
Compilers for Embedded Systems

Summer Term 2022

Heiko Falk

Institute of Embedded Systems

Electrical Engineering, Computer Science and Mathematics

Hamburg University of Technology

Chapter 4

Pre-Pass Optimizations

Compilers for Embedded Systems (CfES) SoSe 2022Slide 3/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Outline

1. Introduction & Motivation

2. Compilers for Embedded Systems – Requirements & Dependencies

3. Internal Structure of Compilers

4. Pre-Pass Optimizations

5. HIR Optimizations and Transformations

6. Code Generation

7. LIR Optimizations and Transformations

8. Register Allocation

9. WCET-Aware Compilation

10.Outlook

Compilers for Embedded Systems (CfES) SoSe 2022Slide 4/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Chapter Contents

4. Pre-Pass Optimizations

– Motivation of Pre-Pass Optimizations

– Loop Nest Splitting

– Embedded Multimedia: MPEG 4 Motion Estimation

– Workflow of Loop Nest Splitting

– Condition Satisfiability

– Condition Optimization & Genetic Algorithms

– Search Space Generation

– Search Space Exploration

– Results (ACET, Energy, Code Size)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 5/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Motivation of Pre-Pass Optimizations (1)

 Retrospect: Structure of an Optimizing Compiler with 2 IRs:

Question: May only the compiler optimize code?

Lexical
Analysis

Source
Code

Syntactical
Analysis

Syntax

Tree

H
ig

h
-

L
e

v
e

l
IR

Code
Generation

Register
Allocation

Instruction
Scheduling

ASM
Code

Code
Optimization

High-

Level IR

Low-

Level IR

Code
Optimization

L
o

w
-

L
e

v
e

l
IR

Low-

Level IR

Semantical
Analysis

Token

Sequence

Compilers for Embedded Systems (CfES) SoSe 2022Slide 6/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Motivation of Pre-Pass Optimizations (2)

Optimizations outside a compiler are called

– Post-pass if they take place after the compiler

– Pre-pass if they take place before the compiler

Advantages of Pre-Pass Optimizations

– Source code transformations more easily comprehensible.

– Allow for manually “playing” with an optimization technique before a

laborious implementation.

– Independent of the actual compiler due to source code-level; principally

applicable for each individual compiler of the source language.

– Due to source code-level independent of the actual target architecture;

principally applicable for arbitrary architectures.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 7/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Abstraction Levels of Optimizations

Processor-specific Compiler Optimization

Processor-independent Compiler Optimization

Processor-specific Source
Code Optimization

Processor-independent Global
Source Code Optimization

Memory Transfer
Optimization

Algorithm
Selection

Spe-
cification

Optimization

x 4-20

x 4-9

x 4

x 3

x 2

x 2-3

Pre-Pass

Optimizations

CfES

Chapter 4

Compilers for Embedded Systems (CfES) SoSe 2022Slide 8/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Chapter Contents

4. Pre-Pass Optimizations

– Motivation of Pre-Pass Optimizations

– Loop Nest Splitting

– Embedded Multimedia: MPEG 4 Motion Estimation

– Workflow of Loop Nest Splitting

– Condition Satisfiability

– Condition Optimization & Genetic Algorithms

– Search Space Generation

– Search Space Exploration

– Results (ACET, Energy, Code Size)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 9/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Application Domain of Loop Nest Splitting

Embedded Multimedia Applications

– Data flow dominated, i.e., get large amounts of data as inputs, compute

large volumes of data as output

(in contrast to control flow dominated control applications).

– Largest part of the run-time consumed by (deeply) nested loops

– Simple loop structures with statically known or analyzable lower and

upper bounds

– Manipulation of large, multi-dimensional arrays

– Typical example: Streaming applications like MPEG4

Compilers for Embedded Systems (CfES) SoSe 2022Slide 10/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Example: MPEG4 Motion Estimation

Reference Frame

Search Region

36x36 Pixels

vx

vy

1
4

4
 P

ix
e

ls

196 Pixels

Actual Frame

4x4 Pixels
x4

y4

x

y

i

Compilers for Embedded Systems (CfES) SoSe 2022Slide 11/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Source Code MPEG4 Motion Estimation

