
Compilers for Embedded Systems

Summer Term 2022

Heiko Falk

Institute of Embedded Systems

Electrical Engineering, Computer Science and Mathematics

Hamburg University of Technology

Chapter 7

LIR Optimizations and

Transformations

Compilers for Embedded Systems (CfES) SoSe 2022Slide 3/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Outline

1. Introduction & Motivation

2. Compilers for Embedded Systems – Requirements & Dependencies

3. Internal Structure of Compilers

4. Pre-Pass Optimizations

5. HIR Optimizations and Transformations

6. Code Generation

7. LIR Optimizations and Transformations

8. Register Allocation

9. WCET-Aware Compilation

10.Outlook

Compilers for Embedded Systems (CfES) SoSe 2022Slide 4/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Chapter Contents

7. LIR Optimizations and Transformations

– Generation of Bit-Packet Operations for NPUs

– Motivation of Bit-True Data and Value Flow Analyses

– Partial Order L4

– Bit-True Analysis: Forward and Backward Simulation

– Bit-True Optimizations: Dead Code Elimination; Generation of

insert/extract operations

– Scratchpad Memory Optimizations

– Properties of Main Memories, Caches and Scratchpads

– Fix SPM Allocation (Functions, global Variables)

– Fix SPM Allocation (Functions, Basic Blocks, global Variables)

– SPM Allocations for Multi-Process Applications (partitioned,

exclusive, hybrid)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 5/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Follow-Up: Data Flow Graphs

Data Flow Graph

– Node represents an operation

– Edges between nodes represent definitions (DEFs) and uses (USEs) of

data

Accuracy of a DFG

– At the LIR level, a DFG node denotes a single machine operation

– Since the operands of machine operations are usually processor

registers, the edges thus represent the data flow through entire registers.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 6/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

DFGs & Bit-Packets

Bit-Packets

– Sequence of consecutive bits

– of arbitrary length

– starting at arbitrary positions

– and eventually crossing word-boundaries

DFGs and Bit-Packets

– DFGs model data flow based on atomic registers

 Information about irregularly-structured portions of registers is not

provided

 Classical DFG-based techniques are usually inappropriate to

generate bit-packet operations!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 7/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Example

TPM and Bit-Packets

– Composed rule

dreg: tpm_BinaryExpAND(tpm_BinaryExpSHR(

dreg, const), const)

can cover the expression(c >> 4) & 0x7 and generate the efficient

operation EXTR.U d_0, d_c, 4, 3

– But: TPM reaches its limits for more complex code patterns to be covered

 What if numbers 4 / 0x7 are not given as constants, but as values of

variables?

 What if other combinations of operators beyond & / >> are used to

extract and insert bit-packets in C?

 Tree grammar would grow quickly and would still generate code of rather

poor quality!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 8/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Approach

Application of a Conventional Code Selection

– Tree grammar produces LIR containing machine operations that use

entire registers as operands

– Tree grammar produces no bit-packet operations

– Using rules like, e.g.,

dreg: tpm_BinaryExpAND(dreg, const)

dreg: tpm_BinaryExpSHR(dreg, const)

the expression (c >> 4) & 0x7 would naively be covered and

translated into

SH d_0, d_c, -4; AND d_1, d_0, 7;

Subsequent LIR Optimization

– Detects operations that extract / insert bit-packets and creates

corresponding extr / insert bit-packet operations.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 9/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Classical Data Flow Analysis

Problem

– Classical data flow analyses (DFA) allow reasoning about the flow of

information at the register-level:

 Which operation uses / defines a certain piece of data residing in a

certain register?

 Which operations are data flow-dependent?

– Classical data flow analyses allow no statements about

 the value of information, i.e., the potential value that a register can

have at a certain point of time, or about

 the potential value that a part of a register can have at a certain point

of time.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 10/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Bit-True Value Flow Analysis

Value Flow Analysis (VFA)

– Analyzes data flow, similar to DFA

– but performs additional estimations about the contents of the memory

cells involved in the computations.

Bit-True Data and Value Flow Analysis (BDVFA)

– Value flow analysis is done for each individual bit of the involved memory

cells.

 Allows statements about the potential value of each bit of a memory cell

at a certain point of time.

 In the following: Presentation of a BDVFA with multi-valued logic for

registers as supported memory cells.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 11/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Data and Value Flow Graph (DVFG)

Definition (Data and Value Flow Graph)

Let F be an LIR function. The Data and Value Flow Graph (DVFG) of F is a

directed graph DVFG = (V, E, d, u) with

– Node set V identical with that of classical DFGs (cf. chapter 6)

– Let opi(pi,1, ..., pi,n) and opj(pj,1, ..., pj,m) be two operations of F with

parameters pi,x and pj,y, resp. Let vi and vj be the nodes representing opi

and opj. For each use of a register r by pj,y that is defined by pi,x, the

DVFG contains an edge e = (vi, vj) ∈ E.

– d and u provide bit-true value estimates for the edges e ∈ E (Down and

Up values). Let r be that register that is modeled by e, and let r have a

width of k bits. Then, d and u are functions d | u: E → L4
k with L4 being a

partial order representing the potential value of a single bit.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 12/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

The Partial Order L4 (1)

Per bit of a register, an element from L4 is used to

model which value this bit can have:

– 0 – The considered bit has the value 0

– 1 – A bit has a value of 1

– U – A bit’s value is completely unknown

– X – The value of a bit is irrelevant (don’t care)

– L – The value of a bit is unknown, but its

provenience (Location) is known

– N – Like L, but the bit with known provenience

has been inverted once (Negated location)

L N

U

X

0 1

Compilers for Embedded Systems (CfES) SoSe 2022Slide 13/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

The Partial Order L4 (1)

L4 is a partial order:

– A ‘<‘ operator defines a less-than relation

between elements from L4 as shown by the

directed edges in the Hasse chart

– U provides least information and is thus the

smallest element according to the < operator

– X provides most information and is thus the

largest element according to the < operator

Hasse chart has four horizontal levels

 L4U

X

0 1

L N

Compilers for Embedded Systems (CfES) SoSe 2022Slide 14/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Examples for L4 (1)

For some edge e, let r be an 8-bit register that is modeled by e.

Graphical notation: represents up value, down value

Exemplary labels for edge e and their interpretation:

The values of all bits of r are completely unknown.

The value of r is 42.

