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Role of the Instruction Selection
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Code

Low-

Code Generation

Lexical Token | Syntactical |Syntax /| Semantical
Analysis Sequence Analysis | Tree Analysis | .
(@)
Low High T
Code | Code 19 Code |
X |Optimization|Level IR| Generation |Level IR| Optimization
=, Register | Low- Flinstruction | || AsMm
Allocation |Level IR| Scheduling Code

Selection of machine instructions in order to implement an IR

— “Heart” of a compiler that performs the actual translation of source into
target language
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Goals

Synonyms
— “Code Generation”, “Instruction Selection” and “Code Selection” are often
used synonymously

Inputs and Outputs
— Input: An intermediate representation IR to be translated
— Output: A Program P(IR)
(often in assembly or machine code, but often also another IR)

Requirements
— P(IR) must be semantically equivalent to IR
— P(IR) must be efficient regarding an objective function
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Data Flow Graphs

What does “semantically equivalent to IR” mean...?
— P(IR) must have a data flow that is equivalent to that of IR, under
consideration of control flow dependencies.

Definition (Data Flow Graph):
Let B=(l,, ..., |,,) be a basic block (< Chapter 3). The Data Flow Graph
(DFG) of B is a directed, acyclic graph DFG = (V, E) with
— each node v € V represents either
— an input value for B (input variable, constant)

— or a single operation within I, ..., I

— or an output value of B
— edge e = (v;, v)) € E < v, uses data that v; computes
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Example

tl = a * ¢c;
t2 = 4 * t1;
t3 = b * b;

td = t3 - t2;

t5 = sqgrt( t4 );
t6 = -b;

t7 = t6 - t5;

t8 = t7 + t5;

t9 =2 * a;

rl = t7 / t9;

r2 t8 / t9;

Operations
Outputs
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Code Generation

Problem Formulation
— To cover all nodes of all DFGs of IR with semantically equivalent
operations of the target language

Implementation of a Code Generator

— Non-trivial task, highly dependent of the target processor’s architecture

— Manual implementation of a code generator not affordable for today’s
processors’ complexity

¢ Instead: Use of so-called Code Generator Generators

© H. Falk | 17.03.2022 6 - Code Generation



SICHIVIXE Compilers for Embedded Systems (CfES) SoSe 2022

Code Generator Generators

Workflow
— So-called Meta Programs, i.e. programs that produce other programs as

output.
— A code generator generator (CGG) receives a processor description as
Input and generates a code generator (CG) from it for exactly that

processor

Descr. of Host CG for
Processor s Compiler — Proc
Proc

oo
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Tree Pattern Matching (TPM)

Motivation
— 3-SAT polynomially reducible to covering of data flow graphs

[J. Bruno, R. Sethi. Code generation for a one-register machine. Journal
of the ACM 23(3), Jul 1976]

® Optimal instruction selection is thus NP complete

— But: Machine operations of typical S S

processors usually have Ny ¢
tree-like data flow

& Tree-based Code Generation

— Optimal tree-based instruction selection ﬂ
feasible efficiently, in polynomial run-time Q)
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Workflow of Tree Pattern Matching

Given
— An intermediate representation IR to be translated

Approach
— Program P = @;
— For each basic block B from IR:

— Determine data flow graph D of B
— Partition D into single data flow trees (DFT) T4, ..., Ty
— For each DFT T;:

— P =P u { Optimal code from Tree-Covering of T, }
— Return P

© H. Falk | 17.03.2022 6 - Code Generation



SICHEIYE Compilers for Embedded Systems (CfES) SoSe 2022

Partitioning of DFGs into DFTs

Definition (Common Subexpression):

Let DFG = (V, E) be a data flow graph.
A node v € V with more than one outgoing edge is called common
subexpression (CSE).

Definition (Data Flow Tree):
A data flow graph DFG = (V, E) without any CSE is called data flow tree
(DFT).

< DFG Partitioning
— Splitting of the DFG into DFTs along the contained CSEs

— For each CSE: Add intermediate nodes to the resulting trees
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Example (1)
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Example (2)
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Example (4)
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Example (5)
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Tree Cover

Definition (Tree-Covering by an Operation Sequence):

Let T =(V, E) be a DFT, S = (04, ..., 0\) be a sequence of machine
operations. The last operation oy shall have the formatd < op(s;, ..., s;)-

Let S’,, ..., S}, denote those sub-sequences of S that compute the operands
s, ..., S, Of Oy, respectively.