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

for (y = 0; y < 49; y++)

for (vx = 0; vx < 9; vx++)

for (vy = 0; vy < 9; vy++)

for (x4 = 0; x4 < 4; x4++)

for (y4 = 0; y4 < 4; y4++) {

if (4*x+x4<0 || 4*x+x4>35 ||

4*y+y4<0 || 4*y+y4>48)

then_block_1; else else_block_1;

if (4*x+vx+x4–4<0 || 4*x+vx+x4–4>35 ||

4*y+vy+y4-4<0 || 4*y+vy+y4-4>48)

then_block_2; else else_block_2; }

Compilers for Embedded Systems (CfES) SoSe 2022Slide 12/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Observations

When Compiling and Executing this Source Code

– Execution of 91,445,760 if-statements in total

– Very irregular control flow due to if-statements

– Additional arithmetical overhead:

Multiplications, additions, comparisons, logical or, ...

 Performance of this code limited by control flow, and not by the

computation of motion vectors!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 13/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Loop Nest Splitting

Automated Loop & If-Statement Analysis

– x, y, x4 and y4 never carry values such that conditions 4*x+x4<0 and

4*y+y4<0 are ever true.

 Conditions can be replaced by constant truth value ‘0’.

– For x ≥ 10 or y ≥ 14, both if-statements are always satisfied so that their

then-parts are always executed.

 For more than 92% of all executions of the innermost y4-loop, both if-

statements are satisfied.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 14/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Source Code after Loop Nest Splitting

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

for (y = 0; y < 49; y++)

if (x >= 10 || y >= 14) // Splitting-If

for (; y < 49; y++) // Second y-loop

for (vx = 0; vx < 9; vx++) ... { // No

then_block_1; then_block_2; } // If-Stmts

else

for (vx = 0; vx < 9; vx++) ... {

if (0 || 4*x+x4>35 || 0 || 4*y+y4>48) // Old

then_block_1; else else_block_1; // If-Stmts

if (4*x+vx+x4–4<0 || 4*x+vx+x4–4>35 || ...

then_block_2; else else_block_2; }

Compilers for Embedded Systems (CfES) SoSe 2022Slide 15/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Optimized Code Structure

Splitting-If

– Whenever the condition of the splitting-if is satisfied, the conditions of all

original if-statements are automatically also satisfied.

 Then-part of the splitting-if thus contains no original if-statements any

more, but only their then-parts.

– If splitting-if is not satisfied, no safe statement about the conditions of the

original if-statements is possible.

 Else-part of the splitting-if contains all original if-statements in order to

keep the code correct.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 16/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

for (x=0; x<36; x++)

for (y=0; y<49; y++)

if (x>=10 || y>=14)

for (; y<49; y++)

for (vx=0; vx<9; vx++) ...

y = 14

for (x=0; x<36; x++)

for (y=0; y<49; y++)

if (x>=10 || y>=14)

for (vx=0; vx<9; vx++) ...

Why Second y-Loop?

Intuitive Code:

Optimized Code:

y = 141516

 Splitting-If:

1 execution for
each individual y [14, 48]

 Splitting-If:

1 execution for
all y [14, 48] altogether

1516

Compilers for Embedded Systems (CfES) SoSe 2022Slide 17/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Phases of Loop Nest Splitting

– Condition Satisfiability: Finds individual conditions in if-statements that

are always or never satisfied.

– Condition Optimization: For each single condition C, find a “simpler”

condition C’ such that C’ C holds (whenever C’ is true, C is also true).

– Search Space Generation: Combine all single conditions C’ to one data
structure G that models all if-statements including their structure (&&, ||).

– Search Space Exploration: Using G, determine a condition for the

splitting-if that minimizes the number of totally executed if-statements.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 18/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Workflow of Loop Nest Splitting (1)

x

x4

x

x4

x

x4

x

x4

4*x+3*x4>20 x-x4>3 3*x+x4<0 6*x-20*x4<61

1 - Condition Satisfiability

(&&) || ||

 Note:

This example does not

correspond to the MPEG4 code

from the previous slides!

