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Role of the Instruction Selection

Code Generation

– Selection of machine instructions in order to implement an IR

– “Heart” of a compiler that performs the actual translation of source into 

target language
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Goals

Synonyms

– “Code Generation”, “Instruction Selection” and “Code Selection” are often 

used synonymously

Inputs and Outputs

– Input: An intermediate representation IR to be translated

– Output: A Program P(IR)

(often in assembly or machine code, but often also another IR)

Requirements

– P(IR) must be semantically equivalent to IR

– P(IR) must be efficient regarding an objective function
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Data Flow Graphs

What does “semantically equivalent to IR” mean...?

– P(IR) must have a data flow that is equivalent to that of IR, under 

consideration of control flow dependencies.

Definition (Data Flow Graph):

Let B = (I1, ..., In) be a basic block ( Chapter 3). The Data Flow Graph 

(DFG) of B is a directed, acyclic graph DFG = (V, E) with

– each node v  V represents either

– an input value for B (input variable, constant)

– or a single operation within I1, ..., In

– or an output value of B

– edge e = (vi, vj)  E  vj uses data that vi computes
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Example
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Code Generation

Problem Formulation

– To cover all nodes of all DFGs of IR with semantically equivalent 

operations of the target language

Implementation of a Code Generator

– Non-trivial task, highly dependent of the target processor’s architecture

– Manual implementation of a code generator not affordable for today’s 

processors’ complexity

 Instead: Use of so-called Code Generator Generators
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Code Generator Generators

Workflow

– So-called Meta Programs, i.e. programs that produce other programs as 

output.

– A code generator generator (CGG) receives a processor description as 

input and generates a code generator (CG) from it for exactly that 

processor
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Tree Pattern Matching (TPM)

Motivation

– 3-SAT polynomially reducible to covering of data flow graphs

 Optimal instruction selection is thus NP complete

– But: Machine operations of typical

processors usually have

tree-like data flow

 Tree-based Code Generation

– Optimal tree-based instruction selection

feasible efficiently, in polynomial run-time

[J. Bruno, R. Sethi. Code generation for a one-register machine. Journal 

of the ACM 23(3), Jul 1976]

*
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Workflow of Tree Pattern Matching

Given

– An intermediate representation IR to be translated

Approach

– Program P = Ø;

– For each basic block B from IR:

– Determine data flow graph D of B

– Partition D into single data flow trees (DFT) T1, ..., TN

– For each DFT Ti:

– P = P ∪ { Optimal code from Tree-Covering of Ti }

– Return P
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Partitioning of DFGs into DFTs

Definition (Common Subexpression):

Let DFG = (V, E) be a data flow graph.

A node v  V with more than one outgoing edge is called common 

subexpression (CSE).

Definition (Data Flow Tree):

A data flow graph DFG = (V, E) without any CSE is called data flow tree 

(DFT).

 DFG Partitioning

– Splitting of the DFG into DFTs along the contained CSEs

– For each CSE: Add intermediate nodes to the resulting trees
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Example (1)
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Example (2)
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Example (3)
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Example (4)
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Example (5)
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Tree Cover

Definition (Tree-Covering by an Operation Sequence):

Let T = (V, E) be a DFT, S = (o1, ..., oN) be a sequence of machine 
operations. The last operation oN shall have the format d ← op(s1, ..., sn). 

Let S’1, ..., S’n denote those sub-sequences of S that compute the operands 
s1, ..., sn of oN, respectively.

S covers T iff

– the operator op corresponds to the root of T, i.e., T can be depicted as 

follows:

– and if each S’i by itself also covers T’i, respectively (1 ≤ i ≤ n).

op

T’1 T’n

T:
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Examples for Covers

TriCore Instruction Set:

add  Dc, Da, Db (Dc = Da + Db)

mul  Dc, Da, Db (Dc = Da * Db)

madd Dc, Dd, Da, Db (Dc = Dd + Da * Db)

 Operation add %d4, %d8, %d9 covers T1

 Operation mul %d10, %d11, %d12 covers T2

 Also evident: Operation sequence

mul %d10, %d11, %d12

add %d4, %d8, %d10 covers T3

 Additionally: Singleton sequence

madd %d4, %d8, %d11, %d12 also covers T3.

