
Compilers for Embedded Systems

Summer Term 2022

Heiko Falk

Institute of Embedded Systems

Electrical Engineering, Computer Science and Mathematics

Hamburg University of Technology

Chapter 6

Code Generation

Compilers for Embedded Systems (CfES) SoSe 2022Slide 3/61

© H. Falk | 17.03.2022 6 - Code Generation

Outline

1. Introduction & Motivation

2. Compilers for Embedded Systems – Requirements & Dependencies

3. Internal Structure of Compilers

4. Pre-Pass Optimizations

5. HIR Optimizations and Transformations

6. Code Generation

7. LIR Optimizations and Transformations

8. Register Allocation

9. WCET-Aware Compilation

10.Outlook

Compilers for Embedded Systems (CfES) SoSe 2022Slide 4/61

© H. Falk | 17.03.2022 6 - Code Generation

Chapter Contents

6. Code Generation

– Introduction

– Role of Code Generation

– Data Flow Graphs

– Code Generator Generators

– Tree Covers using Dynamic Programming

– Partitioning of Data Flow Graphs into Data Flow Trees

– Tree Covering

– Tree Pattern Matching Algorithm

– Tree Grammars for Rule-based Derivation of Code

– Discussion

Compilers for Embedded Systems (CfES) SoSe 2022Slide 5/61

© H. Falk | 17.03.2022 6 - Code Generation

Role of the Instruction Selection

Code Generation

– Selection of machine instructions in order to implement an IR

– “Heart” of a compiler that performs the actual translation of source into

target language

Lexical
Analysis

Source
Code

Syntactical
Analysis

Syntax

Tree

H
ig

h
-

L
e

v
e

l
IR

Code
Generation

Register
Allocation

Instruction
Scheduling

ASM
Code

Code
Optimization

High-

Level IR

Low-

Level IR

Code
Optimization

L
o

w
-

L
e

v
e

l
IR

Low-

Level IR

Semantical
Analysis

Token

Sequence

Compilers for Embedded Systems (CfES) SoSe 2022Slide 6/61

© H. Falk | 17.03.2022 6 - Code Generation

Goals

Synonyms

– “Code Generation”, “Instruction Selection” and “Code Selection” are often

used synonymously

Inputs and Outputs

– Input: An intermediate representation IR to be translated

– Output: A Program P(IR)

(often in assembly or machine code, but often also another IR)

Requirements

– P(IR) must be semantically equivalent to IR

– P(IR) must be efficient regarding an objective function

Compilers for Embedded Systems (CfES) SoSe 2022Slide 7/61

© H. Falk | 17.03.2022 6 - Code Generation

Data Flow Graphs

What does “semantically equivalent to IR” mean...?

– P(IR) must have a data flow that is equivalent to that of IR, under

consideration of control flow dependencies.

Definition (Data Flow Graph):

Let B = (I1, ..., In) be a basic block ( Chapter 3). The Data Flow Graph

(DFG) of B is a directed, acyclic graph DFG = (V, E) with

– each node v  V represents either

– an input value for B (input variable, constant)

– or a single operation within I1, ..., In

– or an output value of B

– edge e = (vi, vj)  E  vj uses data that vi computes

Compilers for Embedded Systems (CfES) SoSe 2022Slide 8/61

© H. Falk | 17.03.2022 6 - Code Generation

Example

sqrt

*

a c

*

4

*

b

--

b

- + * a

//

2

b

Inputs

Operations

Outputsr1 r2

t1 = a * c;

t2 = 4 * t1;

t3 = b * b;

t4 = t3 – t2;

t5 = sqrt(t4);

t6 = -b;

t7 = t6 – t5;

t8 = t7 + t5;

t9 = 2 * a;

r1 = t7 / t9;

r2 = t8 / t9;

b

b

b

4 a c

2

a

-

*

sqrt

* *

-

- + *

/ /

r1 r2

Compilers for Embedded Systems (CfES) SoSe 2022Slide 9/61

© H. Falk | 17.03.2022 6 - Code Generation

Code Generation

Problem Formulation

– To cover all nodes of all DFGs of IR with semantically equivalent

operations of the target language

Implementation of a Code Generator

– Non-trivial task, highly dependent of the target processor’s architecture

– Manual implementation of a code generator not affordable for today’s

processors’ complexity

 Instead: Use of so-called Code Generator Generators

Compilers for Embedded Systems (CfES) SoSe 2022Slide 10/61

© H. Falk | 17.03.2022 6 - Code Generation

Code Generator Generators

Workflow

– So-called Meta Programs, i.e. programs that produce other programs as

output.

