

Compilers for Embedded Systems

Summer Term 2022

Heiko Falk

Institute of Embedded Systems Electrical Engineering, Computer Science and Mathematics Hamburg University of Technology

Chapter 6

Outline

- 1. Introduction & Motivation
- 2. Compilers for Embedded Systems Requirements & Dependencies
- 3. Internal Structure of Compilers
- 4. Pre-Pass Optimizations
- 5. HIR Optimizations and Transformations
- 6. Code Generation
- 7. LIR Optimizations and Transformations
- 8. Register Allocation
- 9. WCET-Aware Compilation
- 10. Outlook

Chapter Contents

- Introduction
 - Role of Code Generation
 - Data Flow Graphs
 - Code Generator Generators
- Tree Covers using Dynamic Programming
 - Partitioning of Data Flow Graphs into Data Flow Trees
 - Tree Covering
 - Tree Pattern Matching Algorithm
 - Tree Grammars for Rule-based Derivation of Code
- Discussion

Role of the Instruction Selection

Code Generation

- Selection of machine instructions in order to implement an IR
- "Heart" of a compiler that performs the actual translation of source into target language

© H. Falk | 17.03.2022

Goals

Synonyms

 "Code Generation", "Instruction Selection" and "Code Selection" are often used synonymously

Inputs and Outputs

- Input: An intermediate representation *IR* to be translated
- Output: A Program *P(IR)* (often in assembly or machine code, but often also another IR)

Requirements

- P(IR) must be semantically equivalent to IR
- P(IR) must be efficient regarding an objective function

Data Flow Graphs

What does "semantically equivalent to *IR*" mean...?

P(IR) must have a data flow that is equivalent to that of IR, under consideration of control flow dependencies.

Definition (Data Flow Graph):

Let $B = (I_1, ..., I_n)$ be a basic block (\Im Chapter 3). The Data Flow Graph (DFG) of B is a directed, acyclic graph DFG = (V, E) with

- each node $v \in V$ represents either
 - an input value for B (input variable, constant)
 - or a single operation within $I_1, ..., I_n$
 - or an output value of B

- edge $e = (v_i, v_j) \in E \Leftrightarrow v_i$ uses data that v_i computes

© H. Falk | 17.03.2022

Example

t1 = a * c;t2 = 4 * t1;

- t3 = b * b;
- t4 = t3 t2;
- t5 = sqrt(t4);
- t6 = -b;
- t7 = t6 t5;
- t8 = t7 + t5;
- t9 = 2 * a;
- r1 = t7 / t9;

r2 = t8 / t9;

Code Generation

Problem Formulation

 To cover all nodes of all DFGs of *IR* with semantically equivalent operations of the target language

Implementation of a Code Generator

- Non-trivial task, highly dependent of the target processor's architecture
- Manual implementation of a code generator not affordable for today's processors' complexity
- Instead: Use of so-called Code Generator Generators

Code Generator Generators

Workflow

- So-called *Meta Programs*, i.e. programs that produce other programs as output.
- A code generator generator (CGG) receives a processor description as input and generates a code generator (CG) from it for exactly that processor

Chapter Contents

- Introduction
 - Role of Code Generation
 - Data Flow Graphs
 - Code Generator Generators
- Tree Covers using Dynamic Programming
 - Partitioning of Data Flow Graphs into Data Flow Trees
 - Tree Covering
 - Tree Pattern Matching Algorithm
 - Tree Grammars for Rule-based Derivation of Code
- Discussion

Tree Pattern Matching (TPM)

Motivation

3-SAT polynomially reducible to covering of data flow <u>graphs</u>

[J. Bruno, R. Sethi. Code generation for a one-register machine. Journal of the ACM 23(3), Jul 1976]

Optimal instruction selection is thus NP complete

- <u>But:</u> Machine operations of typical processors usually have tree-like data flow
- Tree-based Code Generation
- Optimal tree-based instruction selection feasible efficiently, in polynomial run-time

