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The Front-End (1)

Lexical Analysis (Scanner)

– Decomposition of the source code in lexical units (tokens)

– Detection of tokens (regular expressions, finite automata)

– Tokens represent strings of specific significance for the source language 

(e.g., identifier, constants, keywords)

Lexical
Analysis

Source
Code

Token

Sequence
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The Front-End (2)

Syntactical Analysis (Parser)

– Let G be the grammar of the source language

– Decides whether token sequence can be inferred from G.

– Syntax tree: Tree-like code representation based on the production rules 

of G used during inference

– Error processing
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The Front-End (3)

Semantical Analysis (IR Generator)

– Name and scope analysis of symbols

– Type analysis

– Creation of symbol tables (mapping of identifiers to their types and 

locations)

– Generation of an intermediate representation (IR)
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The Back-End (1)

Code Generation (Instruction Selection)

– Selection of machine instructions to implement the given IR

– Often – Generation of virtual code: non-executable assembler code; 

assumes an infinite amount of virtual registers, instead of a processor’s 

limited/finite amount of physical registers

– Alternatively – Generation of code with stack accesses: executable 

assembler code; very restricted use of registers; variables are kept in 

memory (e.g., older GCCs at optimization level O0)

Code
Generation
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Code

IR
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The Back-End (2)

Register Allocation

– Either: Mapping of virtual to physical registers

– Or: Replacement of stack accesses by keeping data in registers

– Insertion of memory transfers (spilling) if number of available physical 

registers is insufficient

Code
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The Back-End (3)

Instruction Scheduling

– Rearrangement of machine instructions in order to increase instruction-

level parallelism

– Dependence analysis between machine instructions (data- & control-flow 

dependencies)
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Putting It All Together

Course “Compilers for Embedded Systems”

– Front-end not considered any further

( Course “Compiler Construction”)

– Focus: Back-end & compiler optimizations
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Open Question

Where should optimizations be placed inside the compiler?
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Code Optimization

Definition

– Compiler stage that reads code, modifies it and outputs it.

– Code modification aims to improve the code.

Remarks

– Optimizations usually do not generate optimal code (often undecidable), 

but (hopefully) better code.

– Code improvement is done subject to an objective function.

Existence of Formal Code Analyses

– Code modifications must not break correctness of the code.

– Optimizations must decide whether modifications of the code are legal or 

not.

– Formal code analyses are used to take these decisions.

– Examples: Control & data flow analyses, dependence analyses, ...
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Prerequisites for Code Optimization

Required Compiler Infrastructure

– Effective internal representation of code that

– easily supports code manipulation and

– provides all necessary analyses for optimizations.

 Intermediate code Representations (IR)

Where should Optimizations be placed inside the Compiler?

– Optimizations (usually) take place at the IR level within a compiler.

Intermediate Representations (IRs)

– Compiler-internal data structures that model/represent the code to be 

translated or to be optimized.

– Good IRs also provide required code analyses, in addition to 

optimizations.
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Abstraction Levels of IRs (1)

– High-Level

float a[20][10];

... a[i][j+2] ...;

t1  a[i,j+2] r1  [fp-4]

r2  r1+2

r3  [fp-8]

r4  r3*10

r5  r4+r2

r6  4*r5

r7  fp-216

f1  [r7+r6]

t1  j+2

t2  i*10

t3  t1+t2

t4  4*t3

t5  addr a

t6  t5+t4

t7  *t6

– Medium-Level – Low-Level
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Abstraction Levels of IRs (2)

High-Level IRs

– Representation very close to source code

– Often: Abstract syntax trees

– Variables & types used to store and represent data

– Preservation of complex control & data flow operations (esp. loops, if-

then / if-else statements, Array accesses [])

– Back-transformation of a high-level IR into source code easy

[S. S. Muchnick. Advanced Compiler Design & Implementation.