– Assumed loop bounds:
0 ≤ x ≤ 13

0 ≤ x4 ≤ 3

Compilers for Embedded Systems (CfES) SoSe 2022Slide 19/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Workflow of Loop Nest Splitting (2)

2 - Condition Optimization

x

x4

x

x4

x

x4

4*x+3*x4>20 x-x4>3 3*x+x4<0 6*x-20*x4<61(&&) || ||

x

x4

x

x4

x

x4

1 - Condition Satisfiability

Compilers for Embedded Systems (CfES) SoSe 2022Slide 20/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Workflow of Loop Nest Splitting (3)

x

x4

x

x4

x

x4

4*x+3*x4>20 x-x4>3 3*x+x4<0 6*x-20*x4<61(&&) || ||

3 - Search Space Generation

x

x4

x

x4

2 - Condition Optimization1 - Condition Satisfiability

Compilers for Embedded Systems (CfES) SoSe 2022Slide 21/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Workflow of Loop Nest Splitting (4)

4*x+3*x4>20 x-x4>3 3*x+x4<0 6*x-20*x4<61(&&) || ||

x

x4

x

x4

4 - Search Space Exploration

x

x4

x>=7 || x4>=1

3 - Search Space Generation

2 - Condition Optimization1 - Condition Satisfiability

Compilers for Embedded Systems (CfES) SoSe 2022Slide 22/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Prerequisites

Bounds of Loops

– All lower and upper bounds are constant

If-Statements

– Sequence of loop-dependent conditions, all of which are combined using

logical AND or OR

– Format:

Loop-Dependent Conditions

– Linear expressions over index variables of the loops

– Format:

Compilers for Embedded Systems (CfES) SoSe 2022Slide 23/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Polytopes & Linear Conditions

Definition (Polyhedra / Polytopes)

– Polyhedron

– Polyhedron is called Polytope iff

Example: Model of Linear Conditions in Nested Loops

– 4*x + 3*x4 > 35 for x , x4 as polytope

–

x4

x

Compilers for Embedded Systems (CfES) SoSe 2022Slide 24/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Convexity of Polytopes

Definition (Convexity)

– A set is called convex if each convex combination of

is in and .

Less Formally

– Each line between any two arbitrary points and from must lie

completely in .

 Polytopes are convex.

Not convexConvex

Compilers for Embedded Systems (CfES) SoSe 2022Slide 25/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Operations on Polytopes

Properties

– The Intersection of two polytopes is again a polytope.

– The Union of two polytopes is not a polytope, since the resulting set is

not necessarily convex.

Definition (Finite Union of Polyhedra, FUP)

– For polyhedra , is called a

Finite Union of Polyhedra (FUP).

Set Operations on FUPs

–

–

Compilers for Embedded Systems (CfES) SoSe 2022Slide 26/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Phase 1 – Condition Satisfiability

Goal

– To identify loop-dependent conditions Cx that constantly evaluate to ‘true’

or ‘false’, irrespectively of the values of index variables of all surrounding

loops.

Approach

– Translate each condition Cx into a polytope Px (slide 23)

– Test for the empty set: Px == Ø Cx always ‘false’

– Test for the universe: Px == U Cx always ‘true’

Source Code Modification

– Replacement of all these constantly true or false conditions in the source

code by constants ‘0’ or ‘1’.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 27/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Phase 2 – Condition Optimization

Given

– loops and one condition

Assumed fictive Situation

for (loop)

...

for (loop)

if () ...

Goal: To determine intervals such that:

– is satisfied for all loop iterations within these intervals

– Minimization of the number of executions of if-statements after a

hypothetical loop nest splitting based on these intervals.

Assumption: The loops contain only 1 if-

statement with only 1 condition. All other if-

statements & conditions are quasi

suppressed.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 28/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Optimization of a Condition C

– Determination of values and for every loop

– Interpretation: is satisfied for all

– Optimization goal:

All values and minimize the total amount of executed if-

statements

– Simplification: The linearity of implies

either or

– Consequence: Determination of only one value

Either or satisfies condition

Compilers for Embedded Systems (CfES) SoSe 2022Slide 29/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Some Definitions...

Given:

– Total Iteration Space

– Constrained Iteration Space

– Splitting Loop

(#Executions of the innermost loop’s body)

(#Executions of the innermost

loop’s body, constrained to regions

specified by values)

(Index of that loop where splitting

will take place)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 30/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Illustration (1)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

for (y = 0; y < 49; y++)

for (vx = 0; vx < 9; vx++)

for (vy = 0; vy < 9; vy++)

for (x4 = 0; x4 < 4; x4++)

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35)

then_block_1; else else_block_1; }

Loop 1

Loop N=7

Note:

– Loops are enumerated from 1 ... N from the outermost to the innermost

loop.