Workflow of Tree Pattern Matching

Given

– An intermediate representation *IR* to be translated

Approach

- Program $P = \emptyset$;
- For each basic block *B* from *IR*:
 - Determine data flow graph D of B
 - Partition D into single data flow trees (DFT) $T_1, ..., T_N$
 - For each DFT T_i :

 $-P = P \cup \{ \text{Optimal code from Tree-Covering of } T_i \}$

Return P

Partitioning of DFGs into DFTs

Definition (Common Subexpression):

Let DFG = (V, E) be a data flow graph. A node $v \in V$ with more than one outgoing edge is called *common* subexpression (CSE).

Definition (Data Flow Tree):

A data flow graph DFG = (V, E) without any CSE is called *data flow tree* (*DFT*).

DFG Partitioning

- Splitting of the DFG into DFTs along the contained CSEs
- For each CSE: Add intermediate nodes to the resulting trees

Example (1)

© H. Falk | 17.03.2022

Example (2)

© H. Falk | 17.03.2022

Example (3)

© H. Falk | 17.03.2022

Example (4)

© H. Falk | 17.03.2022

Example (5)

© H. Falk | 17.03.2022

Tree Cover

Definition (Tree-Covering by an Operation Sequence):

Let T = (V, E) be a DFT, $S = (o_1, ..., o_N)$ be a sequence of machine operations. The last operation o_N shall have the format $\mathbf{d} \leftarrow \mathbf{op}(\mathbf{s}_1, ..., \mathbf{s}_n)$. Let $S'_1, ..., S'_n$ denote those sub-sequences of S that compute the operands $\mathbf{s}_1, ..., \mathbf{s}_n$ of o_N , respectively. S covers T iff

- the operator op corresponds to the root of *T*, i.e., *T* can be depicted as follows:

- and if each S'_i by itself also covers T'_i , respectively $(1 \le i \le n)$.

© H. Falk | 17.03.2022

Examples for Covers

TriCore Instruction Set:

add Dc, Da, Db (Dc = Da + Db)mul Dc, Da, Db (Dc = Da * Db)madd Dc, Dd, Da, Db (Dc = Dd + Da * Db)

Operation add %d4, %d8, %d9 covers T1
Operation mul %d10, %d11, %d12 covers T2

 Also evident: Operation sequence mul %d10, %d11, %d12 add %d4, %d8, %d10 covers T3
 Additionally: Singleton sequence

madd %d4, %d8, %d11, %d12 also covers T3.

Data Flow Trees: T1: + T2: *

© H. Falk | 17.03.2022

Tree Pattern Matching Algorithm (1)

Given

- DFT T = (V, E), let node $v_0 \in V$ be output (i.e. root) of T
- Set O of all machine operations o of the target processor's instruction set
- Cost function c: $O \rightarrow N$ (e.g., size of each operation in bytes)
- Number $K \in \mathbb{N}$ of all registers of the target processor

Data Structures

- Array C[j][v]: Holds the minimal costs per node $v \in V$ according to cost function *c*, if a total of *j* registers is available to compute that sub-tree of *T* with root *v*.
- Array M[j][v]: Holds the cost-optimal machine operation from O and the optimal operand order per node $v \in V$, if a total of j registers is available.

Tree Pattern Matching Algorithm (2)

Workflow – TPM (DFT T):

- initialize(T);
- computeCosts(T);
- generateCode(T, K);

Phase 1 – initialize (DFT T):

- For all possible register numbers $1 \le j \le K$ and for all nodes $v \in V$:

$$C[j][v] = \begin{cases} 0 & \text{if } v \text{ is input/leaf of } T \\ \infty & \text{otherwise} \end{cases}$$

- For all possible register numbers $1 \le j \le K$ and for all nodes $v \in V$:

 $M[j][v] = (\emptyset, \emptyset)$

© H. Falk | 17.03.2022

Tree Pattern Matching Algorithm (3)

Phase 2 – computeCosts (DFT T):

