e
v
e
l
o
f
D

e
ta

il

high

low

O
p
ti
m

iz
a
ti
o
n
 P

o
te

n
ti
a
l

x 4-20

x 4-9

x 4

x 3

x 2

x 2-3

[H. Falk. Source Code Optimization Techniques for Data

Flow Dominated Embedded Software. Kluwer, 2004]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 35/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Abstraction Levels of Optimizations (2)

Compiler Optimization

– Everything that is included in today’s

compilers

– Processor-specific: low-level

– Processor-independent: high-level

– Typical speed-ups: Factor 2 to 3

altogether

 Cf. chapters 5 – 9
Processor-specific Compiler Optimization

Processor-independent Compiler Optimization

Processor-specific Source
Code Optimization

Processor-independent Global
Source Code Optimization

Memory Transfer
Optimization

Algorithm
Selection

Spe-
cification

Optimization

x 4-20

x 4-9

x 4

x 3

x 2

x 2-3

Compilers for Embedded Systems (CfES) SoSe 2022Slide 36/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Abstraction Levels of Optimizations (3)

Source Code Optimization

– Transformation of source code such that

subsequent compiler generates more

efficient code

– Processor-specific: Support the compiler

in mapping source to target language

– Processor-independent: Machine-

independent improvement of the source

code’s structure

– Partly automated, partly manual

– Typical speed-ups: 2x or 3x

 Cf. chapter 4

Processor-specific Compiler Optimization

Processor-independent Compiler Optimization

Processor-specific Source
Code Optimization

Processor-independent Global
Source Code Optimization

Memory Transfer
Optimization

Algorithm
Selection

Spe-
cification

Optimization

x 4-20

x 4-9

x 4

x 3

x 2

x 2-3

Compilers for Embedded Systems (CfES) SoSe 2022Slide 37/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Abstraction Levels of Optimizations (4)

Memory Transfer Optimization

– Reduction of data and code transfers

from memory to processor at a very

abstract level

– E.g., restructuring of an algorithm’s data

structures, reorganizing of (multi-

dimensional) arrays in memory, merging

or splitting of arrays

– Only manually

– Typical speed-ups: ca. 4x

Processor-specific Compiler Optimization

Processor-independent Compiler Optimization

Processor-specific Source
Code Optimization

Processor-independent Global
Source Code Optimization

Memory Transfer
Optimization

Algorithm
Selection

Spe-
cification

Optimization

x 4-20

x 4-9

x 4

x 3

x 2

x 2-3

Compilers for Embedded Systems (CfES) SoSe 2022Slide 38/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Abstraction Levels of Optimizations (5)

Algorithm Selection

– Replacement of entire algorithms of a

program by other, more efficient

implementations

– E.g., Bubblesort → Quicksort

– Replacement must preserve functional

behavior of the program

– Only manually

– Typical speed-ups: 4x – 9x

Processor-specific Compiler Optimization

Processor-independent Compiler Optimization

Processor-specific Source
Code Optimization

Processor-independent Global
Source Code Optimization

Memory Transfer
Optimization

Algorithm
Selection

Spe-
cification

Optimization

x 4-20

x 4-9

x 4

x 3

x 2

x 2-3

Compilers for Embedded Systems (CfES) SoSe 2022Slide 39/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Abstraction Levels of Optimizations (6)

Specification Optimization

– Replacement of algorithms just as during

“Algorithm Selection”

– But: Replacement is allowed to change

the program’s functional behavior

– E.g., Replacement of double floating-

point numbers by single-precision or

integer values; replacement of complex

formulae by simpler approximations (sin,

cos)

– Only manually

– Also known as Approximate Computing

– Typical speed-ups: 4x – 20x

Processor-specific Compiler Optimization

Processor-independent Compiler Optimization

Processor-specific Source
Code Optimization

Processor-independent Global
Source Code Optimization

Memory Transfer
Optimization

Algorithm
Selection

Spe-
cification

Optimization

x 4-20

x 4-9

x 4

x 3

x 2

x 2-3

Compilers for Embedded Systems (CfES) SoSe 2022Slide 40/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Objective Function: (Typical) Run-Time

– Average-Case Execution Time (ACET)

An ACET-optimized program shall run faster during a “typical” execution

using “typical” input data.

– The Objective Function of Optimizing Compilers per se. Strategy:

“Greedy”, i.e., whenever the execution of code at run-time can be saved

somewhere, this is actually also done.

– ACET-optimizing Compilers usually do not have a precise ACET

Model.

Exact impacts of optimizations on the effective run-time are completely

unknown to the compiler.

 ACET optimizations are usually beneficial, but sometimes only

neutral or even disadvantageous

Compilers for Embedded Systems (CfES) SoSe 2022Slide 41/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Example: Function Inlining

Potential Run-Time Reduction due to:

– Code for parameter and return value passing redundant

– Code to jump into the called function redundant

– Memory allocation at beginning of called function eventually redundant

– Potential enabling of other optimizations that otherwise fail due to

function boundaries

main() {

...

a = min(b, c);

...

...min(f, g)...

}

int min(int i,

int j) {

return(

i<j ? i : j);

}

main() {

...

a = b<c ? b : c;

...

...f<g ? f : g;

}

Compilers for Embedded Systems (CfES) SoSe 2022Slide 42/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Objective Function: Code Size

– Generation of a minimal Amount of Code, measured in Bytes

– Trivial Modelling:

Compiler knows exactly which machine instructions it generates and how

many bytes each individual instruction takes.