Bit 3 of r is irrelevant; r can be equal to 34 or 42.

r is completely irrelevant

 r has no effect on the data flow at all

UUUUUUUU

00101010

0010X010

XXXXXXXX

Compilers for Embedded Systems (CfES) SoSe 2022Slide 15/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Examples for L4 (2)

In addition, r’ is an 8-bit register that represents an input value for the

considered LIR function F (e.g., a function parameter).

Exemplary labels for edge e and their interpretation:

The value of bit 5 of r is unknown. But it is identical

with the value of bit 2 of r’.

The value of bit 5 of r is unknown. But it is identical

with the negated value of bit 4 of r’.

r contains a bit-packet consisting of bits 2 to 0 of r’,

starting at bit position 3 inside r.

00Lr’,200000

00Nr’,400000

00Lr’,2Lr’,1Lr’,0000

Compilers for Embedded Systems (CfES) SoSe 2022Slide 16/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Arithmetic in L4 – Conjunction

Remark:

If L/N values with

different

provenience are

combined, the

conjunction always

produces U.

 1 0 Li Ni U X

1 1 0 Li Ni U X

0 0 0 0 0 0 0

Li Li 0 Li 0 U U

Ni Ni 0 0 Ni U U

U U 0 U U U U

X X 0 U U U X

Compilers for Embedded Systems (CfES) SoSe 2022Slide 17/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Arithmetic in L4 – Disjunction

Remark:

If L/N values with

different

provenience are

combined, the

disjunction always

produces U.

 1 0 Li Ni U X

1 1 1 1 1 1 1

0 1 0 Li Ni U X

Li 1 Li Li 1 U U

Ni 1 Ni 1 Ni U U

U 1 U U U U U

X 1 X U U U X

Compilers for Embedded Systems (CfES) SoSe 2022Slide 18/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Arithmetic in L4 – Negation

 1 0 Li Ni U X

0 1 Ni Li U X

Compilers for Embedded Systems (CfES) SoSe 2022Slide 19/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Workflow of the BDVFA

Given

– A low-level intermediate representation LIR to be optimized

Two-Phased Approach

– For each function F of LIR:

– Compute the initial data and value flow graph D = (V, E, Ø, Ø) of F

with empty down and up functions d und u

– Determine down values d(e) of all edges by applying forward analysis

– Determine up values u(e) of all edges by applying backward analysis

Compilers for Embedded Systems (CfES) SoSe 2022Slide 20/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Forward Analysis

Goal

– To compute only values for D

– value d(e) represents the bit-true result of a node v ∈ V (i.e., of an

outgoing edge of v), if the operator of v is applied to all its operands (i.e.,

to the values of incoming edges of v).

Approach

– (Repeated) traversal through D following the edges’ direction

 “Forward” Analysis

– For each currently visited node v ∈ V:

– Apply Forward Simulation of v’s operator to all values of all

incoming edges

– Store new values for the outgoing edges of v

Compilers for Embedded Systems (CfES) SoSe 2022Slide 21/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Workflow of Forward Analysis (1)

– queue<DVFG_node> q = <set of all source nodes of D>;

d(e) = U* for all edges e ∈ E;

– while (!q.empty())

– DVFG_node v = <first element of q>; q.remove(v);

Eout = { e ∈ E | e = (v, vx) }; Ein = { e ∈ E | e = (vx, v) };

– if (<v represents a constant number c>)

d’(e) = {0, 1}* = <binary representation of c> for all e ∈ Eout;

– else

if (<v represents an unknown input variable i of F>)

d’(e) = {Li}* = <bit locations of i> for all e ∈ Eout;

– else

d’(e) = <forward simulation of v> for all e ∈ Eout;

Compilers for Embedded Systems (CfES) SoSe 2022Slide 22/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Workflow of Forward Analysis (2)

– while (!q.empty())

– ... <see previous slide>;

– for (<all edges e = (v, vx) ∈ Eout>)

– if (<current d(e) is bit-wise less than d’(e) according to < operator

in L4>)

– d(e) = d’(e);

– if (!q.contains(vx))

q.insert(vx);

Compilers for Embedded Systems (CfES) SoSe 2022Slide 23/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Remarks

– Constants and input variables provide initial values for the values of

leaf nodes with elements 0, 1 and L.

– For a k-bit register r modeled by edge e, forward analysis firstly computes

an intermediate value d’(e).

– d(e) ∈ L4
k is only set to this intermediate value d’(e) ∈ L4

k if

– for at least one bit position i (0 ≤ i ≤ k) di(e) < d’i(e) holds

AND

– for no bit position i (0 ≤ i ≤ k) d’i(e) < di(e) holds

 Since only steadily increasing bit values are assigned to the values in

the course of the analysis, each node v ∈ V is only added a finite number

of times to the queue q.

 Forward analysis terminates necessarily, run-time complexity is O(|E|).

Compilers for Embedded Systems (CfES) SoSe 2022Slide 24/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Forward Simulation (1)

Goal

– For each node v ∈ V that represents a machine operation op in the LIR of

F, and for each outgoing edge e ∈ Eout:

Forward simulation computes the value of e depending on the values

of all incoming edges ein,1, ..., ein,N ∈ Ein:

d’(e) = FSop(d(ein,1), ..., d(ein,N))

Challenge

– To provide a bit-true simulation function FSop for each possible machine

operation of LIR based on L4
k.

– FSop must model the behavior of op for the considered target processor

exactly and bit-true!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 25/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Forward Simulation (2)

Overall Approach

– Each and every machine operation op can in principle be described at

the bit-level using the Boolean standard operators , and .

 Describe FSop as formula over the operators , and of L4
k, in analogy

to a Boolean description of op.

Bitwise Logical Operators

– Bitwise logical machine operations op (e.g., AND, OR, NOT, XOR, NOR,

NAND, ...) can easily be modeled in L4
k using , and .

 Approach clear.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 26/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Forward Simulation (3)

Arithmetical Operations

– Derivation of a representation in L4
k for arithmetical machine operations

op laborious, but doable.

 Example addition:

– Half-adder: Adds bits a, b ∈ L4, produces bits s, c ∈ L4:

s = a b = (a b) (a b); c = a b;

– Full-adder: Adds bits a, b, cin ∈ L4, produces bits s, cout ∈ L4:

s = (a b) cin; cout = (a b) (a cin) (b cin);

– k-bit addition in L4
k:

Successively apply formulae of full-adder to bit positions 0, ..., k and

compute bits of the resulting sum.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 27/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Forward Simulation (4)

Register Transfer Operations

– Copying of register contents (Register-Register-Moves) is easily modeled

in L4
k by copying of values.