- For all nodes $v \in V$ in post-order sequence starting at root node v_0 :
 - Let T' be that sub-tree of T with current node v as root
 - For all operations $o \in O$ that cover *v*:
 - Use *o* and partition *T*' into sub-trees T'_1 , ..., T'_n with roots v'_1 , ..., v'_n , respectively, according to Tree Cover-Definition (\cong <u>Slide 20</u>)

– For each $1 \le j \le K$ and all permutations π over (1, ..., n):

- Compute the minimal costs for node v:

$$C[j][v] = \min(C[j][v], \sum_{i=1}^{n} C[j-i+1][v'_{\pi(i)}] + c(o))$$

M[j][v] = That pair (o, π) that leads to the minimal costs C[j][v]

© H. Falk | 17.03.2022

Tree Pattern Matching Algorithm (4)

Phase 3 – generateCode (*DFT* T, int j):

- Let $v \in V$ be the root of T
- Operation o = first element of M[j][v]
- Permutation π = second element of M[j][v]
- Use *o* and partition *T* into sub-trees $T_1, ..., T_n$ according to Tree Cover-Definition
- For each i = 1, ..., n: generateCode ($T_{\pi(i)}, j i + 1$)
- Generate machine code for operation o

[A. Aho, S. Johnson. Optimal Code Generation for Expression Trees. Journal of the ACM 23(3), Jul 1976]

© H. Falk | 17.03.2022

Remarks (1)

- Post-order traversal: For the root v of T, visit at first the children $v_1, ..., v_n$ in post-order sequence, then finally visit v itself.
- Permutation π : For the current node *v* and sub-trees T'_1 , ..., T'_n with roots v'_1 , ..., v'_n , a permutation π describes one possible order in which the sub-trees can be evaluated.

E.g., $\pi = (2, 3, 1)$ states that sub-tree 2 is evaluated first, then sub-tree 3, and finally sub-tree 1.

- **computeCosts** computes the minimal costs for each node *v* under consideration of <u>all</u> possible evaluation orders of *v*'s children (i.e., all permutations π) and <u>all</u> possible amounts of free registers (i.e., all values $j \in [1, K]$).

Remarks (2)

- For each tree *T*, the TPM algorithm always tracks how many of the *K* registers of the processor are still free, i.e., it does not work with an infinite amount of available virtual registers.
- Accordingly, costs are computed in dependence of the number *j* of available registers.
- For some nodes v'_1 , ..., v'_n and a given value of *j*, the costs can vary, depending on the permutation π !

Remarks (3)

Example: Assume that j = 3 registers are available to evaluate the current node *v*. The evaluation of sub-tree T'_1 requires 2 free registers, but that of T'_2 3 registers.

- $\pi = (1, 2)$: If T'_1 were evaluated first, 2 registers are occupied meanwhile and the result of T'_1 is stored permanently in one of the 3 free registers afterwards. Thus, only 2 registers are available to evaluate T'_2 . But since T'_2 requires 3 registers, additional memory transfer instructions need to be generated to evaluate T'_2 which consequently increase costs.
- π = (2, 1): During its evaluation, T'₂ occupies all 3 available registers, the result of T'₂ is permanently stored in one if the 3 free registers afterwards. Thus, only 2 registers are available to evaluate T'₁. But since T'₁ only needs 2 registers for its evaluation, no additional memory transfer instructions are required, thus leading to minimal costs.

Run-Time Complexity of TPM

Assumptions

- A processor's instruction set is given and is fixed
- The size of the set O of machine operations is constant
- The number of possible permutations π is constant, too, since the number of operands per machine operation in the instruction set is also constant

(typically 2 or 3 operands per operation)

Cost Computation

- Since the algorithm's loops over all machine operations $o \in O$ and over all permutations π only contribute a constant factor:
- Linear complexity in terms of the size of T: O(|V|)

Code Generation

- Obviously, also linear complexity in terms of the size of T: O(|V|)

© H. Falk | 17.03.2022

Open Issues

TPM Algorithm as presented here formulated generically.

