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Motivation of Pre-Pass Optimizations (1)

 Retrospect: Structure of an Optimizing Compiler with 2 IRs:

Question: May only the compiler optimize code?
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Motivation of Pre-Pass Optimizations (2)

Optimizations outside a compiler are called

– Post-pass if they take place after the compiler

– Pre-pass if they take place before the compiler

Advantages of Pre-Pass Optimizations

– Source code transformations more easily comprehensible.

– Allow for manually “playing” with an optimization technique before a 

laborious implementation.

– Independent of the actual compiler due to source code-level; principally 

applicable for each individual compiler of the source language.

– Due to source code-level independent of the actual target architecture; 

principally applicable for arbitrary architectures.
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Application Domain of Loop Nest Splitting

Embedded Multimedia Applications

– Data flow dominated, i.e., get large amounts of data as inputs, compute 

large volumes of data as output

(in contrast to control flow dominated control applications).

– Largest part of the run-time consumed by (deeply) nested loops

– Simple loop structures with statically known or analyzable lower and 

upper bounds

– Manipulation of large, multi-dimensional arrays

– Typical example: Streaming applications like MPEG4
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Example: MPEG4 Motion Estimation
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Source Code MPEG4 Motion Estimation

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

for (y = 0; y < 49; y++)

for (vx = 0; vx < 9; vx++)

for (vy = 0; vy < 9; vy++)

for (x4 = 0; x4 < 4; x4++)

for (y4 = 0; y4 < 4; y4++) {

if (4*x+x4<0 || 4*x+x4>35 ||

4*y+y4<0 || 4*y+y4>48)

then_block_1; else else_block_1;

if (4*x+vx+x4–4<0 || 4*x+vx+x4–4>35 ||

4*y+vy+y4-4<0 || 4*y+vy+y4-4>48)

then_block_2; else else_block_2; }
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Observations

When Compiling and Executing this Source Code

– Execution of 91,445,760 if-statements in total

– Very irregular control flow due to if-statements

– Additional arithmetical overhead:

Multiplications, additions, comparisons, logical or, ...

 Performance of this code limited by control flow, and not by the 

computation of motion vectors!
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Loop Nest Splitting

Automated Loop & If-Statement Analysis

– x, y, x4 and y4 never carry values such that conditions 4*x+x4<0 and 

4*y+y4<0 are ever true.

 Conditions can be replaced by constant truth value ‘0’.

– For x ≥ 10 or y ≥ 14, both if-statements are always satisfied so that their 

then-parts are always executed.

 For more than 92% of all executions of the innermost y4-loop, both if-

statements are satisfied.
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Source Code after Loop Nest Splitting

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

for (y = 0; y < 49; y++)

if (x >= 10 || y >= 14) // Splitting-If

for (; y < 49; y++)             // Second y-loop

for (vx = 0; vx < 9; vx++) ... {    // No

then_block_1; then_block_2; }    // If-Stmts

else

for (vx = 0; vx < 9; vx++) ... {

if (0 || 4*x+x4>35 || 0 || 4*y+y4>48)   // Old

then_block_1; else else_block_1; // If-Stmts

if (4*x+vx+x4–4<0 || 4*x+vx+x4–4>35 || ...

then_block_2; else else_block_2; }
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Optimized Code Structure

Splitting-If

– Whenever the condition of the splitting-if is satisfied, the conditions of all 

original if-statements are automatically also satisfied.

 Then-part of the splitting-if thus contains no original if-statements any 

more, but only their then-parts.

– If splitting-if is not satisfied, no safe statement about the conditions of the 

original if-statements is possible.

 Else-part of the splitting-if contains all original if-statements in order to 

keep the code correct.
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for (x=0; x<36; x++)

for (y=0; y<49; y++)

if (x>=10 || y>=14)

for (; y<49; y++)

for (vx=0; vx<9; vx++) ...

y = 14

for (x=0; x<36; x++)

for (y=0; y<49; y++)

if (x>=10 || y>=14)

for (vx=0; vx<9; vx++) ...

Why Second y-Loop?

Intuitive Code:

Optimized Code:

y = 141516

 Splitting-If:

1 execution for
each individual y  [14, 48]

 Splitting-If:

1 execution for
all y  [14, 48] altogether

1516
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Phases of Loop Nest Splitting

– Condition Satisfiability: Finds individual conditions in if-statements that 

are always or never satisfied.

– Condition Optimization: For each single condition C, find a “simpler” 

condition C’ such that C’  C holds (whenever C’ is true, C is also true).

– Search Space Generation: Combine all single conditions C’ to one data 
structure G that models all if-statements including their structure (&&, ||).