– A code generator generator (CGG) receives a processor description as

input and generates a code generator (CG) from it for exactly that

processor

CGG Src. Code
for CG

Host
Compiler

Descr. of
Processor

Proc

IR

P(IR)

CG for
Proc

Compilers for Embedded Systems (CfES) SoSe 2022Slide 11/61

© H. Falk | 17.03.2022 6 - Code Generation

Chapter Contents

6. Code Generation

– Introduction

– Role of Code Generation

– Data Flow Graphs

– Code Generator Generators

– Tree Covers using Dynamic Programming

– Partitioning of Data Flow Graphs into Data Flow Trees

– Tree Covering

– Tree Pattern Matching Algorithm

– Tree Grammars for Rule-based Derivation of Code

– Discussion

Compilers for Embedded Systems (CfES) SoSe 2022Slide 12/61

© H. Falk | 17.03.2022 6 - Code Generation

Tree Pattern Matching (TPM)

Motivation

– 3-SAT polynomially reducible to covering of data flow graphs

 Optimal instruction selection is thus NP complete

– But: Machine operations of typical

processors usually have

tree-like data flow

 Tree-based Code Generation

– Optimal tree-based instruction selection

feasible efficiently, in polynomial run-time

[J. Bruno, R. Sethi. Code generation for a one-register machine. Journal

of the ACM 23(3), Jul 1976]

*

Compilers for Embedded Systems (CfES) SoSe 2022Slide 13/61

© H. Falk | 17.03.2022 6 - Code Generation

Workflow of Tree Pattern Matching

Given

– An intermediate representation IR to be translated

Approach

– Program P = Ø;

– For each basic block B from IR:

– Determine data flow graph D of B

– Partition D into single data flow trees (DFT) T1, ..., TN

– For each DFT Ti:

– P = P ∪ { Optimal code from Tree-Covering of Ti }

– Return P

Compilers for Embedded Systems (CfES) SoSe 2022Slide 14/61

© H. Falk | 17.03.2022 6 - Code Generation

Partitioning of DFGs into DFTs

Definition (Common Subexpression):

Let DFG = (V, E) be a data flow graph.

A node v  V with more than one outgoing edge is called common

subexpression (CSE).

Definition (Data Flow Tree):

A data flow graph DFG = (V, E) without any CSE is called data flow tree

(DFT).

 DFG Partitioning

– Splitting of the DFG into DFTs along the contained CSEs

– For each CSE: Add intermediate nodes to the resulting trees

Compilers for Embedded Systems (CfES) SoSe 2022Slide 15/61

© H. Falk | 17.03.2022 6 - Code Generation

Example (1)

sqrt

*

a c

*

4

*

b

--

b

- + * a

//

2

b

r1 r2 CSEs

sqrt

- *

Compilers for Embedded Systems (CfES) SoSe 2022Slide 16/61

© H. Falk | 17.03.2022 6 - Code Generation

Example (2)

*

a c

*

4

*

b

--

b

+

//

b

r1 r2 CSEs

sqrt

- * a

2

CSE1

CSE1

Compilers for Embedded Systems (CfES) SoSe 2022Slide 17/61

© H. Falk | 17.03.2022 6 - Code Generation

Example (3)

*

a c

*

4

*

b

--

b

+

//

b

r1 r2 CSEs

sqrt

- * a

2

CSE1

CSE1

CSE1

Compilers for Embedded Systems (CfES) SoSe 2022Slide 18/61

© H. Falk | 17.03.2022 6 - Code Generation

Example (4)

*

a c

*

4

*

b

--

b

+

/

b

r2 CSEs

sqrt

- * a

2

CSE1

CSE1

/

r1

CSE1

CSE2

CSE2

CSE2

Compilers for Embedded Systems (CfES) SoSe 2022Slide 19/61

© H. Falk | 17.03.2022 6 - Code Generation

Example (5)

* a

2

CSE1

/

r1

CSE1

CSE2

-

b

-

CSE2

CSE3

sqrt

*

a c

*

4

*

b

-

+

/

b

r2

CSE1

CSE2

CSE3

CSE3

Compilers for Embedded Systems (CfES) SoSe 2022Slide 20/61

© H. Falk | 17.03.2022 6 - Code Generation

Tree Cover

Definition (Tree-Covering by an Operation Sequence):

Let T = (V, E) be a DFT, S = (o1, ..., oN) be a sequence of machine
operations. The last operation oN shall have the format d ← op(s1, ..., sn).