How is this algorithm adapted for some actual processor architecture?

Details to be clarified

- How is the matching of a machine operation op with the root of T realized (cf. Tree Cover-Definition)?
- In which format are the set O of all machine operations and the cost function C specified for the TPM algorithm?
- How does TPM handle the storage of the optimal machine operation o in M and how is the actual code generation for o done?

In the following: Assumption of an infinite amount of virtual registers

Processor Description per Tree Grammar

- Grammar G that generates machine operations for all sub-trees of a DFT
- A single rule in *G* realizes one possible covering of a DFT node
- By applying grammar rules, code is thus derived
 - Each individual derivation/rule produces costs

Structure of a Tree Grammar (1)

Based on Code Generator Generator *icd-cg*:

- Tree grammar G consists of rules $R_1, ..., R_r$
- Each rule R_i has a signature consisting of terminal and non-terminal symbols:

```
<nonterminal<sub>i,0</sub>>: <terminal<sub>i,1</sub>>( <nonterminal<sub>i,2</sub>>, ...,
<nonterminal<sub>i,0</sub>> )
```

(Specification of non-terminals in (...) optional) (So-called chain-rules <nonterminal_{i,0}>: <nonterminal_{i,1}> also valid)

- Terminals: Possible nodes in a DFT T
 (e.g., tpm_BinaryExpPLUS, tpm_BinaryExpMULT, ... in ICD-C)
- Non-terminals: Usually processor-specific classes of memories where source and target operands of operations can be stored (e.g., data & address registers, constant immediate values, ...)

Structure of a Tree Grammar (2)

Example (based on ICD-C & TriCore 1.3)

– Rule

dreg: tpm_BinaryExpPLUS(dreg, dreg)

responsible to cover the binary operator + of ANSI-C where both summands reside in data registers and the sum also stays in a data register.

– Rule

dreg: tpm_BinaryExpMULT (dreg, const9)

responsible to cover the binary operator ***** of ANSI-C with the first factor in a data register, the second one given as signed 9-bit immediate value, and the product residing in a data register.

Structure of a Tree Grammar (3)

Based on Code Generator Generator *icd-cg*: *(ctd.)*

- Terminal and non-terminal symbols must be declared in tree grammar G.
- Overall structure of a file for a tree grammar G:

© H. Falk | 17.03.2022

Structure of a Tree Grammar (4)

Based on Code Generator Generator *icd-cg*: *(ctd.)*

- The specification of each rule R_i of the tree grammar consists of signature, cost part and action part:

```
<nonterminal<sub>i,0</sub>>: <terminal<sub>i,1</sub>>( <nonterminal<sub>i,2</sub>>, ..., <nonterminal<sub>i,n</sub>>)
```

```
{
    // Code for cost computation
}
=
{
    // Code for action part
};
```

© H. Falk | 17.03.2022

Structure of a Tree Grammar (5)

Based on Code Generator Generator *icd-cg*: *(ctd.)*

- Cost part of R_i assigns costs to nonterminal_{*i*,0} that arise if R_i is used to cover **terminal**_{*i*,1}.
- Cost part can contain any arbitrary, user-specified C/C++-Code for cost computation.
- Costs can represent, e.g., the number of generated machine operations, code size, ...
- Costs of a rule R_i can be set to ∞ explicitly if R_i shall not be used at all for a tree cover in particular situations.
- C/C++ data type for costs, a feasible "less than" comparison operator, and values for zero and infinite costs need to be declared in the preamble of *G*.

Structure of a Tree Grammar (6)

Example (based on ICD-C & TriCore 1.3)

```
// Preamble
typedef int COST;
#define DEFAULT_COST 0;
#define COST_LESS(x, y) ( x < y )
COST COST_INFINITY = INT_MAX;
COST COST_ZERO = 0;</pre>
```

- Declaration of a simple cost measure identically with int here
- Comparison of costs using < operator for int
- Default, zero and ∞ costs set to 0 and maximal int value, resp.