*+T1: T2:

Data Flow Trees:

*+T3:
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Tree Pattern Matching Algorithm (1)

Given

– DFT T = (V, E), let node v0  V be output (i.e. root) of T

– Set O of all machine operations o of the target processor’s instruction set

– Cost function c: O → ℕ (e.g., size of each operation in bytes)

– Number K  ℕ of all registers of the target processor

Data Structures

– Array            : Holds the minimal costs per node v  V according to cost

function c, if a total of j registers is available to compute 

that sub-tree of T with root v.

– Array            : Holds the cost-optimal machine operation from O and the 

optimal operand order per node v  V, if a total of j

registers is available.
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Tree Pattern Matching Algorithm (2)

Workflow – TPM( DFT T ):

– initialize( T );

– computeCosts( T );

– generateCode( T, K );

Phase 1 – initialize( DFT T ):

– For all possible register numbers 1 ≤ j ≤ K and for all nodes v  V:

– For all possible register numbers 1 ≤ j ≤ K and for all nodes v  V:
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Tree Pattern Matching Algorithm (3)

Phase 2 – computeCosts( DFT T ):

– For all nodes v  V in post-order sequence starting at root node v0:

– Let T’ be that sub-tree of T with current node v as root

– For all operations o  O that cover v:

– Use o and partition T’ into sub-trees T’1, ..., T’n with roots  v’1, ..., 

v’n, respectively, according to Tree Cover-Definition ( Slide 20)

– For each 1 ≤ j ≤ K and all permutations  over (1, ..., n):

– Compute the minimal costs for node v:

That pair (o, ) that leads to the minimal costs
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Tree Pattern Matching Algorithm (4)

Phase 3 – generateCode( DFT T, int j ):

– Let v  V be the root of T

– Operation o = first element of

– Permutation  = second element of

– Use o and partition T into sub-trees T1, ..., Tn according to Tree Cover-

Definition

– For each i = 1, ..., n: generateCode( T(i), j – i + 1 )

– Generate machine code for operation o

[A. Aho, S. Johnson. Optimal Code Generation for Expression Trees. 

Journal of the ACM 23(3), Jul 1976]



Compilers for Embedded Systems (CfES) SoSe 2022Slide 26/61

© H. Falk | 17.03.2022 6 - Code Generation

Remarks (1)

– Post-order traversal: For the root v of T, visit at first the children

v1, ..., vn in post-order sequence, then finally visit v itself.

– Permutation : For the current node v and sub-trees T’1, ..., T’n with roots 

v’1, ..., v’n, a permutation  describes one possible order in which the sub-

trees can be evaluated.

E.g.,  = (2, 3, 1) states that sub-tree 2 is evaluated first, then sub-tree 3, 

and finally sub-tree 1.

– computeCosts computes the minimal costs for each node v under 

consideration of all possible evaluation orders of v’s children (i.e., all 

permutations ) and all possible amounts of free registers (i.e., all values 

j  [1, K]).
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Remarks (2)

– For each tree T, the TPM algorithm always tracks how many of the K

registers of the processor are still free, i.e., it does not work with an 

infinite amount of available virtual registers.

– Accordingly, costs are computed in dependence of the number j of 

available registers.

– For some nodes v’1, ..., v’n and a given value of j, the costs can vary, 

depending on the permutation !
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Remarks (3)

Example: Assume that j = 3 registers are available to evaluate the current 

node v. The evaluation of sub-tree T’1 requires 2 free registers, but that of 

T’2 3 registers.

–  = (1, 2): If T’1 were evaluated first, 2 registers are occupied meanwhile 

and the result of T’1 is stored permanently in one of the 3 free registers 

afterwards. Thus, only 2 registers are available to evaluate T’2.

But since T’2 requires 3 registers, additional memory transfer instructions 

need to be generated to evaluate T’2 which consequently increase costs.

–  = (2, 1): During its evaluation, T’2 occupies all 3 available registers, the 

result of T’2 is permanently stored in one if the 3 free registers afterwards. 