Let S’1, ..., S’n denote those sub-sequences of S that compute the operands
s1, ..., sn of oN, respectively.

S covers T iff

– the operator op corresponds to the root of T, i.e., T can be depicted as

follows:

– and if each S’i by itself also covers T’i, respectively (1 ≤ i ≤ n).

op

T’1 T’n

T:

Compilers for Embedded Systems (CfES) SoSe 2022Slide 21/61

© H. Falk | 17.03.2022 6 - Code Generation

Examples for Covers

TriCore Instruction Set:

add Dc, Da, Db (Dc = Da + Db)

mul Dc, Da, Db (Dc = Da * Db)

madd Dc, Dd, Da, Db (Dc = Dd + Da * Db)

 Operation add %d4, %d8, %d9 covers T1

 Operation mul %d10, %d11, %d12 covers T2

 Also evident: Operation sequence

mul %d10, %d11, %d12

add %d4, %d8, %d10 covers T3

 Additionally: Singleton sequence

madd %d4, %d8, %d11, %d12 also covers T3.

*+T1: T2:

Data Flow Trees:

*+T3:

Compilers for Embedded Systems (CfES) SoSe 2022Slide 22/61

© H. Falk | 17.03.2022 6 - Code Generation

Tree Pattern Matching Algorithm (1)

Given

– DFT T = (V, E), let node v0  V be output (i.e. root) of T

– Set O of all machine operations o of the target processor’s instruction set

– Cost function c: O → ℕ (e.g., size of each operation in bytes)

– Number K  ℕ of all registers of the target processor

Data Structures

– Array : Holds the minimal costs per node v  V according to cost

function c, if a total of j registers is available to compute

that sub-tree of T with root v.

– Array : Holds the cost-optimal machine operation from O and the

optimal operand order per node v  V, if a total of j

registers is available.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 23/61

© H. Falk | 17.03.2022 6 - Code Generation

Tree Pattern Matching Algorithm (2)

Workflow – TPM(DFT T):

– initialize(T);

– computeCosts(T);

– generateCode(T, K);

Phase 1 – initialize(DFT T):

– For all possible register numbers 1 ≤ j ≤ K and for all nodes v  V:

– For all possible register numbers 1 ≤ j ≤ K and for all nodes v  V:

Compilers for Embedded Systems (CfES) SoSe 2022Slide 24/61

© H. Falk | 17.03.2022 6 - Code Generation

Tree Pattern Matching Algorithm (3)

Phase 2 – computeCosts(DFT T):

– For all nodes v  V in post-order sequence starting at root node v0:

– Let T’ be that sub-tree of T with current node v as root

– For all operations o  O that cover v:

– Use o and partition T’ into sub-trees T’1, ..., T’n with roots v’1, ...,

v’n, respectively, according to Tree Cover-Definition ( Slide 20)

– For each 1 ≤ j ≤ K and all permutations  over (1, ..., n):

– Compute the minimal costs for node v:

That pair (o, ) that leads to the minimal costs

Compilers for Embedded Systems (CfES) SoSe 2022Slide 25/61

© H. Falk | 17.03.2022 6 - Code Generation

Tree Pattern Matching Algorithm (4)

Phase 3 – generateCode(DFT T, int j):

– Let v  V be the root of T

– Operation o = first element of

– Permutation  = second element of

– Use o and partition T into sub-trees T1, ..., Tn according to Tree Cover-

Definition

– For each i = 1, ..., n: generateCode(T(i), j – i + 1)

– Generate machine code for operation o

[A. Aho, S. Johnson. Optimal Code Generation for Expression Trees.

Journal of the ACM 23(3), Jul 1976]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 26/61

© H. Falk | 17.03.2022 6 - Code Generation

Remarks (1)

– Post-order traversal: For the root v of T, visit at first the children

v1, ..., vn in post-order sequence, then finally visit v itself.

– Permutation : For the current node v and sub-trees T’1, ..., T’n with roots

v’1, ..., v’n, a permutation  describes one possible order in which the sub-

trees can be evaluated.

E.g.,  = (2, 3, 1) states that sub-tree 2 is evaluated first, then sub-tree 3,

and finally sub-tree 1.

– computeCosts computes the minimal costs for each node v under

consideration of all possible evaluation orders of v’s children (i.e., all

permutations ) and all possible amounts of free registers (i.e., all values

j  [1, K]).