S covers T iff

— the operator op corresponds to the root of T, i.e., T can be depicted as

follows: cee
N
T: @m{:@
J
<)

— and if each Sj by itself also covers T’, respectively (1 <i<n).
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Examples for Covers

TriCore Instruction Set: Data Flow Trees:

add Dc, Da, Db (Dc = Da + Db) Qx KO Q% KQ
mul Dc, Da, Db (Dc = Da * Db)
madd Dec, Dd, Da, Db (Dc=Dd+Da*Db) |1 @ T2: @

®

& Operation add $d4, $d8, $d9 covers T1 o

% QOperation mul $d10, $d11, $d12 covers T2

= Also evident: Operation sequence D D ¢,
mul %d10, $d11, %$d1l2 % % j
add %d4, %d8, $d10 covers T3 T3: ®<:®

@ Additionally: Singleton sequence ﬂ
madd $d4, %$d8, %$d11, %$d12 also covers T3. ™
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Tree Pattern Matching Algorithm (1)

Given
— DFT T = (V, E), let node v, € V be output (i.e. root) of T

— Set O of all machine operations o of the target processor’s instruction set
— Cost function c: O — N (e.qg., size of each operation in bytes)
— Number K € N of all registers of the target processor

Data Structures
— Array C|j]|v]: Holds the minimal costs per node v e V according to cost

function c, if a total of  registers is available to compute
that sub-tree of T with root v.

— Array M [j][v]: Holds the cost-optimal machine operation from O and the
optimal operand order per node v € V, if a total of |
registers is available.
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Tree Pattern Matching Algorithm (2)

Workflow —TPM( DFT T ):
— initialize( T);

— computeCosts( T );

— generateCode( T, K);

Phase 1 —initialize( DFT T ):
— For all possible register numbers 1 <j < K and for all nodes v € V.

. 0 if v is input/leaf of T
clille) - { but/

o0 otherwise

— For all possible register numbers 1 < j <K and for all nodes v € V:

M jlv] = (0,0)
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Tree Pattern Matching Algorithm (3)

Phase 2 — computeCosts( DFT T ):
— For all nodes v € V in post-order sequence starting at root node v,

— Let T’ be that sub-tree of T with current node v as root
— For all operations o € O that cover v:

— Use o and patrtition T’ into sub-trees T7, ..., T, with roots v, ...,
v, respectively, according to Tree Cover-Definition (< Slide 20)

— For each 1 =<K and all permutations &t over (1, ..., n):

— Compute the minimal costs for node v:

Cljl[v] = min(C[j][v], Y " Clj — i + 1][v] ;] + c(0))

1=1

M{j][v] = That pair (o, ) that leads to the minimal costs C'[j][v]
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Tree Pattern Matching Algorithm (4)

Phase 3 — generateCode( DFT T, int | ):
— LetveVbetherootof T

— Operation o = first element of M [j][v]

— Permutation & = second element of M [j][v]

— Use o and partition T into sub-trees T4, ..., T, according to Tree Cover-
Definition

— Foreachi=1, .., n generateCode( T, |—1+1)

— Generate machine code for operation o

[A. Aho, S. Johnson. Optimal Code Generation for Expression Trees.
Journal of the ACM 23(3), Jul 1976]
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Remarks (1)

— Post-order traversal: For the root v of T, visit at first the children
V4, ..., V, IN post-order sequence, then finally visit v itself.

— Permutation n: For the current node v and sub-trees T7, ..., T, with roots
Vv, ..., V', @ permutation n describes one possible order in which the sub-
trees can be evaluated.

E.g., ®m = (2, 3, 1) states that sub-tree 2 is evaluated first, then sub-tree 3,
and finally sub-tree 1.

— computeCosts computes the minimal costs for each node v under
consideration of all possible evaluation orders of v's children (i.e., all
permutations ©t) and all possible amounts of free registers (i.e., all values
J € [1, K.
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Remarks (2)

— For each tree T, the TPM algorithm always tracks how many of the K
registers of the processor are still free, i.e., it does not work with an
infinite amount of available virtual registers.