Often in Conflict with Run-Time Minimization: Example Inlining

– Inlining copies a function’s body to the place of the function call

– For large functions and/or many calls of a function in the code: Heavy

increases in terms of code size!

– Code size-minimizing optimizing compilers:

Completely deactivated Function Inlining

Compilers for Embedded Systems (CfES) SoSe 2022Slide 43/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Objective Function: Energy Consumption (1)

– Generation of Code that consumes minimal Electrical Energy

– Modelling usually includes both Processor and Memories

Simple Energy Model for Processors:

– Base Costs of a machine instruction: Energy consumption of the

processor during execution of this single machine instruction

– Determination of base costs (e.g., for an ADD instruction):

.L0:

...

ADD d0, d1, d2;

ADD d0, d1, d2;

ADD d0, d1, d2;

...

LOOP a5, .L0;

– Loop that contains the examined instruction

very often.

– Execution on real hardware

– Energy measurement: Ampere meter

– Breakdown of result to one single ADD

– Repetition for the entire instruction set

Compilers for Embedded Systems (CfES) SoSe 2022Slide 44/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Objective Function: Energy Consumption (2)

Simple Energy Model for Processors:

– Inter-instruction Costs between two successive machine instructions:

Model activation and deactivation of Functional Units (FUs)

– Example: ADD executed in ALU, MUL in dedicated multiplier

– Loop that contains the examined instruction

pair very often.

– Execution and measurement as done for

base costs

– Breakdown of result to one single pair of ADD

and MUL

– Repetition for all possible combinations of

FUs

.L0:

ADD d0, d1, d2;

MUL d3, d4, d5;

ADD d0, d1, d2;

MUL d3, d4, d5;

...

LOOP a5, .L0;

Compilers for Embedded Systems (CfES) SoSe 2022Slide 45/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Objective Function: Energy Consumption (3)

Functional Units of ARM7 Processors

– Functional units: Address incrementer, 32x8

multiplier, barrel shifter and ALU

– Example from previous slide: power-on ALU for

ADD, perform addition.

– Hereafter: Power-on multiplier for MUL, charge

busses to/from multiplier.

– Finally: Power-down multiplier after MUL,

discharge busses.

 Power-on/-down of FUs & charging/discharging

of wires costs lots of electrical energy!

[ARM Limited. ARM7TDMI Technical

Reference Manual. 2004]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 46/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Objective Function: Energy Consumption (4)

Computation of the CPU Energy by Compiler

– Sum up base costs of all generated machine instructions

– Sum up inter-instruction costs of all successive instruction pairs

– Multiply by estimated execution counts per basic block

Computation of Memory Energy by Compiler

– Either using data sheets from manufacturers, or based on measurements

– Principle: Energy consumption per load or store memory access

– Simple for static RAMs (SRAM), difficult for Caches and dynamic RAMs

(DRAM)

[V. Tiwari et al. Power Analysis of Embedded Software: A First Step Towards

Software Power Minimization. IEEE Transactions on VLSI, December 1994]

[S. Steinke et al. An Accurate and Fine Grain Instruction-Level Energy Model

Supporting Software Optimizations. PATMOS Workshop, September 2001]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 47/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Objective Function: Worst-Case Run-Time (1)

Worst-Case Execution Time (WCET):

Maximal run-time of a program over all possible input data.

Problem:

Determination of a program’s WCET intractable! (Would include solving

the Halting problem)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 48/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Objective Function: Worst-Case Run-Time (2)

Solution: Estimation of upper bounds of the actual (unknown) WCET

Requirements on WCET Estimates:

– Safeness: WCET WCETEST!

– Tightness: WCETEST – WCET → minimal

Deadline

Compilers for Embedded Systems (CfES) SoSe 2022Slide 49/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

References

Compiler Stages and IRs

– Steven S. Muchnick. Advanced Compiler Design & Implementation.

Morgan Kaufmann, 1997.

ISBN 1-55860-320-4

– Andrew W. Appel. Modern compiler implementation in C. Cambridge

University Press, 1998.

ISBN 0-521-58390-X

Abstraction Levels of Optimizations

– H. Falk. Source Code Optimization Techniques for Data Flow Dominated

Embedded Software. Kluwer Academic Publishers, 2004.

ISBN 1-4020-2822-9

Compilers for Embedded Systems (CfES) SoSe 2022Slide 50/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Summary (1)

Compiler Stages

– Significance of individual phases within a compiler

– Focus here on compiler back-end

– Location of optimizations within the compiler

Intermediate Representations

– Effective compiler-internal representations of code; facilitate

manipulation and analysis of code

– Different abstraction levels: Close to source language; independent of

source language and processor architecture; close to processor

architecture

Compilers for Embedded Systems (CfES) SoSe 2022Slide 51/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Summary (2)

Optimizations & Objective Functions

– Many classes of optimizations having high potential are not automatable

– Focus here on compiler and source code optimizations

– Average-Case Execution Time: Objective function of almost every

compiler; compilers, however, to not feature an ACET timing model

– Code size: Often in contradiction with ACET

– Energy consumption: Energy models for processors (base & inter-

instruction costs) and memory

– Worst-Case Execution Time: not computable; WCET estimation