Thus, only 2 registers are available to evaluate T’1. But since T’1 only 

needs 2 registers for its evaluation, no additional memory transfer 

instructions are required, thus leading to minimal costs.
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Run-Time Complexity of TPM

Assumptions

– A processor’s instruction set is given and is fixed

– The size of the set O of machine operations is constant

– The number of possible permutations  is constant, too, since the 

number of operands per machine operation in the instruction set is also 

constant

(typically 2 or 3 operands per operation)

Cost Computation

– Since the algorithm’s loops over all machine operations o  O and over 

all permutations  only contribute a constant factor:

– Linear complexity in terms of the size of T: O( |V| )

Code Generation

– Obviously, also linear complexity in terms of the size of T: O( |V| )
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Open Issues

TPM Algorithm as presented here formulated generically.

 How is this algorithm adapted for some actual processor 

architecture?

Details to be clarified

– How is the matching of a machine operation op with the root of T realized 

(cf. Tree Cover-Definition)?

– In which format are the set O of all machine operations and the cost 

function C specified for the TPM algorithm?

– How does TPM handle the storage of the optimal machine operation o in 

M and how is the actual code generation for o done?

In the following: Assumption of an infinite amount of virtual registers
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Processor Description per Tree Grammar

IR

– Grammar G that generates machine operations for all sub-trees of a 

DFT

– A single rule in G realizes one possible covering of a DFT node

– By applying grammar rules, code is thus derived

– Each individual derivation/rule produces costs

CGG Src. Code
for CG

Host
Compiler

Descr. of
Processor

Proc        

P(IR)

CG for
Proc
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Structure of a Tree Grammar (1)

Based on Code Generator Generator icd-cg:

– Tree grammar G consists of rules R1, ..., Rr

– Each rule Ri has a signature consisting of terminal and non-terminal 

symbols:

<nonterminali,0>: <terminali,1>( <nonterminali,2>, …,

<nonterminali,n> )

(Specification of non-terminals in (...) optional)

(So-called chain-rules <nonterminali,0>: <nonterminali,1> also valid)

– Terminals: Possible nodes in a DFT T

(e.g., tpm_BinaryExpPLUS, tpm_BinaryExpMULT, ... in ICD-C)

– Non-terminals: Usually processor-specific classes of memories where 

source and target operands of operations can be stored

(e.g., data & address registers, constant immediate values, ...)



Compilers for Embedded Systems (CfES) SoSe 2022Slide 33/61

© H. Falk | 17.03.2022 6 - Code Generation

Structure of a Tree Grammar (2)

Example (based on ICD-C & TriCore 1.3)

– Rule

dreg: tpm_BinaryExpPLUS( dreg, dreg )

responsible to cover the binary operator + of ANSI-C where both 

summands reside in data registers and the sum also stays in a data 

register.

– Rule

dreg: tpm_BinaryExpMULT ( dreg, const9 )

responsible to cover the binary operator * of ANSI-C with the first factor 

in a data register, the second one given as signed 9-bit immediate value, 

and the product residing in a data register.
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Structure of a Tree Grammar (3)

Based on Code Generator Generator icd-cg: (ctd.)

– Terminal and non-terminal symbols must be declared in tree grammar G.

– Overall structure of a file for a tree grammar G:

%{ // Preamble %declare <nonterminal1>;

%} ...

%term <terminal1> %%

%term <terminal2>

... Rule1;

Rule2;

%declare <nonterminal0>; ...

%%
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Structure of a Tree Grammar (4)

Based on Code Generator Generator icd-cg: (ctd.)

– The specification of each rule Ri of the tree grammar consists of 

signature, cost part and action part:

<nonterminali,0>: <terminali,1>( <nonterminali,2>, …,

<nonterminali,n> )

{

// Code for cost computation

}

=

{

// Code for action part

};
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Structure of a Tree Grammar (5)

Based on Code Generator Generator icd-cg: (ctd.)

– Cost part of Ri assigns costs to nonterminali,0 that arise if Ri is used to 

cover terminali,1.

– Cost part can contain any arbitrary, user-specified C/C++-Code for cost 

computation.

– Costs can represent, e.g., the number of generated machine operations, 

code size, ...

– Costs of a rule Ri can be set to ∞ explicitly if Ri shall not be used at all for 

a tree cover in particular situations.