Compilers for Embedded Systems (CfES) SoSe 2022Slide 27/61

© H. Falk | 17.03.2022 6 - Code Generation

Remarks (2)

– For each tree T, the TPM algorithm always tracks how many of the K

registers of the processor are still free, i.e., it does not work with an

infinite amount of available virtual registers.

– Accordingly, costs are computed in dependence of the number j of

available registers.

– For some nodes v’1, ..., v’n and a given value of j, the costs can vary,

depending on the permutation !

Compilers for Embedded Systems (CfES) SoSe 2022Slide 28/61

© H. Falk | 17.03.2022 6 - Code Generation

Remarks (3)

Example: Assume that j = 3 registers are available to evaluate the current

node v. The evaluation of sub-tree T’1 requires 2 free registers, but that of

T’2 3 registers.

–  = (1, 2): If T’1 were evaluated first, 2 registers are occupied meanwhile

and the result of T’1 is stored permanently in one of the 3 free registers

afterwards. Thus, only 2 registers are available to evaluate T’2.

But since T’2 requires 3 registers, additional memory transfer instructions

need to be generated to evaluate T’2 which consequently increase costs.

–  = (2, 1): During its evaluation, T’2 occupies all 3 available registers, the

result of T’2 is permanently stored in one if the 3 free registers afterwards.

Thus, only 2 registers are available to evaluate T’1. But since T’1 only

needs 2 registers for its evaluation, no additional memory transfer

instructions are required, thus leading to minimal costs.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 29/61

© H. Falk | 17.03.2022 6 - Code Generation

Run-Time Complexity of TPM

Assumptions

– A processor’s instruction set is given and is fixed

– The size of the set O of machine operations is constant

– The number of possible permutations  is constant, too, since the

number of operands per machine operation in the instruction set is also

constant

(typically 2 or 3 operands per operation)

Cost Computation

– Since the algorithm’s loops over all machine operations o  O and over

all permutations  only contribute a constant factor:

– Linear complexity in terms of the size of T: O(|V|)

Code Generation

– Obviously, also linear complexity in terms of the size of T: O(|V|)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 30/61

© H. Falk | 17.03.2022 6 - Code Generation

Open Issues

TPM Algorithm as presented here formulated generically.

 How is this algorithm adapted for some actual processor

architecture?

Details to be clarified

– How is the matching of a machine operation op with the root of T realized

(cf. Tree Cover-Definition)?

– In which format are the set O of all machine operations and the cost

function C specified for the TPM algorithm?

– How does TPM handle the storage of the optimal machine operation o in

M and how is the actual code generation for o done?

In the following: Assumption of an infinite amount of virtual registers

Compilers for Embedded Systems (CfES) SoSe 2022Slide 31/61

© H. Falk | 17.03.2022 6 - Code Generation

Processor Description per Tree Grammar

IR

– Grammar G that generates machine operations for all sub-trees of a

DFT

– A single rule in G realizes one possible covering of a DFT node

– By applying grammar rules, code is thus derived

– Each individual derivation/rule produces costs

CGG Src. Code
for CG

Host
Compiler

Descr. of
Processor

Proc

P(IR)

CG for
Proc

Compilers for Embedded Systems (CfES) SoSe 2022Slide 32/61

© H. Falk | 17.03.2022 6 - Code Generation

Structure of a Tree Grammar (1)

Based on Code Generator Generator icd-cg:

– Tree grammar G consists of rules R1, ..., Rr

– Each rule Ri has a signature consisting of terminal and non-terminal

symbols:

<nonterminali,0>: <terminali,1>(<nonterminali,2>, …,

<nonterminali,n>)

(Specification of non-terminals in (...) optional)

(So-called chain-rules <nonterminali,0>: <nonterminali,1> also valid)

– Terminals: Possible nodes in a DFT T

(e.g., tpm_BinaryExpPLUS, tpm_BinaryExpMULT, ... in ICD-C)

– Non-terminals: Usually processor-specific classes of memories where

source and target operands of operations can be stored

(e.g., data & address registers, constant immediate values, ...)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 33/61

© H. Falk | 17.03.2022 6 - Code Generation

Structure of a Tree Grammar (2)

Example (based on ICD-C & TriCore 1.3)

– Rule

dreg: tpm_BinaryExpPLUS(dreg, dreg)

responsible to cover the binary operator + of ANSI-C where both

summands reside in data registers and the sum also stays in a data

register.