Structure of a Tree Grammar (7)

Example (based on ICD-C & TriCore 1.3)

```
dreg: tpm_BinaryExpPLUS( dreg, dreg )
{
    $cost[0] = $cost[2] + $cost[3] + 1;
} = {};
```

- Use of the pre-defined keyword \$cost[j] to access the costs of nonterminal_{i,j}
- Costs of binary + with both summands in data registers (\$cost[0]) are equal to costs for the first summand (\$cost[2]) plus costs for the second summand (\$cost[3]), plus one additional operation (ADD)

Structure of a Tree Grammar (8)

Based on Code Generator Generator *icd-cg*: *(ctd.)*

- Action part of R_i is executed if R_i is that rule with the minimal costs that covers **terminal**_{*i*,1}.
- Action part can contain any arbitrary, user-specified C/C++-Code for code generation.
- Use of the pre-defined keyword \$action[j] to execute the action part of an operand nonterminal_{ij}
- Non-terminal symbols can be declared in G to have parameters and return values in order to pass information between action parts of different rules.

Structure of a Tree Grammar (9)

Example (based on ICD-C & TriCore 1.3)

- First, determine register where to store the target operand
- Next, invocation of code generation for both source operands via \$action[2]() and \$action[3]()
- Finally, code generation for the addition itself

© H. Falk | 17.03.2022

Structure of a Tree Grammar (10)

Example (based on ICD-C & TriCore 1.3)

- In order to generate code for the ADD operation, the above rule must know in which data registers the two summands actually reside.
- The code for the summands is, however, produced by some completely different rules of the grammar.

© H. Falk | 17.03.2022

Structure of a Tree Grammar (11)

Example (based on ICD-C & TriCore 1.3)

The action parts of the summands' rules return the name of exactly this register (here naively as string) as result after their respective invocation via \$action[2]() or \$action[3]().

© H. Falk | 17.03.2022

Structure of a Tree Grammar (12)

Example (based on ICD-C & TriCore 1.3)

%declare<string> dreg<string target>;

- Declaration of a non-terminal symbol for virtual data registers
- An action part can return a string that denotes that data register in which the action part has actually stored its target operand.
- A string can be passed as parameter target to action parts of rules producing a dreg in order to force these action parts to use a specific data register where the target operand shall be stored.

Structure of a Tree Grammar (13)

Example (based on ICD-C & TriCore 1.3)

```
dreg: tpm_BinaryExpPLUS( dreg, dreg ) {}={
    if (target.empty()) target = getNewRegister();
    $action[2]("D15");
    string r2($action[3](""));
    cout << "ADD " << target << ", D15, " << r2 << endl;
    return target;
};</pre>
```

 The above rule generates a specialized variant of the TriCore's addition where the first summand must mandatorily reside in data register D15.

Tree Covers and Tree Grammars

Tree Covers

```
A rule R<sub>i</sub> from G with signature
<nonterminal<sub>i,0</sub>>: <terminal<sub>i,1</sub>>( <nonterminal<sub>i,2</sub>>, ...,
<nonterminal<sub>i,n</sub>>)
```

covers a DFT T iff

- the terminal symbol of R_i corresponds to the current DFT node, and
- the costs of R_i if applied to the current DFT node are less than ∞ , and
- there are rules in G that by themselves cover sub-tree T'_j and that produce a non-terminal symbol of class <nonterminal_{*i*,*j*}>, respectively (2 ≤ $j \le n$).