Memory Transfer Operations

– Since the BDVFA provides bit-true data and value flow information

explicitly only for registers and NOT for external memories,

– store-operations anyways do not generate any values, since they

are typically sinks in the DVFG,

– load-operations only generate U* as values.

 Other classes of machine operations need to be modeled similarly.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 28/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Example Forward Simulation

&

a 3

<<

3

b

5

|

>>

<<

3

|

&

>>

b 2

7

r

La,7La,6La,5La,4La,3La,2La,1La,0

Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2Lb,1Lb,0

00000111

00000011

00000101

00Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2

00000Lb,4Lb,3Lb,2

000000La,1La,0

000La,1La,0000

00000Lb,7Lb,6Lb,5

000La,1La,0Lb,7Lb,6Lb,5

La,1La,0Lb,7Lb,6Lb,5000

La,1La,0Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2

00000010

Compilers for Embedded Systems (CfES) SoSe 2022Slide 29/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Backward Analysis (1)

Motivation and Goals

– Conjunction, disjunction and negation in L4 produce X (don’t care) only if

one of their operands is already X.

 Since the values of source nodes of the DVFG only consist of 0, 1 and

L, the forward analysis never generates X.

– Goal of backward analysis is thus to generate X for individual bit positions

under consideration of the values computed so far.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 30/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Backward Analysis (2)

Approach

– (Repeated) traversal through D in reverse direction of the edges

 “Backward” Analysis

– For each currently visited node v ∈ V:

– Answering of the question which bits of the values of incoming

edges of v are irrelevant, so that still the exact values of v’s

outgoing edges are created.

– Apply Backward Simulation of v’s operator to values of the incoming

and outgoing edges

– Store new values for the incoming edges of v

Compilers for Embedded Systems (CfES) SoSe 2022Slide 31/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Workflow of Backward Analysis

– queue<DVFG_node> q = <set of all sink nodes of D>;

u(e) = d(e) for all edges e ∈ E;

– while (!q.empty())

– DVFG_node v = <first element of q>; q.remove(v);

Eout = { e ∈ E | e = (v, vx) }; Ein = { e ∈ E | e = (vx, v) };

– for (<all edges e = (vx, v) ∈ Ein>)

– u’(e) = <backward simulation of v using Eout and Ein \ {e}>;

– if (<current u(e) is bit-wise less than u’(e) according to < operator

in L4>)

– u(e) = u’(e);

– if (!q.contains(vx))

q.insert(vx);

Compilers for Embedded Systems (CfES) SoSe 2022Slide 32/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Backward Simulation (1)

Goal

– For each node v ∈ V that represents a machine operation op in the LIR of

F, and for each incoming edge e ∈ Ein:

Backward simulation computes the value of e depending on the

values of all outgoing edges eout,1, ..., eout,N ∈ Eout and of all incoming

edges except e itself:

u’(e) = BSop(u(eout,1), ..., u(eout,N), u(ein ∈ Ein \ {e}))

In Analogy to Forward Simulation

– A bit-true simulation function BSop must be provided for each possible

machine operation of LIR based on L4
k.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 33/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Backward Simulation (2)

Overall Approach

– Exploitation of neutral elements and of zero elements of operators in

order to identify don’t cares.

Bitwise Logical Operators

– Let b1,k and b2,k ∈ L4 be single bits at position k of the value of the two

operands of a logical operation and let b3,k be the k-th bit of the value of

the operation’s result.

– For b2,k = b3,k = 0:

b1,k AND b2,k = b3,k b1,k AND 0 = 0 X AND 0 = 0

– Analogously for OR: b1,k OR 1 = 1 X OR 1 = 1

 Approach for other logical operations similar.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 34/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Backward Simulation (3)

Arithmetical Operations

– Identification of irrelevant bits due to complexity of arithmetical operations

often difficult.

 Plain example – Shift operator:

– a << 3: Shifts contents of a left by 3 bits

Least-significant 3 bits are filled with 0,

Most-significant 3 bits are shifted out / truncated

 In the value of a, the 3 most-significant bits are X

– a >> 3: Analogously for least-significant 3 bits, under consideration

of arithmetical or logical shifting

 Other machine operations need to be analyzed carefully and must

be modeled similarly.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 35/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Example Backward Simulation (1)

&

a 3

<<

3

b

5

|

>>

<<

3

|

&

>>

b 2

7

r

La,7La,6La,5La,4La,3La,2La,1La,0 Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2Lb,1Lb,0

00000111

00000011

00000101

00Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2

00000Lb,4Lb,3Lb,2

000000La,1La,0

000La,1La,0000

00000Lb,7Lb,6Lb,5

000La,1La,0Lb,7Lb,6Lb,5

La,1La,0Lb,7Lb,6Lb,5000

La,1La,0Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2

00000010

Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2Lb,1Lb,0

Compilers for Embedded Systems (CfES) SoSe 2022Slide 36/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Example Backward Simulation (2)

&

a 3

<<

3

b

5

|

>>

<<

3

|

&

>>

b 2

7

r

La,7La,6La,5La,4La,3La,2La,1La,0

00000011

Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2Lb,1Lb,0

00000101

00000Lb,7Lb,6Lb,5

00Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2

00000010

00000111

00000Lb,4Lb,3Lb,2

La,1La,0Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2

La,1La,0Lb,7Lb,6Lb,5000

000La,1La,0Lb,7Lb,6Lb,5

000La,1La,0000

000000La,1La,0

Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2Lb,1Lb,0

XXXXXLb,4Lb,3Lb,2

XXXLb,4Lb,3Lb,2XX

XXXLa,1La,0Lb,7Lb,6Lb,5

XXXLa,1La,0000

XXX00Lb,7Lb,6Lb,5

Lb,7Lb,6Lb,5XXXXX

XXXXXXLa,1La,0

XXXXXXLa,1La,0

Compilers for Embedded Systems (CfES) SoSe 2022Slide 37/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Application of BDVFA: Dead Code Elimination (DCE)

Definition (Dead Code)

(LIR-) Operations that compute only values that are not used on any

executable path from the operation are called Dead Code.

Dead Code and BDVFA

– In the DVFG, individual bits that are completely irrelevant for subsequent

computations are set to X in the values of edges.

 An LIR operation whose outgoing edges all

carry only X* as value is dead code.
DC

XXXXXXXX...