— Accordingly, costs are computed in dependence of the number j of

available registers.
— For some nodes v, ..., v/, and a given value of |, the costs can vary,

depending on the permutation !
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Remarks (3)

Example: Assume that j = 3 registers are available to evaluate the current
node v. The evaluation of sub-tree T’; requires 2 free registers, but that of
T’, 3 reqisters.

— 1w =(1, 2): If T’; were evaluated first, 2 registers are occupied meanwhile
and the result of T7; is stored permanently in one of the 3 free registers
afterwards. Thus, only 2 registers are available to evaluate T.

But since T, requires 3 registers, additional memory transfer instructions
need to be generated to evaluate T, which consequently increase costs.

— m = (2, 1): During its evaluation, T’, occupies all 3 available registers, the
result of T°, is permanently stored in one if the 3 free registers afterwards.
Thus, only 2 registers are available to evaluate 7. But since T’; only
needs 2 registers for its evaluation, no additional memory transfer
Instructions are required, thus leading to minimal costs.
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Run-Time Complexity of TPM

Assumptions
— A processor’s instruction set is given and is fixed

— The size of the set O of machine operations is constant

— The number of possible permutations r is constant, too, since the
number of operands per machine operation in the instruction set is also
constant
(typically 2 or 3 operands per operation)

Cost Computation
— Since the algorithm’s loops over all machine operations 0 € O and over

all permutations = only contribute a constant factor:
— Linear complexity in terms of the size of T: O( |V])

Code Generation
— Obviously, also linear complexity in terms of the size of T: O( |V|)
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Open Issues

TPM Algorithm as presented here formulated generically.
% How is this algorithm adapted for some actual processor

architecture?

Details to be clarified
— How is the matching of a machine operation op with the root of T realized

(cf. Tree Cover-Definition)?

— In which format are the set O of all machine operations and the cost
function C specified for the TPM algorithm?

— How does TPM handle the storage of the optimal machine operation o in
M and how is the actual code generation for o done?

In the following: Assumption of an infinite amount of virtual registers
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Processor Description per Tree Grammar

[

[

Descr. of Host CG for
Processor [P CGG Compiler — Proc
Proc

© H.

oo

— Grammar G that generates machine operations for all sub-trees of a
DFT

— Asingle rule in G realizes one possible covering of a DFT node
— By applying grammar rules, code is thus derived

— Each individual derivation/rule produces costs
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Structure of a Tree Grammar (1)

Based on Code Generator Generator icd-cg:

Tree grammar G consists of rules Ry, ..., R,
Each rule R; has a signature consisting of terminal and non-terminal
symbols:

<terminal; ;> ( ;e

(Specification of non-terminals in (...) optional)

(So-called chain-rules : also valid)
Terminals: Possible nodes ina DFT T

(e.g., tpm BinaryExpPLUS, tpm BinaryExpMULT, ... in ICD-C)
Non-terminals: Usually processor-specific classes of memories where
source and target operands of operations can be stored

(e.g., data & address registers, constant immediate values, ...)
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Structure of a Tree Grammar (2)

Example (based on ICD-C & TriCore 1.3)
— Rule

tpm BinaryExpPLUS ( , )
responsible to cover the binary operator + of ANSI-C where both
summands reside in data registers and the sum also stays in a data
register.

— Rule

tpm BinaryExpMULT ( : )
responsible to cover the binary operator * of ANSI-C with the first factor
In a data register, the second one given as signed 9-bit immediate value,
and the product residing in a data register.
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Structure of a Tree Grammar (3)

Based on Code Generator Generator icd-cg: (ctd.)
— Terminal and non-terminal symbols must be declared in tree grammar G.

— Overall structure of a file for a tree grammar G.:

o°

// Preamble -r----» $declare ;

o°

o®
o®

term <terminal,>
term <terminal,>
Rule, ;
Rule,;
sdeclare ;

o®
o®
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Structure of a Tree Grammar (4)

Based on Code Generator Generator icd-cg: (ctd.)
— The specification of each rule R; of the tree grammar consists of

signature, cost part and action part:
<nonterminal, ;>: <terminal; ,>( <nonterminal ,>, ..,
<nonterminal; ,> )

// Code for cost computation

// Code for action part
};
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Structure of a Tree Grammar (5)

Based on Code Generator Generator icd-cg: (ctd.)