Morgan Kaufmann, 1997]
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Abstraction Levels of IRs (3)

Medium-Level IRs

– Three-address code: a1  a2 op a3;

– IR independent of source language & target processor

– Temporary variables used to store data

– Complex control & data flow operations simplified and broken down 

(labels & branches, pointer arithmetic)

– Control flow in form of basic blocks

Definition: A basic block B=(I1, ..., In) is an instruction sequence of maximal 

length such that

– B is entered only via its very first instruction I1 and

– B is left only via its very last instruction In.
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Abstraction Levels of IRs (4)

Low-Level IRs

– Representation of machine code

– Operations correspond to machine instructions

– Registers used to store data

– Transformation of a low-level IR into assembly code easy
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High-Level IR: ICD-C (1)

Compilation

Unit

IR

Function

Statement

Expression

– 1 C file when simultaneously translating
several source code files

– Loop Statements (for, do-while, while-do)
– Selection Statements (if, if-else, switch)
– Jump Statements (return, break, continue, ...)
– ...
– Binary & Unary Expressions (+, -, *, /, ...)
– Assignment operators (=, +=, -=, ...)
– Index & component accesses (a[x], a.x, ...)
– ...



Compilers for Embedded Systems (CfES) SoSe 2022Slide 21/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

High-Level IR: ICD-C (2)

Compilation

Unit

IR

Function

Statement

Expression

Global ST

File ST

Funct. ST

Local ST

Basic

Block

associated

symbol tables

[Informatik Centrum Dortmund e.V.

www.icd.de/en/es/icd-c-compiler, Dortmund, 2015]
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ICD-C: Code Example

struct A {

int b;

...

} a;

int c;

...

a.b += c*3;

IR_ExpStmt

IR_AssignExp

IR_BinaryExpIR_ComponentAccessExp

IR_IntConstExpIR_SymbolExpIR_SymbolExpIR_SymbolExp

+=

. *

b ca 3

IR_SymbolTable
a: IR_ComposedType

c: IR_BuiltinType (int)

IR_ComposedType
(struct A)

components:

IR_SymbolTable

IR_SymbolTable
b: IR_BuiltinType (int)

...
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ICD-C: Features

– ANSI-C Compiler Front-end: C89 + C99 standards

GNU Inline-assembly

– Included Analyses: Data flow analyses

Control flow analyses

Loop analyses

Pointer analyses

– Interfaces:

– ANSI-C dump of the IR as interface to external tools

– Interface to code selector in compiler back-ends

– Internal Structure:

– Object-oriented design (C++)
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Medium-Level IR: MIR (1)

– MIR Program: 1 – N Program Units (i.e., functions)

– Program Unit: begin MIRInst* end

– MIR Instructions:

– Quadruples: 1 operator, 3 operands (3-address code)

– Types of instructions:
Assignments, jumps (goto), conditions (if),

function call & return (call, return),

parameter passing (receive)

– Can contain MIR expressions
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Medium-Level IR: MIR (2)

– MIR Expressions:

– Binary operators: +, -, *, /, mod, min, max

– Comparison operators: =, !=, <, <=, >, >=

– Shift & logical operators: shl, shr, shra, and, or, xor

– Unary operators: -, !, addr, cast, *

– Symbol Table:

– Contains variables and symbolic registers

– Entries have types: integer, float, boolean

[S. S. Muchnick. Advanced Compiler Design & Implementation.

Morgan Kaufmann, 1997]
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MIR: Properties

– MIR is not a High-Level IR

– Closeness to source language lacking

– High-level constructs are missing: Loops, array accesses, ...

– Only few and mostly simple operators present

– MIR is not a Low-Level IR

– Closeness to target architecture lacking: Behavior of operands is 

defined in machine-independent way

– Concepts of symbol tables, variables and types not low-level

– Abstract mechanisms for function calls, returns, and parameter 

passing

 MIR is a Medium-Level IR.
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Low-Level IR: LLIR (1)

LLIR

Function

Instruction

Operation

Basic

Block

– Machine instruction
– Contains 1-N machine operations
– Operations are executed in parallel ( VLIW)

– Machine operation
– Contains assembly opcode (e.g., ADD, MUL, ...)
– Contains 0-M parameters
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Low-Level IR: LLIR (2)

LLIR

Function

Instruction

Operation

Basic

Block

Parameter

– Registers
– Integer constants & labels
– Addressing modes
– ...