Compilers for Embedded Systems (CfES) SoSe 2022Slide 38/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Workflow of Bit-True Dead Code Elimination

– queue<DVFG_node> q;

for (<all edges e = (v, w) ∈ E with u(e) = X*>)

q.insert(v);

– while (!q.empty())

– DVFG_node v = <first element of q>; q.remove(v);

Eout = { e ∈ E | e = (v, vx) }; Ein = { e ∈ E | e = (vx, v) };

– if ((u(e) = X* for all e ∈ Eout) && (<v has no side-effects>))

– mark v;

– for (<all edges e = (vx, v) ∈ Ein>)

– u(e) = X*;

– if (<vx is not yet marked>) q.insert(vx);

– remove all LIR operations associated with marked nodes;

Compilers for Embedded Systems (CfES) SoSe 2022Slide 39/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Application of BDVFA: Bit-Packet Insert Operations (1)

Insert Operations and BDVFA

– Insertion of a bit-packet into a register by some arbitrary part of the DVFG

directly visible from the values:

 An optimization has to partition the value of an edge into disjoint bit-

packets according to the edge’s L values and needs to generate

matching insert operations according to this partitioning.

XXXXLa,3La,2La,1La,0

Sub-Graph

Lb,7Lb,6XXXXLb,1Lb,0

Lb,7Lb,6La,3La,2La,1La,0Lb,1Lb,0

Compilers for Embedded Systems (CfES) SoSe 2022Slide 40/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Application of BDVFA: Bit-Packet Insert Operations (2)

Insert Operations and BDVFA (ctd.)

– Optimization of the example by generation of an insert operation and by

adjustment of edges:

 Provided that no further edges leave the sub-graph after adjustment of

edges, the entire sub-graph will be removed by a subsequent DCE!

XXXXLa,3La,2La,1La,0 Lb,7Lb,6XXXXLb,1Lb,0

Lb,7Lb,6La,3La,2La,1La,0Lb,1Lb,0

Sub-Graph

Lb,7Lb,6La,3La,2La,1La,0Lb,1Lb,0

insert

XXXXLa,3La,2La,1La,0 Lb,7Lb,6XXXXLb,1Lb,0

Compilers for Embedded Systems (CfES) SoSe 2022Slide 41/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Application of BDVFA: Bit-Packet Extract Operations (1)

Extract Operations and BDVFA

– An extraction of a bit-packet by some arbitrary sub-graph of the DVFG is

again visible from the values:

Sub-Graph

0000La,7La,6La,5La,4

Lb,7Lb,6La,7La,6La,5La,4Lb,1Lb,0

Compilers for Embedded Systems (CfES) SoSe 2022Slide 42/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Application of BDVFA: Bit-Packet Extract Operations (2)

Extract Operations and BDVFA (ctd.)

– Optimization of the example by generation of an extract operation and by

adjustment of edges:

 Possibly, the sub-graph can again be removed by a DCE.

0000La,7La,6La,5La,4

Lb,7Lb,6La,7La,6La,5La,4Lb,1Lb,0

Teilgraph

0000La,7La,6La,5La,4

extract

XXLa,7La,6La,5La,4XX Sub-Graph

Compilers for Embedded Systems (CfES) SoSe 2022Slide 43/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Chapter Contents

7. LIR Optimizations and Transformations

– Generation of Bit-Packet Operations for NPUs

– Motivation of Bit-True Data and Value Flow Analyses

– Partial Order L4

– Bit-True Analysis: Forward and Backward Simulation

– Bit-True Optimizations: Dead Code Elimination; Generation of

insert/extract operations

– Scratchpad Memory Optimizations

– Properties of Main Memories, Caches and Scratchpads

– Fix SPM Allocation (Functions, global Variables)

– Fix SPM Allocation (Functions, Basic Blocks, global Variables)

– SPM Allocations for Multi-Process Applications (partitioned,

exclusive, hybrid)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 44/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Properties of Today’s Memories (1)

– Speed gap between CPUs

and DRAMs doubles every 2

years.

– Fast CPUs are massively

slowed down by slow

memories

 ”Memory Wall” problem

[P. Machanik. Approaches to Addressing

the Memory Wall. Technical Report,

University of Brisbane, Nov 2003]

2

4

8

2 4 5

Relative speed

time [years]31

 Factor 2

every 2 years

1

0

Compilers for Embedded Systems (CfES) SoSe 2022Slide 45/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Properties of Today’s Memories (2)

– With increasing size of a

memory, a single memory

access consumes

disproportionately high

energy.

– With increasing size, memory

accesses also take

proportionally longer.

 Fabrication technology of

memories suggests to use

small memories!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 46/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Properties of Today’s Memories (3)

– Memory subsystem often

consumes more than 50% of

the entire system’s total

energy budget.

– Pie charts show averages

over more than 160 different

energy measurements each.

34,8%

65,2%

Prozessor
Energie

Hauptspeicher
Energie

54,1%

4,1%

20,6%

10,3%

10,8%

Prozessor
Energie

Hauptspeicher
Energie

Scratchpad
Energie

I-Cache
Energie

D-Cache
Energie

– ARM7 Mono-Core without Cache:

– ARM7 Multi-Core with Caches:

[M. Verma, P. Marwedel. Advanced

Memory Optimization Techniques for

Low-Power Embedded Processors.

Springer, 2007]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 47/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Properties of Today’s Memories (4)

– Orders of magnitudes for

energy consumption of

memories also confirmed by

other independent groups

from industry and academia.

[S. Segars (ARM Ltd.). Low power

design techniques for microprocessors.

ISSCC 2001]

26%

26%

9%

8%

10%
5%

16%

StrongARM
Prozessor

I-Cache

D-Cache

I-MMU

D-MMU

Taktversorgung

Sonstiges

25%

25%

4%

5%

4%

18%

19%

ARM920T
Prozessor

I-Cache

D-Cache

I-MMU

D-MMU

Taktversorgung

Sonstiges

[O. S. Unsal, I. Koren, C. M. Krishna,

C. A. Moritz. University of

Massachusetts, Amherst, 2001]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 48/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Properties of Today’s Memories (5)

– Energy consumption of mobile devices

[O. Vargas (Infineon). Minimum power consumption in mobile-phone

memory subsystems. Pennwell Portable Design, Sep. 2005]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 49/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Scratchpad Memories

Structure

– Scratchpads (SPMs) are small, physically separate memories

– They are mostly placed on the same chip as the processor (so-called on-

chip memories)

 Due to little size and on-chip placement: Extremely fast and energy-

efficient memories

– Are seamlessly mapped into the

processor’s address space:

0x000…

0xFFF…

Scratchpad Memory

SPM

select

– Access by a simple address

decoder that recognizes

addresses on the bus from the

SPM’s address region:

Compilers for Embedded Systems (CfES) SoSe 2022Slide 50/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Recall: Structure of Set-Associative Caches

Tag Index

Address

Tag

Memory

Data

Memory

Tag

Memory

Data

Memory

Way 0 Way 1

= =

Data

Compilers for Embedded Systems (CfES) SoSe 2022Slide 51/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Properties of Scratchpad Memories (1)

Predictability

– Each SPM access takes only constant time, usually 1 clock cycle.