Cost part of R; assigns costs to that arise iIf R; is used to
cover terminal, ;.

Cost part can contain any arbitrary, user-specified C/C++-Code for cost
computation.

Costs can represent, e.g., the number of generated machine operations,
code size, ...

Costs of a rule R, can be set to e= explicitly if R, shall not be used at all for
a tree cover in particular situations.

C/C++ data type for costs, a feasible “less than” comparison operator,
and values for zero and infinite costs need to be declared in the preamble
of G.
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Structure of a Tree Grammar (6)

Example (based on ICD-C & TriCore 1.3)

// Preamble

typedef int COST;

#define DEFAULT COST 0;

#define COST LESS(x, y) ( x <y )
COST COST_ INFINITY = INT MAX;
COST COST ZERO = 0;

— Declaration of a simple cost measure — identically with int here
— Comparison of costs using < operator for int
— Default, zero and e~ costs set to 0 and maximal int value, resp.
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Structure of a Tree Grammar (7)

Example (based on ICD-C & TriCore 1.3)

tpm BinaryExpPLUS ( , )

Scost[0] = Scost[2] + Scost[3] + 1;
} = {};

— Use of the pre-defined keyword $cost[ j] to access the costs of
— Costs of binary + with both summands in data registers ($cost[0]) are

equal to costs for the first summand ($cost[2]) plus costs for the
second summand ($cost[3]), plus one additional operation (ADD)
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Structure of a Tree Grammar (8)

Based on Code Generator Generator icd-cg: (ctd.)

Action part of R, is executed if R, is that rule with the minimal costs that
covers terminal, ;.

Action part can contain any arbitrary, user-specified C/C++-Code for
code generation.

Use of the pre-defined keyword $action[ j] to execute the action part
of an operand

Non-terminal symbols can be declared in G to have parameters and
return values in order to pass information between action parts of
different rules.
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Structure of a Tree Grammar (9)

Example (based on ICD-C & TriCore 1.3)

tpm BinaryExpPLUS ( , ) {}={
if (target.empty()) target = getNewRegister () ;
string rl ($action[2] ("")), r2(Saction[3](""));
cout << "ADD " << target << ", " << rl
<< ", " KL r2 << endl;

return target;

};

— First, determine register where to store the target operand

— Next, invocation of code generation for both source operands via
Saction[2] () and $action[3] ()

— Finally, code generation for the addition itself
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Structure of a Tree Grammar (10)

Example (based on ICD-C & TriCore 1.3)

tpm BinaryExpPLUS ( , ) {}={
if (target.empty()) target = getNewRegister () ;
string rl ($action[2] ("")), r2(Saction[3](""));
cout << "ADD " << target << ", " << rl
<< ", " KL r2 << endl;

return target;

};

— In order to generate code for the ADD operation, the above rule must
know in which data registers the two summands actually reside.
— The code for the summands is, however, produced by some completely

different rules of the grammar.
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Structure of a Tree Grammar (11)

Example (based on ICD-C & TriCore 1.3)

tpm BinaryExpPLUS ( , ) {}={
if (target.empty()) target = getNewRegister () ;
string rl ($action[2] ("")), r2(Saction[3](""));
cout << "ADD " << target << ", " << rl
<< ", " KL r2 << endl;

return target;

};

— The action parts of the summands’ rules return the name of exactly this
register (here naively as string) as result after their respective
Invocation via Saction[2] () or Saction[3] ().
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Structure of a Tree Grammar (12)

Example (based on ICD-C & TriCore 1.3)

%declare<string> <string target>;

— Declaration of a non-terminal symbol for virtual data registers

— An action part can return a string that denotes that data register in
which the action part has actually stored its target operand.