– Search Space Exploration: Using G, determine a condition for the 

splitting-if that minimizes the number of totally executed if-statements.
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Workflow of Loop Nest Splitting (1)

x

x4
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x

x4

4*x+3*x4>20        x-x4>3         3*x+x4<0       6*x-20*x4<61

1 - Condition Satisfiability

(               &&          )  ||              ||              

 Note:

This example does not 

correspond to the MPEG4 code 

from the previous slides!

– Assumed loop bounds:
0 ≤ x ≤ 13

0 ≤ x4 ≤ 3
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Workflow of Loop Nest Splitting (2)

2 - Condition Optimization
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Workflow of Loop Nest Splitting (3)
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Workflow of Loop Nest Splitting (4)

4*x+3*x4>20        x-x4>3         3*x+x4<0       6*x-20*x4<61(               &&          )  ||              ||              
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3 - Search Space Generation

2 - Condition Optimization1 - Condition Satisfiability
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Prerequisites

Bounds of Loops

– All lower and upper bounds              are constant

If-Statements

– Sequence of loop-dependent conditions, all of which are combined using 

logical AND or OR

– Format:

Loop-Dependent Conditions

– Linear expressions over index variables      of the loops

– Format:
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Polytopes & Linear Conditions

Definition (Polyhedra / Polytopes)

– Polyhedron

– Polyhedron     is called Polytope iff

Example: Model of Linear Conditions in Nested Loops

– 4*x + 3*x4 > 35 for x , x4 as polytope

–

x4

x
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Convexity of Polytopes

Definition (Convexity)

– A set              is called convex if each convex combination               of

is in     and                            .

Less Formally

– Each line between any two arbitrary points     and     from     must lie 

completely in   .

 Polytopes are convex. 

Not convexConvex
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Operations on Polytopes

Properties

– The Intersection of two polytopes is again a polytope.

– The Union of two polytopes is not a polytope, since the resulting set is 

not necessarily convex.

Definition (Finite Union of Polyhedra, FUP)

– For polyhedra                                          ,                                   is called a 

Finite Union of Polyhedra (FUP).

Set Operations on FUPs

–

–
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Phase 1 – Condition Satisfiability

Goal

– To identify loop-dependent conditions Cx that constantly evaluate to ‘true’ 

or ‘false’, irrespectively of the values of index variables of all surrounding 

loops.

Approach

– Translate each condition Cx into a polytope Px ( slide 23)

– Test for the empty set: Px == Ø  Cx always ‘false’

– Test for the universe: Px == U  Cx always ‘true’

Source Code Modification

– Replacement of all these constantly true or false conditions in the source 

code by constants ‘0’ or ‘1’.
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Phase 2 – Condition Optimization

Given

– loops and one condition

Assumed fictive Situation

for ( loop    )

...

for ( loop    )

if (   ) ...

Goal: To determine intervals                                         such that:

– is satisfied for all loop iterations within these intervals

– Minimization of the number of executions of if-statements after a 

hypothetical loop nest splitting based on these intervals.

Assumption: The loops contain only 1 if-

statement with only 1 condition. All other if-

statements & conditions are quasi 

suppressed.
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Optimization of a Condition C

– Determination of values         and         for every loop

– Interpretation:      is satisfied for all

– Optimization goal:

All values         and         minimize the total amount of executed if-

statements

– Simplification: The linearity of     implies

either                 or

– Consequence: Determination of only one value

Either                    or                   satisfies condition
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Some Definitions...

Given:

– Total Iteration Space

– Constrained Iteration Space

– Splitting Loop

(#Executions of the innermost loop’s body)

(#Executions of the innermost 

loop’s body, constrained to regions 

specified by values        )

(Index of that loop where splitting 

will take place)
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Illustration (1)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

for (y = 0; y < 49; y++)

for (vx = 0; vx < 9; vx++)

for (vy = 0; vy < 9; vy++)

for (x4 = 0; x4 < 4; x4++)

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35)

then_block_1; else else_block_1; }

Loop 1

Loop N=7

Note:

– Loops are enumerated from 1 ... N from the outermost to the innermost 

loop.

– Only 1 condition in if-statement instead of the many ones from slide 11!
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Illustration (2)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

for (y = 0; y < 49; y++)

for (vx = 0; vx < 9; vx++)

for (vy = 0; vy < 9; vy++)

for (x4 = 0; x4 < 4; x4++)

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35)

then_block_1; else else_block_1; }

Loop 1

Loop N=7

TIS:

– Amount of executions of the code within the curly braces.