– In contrast to this: A cache access takes a variable time, depending on

whether it results in a cache hit or cache miss.

 Run-time behavior of scratchpads is 100% predictable while behavior of

caches is difficult to impossible to predict.

 Caches are severely limited regarding real-time capabilities while SPMs

are frequently used in the domain of hard real-time systems.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 52/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Properties of Scratchpad Memories (2)

Current Drain Compared to Main Memories

– Measurements using real hardware (Atmel ARM7 evaluation board) show

that, e.g., a load instruction draws a factor 3 less current if both the

instruction and the data to be loaded reside in SPM instead of the off-chip

main memory:

48,2 50,9 44,4 53,1

116
77,2 82,2

1,16

0

50

100

150

200

Prog Main/ Data MainProg Main/ Data SPMProg SPM/ Data MainProg SPM/ Data SPM

m
A

Current Drawn by Load Instruction

Main
Memory

ARM7 +
SPM

Compilers for Embedded Systems (CfES) SoSe 2022Slide 53/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Properties of Scratchpad Memories (3)

Energy Consumption Compared to Main Memories

– Similar measurements using the same hardware reveal that energy

consumption of the load instruction can be reduced by factor of 7:

Recall:

Assumption: Supply

voltage is constant and

drawn current does not

vary too much over time

115,8

51,6

76,5

16,4

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

Prog Main/Data
Main

Prog Main/ Data
SPM

Prog SPM/ Data
Main

Prog SPM/Data
SPM

n
J

Energy Consumed by Load Instruction

Energy

Compilers for Embedded Systems (CfES) SoSe 2022Slide 54/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Properties of Scratchpad Memories (4)

Energy Consumption Compared to Caches

– Size and number of tag memories, comparators and multiplexors

depends on the size of the cached memory region.

– Energy consumed by these hardware components considerable:

0

1

2

3

4

5

6

7

8

9

256 512 1024 2048 4096 8192 16384

E
n

e
rg

y
 p

e
r

A
c
c
e
s
s

[n
J
]

Memory Size

Scratchpad

Cache, 2way, 4GB space

Cache, 2way, 16 MB space

Cache, 2way, 1 MB space

[R. Banakar. Comparison of

Cache- and Scratch-Pad based

Memory Systems... Technical

Report #762, Universität

Dortmund, Sep. 2001]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 55/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Properties of Scratchpad Memories (5)

Energy Consumption Compared to Caches

– Energy consumption of caches additionally depends heavily on the

degree of associativity:

Caution: Underlying

technology for this diagram

different to that from the

previous slide.

Thus, there are deviations in

the absolute values shown

here and on the previous

slide!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 56/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Integer-Linear Programming

Technique to Model Linear Optimization Problems

– Optimization of an objective function under consideration of constraints

,,

– Objective function and constraints are linear expressions of the integer

decision variables , ...,

→ to be minimized or maximized

Constants

Variables

– Optimal resolution of so-called ILPs (Integer Linear Programs) using

standard ILP solvers (e.g., lp_solve, cplex)

Complexity: exponential in the worst case, but usually “OK”.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 57/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Fix SPM Allocation: Functions & Global Variables (1)

Goal

– Allocation of the code of complete LIR functions and of global variables

onto the SPM

(local variables usually lie on the stack and will not be considered here

for this reason)

– Compiler determines at compile-time which functions and global

variables occupy the SPM.

This SPM allocation remains fix during run-time of the optimized

program, i.e., the assignment of functions and variables to the SPM does

not change at all during the entire run-time.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 58/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Fix SPM Allocation: Functions & Global Variables (2)

Definitions

Notation: Upper-case letters constants,

lower-case letters variables

– Set of all memory objects to be considered

for SPM allocation, i.e., functions and

global variables , resp.

– Size of the available SPM in bytes

– Size of memory object in bytes

– Energy that is saved if is moved from

main memory to SPM, per single execution

of or per single access to

, resp.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 59/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Fix SPM Allocation: Functions & Global Variables (3)

Definitions (ctd.)

– Total amount of accesses or of executions

to

– Totally saved energy if is moved from

main memory to SPM for the overall

execution of the program to be optimized

– Binary decision variable for

is moved onto SPM

Compilers for Embedded Systems (CfES) SoSe 2022Slide 60/106

Fix SPM Allocation: Functions & Global Variables (4)

Determination of Parameter Values

– : Provided by user, constant

– : Easy to determine using an LIR: Either the sum of the sizes of all

machine instructions of a function, or the sum of the sizes of all sub-

variables (e.g. for composed types like arrays or structs)

– :

For : Energy model (cf. chapter 3) provides difference

between access to main memory and SPM

For : Energy model provides difference between

instruction fetch from main memory or from SPM.

Simulation of the program to be optimized yields

amount of executed instructions for

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Compilers for Embedded Systems (CfES) SoSe 2022Slide 61/106

Fix SPM Allocation: Functions & Global Variables (5)

Determination of Parameter Values (ctd.)

– : Same simulation that provides can be used to obtain

access and execution frequencies for

 Prior to the scratchpad optimization of a program, a simulation run is

performed in order to determine parameters required for the optimization

 Such a simulation creates a run-time profile of the program to be

optimized. Thus:

This simulation phase before an optimization is called Profiling.

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Compilers for Embedded Systems (CfES) SoSe 2022Slide 62/106

Fix SPM Allocation: Functions & Global Variables (6)

ILP Formulation

– Objective function: Maximize energy savings for the whole program

– Constraint: The SPM’s capacity must not be exceeded

[S. Steinke. Untersuchung des Energieeinsparungspotenzials in eingebetteten

Systemen durch energieoptimierende Compilertechnik. Dortmund 2002]

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Compilers for Embedded Systems (CfES) SoSe 2022Slide 63/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Fix SPM Allocation: Functions & Global Variables (7)

Results (MultiSort Benchmark)

C
y
c
le

s
 [
x
1
0
0
]

E
n
e
rg

y
 (

C
P

U
 +

 M
e
m

o
ry

)
[µ

J
]

– 64b SPM too small to hold

global variables/functions.

– Steady energy and run-

time reductions until 1kB

SPM due to allocation of

more MOs to SPM.