– C/C++ data type for costs, a feasible “less than” comparison operator, 

and values for zero and infinite costs need to be declared in the preamble 

of G.
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Structure of a Tree Grammar (6)

Example (based on ICD-C & TriCore 1.3)

// Preamble

typedef int COST;

#define DEFAULT_COST 0;

#define COST_LESS(x, y) ( x < y )

COST COST_INFINITY = INT_MAX;

COST COST_ZERO = 0;

...

– Declaration of a simple cost measure – identically with int here

– Comparison of costs using < operator for int

– Default, zero and ∞ costs set to 0 and maximal int value, resp.
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Structure of a Tree Grammar (7)

Example (based on ICD-C & TriCore 1.3)

dreg: tpm_BinaryExpPLUS( dreg, dreg )

{

$cost[0] = $cost[2] + $cost[3] + 1;

} = {};

– Use of the pre-defined keyword $cost[j] to access the costs of 

nonterminali,j

– Costs of binary + with both summands in data registers ($cost[0]) are 

equal to costs for the first summand ($cost[2]) plus costs for the 

second summand ($cost[3]), plus one additional operation (ADD)
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Structure of a Tree Grammar (8)

Based on Code Generator Generator icd-cg: (ctd.)

– Action part of Ri is executed if Ri is that rule with the minimal costs that 

covers terminali,1.

– Action part can contain any arbitrary, user-specified C/C++-Code for 

code generation.

– Use of the pre-defined keyword $action[j] to execute the action part 

of an operand nonterminali,j

– Non-terminal symbols can be declared in G to have parameters and 

return values in order to pass information between action parts of 

different rules.
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Structure of a Tree Grammar (9)

Example (based on ICD-C & TriCore 1.3)

dreg: tpm_BinaryExpPLUS( dreg, dreg ) {}={

if (target.empty()) target = getNewRegister();

string r1($action[2]("")), r2($action[3](""));

cout << "ADD " << target << ", " << r1

<< ", " << r2 << endl;

return target;

};

– First, determine register where to store the target operand

– Next, invocation of code generation for both source operands via 

$action[2]() and $action[3]()

– Finally, code generation for the addition itself
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Structure of a Tree Grammar (10)

Example (based on ICD-C & TriCore 1.3)

dreg: tpm_BinaryExpPLUS( dreg, dreg ) {}={

if (target.empty()) target = getNewRegister();

string r1($action[2]("")), r2($action[3](""));

cout << "ADD " << target << ", " << r1

<< ", " << r2 << endl;

return target;

};

– In order to generate code for the ADD operation, the above rule must 

know in which data registers the two summands actually reside.

– The code for the summands is, however, produced by some completely 

different rules of the grammar.
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Structure of a Tree Grammar (11)

Example (based on ICD-C & TriCore 1.3)

dreg: tpm_BinaryExpPLUS( dreg, dreg ) {}={

if (target.empty()) target = getNewRegister();

string r1($action[2]("")), r2($action[3](""));

cout << "ADD " << target << ", " << r1

<< ", " << r2 << endl;

return target;

};

– The action parts of the summands’ rules return the name of exactly this 

register (here naively as string) as result after their respective 

invocation via $action[2]() or $action[3]().
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Structure of a Tree Grammar (12)

Example (based on ICD-C & TriCore 1.3)

%declare<string> dreg<string target>;

– Declaration of a non-terminal symbol for virtual data registers

– An action part can return a string that denotes that data register in 

which the action part has actually stored its target operand.

– A string can be passed as parameter target to action parts of rules 

producing a dreg in order to force these action parts to use a specific 

data register where the target operand shall be stored.
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Structure of a Tree Grammar (13)

Example (based on ICD-C & TriCore 1.3)

dreg: tpm_BinaryExpPLUS( dreg, dreg ) {}={

if (target.empty()) target = getNewRegister();

$action[2]("D15");

string r2($action[3](""));

cout << "ADD " << target << ", D15, " << r2 << endl;

return target;

};

– The above rule generates a specialized variant of the TriCore’s addition 

where the first summand must mandatorily reside in data register D15.
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Tree Covers and Tree Grammars