This LLIR structure is completely processor-

independent:

– An LLIR consists of some arbitrary, 

generic functions

– An LLIR function consists of...

– An LLIR operation consists of some 

arbitrary, generic parameters
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Low-Level IR: LLIR (3)

LLIR

Function

Instruction

Operation

Basic

Block

Parameter

LLIR becomes processor-specific by providing

a processor description:

TriCore 1.3:

– Registers = {D0, ..., D15, A0, ..., A15}

– Mnemonics = {ABS, ABS.B, ..., XOR.T}

– Status flags = {C, V, ..., SAV}

– ...

[Informatik Centrum Dortmund e.V.

www.icd.de/en/es/icd-c-compiler, 

Dortmund, 2015]
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LLIR: Code Example (Infineon TriCore 1.3)

ld.w %d_0, [%A10] 12;

– Load memory contents from address [%A10] 12 in register d_0

– Recall: Register A10 = Stack pointer  Physical register

– Address [%A10] 12 = Stack pointer + 12 Bytes

(so-called Base + Offset Addressing)

– TriCore features no register d_0 Virtual data register

LLIR_Operation

LLIR_Parameter

PARAM_REGISTER

ld.w

LLIR_Parameter

PARAM_CONSTANT

LLIR_Parameter

PARAM_OPERATOR

LLIR_Parameter

PARAM_REGISTER

LLIR_Register d_0 LLIR_Register A10

OPER_BASE 12
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LLIR: Features

– Retargetability:

– Adaptability to support various distinct processors (e.g., DSPs, 

VLIWs, NPUs, ...)

Modelling of various instruction set architectures (ISAs)

Modelling of various kinds of register sets

– Included Analyses:

– Data flow analyses

– Control flow analyses

– Interfaces:

– Import and export of assembly files

– Interface to code generation
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Back to the Open Question...

Where should Optimizations be placed inside the Compiler?

– Optimizations (usually) take place at the IR level within a compiler.

 Structure of an Optimizing Compiler with 2 IRs:
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Abstraction Levels of Optimizations (1)

Processor-specific Compiler Optimization

Processor-independent Compiler Optimization

Processor-specific Source
Code Optimization

Processor-independent Global
Source Code Optimization

Memory Transfer
Optimization

Algorithm
Selection

Spe-
cification

Optimization

N
o
w

R
e
s
e
a
rc

h
low

high

L
e
v
e
l 
o
f 
D

e
ta

il

high

low

O
p
ti
m

iz
a
ti
o
n
 P

o
te

n
ti
a
l

x 4-20

x 4-9

x 4

x 3

x 2

x 2-3

[H. Falk. Source Code Optimization Techniques for Data 

Flow Dominated Embedded Software. Kluwer, 2004]
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Abstraction Levels of Optimizations (2)

Compiler Optimization

– Everything that is included in today’s 

compilers

– Processor-specific: low-level

– Processor-independent: high-level

– Typical speed-ups: Factor 2 to 3 

altogether

 Cf. chapters 5 – 9
Processor-specific Compiler Optimization

Processor-independent Compiler Optimization

Processor-specific Source
Code Optimization

Processor-independent Global
Source Code Optimization

Memory Transfer
Optimization

Algorithm
Selection

Spe-
cification

Optimization

x 4-20

x 4-9

x 4

x 3

x 2

x 2-3
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Abstraction Levels of Optimizations (3)

Source Code Optimization

– Transformation of source code such that 

subsequent compiler generates more 

efficient code

– Processor-specific: Support the compiler 

in mapping source to target language

– Processor-independent: Machine-

independent improvement of the source 

code’s structure

– Partly automated, partly manual

– Typical speed-ups: 2x or 3x 

 Cf. chapter 4

Processor-specific Compiler Optimization

Processor-independent Compiler Optimization

Processor-specific Source
Code Optimization

Processor-independent Global
Source Code Optimization

Memory Transfer
Optimization

Algorithm
Selection

Spe-
cification

Optimization

x 4-20

x 4-9

x 4

x 3

x 2

x 2-3
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Abstraction Levels of Optimizations (4)