– Here: 20 * 36 * 49 * 9 * 9 * 4 * 4 = 45,722,880
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Illustration (3)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

for (y = 0; y < 49; y++)

for (vx = 0; vx < 9; vx++)

for (vy = 0; vy < 9; vy++)

for (x4 = 0; x4 < 4; x4++)

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35)

then_block_1; else else_block_1; }

Loop 1

Loop 

Let                                                        be given.

– Condition     is satisfied for all x ≥ 10 and i, y, ..., y4 ≥ 0.

– CIS: 20 * (36 – 10) * 49 * 9 * 9 * 4 * 4 = 33,022,080
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Illustration (4)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

if (x >= 10)

for (; x < 36; x++) ...

for (y4 = 0; y4 < 4; y4++) {...}

else

for (y = 0; y < 49; y++) ...

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35) ... }

Hypothetical Code for

– Splitting Loop          since splitting-if needs to be placed in 2nd loop.

– Question: How often would all if-statements shown here be executed?

CIS: Number of executions of the 
code in curly braces for x ≥ 10.
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Counting of If-Statement Executions

– #If-Statements after Splitting

– #Original if’s

– #Splitting-if’s

– #Then-Blocks

– #Else-Blocks

(#Original if’s + #Splitting-if’s)

(Total iterations without constrained 

iterations)

(CIS without iterations of loops

inside of    )

(#Original if’s without loop iterations

inside of    )
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Illustration (5)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

if (x >= 10)

for (; x < 36; x++) ...

for (y4 = 0; y4 < 4; y4++) {...}

else

for (y = 0; y < 49; y++) ...

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35) ... }
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Illustration (6)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

if (x >= 10)

for (; x < 36; x++) ...

for (y4 = 0; y4 < 4; y4++) {...}

else

for (y = 0; y < 49; y++) ...

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35) ... }
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Illustration (7)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

if (x >= 10)

for (; x < 36; x++) ...

for (y4 = 0; y4 < 4; y4++) {...}

else

for (y = 0; y < 49; y++) ...

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35) ... }
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Illustration (8)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

if (x >= 10)

for (; x < 36; x++) ...

for (y4 = 0; y4 < 4; y4++) {...}

else

for (y = 0; y < 49; y++)

for (vx = 0; vx < 9; vx++)

for (vy = 0; vy < 9; vy++)

for (x4 = 0; x4 < 4; x4++)

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35) ... }
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Illustration (9)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

if (x >= 10)

for (; x < 36; x++)

for (y = 0; y < 49; y++)

for (vx = 0; vx < 9; vx++)

for (vy = 0; vy < 9; vy++)

for (x4 = 0; x4 < 4; x4++)

for (y4 = 0; y4 < 4; y4++) {

...}

else

...
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Illustration (10)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

if (x >= 10)

for (; x < 36; x++) ...

for (y4 = 0; y4 < 4; y4++) {...}

else

for (y = 0; y < 49; y++) ...

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35) ... }
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Computation of Values

Wrap-Up

– For a condition     and given values         , we can compute how many if-

statements would be executed after splitting based on        .

Very nice, but...

... who produces good values for        ?

 A Genetic Algorithm
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Workflow of Genetic Algorithms (1)

P  = InitPopulation;

i = 0;
0

(i <= N) and
(stopping criterion = false)

RepairMechanism(P);

F = Fitness(P);

P’ = Selection(P, F);

P  = Variation(P’, F);

i = i + 1;

i

i

i i

i+1 i

return best
individual of Pi

yes

no

– In the style of natural evolution, 

“survival of the fittest”

– Optimization loop i = 0, 1, ...

– Each iteration i maintains 

population Pi; a population 

contains several individuals

– An individual represents one 

possible solution for the modeled 

optimization problem
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Workflow of Genetic Algorithms (2)

P  = InitPopulation;

i = 0;
0

(i <= N) and
(stopping criterion = false)

RepairMechanism(P);

F = Fitness(P);

P’ = Selection(P, F);

P  = Variation(P’, F);

i = i + 1;

i

i

i i

i+1 i

return best
individual of Pi

yes

no

– An individual’s data structure is 

called chromosome.

– A chromosome consists of many 

genes that are used to save data.

– One actual value stored in a gene 

is called allele.

... 1 0 1 00 0 1 1 0 1 ...

chromosome

gene allele
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Workflow of Genetic Algorithms (3)

P  = InitPopulation;

i = 0;
0

(i <= N) and
(stopping criterion = false)

RepairMechanism(P);

F = Fitness(P);

P’ = Selection(P, F);

P  = Variation(P’, F);

i = i + 1;

i

i

i i

i+1 i

return best
individual of Pi

yes

no

– A fitness function computes the 

fitness of each individual inside Pi.