Tree Covers

A rule Ri from G with signature

<nonterminali,0>: <terminali,1>( <nonterminali,2>, …,

<nonterminali,n> )

covers a DFT T iff

– the terminal symbol of Ri  corresponds to the current DFT node, and

– the costs of Ri if applied to the current DFT node are less than ∞, and

– there are rules in G that by themselves cover sub-tree T’j and that 

produce a non-terminal symbol of class <nonterminali,j>, respectively (2 ≤ 

j ≤ n).
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TPM Algorithm for Tree Grammars

Phase 1 – Initialization: Unchanged

Phase 2 – Cost Computation:

– Instead of determining all operations o  O that cover sub-trees T’:

 Determine set R’ of all rules Ri  G that cover T’

 Compute C[ v ] as before, but now only by executing the code of the cost 

parts of all rules from R’

 Store that rule Ropt  R’ with minimal costs C[ v ] in M[ v ]

Phase 3 – Code Generation:

– For the root v0  T: Invoke action part of the optimal rule M[ v0 ]

– $action[] calls embedded in another rule’s action parts always refer to 

the action parts of the cost-optimal rule Ropt
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Complex Example (1)

dreg: tpm_BinaryExpPLUS( dreg, dreg ) {

$cost[0] = $cost[2] + $cost[3] + 1;

}={
if ( target.empty() ) target = getNewRegister();
string r1( $action[2]("") ), r2( $action[3]("") );
cout << "ADD " << target << "," << r1 << "," << r2 << 
endl; return target;

};

dreg: tpm_BinaryExpMULT( dreg, dreg ) {

$cost[0] = $cost[2] + $cost[3] + 1;

}={
if ( target.empty() ) target = getNewRegister();
string r1( $action[2]("") ), r2( $action[3]("") );
cout << "MUL " << target << "," << r1 << "," << r2 << 
endl; return target;

};
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Complex Example (2)

dreg: tpm_SymbolEXP {

$cost[0] = $1->getExp()->getSymbol().isGlobal() ?

COST_INFINITY : COST_ZERO;

}={

target = "r_" + $1->getExp()->getSymbol().getName();

return target;

};

– Rule assigns a virtual register to local variables used inside DFT T

– $1 is the node of the DFT T that is to be covered by the terminal symbol

– $1->getExp()->getSymbol() returns the symbol / the local variable 

of the IR

– In case of a global variable, this rule produces costs ∞ so that it is not 

used

– For local variables: Costs 0 since no actual code is generated
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Complex Example (3)

– C snippet a + (b * c) with DFT T

is covered by rules

dreg: tpm_SymbolExp

dreg: tpm_BinaryExpPLUS( dreg, dreg )

dreg: tpm_BinaryExpMULT( dreg, dreg )

– Costs for T:

C[+] = C[a] + C[*] + 1 = C[a] + (C[b] + C[c] + 1) + 1 = 2

– Code generated for T:

MUL r_0, r_b, r_c

ADD r_1, r_a, r_0

*+

T:

a b c
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Complex Example (4)

typedef pair<string, string> regpair;

%declare<regpair> virtmul;

virtmul: tpm_BinaryExpMULT( dreg, dreg ) {

$cost[0] = $cost[2] + $cost[3];

}={

string r1( $action[2]("") ), r2( $action[3]("") );

return make_pair( r1, r2 );

};

– Novel non-terminal virtmul represents a multiplication in T for which, 

however, no code shall be generated directly by a rule.

– Instead, a rule producing virtmul simply returns a pair of registers that 

stores where the operands of the multiplication reside.

– For lack of generated code: C[ v ] = Sum of the costs of the operands
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Complex Example (5)

dreg: tpm_BinaryExpPLUS( dreg, virtmul ) {

$cost[0] = $cost[2] + $cost[3] + 1;

}={

if ( target.empty() ) target = getNewRegister();

string r1( $action[2]("") );

regpair rp( $action[3]() );

cout << "MADD " << target << "," << r1 << ","

<< rp.first << "," << rp.second << endl;

return target;

};

– This rule becomes active, i.e., can be used to cover a tree, if the second 

summand is such a virtual multiplication from the previous slide

– Then: Get register pair of non-terminal virtmul and generate a Multiply-

Accumulate operation MADD ( chapter 2)
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Complex Example (6)