Memory Transfer Optimization

– Reduction of data and code transfers 

from memory to processor at a very 

abstract level

– E.g., restructuring of an algorithm’s data 

structures, reorganizing of (multi-

dimensional) arrays in memory, merging 

or splitting of arrays

– Only manually

– Typical speed-ups: ca. 4x

Processor-specific Compiler Optimization

Processor-independent Compiler Optimization

Processor-specific Source
Code Optimization

Processor-independent Global
Source Code Optimization

Memory Transfer
Optimization

Algorithm
Selection

Spe-
cification

Optimization

x 4-20

x 4-9

x 4

x 3

x 2

x 2-3
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Abstraction Levels of Optimizations (5)

Algorithm Selection

– Replacement of entire algorithms of a 

program by other, more efficient 

implementations

– E.g., Bubblesort → Quicksort

– Replacement must preserve functional 

behavior of the program

– Only manually

– Typical speed-ups: 4x – 9x

Processor-specific Compiler Optimization

Processor-independent Compiler Optimization

Processor-specific Source
Code Optimization

Processor-independent Global
Source Code Optimization

Memory Transfer
Optimization

Algorithm
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Spe-
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Optimization
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x 4-9

x 4

x 3
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x 2-3
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Abstraction Levels of Optimizations (6)

Specification Optimization

– Replacement of algorithms just as during 

“Algorithm Selection”

– But: Replacement is allowed to change 

the program’s functional behavior

– E.g., Replacement of double floating-

point numbers by single-precision or 

integer values; replacement of complex 

formulae by simpler approximations (sin, 

cos)

– Only manually

– Also known as Approximate Computing

– Typical speed-ups: 4x – 20x

Processor-specific Compiler Optimization

Processor-independent Compiler Optimization

Processor-specific Source
Code Optimization

Processor-independent Global
Source Code Optimization

Memory Transfer
Optimization

Algorithm
Selection

Spe-
cification

Optimization

x 4-20

x 4-9

x 4

x 3

x 2

x 2-3
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Objective Function: (Typical) Run-Time

– Average-Case Execution Time (ACET)

An ACET-optimized program shall run faster during a “typical” execution 

using “typical” input data.

– The Objective Function of Optimizing Compilers per se. Strategy: 

“Greedy”, i.e., whenever the execution of code at run-time can be saved 

somewhere, this is actually also done.

– ACET-optimizing Compilers usually do not have a precise ACET 

Model.

Exact impacts of optimizations on the effective run-time are completely 

unknown to the compiler.

 ACET optimizations are usually beneficial, but sometimes only 

neutral or even disadvantageous
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Example: Function Inlining

Potential Run-Time Reduction due to:

– Code for parameter and return value passing redundant

– Code to jump into the called function redundant

– Memory allocation at beginning of called function eventually redundant

– Potential enabling of other optimizations that otherwise fail due to 

function boundaries

main() {

...

a = min( b, c );

...

...min( f, g )...

}

int min( int i,

int j ) {

return(

i<j ? i : j );

}

main() {

...

a = b<c ? b : c;

...

...f<g ? f : g;

}
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Objective Function: Code Size

– Generation of a minimal Amount of Code, measured in Bytes

– Trivial Modelling:

Compiler knows exactly which machine instructions it generates and how 

many bytes each individual instruction takes.

Often in Conflict with Run-Time Minimization: Example Inlining

– Inlining copies a function’s body to the place of the function call

– For large functions and/or many calls of a function in the code: Heavy 

increases in terms of code size!