– From Pi, a subset Pi’ of highest / 

lowest fitness is selected 

(selection, depending on whether 

a minimization or maximization 

problem is optimized).

– Pi’ is completed to the next 

population Pi+1 by randomly 

generating new individuals 

(variation)
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Workflow of Genetic Algorithms (4)

P  = InitPopulation;

i = 0;
0

(i <= N) and
(stopping criterion = false)

RepairMechanism(P);

F = Fitness(P);

P’ = Selection(P, F);

P  = Variation(P’, F);

i = i + 1;

i

i

i i

i+1 i

return best
individual of Pi

yes

no

– Variation makes use of two basic 

genetic operators:

– Cross-over:

– Mutation:

1 0

10

0 0 1

10 0

1 0

10

0

0 10

1 0

10 10 0 10 0 00
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Workflow of Genetic Algorithms (5)

P  = InitPopulation;

i = 0;
0

(i <= N) and
(stopping criterion = false)

RepairMechanism(P);

F = Fitness(P);

P’ = Selection(P, F);

P  = Variation(P’, F);

i = i + 1;

i

i

i i

i+1 i

return best
individual of Pi

yes

no

– Due to the randomness in 

variation, Pi can contain individuals 

that do not represent valid 

solutions: Repair mechanism.

– Termination of the GA if

– max. N iterations reached,

– best observed fitness 

unchanged for y iterations,

– ...

– Final result is that individual from 

last population with best fitness.
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Genetic Algorithm for Condition Optimization

Chromosomal Representation

– For N nested loops, each chromosome has N genes

– Each gene holds one integer number

– Gene L represents the value         to be optimized

– Domain of each gene L restricted to interval

Fitness

– Fitness of an individual = 

– Invalid individuals                           represent iterations within the loop 

nest in which condition     is not always satisfied

– Invalid individuals obtain a very poor fitness
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Result of Condition Optimization

Inputs to Condition Optimization

– Linear condition

– Loop bounds

Output of the Genetic Algorithm

– Values                           of the individual with best fitness

Output of Condition Optimization Phase

– Polytope
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Phase 3 – Search Space Generation

Given: If-statements, conditions & polytopes

Construction of FUPs Pi for each full if-statement IFi

–

–

Construction of a Global FUP (Global Search Space)

FUP G models iteration space in which all if-statements are satisfied.

Constructed by intersecting all FUPs Pi of the individual if-statements:

–
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Phase 3 – Structure of the FUP G

Consequence of Using the     Operator on the Previous Slide

– G is a finite union of polytopes and can thus be seen as:

–

– Interpretation:

Each polytope     denotes

one region in the iteration space of the entire loop nest in which all if-

statements are satisfied.
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Global Search Space for MPEG Code

–

–

–
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Global Search Space & Splitting-If (1)

–

Direct Translation of G into Splitting-If
if ( (x == 0 && vx == 0 && y >= 13) || (x >= 10) ||

(y == 0 && vy == 0 && x >= 9) || (y >= 14) )

Not a Good Idea

 This splitting-if must be placed in vy-loop (3rd-innermost!)

 Leads to 10,103,760 executions of if-statements in total
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Global Search Space & Splitting-If (2)

–

Alternative: Use only sub-polytopes      of G for splitting-if.

Legal, since each sub-polytope      by itself already satisfies all if-

statements.

if ( x >= 10 )

– This sub-polytope is also not a good solution

Leads to 25,401,820 if-statement executions

if ( ( x >= 10 ) || ( y >= 14 ) )

– This combination of sub-polytopes is a good solution

Leads to 7,261,120 if-statement executions
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Phase 4 – Search Space Exploration

GA: Selects regions from

– Individual: Bit-vector that marks the selected regions

Individual

– Fitness function computes again

#{If-statement executions} after loop nest splitting

– Fitness function minimized by GA

Resulting Splitting-If

– Placed in the outermost possible loop of the loop nest

– Contains all conditions and operators as specified by the selected 

regions
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Relative Run-Times after Loop Nest Splitting

100% = Run-times of the benchmarks without Loop Nest Splitting
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Relative Energy Consumption (ARM7) after LNS

100% = Values of the Benchmarks without Loop Nest Splitting
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Relative Code Size after Loop Nest Splitting

100% = Size of the benchmarks without Loop Nest Splitting
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Summary

Non-Compiler Optimizations

– Post-pass after compiler, e.g., at linker-level

– Pre-pass before compiler, at source code level

Loop Nest Splitting

– Control flow optimization in data flow-dominated multimedia applications

– Polytopes used to model linear conditions and loops

– Genetic algorithms used to optimize polytope models

– Significant reductions in terms of ACET and energy (and WCET), but 

partially heavy code size increases