– C snippet a + (b * c) with DFT T

is now additionally covered by rules

dreg: tpm_SymbolExp

dreg: tpm_BinaryExpPLUS( dreg, virtmul )

virtmul: tpm_BinaryExpMULT( dreg, dreg )

– Costs for T:

C[+] = C[a] + C[*] + 1 = C[a] + (C[b] + C[c]) + 1 = 1

– Code generated for T:

MADD r_0, r_a, r_b, r_c

*+

T:

a b c
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Invocation of Action Parts with Parameters

%declare<string> dreg<string target>;

– A string can be passed as parameter target to action parts of rules 

producing a dreg in order to force these action parts to use a specific 

data register where the target operand shall be stored.

C snippet(b < 10) ? 21 : 42

– The result of the ? operator must

lie in a dreg.

 Both sub-trees left and right of the “:”

must be evaluated into the same dreg.

 The rule for ? must force both sub-trees

to use the very same target register!

?<

10 21 42

b

target = getNewRegister();

$action[3](target);

$action[4](target);
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Chapter Contents

6. Code Generation

– Introduction

– Role of Code Generation

– Data Flow Graphs

– Code Generator Generators

– Tree Covers using Dynamic Programming

– Partitioning of Data Flow Graphs into Data Flow Trees

– Tree Covering

– Tree Pattern Matching Algorithm

– Tree Grammars for Rule-based Derivation of Code

– Discussion
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Limitations of Tree Pattern Matching (1)

Partitioning of DFGs into DFTs yields Sub-Optimal Code

– Example a + (b * c) from previous slides is optimally covered by 

TPM using the MADD operation.

– But what happens for, e.g., e = a * b; ... (c + e) + e ... ?

*+G:

a bc

+

*

a b

CSE1

+

c

+

CSE1

CSE1T1: T2:
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Limitations of Tree Pattern Matching (2)

Optimal Tree Cover of T1 and T2

– Would result in a total of three machine operations

– 1 multiplication to cover T1, 2 additions for T2

MUL r_0, r_a, r_b

ADD r_1, r_c, r_0

ADD r_2, r_1, r_0

Optimal Graph Cover of G

– Would result in a total of only two machine operations

– 2 multiply-accumulate operations for G

MADD r_0, r_c, r_a, r_b

MADD r_1, r_0, r_a, r_b
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Discussion of Tree Pattern Matching

Pros

– Linear run-time complexity

– Optimality for data flow trees

– “Simple” realization using tree grammars and code generator generators

Cons

– TPM only poorly suited for processors with very heterogeneous register 

files

– TPM inappropriate for processors with parallel processing of instructions
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Tree Pattern Matching and Heterogeneous Register Files

Partitioning of DFGs into DFTs

– Let T be a DFT that computes a CSE C; let T’ be the DFTs that use C.

– After covering T, the code generated for T must store the value of C

somewhere, and all T’ must load this value of C from this location.

– Since T and T’ are covered completely independently from each other, 

the code generation phase for T cannot consider where all the T’ would 

optimally expect C.

– If T stores the value of C in some part of a heterogeneous register file, 

but T’ expects the value of C in some different part, additional costly 

register transfers are necessary!
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Tree Pattern Matching and Parallel Processors

Additive Cost Measure of Tree Pattern Matching

– Costs of a DFTs T with root v are sum of the children’s costs plus the 

costs for v itself.

– Action part for T usually generates one machine operation.

– Recall: Parallel processors execute several machine operations that are 

grouped into one machine instruction, in parallel.

 An additive TPM cost measure that models execution time implicitly 

assumes that all generated operations are executed purely sequentially!

 Since TPM’s cost computation is unaware of parallel execution and does 

not consider that operations can be grouped to instructions, the 

generated code is likely to have a poor parallel performance!
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Summary

Code Generation

– Translation of a DFG into an implementation in the target language

– Code generator generators

Tree Pattern Matching

– Partitioning of into data flow trees

– Linear-time algorithm for optimal DFT covers

– Format and structure of tree grammars

Discussion

– Tree Pattern Matching well-suited only for regular processors

– Disadvantageous for architectures with heterogeneous register files

– Disadvantageous for processors with instruction-level parallelism