TPM Algorithm for Tree Grammars

Phase 1 – Initialization: Unchanged

Phase 2 – Cost Computation:

- Instead of determining all operations $o \in O$ that cover sub-trees T':
- [∞] Determine set *R*' of all rules $R_i \in G$ that cover *T*'
- Compute C[v] as before, but now only by executing the code of the cost parts of all rules from R'
- [∞] Store that rule $R^{opt} \in R'$ with minimal costs C[v] in M[v]

Phase 3 – Code Generation:

- For the root $v_0 \in T$: Invoke action part of the optimal rule $M[v_0]$
- \$action[] calls embedded in another rule's action parts always refer to the action parts of the cost-optimal rule R^{opt}

Complex Example (1)

```
dreg: tpm BinaryExpPLUS( dreg, dreg ) {
  cost[0] = cost[2] + cost[3] + 1;
= \{
  if ( target.empty() ) target = getNewRegister();
  string r1( $action[2]("") ), r2( $action[3]("") );
  cout << "ADD " << target << "," << r1 << "," << r2 <<
  endl; return target;
};
dreg: tpm BinaryExpMULT ( dreg, dreg ) {
 cost[0] = cost[2] + cost[3] + 1;
}={
  if ( target.empty() ) target = getNewRegister();
  string r1( $action[2]("") ), r2( $action[3]("") );
  cout << "MUL " << target << "," << r1 << "," << r2 <<
  endl; return target;
};
```

Complex Example (2)

```
dreg: tpm_SymbolEXP {
   $cost[0] = $1->getExp()->getSymbol().isGlobal() ?
        COST_INFINITY : COST_ZERO;
}={
   target = "r_" + $1->getExp()->getSymbol().getName();
   return target;
};
```

- Rule assigns a virtual register to local variables used inside DFT T
- \$1 is the node of the DFT T that is to be covered by the terminal symbol
- \$1->getExp()->getSymbol() returns the symbol / the local variable of the IR
- In case of a global variable, this rule produces costs ∞ so that it is not used
- For local variables: Costs 0 since no actual code is generated

© H. Falk | 17.03.2022

Complex Example (3)

- C snippet a + (b * c) with DFT T is covered by rules dreg: tpm_SymbolExp dreg: tpm_BinaryExpPLUS(dreg, dreg) dreg: tpm_BinaryExpMULT(dreg, dreg)

- Costs for T: C[+] = C[a] + C[*] + 1 = C[a] + (C[b] + C[c] + 1) + 1 = 2
- Code generated for T:
 MUL r_0, r_b, r_c
 ADD r_1, r_a, r_0

Complex Example (4)

```
typedef pair<string, string> regpair;
%declare<regpair> virtmul;
virtmul: tpm_BinaryExpMULT( dreg, dreg ) {
   $cost[0] = $cost[2] + $cost[3];
}={
   string r1( $action[2]("") ), r2( $action[3]("") );
   return make_pair( r1, r2 );
};
```

- Novel non-terminal virtual represents a multiplication in *T* for which, however, no code shall be generated directly by a rule.
- Instead, a rule producing virtmul simply returns a pair of registers that stores where the operands of the multiplication reside.
- For lack of generated code: C[v] = Sum of the costs of the operands

Complex Example (5)

- This rule becomes active, i.e., can be used to cover a tree, if the second summand is such a virtual multiplication from the previous slide
- Then: Get register pair of non-terminal virtual and generate a Multiply-Accumulate operation MADD (Chapter 2)

© H. Falk | 17.03.2022

Complex Example (6)

- C snippet a + (b * c) with DFT T is now <u>additionally</u> covered by rules dreg: tpm_SymbolExp dreg: tpm_BinaryExpPLUS(dreg, virtmul) virtmul: tpm_BinaryExpMULT(dreg, dreg)

- Costs for T: C[+] = C[a] + C[*] + 1 = C[a] + (C[b] + C[c]) + 1 = 1
- Code generated for T:
 MADD r_0, r_a, r_b, r_c

Invocation of Action Parts with Parameters

%declare<string> dreg<string target>;

- A string can be passed as parameter target to action parts of rules producing a dreg in order to force these action parts to use a specific data register where the target operand shall be stored.
- C snippet (b < 10) ? 21 : 42
- The result of the ? operator must lie in a dreg.
- Both sub-trees left and right of the ":" must be evaluated into the same dreg.
- The rule for ? must force both sub-trees to use the very same target register!