– From 2kB onwards minor

degradations w.r.t. energy

consumption since no

more MOs can be

allocated (all MOs already

reside on SPM) but the

energy consumption of

larger SPMs increases for

technological reasons.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 64/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Fix SPM Allocation: Functions, Basic Blocks & Global
Variables (1)

Motivation

– Allocation of entire functions possibly disadvantageous:

 Entire functions contain lots of code and occupy large space in the SPM

 Parts of a function’s code (e.g., code outside loops) are executed rarely.

They thus produce only very small energy savings but, however, occupy

costly SPM capacity.

 (Scarce resource) SPM capacity exploited only in a sub-optimal way.

Goal

– Allocation of the code of complete LIR functions, of individual basic

blocks and of global variables onto the SPM.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 65/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Fix SPM Allocation: Functions, Basic Blocks & Global
Variables (2)

Problem when Moving Single Basic Blocks

Remember: A basic block b may contain a branch instruction only as very

last instruction

– If the branch at the end of b is conditional, b has two successors b1 and

b2 in the CFG that are executed if the conditional branch is either taken

or not taken:

b: ...

jnz %d_0, b2

b1: ... b2: ...

Compilers for Embedded Systems (CfES) SoSe 2022Slide 66/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Fix SPM Allocation: Functions, Basic Blocks & Global
Variables (3)

Problem when Moving Single Basic Blocks

– b1 is reached from b implicitly if the conditional branch is not taken, since

 the program counter is incremented after the non-taken branch and thus

points to the next following instruction, and

 the code of b1 directly follows that of b in memory.

b: ...

jnz %d_0, b2

b1: ... b2: ...

Compilers for Embedded Systems (CfES) SoSe 2022Slide 67/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Fix SPM Allocation: Functions, Basic Blocks & Global
Variables (4)

Problem when Moving Single Basic Blocks

What if b resides in SPM but b1 not (or vice versa)?

– If the branch is not taken, the next instruction following b in the SPM will

be executed.

 Since b1 no longer follows b in the memory, incorrect code will be

executed!

b: ...

jnz %d_0, b2

b1: ... b2: ...

Compilers for Embedded Systems (CfES) SoSe 2022Slide 68/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Fix SPM Allocation: Functions, Basic Blocks & Global
Variables (5)

A Naive Solution

– Extend all basic blocks b featuring such an implicit CFG edge by an

unconditional branch to b1:

Disadvantage

– Unconditional branch extremely inefficient (code size, run-time and

energy consumption) if both b and b1 still reside in the same memory.

b: ...

jnz %d_0, b2

j b1

b1: ... b2: ...

Compilers for Embedded Systems (CfES) SoSe 2022Slide 69/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Fix SPM Allocation: Functions, Basic Blocks & Global
Variables (6)

A Better Approach

– Extension of a basic block b featuring such an implicit CFG edge by an

unconditional branch only if b and b1 are actually allocated to different

memories

Advantage

– Unconditional branches are generated additionally only there where it is

really necessary

Problem

– Code size of b now depends on the decision variables and

that model the memory allocation of b in the ILP.

 How to model a non-constant/variable parameter in the ILP?

Compilers for Embedded Systems (CfES) SoSe 2022Slide 70/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Fix SPM Allocation: Functions, Basic Blocks & Global
Variables (7)

Multi-Basic Blocks

– Sets of basic blocks that are connected in the CFG.

– Let G be the CFG of a function f, G’ be a connected sub-graph of G. The

set of all basic blocks of G’ is a multi-basic block.

– {b, b1}, {b, b2} and {b, b1, b2} are multi-basic blocks.

– {b1, b2} is no multi-basic block: Its associated G’ is not connected.

b1: ... b2: ...

b: ...

Compilers for Embedded Systems (CfES) SoSe 2022Slide 71/106

Fix SPM Allocation: Functions, Basic Blocks & Global
Variables (8)

(Multi-) Basic Blocks in the ILP Formulation

– ILP for SPM allocation optimizes memory objects from the sets of all

functions , of all single basic blocks , of all multi-basic blocks and

of all global variables .

– is constructed by generating all possible connected sub-graphs G’ of

the CFG.

Definitions

– Set of all memory objects to be considered

for SPM allocation

– Meaning of all other terms () as before

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Compilers for Embedded Systems (CfES) SoSe 2022Slide 72/106

Fix SPM Allocation: Functions, Basic Blocks & Global
Variables (9)

Determination of Parameter Values

– : For or : as before;

For : Size of all instructions of the basic block, plus the size

of an unconditional branch if has an implicit

successor in the CFG;

For : Size of all instructions of all basic blocks included in

, plus the size of k unconditional branches if

has k implicit successors outside in the CFG.

– : as before, but now just analogously to under consideration

of the novel unconditional branches

– : as before per profiling, now just also for all

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Compilers for Embedded Systems (CfES) SoSe 2022Slide 73/106

Fix SPM Allocation: Functions, Basic Blocks & Global
Variables (10)

ILP Formulation

– Objective function: Maximize energy savings for the whole program

– Constraint 1: The SPM’s capacity must not be exceeded

– Additional constraint per : may only be allocated to the

SPM by at most one decision variable within the ILP (for b itself, for b´s

function or for all multi-basic blocks that contain b)

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Compilers for Embedded Systems (CfES) SoSe 2022Slide 74/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Fix SPM Allocation: Functions, Basic Blocks & Global
Variables (11)

Results (MultiSort Benchmark) – 64b SPM are now

successfully exploited for

the allocation of pieces of

code.

– Caution: The diagram

here also features the

allocation of the run-time

stack onto the SPM. For

this reason, this diagram

cannot directly be

compared with that from

slide 63!

C
y
c
le

s
 [
x
1
0
0
]

E
n
e
rg

y
 (

C
P

U
 +

 M
e
m

o
ry

)
[µ

J
]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 75/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Fix SPM Allocation: Functions, Basic Blocks & Global
Variables (12)

Detailed Results only for Memory Subsystem

Compilers for Embedded Systems (CfES) SoSe 2022Slide 76/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Fix SPM Allocation: Functions, Basic Blocks & Global
Variables (13)

Comparison of ACET and WCETEST for Scratchpads and Caches

– SPMs are, in contrast to caches, perfectly predictable: WCETEST scales

nicely with ACETs

– Only for larger memory sizes (beyond 2kB), caches outperform SPMs in

terms of ACET

Compilers for Embedded Systems (CfES) SoSe 2022Slide 77/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Partitioned SPM (1)

– Available SPM capacity is partitioned into disjoint

areas during compile-time

– Each process Pi obtains a dedicated SPM partition

for functions, (multi-) BBs & global variables of Pi

– Expectation: Good results for large SPMs

Process P1

Process P3

Process P2

Scratchpad

P1

P2

P3

Time

Compilers for Embedded Systems (CfES) SoSe 2022Slide 78/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Partitioned SPM (2)

Energy Arrays of Single Processes

– Let P1, ..., PN be the processes of a multi-process application

– S denotes the size of the available SPM capacity in bytes,

S’ < S is a user-provided parameter that cuts the SPM into slices of S’

bytes size each

– For each process Pi, we will determine an energy array .

denotes how much energy Pi consumes if Pi has x bytes of SPM at its

disposal.