– Rule

dreg: tpm_BinaryExpMULT (dreg, const9)

responsible to cover the binary operator * of ANSI-C with the first factor

in a data register, the second one given as signed 9-bit immediate value,

and the product residing in a data register.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 34/61

© H. Falk | 17.03.2022 6 - Code Generation

Structure of a Tree Grammar (3)

Based on Code Generator Generator icd-cg: (ctd.)

– Terminal and non-terminal symbols must be declared in tree grammar G.

– Overall structure of a file for a tree grammar G:

%{ // Preamble %declare <nonterminal1>;

%} ...

%term <terminal1> %%

%term <terminal2>

... Rule1;

Rule2;

%declare <nonterminal0>; ...

%%

Compilers for Embedded Systems (CfES) SoSe 2022Slide 35/61

© H. Falk | 17.03.2022 6 - Code Generation

Structure of a Tree Grammar (4)

Based on Code Generator Generator icd-cg: (ctd.)

– The specification of each rule Ri of the tree grammar consists of

signature, cost part and action part:

<nonterminali,0>: <terminali,1>(<nonterminali,2>, …,

<nonterminali,n>)

{

// Code for cost computation

}

=

{

// Code for action part

};

Compilers for Embedded Systems (CfES) SoSe 2022Slide 36/61

© H. Falk | 17.03.2022 6 - Code Generation

Structure of a Tree Grammar (5)

Based on Code Generator Generator icd-cg: (ctd.)

– Cost part of Ri assigns costs to nonterminali,0 that arise if Ri is used to

cover terminali,1.

– Cost part can contain any arbitrary, user-specified C/C++-Code for cost

computation.

– Costs can represent, e.g., the number of generated machine operations,

code size, ...

– Costs of a rule Ri can be set to ∞ explicitly if Ri shall not be used at all for

a tree cover in particular situations.

– C/C++ data type for costs, a feasible “less than” comparison operator,

and values for zero and infinite costs need to be declared in the preamble

of G.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 37/61

© H. Falk | 17.03.2022 6 - Code Generation

Structure of a Tree Grammar (6)

Example (based on ICD-C & TriCore 1.3)

// Preamble

typedef int COST;

#define DEFAULT_COST 0;

#define COST_LESS(x, y) (x < y)

COST COST_INFINITY = INT_MAX;

COST COST_ZERO = 0;

...

– Declaration of a simple cost measure – identically with int here

– Comparison of costs using < operator for int

– Default, zero and ∞ costs set to 0 and maximal int value, resp.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 38/61

© H. Falk | 17.03.2022 6 - Code Generation

Structure of a Tree Grammar (7)

Example (based on ICD-C & TriCore 1.3)

dreg: tpm_BinaryExpPLUS(dreg, dreg)

{

$cost[0] = $cost[2] + $cost[3] + 1;

} = {};

– Use of the pre-defined keyword $cost[j] to access the costs of

nonterminali,j

– Costs of binary + with both summands in data registers ($cost[0]) are

equal to costs for the first summand ($cost[2]) plus costs for the

second summand ($cost[3]), plus one additional operation (ADD)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 39/61

© H. Falk | 17.03.2022 6 - Code Generation

Structure of a Tree Grammar (8)

Based on Code Generator Generator icd-cg: (ctd.)

– Action part of Ri is executed if Ri is that rule with the minimal costs that

covers terminali,1.

– Action part can contain any arbitrary, user-specified C/C++-Code for

code generation.

– Use of the pre-defined keyword $action[j] to execute the action part

of an operand nonterminali,j

– Non-terminal symbols can be declared in G to have parameters and

return values in order to pass information between action parts of

different rules.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 40/61

© H. Falk | 17.03.2022 6 - Code Generation

Structure of a Tree Grammar (9)

Example (based on ICD-C & TriCore 1.3)

dreg: tpm_BinaryExpPLUS(dreg, dreg) {}={

if (target.empty()) target = getNewRegister();

string r1($action[2]("")), r2($action[3](""));

cout << "ADD " << target << ", " << r1

<< ", " << r2 << endl;

return target;

};

– First, determine register where to store the target operand

– Next, invocation of code generation for both source operands via

$action[2]() and $action[3]()

– Finally, code generation for the addition itself

Compilers for Embedded Systems (CfES) SoSe 2022Slide 41/61

© H. Falk | 17.03.2022 6 - Code Generation

Structure of a Tree Grammar (10)

Example (based on ICD-C & TriCore 1.3)

dreg: tpm_BinaryExpPLUS(dreg, dreg) {}={

if (target.empty()) target = getNewRegister();

string r1($action[2]("")), r2($action[3](""));

cout << "ADD " << target << ", " << r1

<< ", " << r2 << endl;

return target;

};

– In order to generate code for the ADD operation, the above rule must

know in which data registers the two summands actually reside.