– Only 1 condition in if-statement instead of the many ones from slide 11!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 31/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Illustration (2)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

for (y = 0; y < 49; y++)

for (vx = 0; vx < 9; vx++)

for (vy = 0; vy < 9; vy++)

for (x4 = 0; x4 < 4; x4++)

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35)

then_block_1; else else_block_1; }

Loop 1

Loop N=7

TIS:

– Amount of executions of the code within the curly braces.

– Here: 20 * 36 * 49 * 9 * 9 * 4 * 4 = 45,722,880

Compilers for Embedded Systems (CfES) SoSe 2022Slide 32/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Illustration (3)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

for (y = 0; y < 49; y++)

for (vx = 0; vx < 9; vx++)

for (vy = 0; vy < 9; vy++)

for (x4 = 0; x4 < 4; x4++)

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35)

then_block_1; else else_block_1; }

Loop 1

Loop

Let be given.

– Condition is satisfied for all x ≥ 10 and i, y, ..., y4 ≥ 0.

– CIS: 20 * (36 – 10) * 49 * 9 * 9 * 4 * 4 = 33,022,080

Compilers for Embedded Systems (CfES) SoSe 2022Slide 33/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Illustration (4)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

if (x >= 10)

for (; x < 36; x++) ...

for (y4 = 0; y4 < 4; y4++) {...}

else

for (y = 0; y < 49; y++) ...

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35) ... }

Hypothetical Code for

– Splitting Loop since splitting-if needs to be placed in 2nd loop.

– Question: How often would all if-statements shown here be executed?

CIS: Number of executions of the
code in curly braces for x ≥ 10.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 34/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Counting of If-Statement Executions

– #If-Statements after Splitting

– #Original if’s

– #Splitting-if’s

– #Then-Blocks

– #Else-Blocks

(#Original if’s + #Splitting-if’s)

(Total iterations without constrained

iterations)

(CIS without iterations of loops

inside of)

(#Original if’s without loop iterations

inside of)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 35/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Illustration (5)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

if (x >= 10)

for (; x < 36; x++) ...

for (y4 = 0; y4 < 4; y4++) {...}

else

for (y = 0; y < 49; y++) ...

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35) ... }

Compilers for Embedded Systems (CfES) SoSe 2022Slide 36/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Illustration (6)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

if (x >= 10)

for (; x < 36; x++) ...

for (y4 = 0; y4 < 4; y4++) {...}

else

for (y = 0; y < 49; y++) ...

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35) ... }

Compilers for Embedded Systems (CfES) SoSe 2022Slide 37/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Illustration (7)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

if (x >= 10)

for (; x < 36; x++) ...

for (y4 = 0; y4 < 4; y4++) {...}

else

for (y = 0; y < 49; y++) ...

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35) ... }

Compilers for Embedded Systems (CfES) SoSe 2022Slide 38/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Illustration (8)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

if (x >= 10)

for (; x < 36; x++) ...

for (y4 = 0; y4 < 4; y4++) {...}

else

for (y = 0; y < 49; y++)

for (vx = 0; vx < 9; vx++)

for (vy = 0; vy < 9; vy++)

for (x4 = 0; x4 < 4; x4++)

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35) ... }

Compilers for Embedded Systems (CfES) SoSe 2022Slide 39/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Illustration (9)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

if (x >= 10)

for (; x < 36; x++)

for (y = 0; y < 49; y++)

for (vx = 0; vx < 9; vx++)

for (vy = 0; vy < 9; vy++)

for (x4 = 0; x4 < 4; x4++)

for (y4 = 0; y4 < 4; y4++) {

...}

else

...

in
 a

n
a

lo
g

y
 t
o

p
re

v
io

u
s
 s

lid
e

Compilers for Embedded Systems (CfES) SoSe 2022Slide 40/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Illustration (10)

for (i = 0; i < 20; i++)

for (x = 0; x < 36; x++)

if (x >= 10)

for (; x < 36; x++) ...

for (y4 = 0; y4 < 4; y4++) {...}

else

for (y = 0; y < 49; y++) ...

for (y4 = 0; y4 < 4; y4++) {

if (4*x+vx+x4-4>35) ... }

Compilers for Embedded Systems (CfES) SoSe 2022Slide 41/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Computation of Values

Wrap-Up

– For a condition and given values , we can compute how many if-

statements would be executed after splitting based on .