– is pre-computed for all sizes x = S’, 2S’, 3S’, ... that are multiples of

S’. This is achieved by repeated solution of the ILP for fix SPM allocation

of functions, multi-BBs and global variables for each value of x above.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 79/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Partitioned SPM (3)

Energy Arrays for Multi-Process System and Partitioned SPM

– For a complete multi-process system consisting of processes P1, ..., PN,

its energy array has to be determined. denotes how much

energy the entire multi-process system consumes if it has x bytes of SPM

at its disposal.

–

for all those values of x, x1, ..., xN for which the individual are defined

– For a fixed available SPM size S and a multi-process system, an SPM

allocation yielding the minimal has to be determined.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 80/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Partitioned SPM (4)

The binmin Function

– Example: A multi-process system consists of 3 processes P1, P2 and P3.

–

– binmin is a binary function that combines two energy arrays g and h and

again computes an energy array:

– Due to its associativity, computing the minimum over an N-fold sum in

can be reduced to the binary min in binmin.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 81/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Partitioned SPM (5)

Example:

System with 3

processes (receive,

decode, ui)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 82/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Partitioned SPM (6)

Algorithm to Compute binmin(g, h)

– for (x = 0; x <= S; x += S’)

– int min = ∞;

– for (tmp = 0; tmp <= x; tmp += S’)

– if (g[tmp] + h[x – tmp] < min)

min = g[tmp] + h[x – tmp];

– b[x] = min;

– return b;

Compilers for Embedded Systems (CfES) SoSe 2022Slide 83/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Partitioned SPM (7)

Algorithm to Compute

PartitionedSPM()

– if (N > 2)

– = PartitionedSPM();

– = binmin();

– else

– = binmin(,);

– return ;

– binmin can easily be

adapted such that it not

only returns array b[],

but also that value of

tmp for which b[x] is

minimal.

 This way, the algorithm

not only computes

but also the partition

sizes xi for all

processes Pi.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 84/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Exclusive SPM (1)

– Each process Pi can freely and exclusively use the

complete SPM for its functions, (multi-) BBs &

global variables

– During context switches, the SPM content must be

stored and reloaded

Process P1

Scratchpad

P1

P2

P3

Time

Reload of

SPM Contents

Compilers for Embedded Systems (CfES) SoSe 2022Slide 85/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Exclusive SPM (1)

– Each process Pi can freely and exclusively use the

complete SPM for its functions, (multi-) BBs &

global variables

– During context switches, the SPM content must be

stored and reloaded

Process P2

Scratchpad

P1

P2

P3

Time

Compilers for Embedded Systems (CfES) SoSe 2022Slide 86/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Exclusive SPM (1)

– Each process Pi can freely and exclusively use the

complete SPM for its functions, (multi-) BBs &

global variables

– During context switches, the SPM content must be

stored and reloaded

Process P3

Scratchpad

P1

P2

P3

Time

Compilers for Embedded Systems (CfES) SoSe 2022Slide 87/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Exclusive SPM (1)

– Each process Pi can freely and exclusively use the

complete SPM for its functions, (multi-) BBs &

global variables

– During context switches, the SPM content must be

stored and reloaded

– Expectation: Good results for small SPMs
Scratchpad

P1

P2

P3

Time

Process P1

Process P2

Process P3

Compilers for Embedded Systems (CfES) SoSe 2022Slide 88/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Exclusive SPM (2)

Energy Arrays of Single Processes

– For each process Pi, si denotes its scheduling frequency. si is pre-

computed using profiling.

– For each process Pi, we will determine an energy array .

denotes how much energy Pi consumes if Pi has x bytes of SPM at its

disposal that need to be stored and reloaded during context switches.

– is pre-computed analogously for all sizes x = S’, 2S’, 3S’, ...:

– = Energy consumed during the execution of Pi using x Bytes SPM +

additional energy used to copy x bytes from SPM to main memory and

back (copy energy CE), multiplied by the frequency of context switches

for Pi.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 89/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Exclusive SPM (3)

Energy Arrays for Multi-Process System and Exclusive SPM

– For a complete multi-process system consisting of processes P1, ..., PN,

its energy array has to be determined. denotes how much

energy the entire multi-process system consumes if it has x bytes of SPM

at its disposal that (partially) need to be reloaded during context switches.

–

for all those values of x and xj for which the individual are defined

– For a fixed available SPM size S and a multi-process system, an SPM

allocation yielding the minimal has to be determined.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 90/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Exclusive SPM (4)

Algorithm to Compute

ExclusiveSPM()

– for (<all processes Pi>)

– prev_min[i] = ∞;

– for (x = 0; x <= S; x += S’)

– = 0;

– for (<all processes Pi>)

– min[i] = (< prev_min[i]) ? : prev_min[i];

– += min[i];

– prev_min[i] = min[i];

– return ;

Compilers for Embedded Systems (CfES) SoSe 2022Slide 91/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Hybrid SPM (1)

– SPM is grouped into a partitioned and an exclusive

area.

– Each process Pi can make use of the exclusive

area and of a dedicated part of the partitioned area.Scratchpad

P1

P2

P3

Time

Reload of the

exclusive SPM areaProcess P1

Process P3

Process P2

Process P1

Compilers for Embedded Systems (CfES) SoSe 2022Slide 92/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Hybrid SPM (1)

– SPM is grouped into a partitioned and an exclusive

area.

– Each process Pi can make use of the exclusive

area and of a dedicated part of the partitioned area.Scratchpad

P1

P2

P3

Time

Process P1

Process P3

Process P2

Process P2

Compilers for Embedded Systems (CfES) SoSe 2022Slide 93/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Hybrid SPM (1)

– SPM is grouped into a partitioned and an exclusive

area.