– The code for the summands is, however, produced by some completely

different rules of the grammar.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 42/61

© H. Falk | 17.03.2022 6 - Code Generation

Structure of a Tree Grammar (11)

Example (based on ICD-C & TriCore 1.3)

dreg: tpm_BinaryExpPLUS(dreg, dreg) {}={

if (target.empty()) target = getNewRegister();

string r1($action[2]("")), r2($action[3](""));

cout << "ADD " << target << ", " << r1

<< ", " << r2 << endl;

return target;

};

– The action parts of the summands’ rules return the name of exactly this

register (here naively as string) as result after their respective

invocation via $action[2]() or $action[3]().

Compilers for Embedded Systems (CfES) SoSe 2022Slide 43/61

© H. Falk | 17.03.2022 6 - Code Generation

Structure of a Tree Grammar (12)

Example (based on ICD-C & TriCore 1.3)

%declare<string> dreg<string target>;

– Declaration of a non-terminal symbol for virtual data registers

– An action part can return a string that denotes that data register in

which the action part has actually stored its target operand.

– A string can be passed as parameter target to action parts of rules

producing a dreg in order to force these action parts to use a specific

data register where the target operand shall be stored.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 44/61

© H. Falk | 17.03.2022 6 - Code Generation

Structure of a Tree Grammar (13)

Example (based on ICD-C & TriCore 1.3)

dreg: tpm_BinaryExpPLUS(dreg, dreg) {}={

if (target.empty()) target = getNewRegister();

$action[2]("D15");

string r2($action[3](""));

cout << "ADD " << target << ", D15, " << r2 << endl;

return target;

};

– The above rule generates a specialized variant of the TriCore’s addition

where the first summand must mandatorily reside in data register D15.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 45/61

© H. Falk | 17.03.2022 6 - Code Generation

Tree Covers and Tree Grammars

Tree Covers

A rule Ri from G with signature

<nonterminali,0>: <terminali,1>(<nonterminali,2>, …,

<nonterminali,n>)

covers a DFT T iff

– the terminal symbol of Ri corresponds to the current DFT node, and

– the costs of Ri if applied to the current DFT node are less than ∞, and

– there are rules in G that by themselves cover sub-tree T’j and that

produce a non-terminal symbol of class <nonterminali,j>, respectively (2 ≤

j ≤ n).

Compilers for Embedded Systems (CfES) SoSe 2022Slide 46/61

© H. Falk | 17.03.2022 6 - Code Generation

TPM Algorithm for Tree Grammars

Phase 1 – Initialization: Unchanged

Phase 2 – Cost Computation:

– Instead of determining all operations o  O that cover sub-trees T’:

 Determine set R’ of all rules Ri  G that cover T’

 Compute C[v] as before, but now only by executing the code of the cost

parts of all rules from R’

 Store that rule Ropt  R’ with minimal costs C[v] in M[v]

Phase 3 – Code Generation:

– For the root v0  T: Invoke action part of the optimal rule M[v0]

– $action[] calls embedded in another rule’s action parts always refer to

the action parts of the cost-optimal rule Ropt

Compilers for Embedded Systems (CfES) SoSe 2022Slide 47/61

© H. Falk | 17.03.2022 6 - Code Generation

Complex Example (1)

dreg: tpm_BinaryExpPLUS(dreg, dreg) {

$cost[0] = $cost[2] + $cost[3] + 1;

}={
if (target.empty()) target = getNewRegister();
string r1($action[2]("")), r2($action[3](""));
cout << "ADD " << target << "," << r1 << "," << r2 <<
endl; return target;

};

dreg: tpm_BinaryExpMULT(dreg, dreg) {

$cost[0] = $cost[2] + $cost[3] + 1;

}={
if (target.empty()) target = getNewRegister();
string r1($action[2]("")), r2($action[3](""));
cout << "MUL " << target << "," << r1 << "," << r2 <<
endl; return target;

};

Compilers for Embedded Systems (CfES) SoSe 2022Slide 48/61

© H. Falk | 17.03.2022 6 - Code Generation

Complex Example (2)

dreg: tpm_SymbolEXP {

$cost[0] = $1->getExp()->getSymbol().isGlobal() ?