<pre>target = getNewRegister();</pre>
<pre>\$action[3](target);</pre>
<pre>\$action[4](target);</pre>

Chapter Contents

6. Code Generation

- Introduction
 - Role of Code Generation
 - Data Flow Graphs
 - Code Generator Generators
- Tree Covers using Dynamic Programming
 - Partitioning of Data Flow Graphs into Data Flow Trees
 - Tree Covering
 - Tree Pattern Matching Algorithm
 - Tree Grammars for Rule-based Derivation of Code

– Discussion

Limitations of Tree Pattern Matching (1)

Partitioning of DFGs into DFTs yields Sub-Optimal Code

- Example a + (b * c) from previous slides is optimally covered by TPM using the MADD operation.
- But what happens for, e.g., e = a * b; ... (c + e) + e ...?

© H. Falk | 17.03.2022

Limitations of Tree Pattern Matching (2)

Optimal Tree Cover of *T1* and *T2*

- Would result in a total of *three* machine operations
- 1 multiplication to cover T1, 2 additions for T2

MUL r_0, r_a, r_b ADD r_1, r_c, r_0 ADD r_2, r_1, r_0

Optimal Graph Cover of G

- Would result in a total of only two machine operations
- 2 multiply-accumulate operations for G

MADD r_0 , r_c , r_a , r_b MADD r_1 , r_0 , r_a , r_b

Discussion of Tree Pattern Matching

Pros

- Linear run-time complexity
- Optimality for data flow trees
- "Simple" realization using tree grammars and code generator generators

Cons

- TPM only poorly suited for processors with very heterogeneous register files
- TPM inappropriate for processors with parallel processing of instructions

Tree Pattern Matching and Heterogeneous Register Files

Partitioning of DFGs into DFTs

- Let T be a DFT that computes a CSE C; let T' be the DFTs that use C.
- After covering *T*, the code generated for *T* must store the value of *C* somewhere, and all *T*' must load this value of *C* from this location.
- Since T and T' are covered completely independently from each other, the code generation phase for T cannot consider where all the T' would optimally expect C.
- If *T* stores the value of *C* in some part of a heterogeneous register file, but *T*' expects the value of *C* in some different part, additional costly register transfers are necessary!

Tree Pattern Matching and Parallel Processors

Additive Cost Measure of Tree Pattern Matching

- Costs of a DFTs T with root v are sum of the children's costs plus the costs for v itself.
- Action part for *T* usually generates one machine operation.
- Recall: Parallel processors execute several machine operations that are grouped into one machine instruction, in parallel.
- An additive TPM cost measure that models execution time implicitly assumes that all generated operations are executed purely sequentially!
- Since TPM's cost computation is unaware of parallel execution and does not consider that operations can be grouped to instructions, the generated code is likely to have a poor parallel performance!

References

Tree Pattern Matching

- A. Aho, S. Johnson. Optimal Code Generation for Expression Trees.
 Journal of the ACM 23(3), 1976.
- A. Aho, M. Ganapathi, S. Tjiang. Code Generation Using Tree Matching & Dynamic Programming. ACM ToPLaS 11(4), 1989.

Code Generator Generators

- ICD-CG code generator generator,

http://www.icd.de/en/es/icd-c-compiler/icd-cg, 2017

- iburg. A Tree Parser Generator,

https://github.com/drh/iburg, 2017.incl.

C. W. Fraser, D. R. Hanson, T. A. Proebsting. *Engineering a Simple, Efficient Code Generator Generator*. ACM Letters on Programming Languages and Systems 1(3), 1992.

Summary

Code Generation

- Translation of a DFG into an implementation in the target language
- Code generator generators

Tree Pattern Matching

- Partitioning of into data flow trees
- Linear-time algorithm for optimal DFT covers
- Format and structure of tree grammars

Discussion

- Tree Pattern Matching well-suited only for regular processors
- Disadvantageous for architectures with heterogeneous register files
- Disadvantageous for processors with instruction-level parallelism