– Each process Pi can make use of the exclusive

area and of a dedicated part of the partitioned area.Scratchpad

P1

P2

P3

Time

Process P1

Process P3

Process P2

Process P3

Compilers for Embedded Systems (CfES) SoSe 2022Slide 94/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Hybrid SPM (1)

– SPM is grouped into a partitioned and an exclusive

area.

– Each process Pi can make use of the exclusive

area and of a dedicated part of the partitioned area.

– Expectation: Good results for all kinds of SPMs
Scratchpad

P1

P2

P3

Time

Process P1

Process P3

Process P2

Process P1Process P2Process P3

Compilers for Embedded Systems (CfES) SoSe 2022Slide 95/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Hybrid SPM (2)

Energy Arrays of Single Processes

– For each process Pi, we will determine an energy array .

denotes how much energy Pi consumes if Pi has x bytes of partitioned

and y bytes of exclusive SPM to be reloaded during context switches at

its disposal.

– is again pre-computed for all sizes of x and y = S’, 2S’, 3S’, ...

This is achieved by solving a special variant of the ILP for fix SPM

allocation (not shown here) that supports two different SPMs of sizes x

and y.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 96/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Hybrid SPM (3)

Energy Arrays for Multi-Process System and Hybrid SPM

– For a complete multi-process system consisting of processes P1, ..., PN,

its energy array has to be determined. denotes how

much energy the entire multi-process system consumes if it has x bytes

partitioned and y bytes exclusive SPM at its disposal.

–

for all those values of x1, ..., xN, y1, ..., yN, for which the individual are

defined

– For a fixed available SPM size S and a multi-process system, an SPM

allocation yielding the minimal has to be determined such that

holds.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 97/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Hybrid SPM (4)

The hybrid_binmin Function

– Example: A multi-process system consists of 3 processes P1, P2 and P3.

–

– hybrid_binmin is a binary function that combines two energy arrays g

and h and again computes an energy array:

– Due to its associativity, computing the minimum over an N-fold sum in

can be reduced to the binary min in hybrid_binmin.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 98/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Hybrid SPM (5)

Algorithm to Compute hybrid_binmin(g, h)

– for (y = 0; y <= S; y += S’)

– int min = ∞;

– for (x = 0; x <= S - y; x += S’)

– for (tmp = 0; tmp <= x; tmp += S’)

– if (g[tmp, y] + h[x – tmp, y] < min)

min = g[tmp, y] + h[x – tmp, y];

– b[x, y] = min;

– return b;

Compilers for Embedded Systems (CfES) SoSe 2022Slide 99/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Hybrid SPM (6)

Algorithm to Compute

HybridSPM()

– if (N > 2)

– = HybridSPM();

– = hybrid_binmin();

– else

– = hybrid_binmin(,);

– return ;

– Functionality in analogy
to PartitionedSPM

(slide 83)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 100/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Results (1)

– Here: Media application (processes adpcm, g721, mpeg4, edge

detection)

– Energy (single-process): SPM is completely assigned to that single

process using fix SPM allocation that reduces energy consumption most.

80

90

100

110

120

130

140

150

160

64 128 256 512 1024 2048 4096

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 [

m
J

]

Scratchpad Size [Bytes]

Copy Energy (Hybrid) Energy (Hybrid)

Copy Energy (Exclusive) Energy (Exclusive)

Energy (Partitioned) Energy (Single-process)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 101/106

80

90

100

110

120

130

140

150

160

64 128 256 512 1024 2048 4096

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 [

m
J

]

Scratchpad Size [Bytes]

Copy Energy (Hybrid) Energy (Hybrid)

Copy Energy (Exclusive) Energy (Exclusive)

Energy (Partitioned) Energy (Single-process)

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Results (2)

– Partitioned SPM: In fact beneficial for large memories

– Partitioning of the SPM outperforms exclusive SPM allocation from 1kB

SPM size on

Compilers for Embedded Systems (CfES) SoSe 2022Slide 102/106

80

90

100

110

120

130

140

150

160

64 128 256 512 1024 2048 4096

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 [

m
J

]

Scratchpad Size [Bytes]

Copy Energy (Hybrid) Energy (Hybrid)

Copy Energy (Exclusive) Energy (Exclusive)

Energy (Partitioned) Energy (Single-process)

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Results (3)

– Exclusive SPM: In fact beneficial for small memories

– Exclusive SPM allocation including reloading of SPM content outperforms

partitioned SPMs up to 512 bytes SPM size

Compilers for Embedded Systems (CfES) SoSe 2022Slide 103/106

80

90

100

110

120

130

140

150

160

64 128 256 512 1024 2048 4096

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 [

m
J

]

Scratchpad Size [Bytes]

Copy Energy (Hybrid) Energy (Hybrid)

Copy Energy (Exclusive) Energy (Exclusive)

Energy (Partitioned) Energy (Single-process)

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Multi-Process SPM Allocation: Results (4)

– Hybrid SPM: Is in fact the best allocation scheme for all SPM sizes

– At 4kB SPM: 27% energy savings compared to bar “single-process”

– Similar results also for “Video Phone” and “DSP” multi-process systems

27%

Compilers for Embedded Systems (CfES) SoSe 2022Slide 104/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

References (1)

Code Generation for Network Processors

– J. Wagner. Retargierbare Ausnutzung von Spezialoperationen für

Eingebettete Systeme mit Hilfe bitgenauer Wertflussanalyse.

Dissertation, Dortmund 2006.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 105/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

References (2)

Optimizations for Scratchpad Memories

– S. Steinke. Untersuchung des Energieeinsparungspotenzials in

eingebetteten Systemen durch energieoptimierende Compilertechnik.

Dissertation, Dortmund 2002.

– M. Verma, P. Marwedel. Advanced Memory Optimization Techniques for

Low-Power Embedded Processors. Springer, 2007.

– M. Verma, K. Petzold, L. Wehmeyer et al. Scratchpad Sharing Strategies

for Multiprocess Embedded Systems: A first Approach. 3rd IEEE

Workshop on Embedded Systems for Real-Time Multimedia

(ESTIMedia), Jersey City, September 2005.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 106/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Summary

Generation of Bit-Packet Operations for NPUs

– Conventional data flow analysis are not bit-true

– Bit-true data and value flow analysis via forward and backward simulation

– Detection of bit-Packets using values of the BDVFA

Optimizations for Scratchpad Memories

– Scratchpads extremely beneficial regarding energy consumption, run-

time and WCETEST, as compared to caches and main memories

– Integer-linear programming (ILP) as optimization approach

– SPM contents: Functions, basic blocks and global variables

– SPM allocation for single- and multi-process systems