COST_INFINITY : COST_ZERO;

}={

target = "r_" + $1->getExp()->getSymbol().getName();

return target;

};

– Rule assigns a virtual register to local variables used inside DFT T

– $1 is the node of the DFT T that is to be covered by the terminal symbol

– $1->getExp()->getSymbol() returns the symbol / the local variable

of the IR

– In case of a global variable, this rule produces costs ∞ so that it is not

used

– For local variables: Costs 0 since no actual code is generated

Compilers for Embedded Systems (CfES) SoSe 2022Slide 49/61

© H. Falk | 17.03.2022 6 - Code Generation

Complex Example (3)

– C snippet a + (b * c) with DFT T

is covered by rules

dreg: tpm_SymbolExp

dreg: tpm_BinaryExpPLUS(dreg, dreg)

dreg: tpm_BinaryExpMULT(dreg, dreg)

– Costs for T:

C[+] = C[a] + C[*] + 1 = C[a] + (C[b] + C[c] + 1) + 1 = 2

– Code generated for T:

MUL r_0, r_b, r_c

ADD r_1, r_a, r_0

*+

T:

a b c

Compilers for Embedded Systems (CfES) SoSe 2022Slide 50/61

© H. Falk | 17.03.2022 6 - Code Generation

Complex Example (4)

typedef pair<string, string> regpair;

%declare<regpair> virtmul;

virtmul: tpm_BinaryExpMULT(dreg, dreg) {

$cost[0] = $cost[2] + $cost[3];

}={

string r1($action[2]("")), r2($action[3](""));

return make_pair(r1, r2);

};

– Novel non-terminal virtmul represents a multiplication in T for which,

however, no code shall be generated directly by a rule.

– Instead, a rule producing virtmul simply returns a pair of registers that

stores where the operands of the multiplication reside.

– For lack of generated code: C[v] = Sum of the costs of the operands

Compilers for Embedded Systems (CfES) SoSe 2022Slide 51/61

© H. Falk | 17.03.2022 6 - Code Generation

Complex Example (5)

dreg: tpm_BinaryExpPLUS(dreg, virtmul) {

$cost[0] = $cost[2] + $cost[3] + 1;

}={

if (target.empty()) target = getNewRegister();

string r1($action[2](""));

regpair rp($action[3]());

cout << "MADD " << target << "," << r1 << ","

<< rp.first << "," << rp.second << endl;

return target;

};

– This rule becomes active, i.e., can be used to cover a tree, if the second

summand is such a virtual multiplication from the previous slide

– Then: Get register pair of non-terminal virtmul and generate a Multiply-

Accumulate operation MADD ( chapter 2)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 52/61

© H. Falk | 17.03.2022 6 - Code Generation

Complex Example (6)

– C snippet a + (b * c) with DFT T

is now additionally covered by rules

dreg: tpm_SymbolExp

dreg: tpm_BinaryExpPLUS(dreg, virtmul)

virtmul: tpm_BinaryExpMULT(dreg, dreg)

– Costs for T:

C[+] = C[a] + C[*] + 1 = C[a] + (C[b] + C[c]) + 1 = 1

– Code generated for T:

MADD r_0, r_a, r_b, r_c

*+

T:

a b c

Compilers for Embedded Systems (CfES) SoSe 2022Slide 53/61

© H. Falk | 17.03.2022 6 - Code Generation

Invocation of Action Parts with Parameters

%declare<string> dreg<string target>;

– A string can be passed as parameter target to action parts of rules

producing a dreg in order to force these action parts to use a specific

data register where the target operand shall be stored.

C snippet(b < 10) ? 21 : 42

– The result of the ? operator must

lie in a dreg.

 Both sub-trees left and right of the “:”

must be evaluated into the same dreg.

 The rule for ? must force both sub-trees

to use the very same target register!

?<

10 21 42

b

target = getNewRegister();

$action[3](target);

$action[4](target);

Compilers for Embedded Systems (CfES) SoSe 2022Slide 54/61

© H. Falk | 17.03.2022 6 - Code Generation

Chapter Contents

6. Code Generation

– Introduction

– Role of Code Generation

– Data Flow Graphs

– Code Generator Generators

– Tree Covers using Dynamic Programming

– Partitioning of Data Flow Graphs into Data Flow Trees

– Tree Covering

– Tree Pattern Matching Algorithm

– Tree Grammars for Rule-based Derivation of Code

– Discussion

Compilers for Embedded Systems (CfES) SoSe 2022Slide 55/61

© H. Falk | 17.03.2022 6 - Code Generation

Limitations of Tree Pattern Matching (1)

Partitioning of DFGs into DFTs yields Sub-Optimal Code

– Example a + (b * c) from previous slides is optimally covered by

TPM using the MADD operation.