— A string can be passed as parameter target to action parts of rules
producing a In order to force these action parts to use a specific
data register where the target operand shall be stored.
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Structure of a Tree Grammar (13)

Example (based on ICD-C & TriCore 1.3)

tpm BinaryExpPLUS ( , ) {}={
if (target.empty()) target = getNewRegister () ;
Saction[2] ("D15") ;
string r2 ($action[3](""));
cout << "ADD " << target << ", D15, " << r2 << endl;

return target;

};

— The above rule generates a specialized variant of the TriCore’s addition
where the first summand must mandatorily reside in data register D15.
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Tree Covers and Tree Grammars

Tree Covers

A rule R; from G with signature
<terminali,1>( , ey

covers a DFT T iff

— the terminal symbol of R; corresponds to the current DFT node, and

— the costs of R, if applied to the current DFT node are less than e, and

— there are rules in G that by themselves cover sub-tree T and that
produce a non-terminal symbol of class , respectively (2 <
j<n).
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TPM Algorithm for Tree Grammars

Phase 1 — Initialization: Unchanged

Phase 2 — Cost Computation:
— Instead of determining all operations o € O that cover sub-trees T

= Determine set R’ of all rules R, € G that cover T’

% Compute C[V] as before, but now only by executing the code of the cost
parts of all rules from R’

= Store that rule R°Pt € R’ with minimal costs C[v]in M[v]

Phase 3 — Code Generation:
— For the root v, € T: Invoke action part of the optimal rule M[ v, ]

— Saction|[] calls embedded in another rule’s action parts always refer to
the action parts of the cost-optimal rule Rt
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Complex Example (1)

tpm BinaryExpPLUS ( , ) |
Scost[0] = Scost[2] + Scost[3] + 1;
}={
if ( target.empty() ) target = getNewRegister () ;
string rl( $action[2] ("") ), r2( Saction[3]("") );
cout << "ADD " << target < "," << rl << "," K< r2 <<
endl; return target;

};

tpm BinaryExpMULT ( , ) |
Scost[0] = Scost[2] + Scost[3] + 1;
}={
if ( target.empty() ) target = getNewRegister() ;
string rl( $action[2]("") ), r2( Saction[3]("") );
cout << "MUL " << target < "," << rl << "," K< r2 <<
endl; return target;

};
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Complex Example (2)

tpm SymbolEXP ({
Scost[0] = $1->getExp()->getSymbol () .isGlobal () ?
COST_INFINITY : COST_ZERO;
}=A{
target = "r " + $1->getExp()->getSymbol () .getName () ;
return target;

};

— Rule assigns a virtual register to local variables used inside DFT T

— $1 is the node of the DFT T that is to be covered by the terminal symbol

— $1->getExp () ->getSymbol () returns the symbol / the local variable
of the IR

— In case of a global variable, this rule produces costs o so that it is not
used

— For local variables: Costs 0 since no actual code is generated
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Complex Example (3)

— Csnippeta + (b * c) WithDFT T @ @
IS covered by rules
: tpm SymbolExp T Qs §§ é¢
tpm BinaryExpPLUS ( , ) <:j><:z<:i>
®

tpm BinaryExpMULT ( , )

— Costs for T:
C[+]=Cla]+C[*]+1=CJa]+ (C|[b]+C[c] +1)+1=2

— Code generated for T:
MUL r 0, r b, r c

ADD r 1, r a, r O
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Complex Example (4)

typedef pair<string, string> regpair;

%declare<regpair> ;
tpm BinaryExpMULT ( , ) |
Scost[0] = S$cost[2] + Scost[3];
}={

string rl( $action[2]("") ), r2( Saction[3]("") )
return make pair( rl, r2 );

};

— Novel non-terminal represents a multiplication in T for which,
however, no code shall be generated directly by a rule.

— Instead, a rule producing simply returns a pair of registers that
stores where the operands of the multiplication reside.