Very nice, but...

... who produces good values for ?

 A Genetic Algorithm

Compilers for Embedded Systems (CfES) SoSe 2022Slide 42/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Workflow of Genetic Algorithms (1)

P = InitPopulation;

i = 0;
0

(i <= N) and
(stopping criterion = false)

RepairMechanism(P);

F = Fitness(P);

P’ = Selection(P, F);

P = Variation(P’, F);

i = i + 1;

i

i

i i

i+1 i

return best
individual of Pi

yes

no

– In the style of natural evolution,

“survival of the fittest”

– Optimization loop i = 0, 1, ...

– Each iteration i maintains

population Pi; a population

contains several individuals

– An individual represents one

possible solution for the modeled

optimization problem

Compilers for Embedded Systems (CfES) SoSe 2022Slide 43/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Workflow of Genetic Algorithms (2)

P = InitPopulation;

i = 0;
0

(i <= N) and
(stopping criterion = false)

RepairMechanism(P);

F = Fitness(P);

P’ = Selection(P, F);

P = Variation(P’, F);

i = i + 1;

i

i

i i

i+1 i

return best
individual of Pi

yes

no

– An individual’s data structure is

called chromosome.

– A chromosome consists of many

genes that are used to save data.

– One actual value stored in a gene

is called allele.

... 1 0 1 00 0 1 1 0 1 ...

chromosome

gene allele

Compilers for Embedded Systems (CfES) SoSe 2022Slide 44/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Workflow of Genetic Algorithms (3)

P = InitPopulation;

i = 0;
0

(i <= N) and
(stopping criterion = false)

RepairMechanism(P);

F = Fitness(P);

P’ = Selection(P, F);

P = Variation(P’, F);

i = i + 1;

i

i

i i

i+1 i

return best
individual of Pi

yes

no

– A fitness function computes the

fitness of each individual inside Pi.

– From Pi, a subset Pi’ of highest /

lowest fitness is selected

(selection, depending on whether

a minimization or maximization

problem is optimized).

– Pi’ is completed to the next

population Pi+1 by randomly

generating new individuals

(variation)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 45/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Workflow of Genetic Algorithms (4)

P = InitPopulation;

i = 0;
0

(i <= N) and
(stopping criterion = false)

RepairMechanism(P);

F = Fitness(P);

P’ = Selection(P, F);

P = Variation(P’, F);

i = i + 1;

i

i

i i

i+1 i

return best
individual of Pi

yes

no

– Variation makes use of two basic

genetic operators:

– Cross-over:

– Mutation:

1 0

10

0 0 1

10 0

1 0

10

0

0 10

1 0

10 10 0 10 0 00

Compilers for Embedded Systems (CfES) SoSe 2022Slide 46/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Workflow of Genetic Algorithms (5)

P = InitPopulation;

i = 0;
0

(i <= N) and
(stopping criterion = false)

RepairMechanism(P);

F = Fitness(P);

P’ = Selection(P, F);

P = Variation(P’, F);

i = i + 1;

i

i

i i

i+1 i

return best
individual of Pi

yes

no

– Due to the randomness in

variation, Pi can contain individuals

that do not represent valid

solutions: Repair mechanism.

– Termination of the GA if

– max. N iterations reached,

– best observed fitness

unchanged for y iterations,

– ...