– Code size-minimizing optimizing compilers:

Completely deactivated Function Inlining



Compilers for Embedded Systems (CfES) SoSe 2022Slide 43/51

© H. Falk | 17.03.2022 3 - Internal Structure of Compilers

Objective Function: Energy Consumption (1)

– Generation of Code that consumes minimal Electrical Energy

– Modelling usually includes both Processor and Memories

Simple Energy Model for Processors:

– Base Costs of a machine instruction: Energy consumption of the 

processor during execution of this single machine instruction

– Determination of base costs (e.g., for an ADD instruction):

.L0:

...

ADD d0, d1, d2;

ADD d0, d1, d2;

ADD d0, d1, d2;

...

LOOP a5, .L0;

– Loop that contains the examined instruction 

very often.

– Execution on real hardware

– Energy measurement: Ampere meter

– Breakdown of result to one single ADD

– Repetition for the entire instruction set
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Objective Function: Energy Consumption (2)

Simple Energy Model for Processors:

– Inter-instruction Costs between two successive machine instructions: 

Model activation and deactivation of Functional Units (FUs)

– Example: ADD executed in ALU, MUL in dedicated multiplier

– Loop that contains the examined instruction 

pair very often.

– Execution and measurement as done for 

base costs

– Breakdown of result to one single pair of ADD

and MUL

– Repetition for all possible combinations of 

FUs

.L0:

ADD d0, d1, d2;

MUL d3, d4, d5;

ADD d0, d1, d2;

MUL d3, d4, d5;

...

LOOP a5, .L0;
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Objective Function: Energy Consumption (3)

Functional Units of ARM7 Processors

– Functional units: Address incrementer, 32x8 

multiplier, barrel shifter and ALU

– Example from previous slide: power-on ALU for 

ADD, perform addition.

– Hereafter: Power-on multiplier for MUL, charge 

busses to/from multiplier.

– Finally: Power-down multiplier after MUL, 

discharge busses.

 Power-on/-down of FUs & charging/discharging 

of wires costs lots of electrical energy!

[ARM Limited. ARM7TDMI Technical 

Reference Manual. 2004]
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Objective Function: Energy Consumption (4)

Computation of the CPU Energy by Compiler

– Sum up base costs of all generated machine instructions

– Sum up inter-instruction costs of all successive instruction pairs

– Multiply by estimated execution counts per basic block

Computation of Memory Energy by Compiler

– Either using data sheets from manufacturers, or based on measurements

– Principle: Energy consumption per load or store memory access

– Simple for static RAMs (SRAM), difficult for Caches and dynamic RAMs 

(DRAM)

[V. Tiwari et al. Power Analysis of Embedded Software: A First Step Towards

Software Power Minimization. IEEE Transactions on VLSI, December 1994]

[S. Steinke et al. An Accurate and Fine Grain Instruction-Level Energy Model

Supporting Software Optimizations. PATMOS Workshop, September 2001]
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Objective Function: Worst-Case Run-Time (1)

Worst-Case Execution Time (WCET):

Maximal run-time of a program over all possible input data.

Problem:

Determination of a program’s WCET intractable! (Would include solving 

the Halting problem)
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Objective Function: Worst-Case Run-Time (2)

Solution: Estimation of upper bounds of the actual (unknown) WCET

Requirements on WCET Estimates:

– Safeness: WCET  WCETEST!

– Tightness: WCETEST – WCET → minimal

Deadline
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Summary (1)

Compiler Stages

– Significance of individual phases within a compiler

– Focus here on compiler back-end

– Location of optimizations within the compiler

Intermediate Representations

– Effective compiler-internal representations of code; facilitate 

manipulation and analysis of code

– Different abstraction levels: Close to source language; independent of 

source language and processor architecture; close to processor 

architecture
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Summary (2)

Optimizations & Objective Functions

– Many classes of optimizations having high potential are not automatable

– Focus here on compiler and source code optimizations

– Average-Case Execution Time: Objective function of almost every 

compiler; compilers, however, to not feature an ACET timing model

– Code size: Often in contradiction with ACET

– Energy consumption: Energy models for processors (base & inter-

instruction costs) and memory

– Worst-Case Execution Time: not computable; WCET estimation