— For lack of generated code: C[v] = Sum of the costs of the operands
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Complex Example (5)

tpm BinaryExpPLUS ( , ) |
Scost[0] = $cost[2] + Scost[3] + 1;
}={
if ( target.empty() ) target = getNewRegister() ;
string rl( Saction[2]("") )
regpair rp( Saction[3] () )
cout << "MADD " << target << "," K<< rl < ","
<< rp.first << "," << rp.second << endl;
return target;

};

— This rule becomes active, i.e., can be used to cover a tree, if the second
summand is such a virtual multiplication from the previous slide

— Then: Get register pair of non-terminal and generate a Multiply-
Accumulate operation MADD (< chapter 2)
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Complex Example (6)

— Csnippeta + (b * c) withDFTT @ @
IS now additionally covered by rules

tpm SymbolExp T Qs §§ é¢
tpm BinaryExpPLUS ( , ) <:j><:z<:i>
tpm BinaryExpMULT ( , ) ﬂ
¢
— Costs for T:

Cl+]=Cla] + C[*] + 1 =Cla] + (C[b] + C[c]) +1=1

— Code generated for T:
MADD r O, r a, r b, r c
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Invocation of Action Parts with Parameters

%declare<string> <string target>;

— A string can be passed as parameter target to action parts of rules
producing a In order to force these action parts to use a specific
data register where the target operand shall be stored.

C snippet(b < 10) ? 21 : 42 @

— The result of the ? operator must

ie in a dlreg. | @:>®:>®

% Both sub-trees left and right of the “:”
must be evaluated into the same @

® The rule for ? must force both sub-trees T s e T —
to use the very same target register! Saction[3] (target) ;

Saction[4] (target) ;
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Chapter Contents

6. Code Generation

— Introduction
— Role of Code Generation
— Data Flow Graphs
— Code Generator Generators
— Tree Covers using Dynamic Programming
— Partitioning of Data Flow Graphs into Data Flow Trees
— Tree Covering
— Tree Pattern Matching Algorithm
— Tree Grammars for Rule-based Derivation of Code
— Discussion

© H. Falk | 17.03.2022 6 - Code Generation



SIEESIVYM Compilers for Embedded Systems (CfES) SoSe 2022

Limitations of Tree Pattern Matching (1)

Partitioning of DFGs into DFTs yields Sub-Optimal Code
— Examplea + (b * c¢) from previous slides is optimally covered by

TPM using the MADD operation.
— But what happens for,e.g.,e = a * b; ... (c +e) + e ...
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Limitations of Tree Pattern Matching (2)

Optimal Tree Cover of T1 and T2
— Would result in a total of three machine operations

— 1 multiplication to cover T1, 2 additions for T2
MUL r O, r a, rb
ADD r 1, r c, r O
ADD r 2, r 1, r O

Optimal Graph Cover of G
— Would result in a total of only two machine operations

— 2 multiply-accumulate operations for G
MADD r 0, r c, r a, rb
MADD r 1, r 0, r a, r b
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Discussion of Tree Pattern Matching

Pros
— Linear run-time complexity

— Optimality for data flow trees
— “Simple” realization using tree grammars and code generator generators

Cons
— TPM only poorly suited for processors with very heterogeneous register

files
— TPM inappropriate for processors with parallel processing of instructions
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Tree Pattern Matching and Heterogeneous Register Files

Partitioning of DFGs into DFTs

Let T be a DFT that computes a CSE C,; let T’ be the DFTs that use C.
After covering T, the code generated for T must store the value of C
somewhere, and all 7’ must load this value of C from this location.
Since T and T’ are covered completely independently from each other,
the code generation phase for T cannot consider where all the 7’ would
optimally expect C.

If T stores the value of C in some part of a heterogeneous register file,
but T’ expects the value of C in some different part, additional costly
register transfers are necessary!
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Tree Pattern Matching and Parallel Processors

Additive Cost Measure of Tree Pattern Matching
— Costs of a DFTs T with root v are sum of the children’s costs plus the

costs for v itself.

— Action part for T usually generates one machine operation.

— Recall: Parallel processors execute several machine operations that are
grouped into one machine instruction, in parallel.

< An additive TPM cost measure that models execution time implicitly
assumes that all generated operations are executed purely sequentially!

= Since TPM’s cost computation is unaware of parallel execution and does
not consider that operations can be grouped to instructions, the
generated code is likely to have a poor parallel performance!
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Summary

Code Generation
— Translation of a DFG into an implementation in the target language
— Code generator generators

Tree Pattern Matching

— Partitioning of into data flow trees

— Linear-time algorithm for optimal DFT covers
— Format and structure of tree grammars

Discussion

— Tree Pattern Matching well-suited only for regular processors

— Disadvantageous for architectures with heterogeneous register files
— Disadvantageous for processors with instruction-level parallelism
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