– Final result is that individual from

last population with best fitness.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 47/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Genetic Algorithm for Condition Optimization

Chromosomal Representation

– For N nested loops, each chromosome has N genes

– Each gene holds one integer number

– Gene L represents the value to be optimized

– Domain of each gene L restricted to interval

Fitness

– Fitness of an individual =

– Invalid individuals represent iterations within the loop

nest in which condition is not always satisfied

– Invalid individuals obtain a very poor fitness

Compilers for Embedded Systems (CfES) SoSe 2022Slide 48/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Result of Condition Optimization

Inputs to Condition Optimization

– Linear condition

– Loop bounds

Output of the Genetic Algorithm

– Values of the individual with best fitness

Output of Condition Optimization Phase

– Polytope

Compilers for Embedded Systems (CfES) SoSe 2022Slide 49/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Phase 3 – Search Space Generation

Given: If-statements, conditions & polytopes

Construction of FUPs Pi for each full if-statement IFi

–

–

Construction of a Global FUP (Global Search Space)

FUP G models iteration space in which all if-statements are satisfied.

Constructed by intersecting all FUPs Pi of the individual if-statements:

–

Compilers for Embedded Systems (CfES) SoSe 2022Slide 50/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Phase 3 – Structure of the FUP G

Consequence of Using the Operator on the Previous Slide

– G is a finite union of polytopes and can thus be seen as:

–

– Interpretation:

Each polytope denotes

one region in the iteration space of the entire loop nest in which all if-

statements are satisfied.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 51/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Global Search Space for MPEG Code

–

–

–

Compilers for Embedded Systems (CfES) SoSe 2022Slide 52/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Global Search Space & Splitting-If (1)

–

Direct Translation of G into Splitting-If
if ((x == 0 && vx == 0 && y >= 13) || (x >= 10) ||

(y == 0 && vy == 0 && x >= 9) || (y >= 14))

Not a Good Idea

 This splitting-if must be placed in vy-loop (3rd-innermost!)

 Leads to 10,103,760 executions of if-statements in total

Compilers for Embedded Systems (CfES) SoSe 2022Slide 53/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Global Search Space & Splitting-If (2)

–

Alternative: Use only sub-polytopes of G for splitting-if.

Legal, since each sub-polytope by itself already satisfies all if-

statements.

if (x >= 10)

– This sub-polytope is also not a good solution

Leads to 25,401,820 if-statement executions

if ((x >= 10) || (y >= 14))

– This combination of sub-polytopes is a good solution

Leads to 7,261,120 if-statement executions

Compilers for Embedded Systems (CfES) SoSe 2022Slide 54/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Phase 4 – Search Space Exploration

GA: Selects regions from

– Individual: Bit-vector that marks the selected regions

Individual

– Fitness function computes again

#{If-statement executions} after loop nest splitting

– Fitness function minimized by GA

Resulting Splitting-If

– Placed in the outermost possible loop of the loop nest

– Contains all conditions and operators as specified by the selected

regions

Compilers for Embedded Systems (CfES) SoSe 2022Slide 55/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Relative Run-Times after Loop Nest Splitting

100% = Run-times of the benchmarks without Loop Nest Splitting

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

Sun Pentium HP MIPS Power-PC DEC
Alpha

TriMedia TI C6x ARM7
thmb

ARM7
arm

Geo.
Mean

CAVITY ME QSDPCM

Compilers for Embedded Systems (CfES) SoSe 2022Slide 56/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Relative Energy Consumption (ARM7) after LNS

100% = Values of the Benchmarks without Loop Nest Splitting

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

Instr Read Data Read Data Write Mem Accesses Mem Energy CPU Energy Total Energy

CAVITY ME QSDPCM

Compilers for Embedded Systems (CfES) SoSe 2022Slide 57/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Relative Code Size after Loop Nest Splitting

100% = Size of the benchmarks without Loop Nest Splitting

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

CAVITY ME QSDPCM

Compilers for Embedded Systems (CfES) SoSe 2022Slide 58/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

References

Loop Nest Splitting

– H. Falk, P. Marwedel. Control Flow driven Splitting of Loop Nests at the

Source Code Level. DATE Conference, Munich, 2003.

– H. Falk. Control Flow Optimization by Loop Nest Splitting at the Source

Code Level. University of Dortmund, Technical Report No. 773,

Dortmund 2003.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 59/59

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Summary

Non-Compiler Optimizations

– Post-pass after compiler, e.g., at linker-level

– Pre-pass before compiler, at source code level

Loop Nest Splitting

– Control flow optimization in data flow-dominated multimedia applications

– Polytopes used to model linear conditions and loops

– Genetic algorithms used to optimize polytope models

– Significant reductions in terms of ACET and energy (and WCET), but

partially heavy code size increases