– But what happens for, e.g., e = a * b; ... (c + e) + e ... ?

*+G:

a bc

+

*

a b

CSE1

+

c

+

CSE1

CSE1T1: T2:

Compilers for Embedded Systems (CfES) SoSe 2022Slide 56/61

© H. Falk | 17.03.2022 6 - Code Generation

Limitations of Tree Pattern Matching (2)

Optimal Tree Cover of T1 and T2

– Would result in a total of three machine operations

– 1 multiplication to cover T1, 2 additions for T2

MUL r_0, r_a, r_b

ADD r_1, r_c, r_0

ADD r_2, r_1, r_0

Optimal Graph Cover of G

– Would result in a total of only two machine operations

– 2 multiply-accumulate operations for G

MADD r_0, r_c, r_a, r_b

MADD r_1, r_0, r_a, r_b

Compilers for Embedded Systems (CfES) SoSe 2022Slide 57/61

© H. Falk | 17.03.2022 6 - Code Generation

Discussion of Tree Pattern Matching

Pros

– Linear run-time complexity

– Optimality for data flow trees

– “Simple” realization using tree grammars and code generator generators

Cons

– TPM only poorly suited for processors with very heterogeneous register

files

– TPM inappropriate for processors with parallel processing of instructions

Compilers for Embedded Systems (CfES) SoSe 2022Slide 58/61

© H. Falk | 17.03.2022 6 - Code Generation

Tree Pattern Matching and Heterogeneous Register Files

Partitioning of DFGs into DFTs

– Let T be a DFT that computes a CSE C; let T’ be the DFTs that use C.

– After covering T, the code generated for T must store the value of C

somewhere, and all T’ must load this value of C from this location.

– Since T and T’ are covered completely independently from each other,

the code generation phase for T cannot consider where all the T’ would

optimally expect C.

– If T stores the value of C in some part of a heterogeneous register file,

but T’ expects the value of C in some different part, additional costly

register transfers are necessary!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 59/61

© H. Falk | 17.03.2022 6 - Code Generation

Tree Pattern Matching and Parallel Processors

Additive Cost Measure of Tree Pattern Matching

– Costs of a DFTs T with root v are sum of the children’s costs plus the

costs for v itself.

– Action part for T usually generates one machine operation.

– Recall: Parallel processors execute several machine operations that are

grouped into one machine instruction, in parallel.

 An additive TPM cost measure that models execution time implicitly

assumes that all generated operations are executed purely sequentially!

 Since TPM’s cost computation is unaware of parallel execution and does

not consider that operations can be grouped to instructions, the

generated code is likely to have a poor parallel performance!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 60/61

© H. Falk | 17.03.2022 6 - Code Generation

References

Tree Pattern Matching

– A. Aho, S. Johnson. Optimal Code Generation for Expression Trees.

Journal of the ACM 23(3), 1976.

– A. Aho, M. Ganapathi, S. Tjiang. Code Generation Using Tree Matching

& Dynamic Programming. ACM ToPLaS 11(4), 1989.

Code Generator Generators

– ICD-CG code generator generator,

http://www.icd.de/en/es/icd-c-compiler/icd-cg, 2017

– iburg. A Tree Parser Generator,

https://github.com/drh/iburg, 2017. incl.

C. W. Fraser, D. R. Hanson, T. A. Proebsting. Engineering a Simple,

Efficient Code Generator Generator. ACM Letters on Programming

Languages and Systems 1(3), 1992.

http://www.icd.de/es/icd-cg
http://code.google.com/p/iburg

Compilers for Embedded Systems (CfES) SoSe 2022Slide 61/61

© H. Falk | 17.03.2022 6 - Code Generation

Summary

Code Generation

– Translation of a DFG into an implementation in the target language

– Code generator generators

Tree Pattern Matching

– Partitioning of into data flow trees

– Linear-time algorithm for optimal DFT covers

– Format and structure of tree grammars

Discussion

– Tree Pattern Matching well-suited only for regular processors

– Disadvantageous for architectures with heterogeneous register files

– Disadvantageous for processors with instruction-level parallelism

