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– Generation of Bit-Packet Operations for NPUs

– Motivation of Bit-True Data and Value Flow Analyses
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– Bit-True Analysis: Forward and Backward Simulation

– Bit-True Optimizations: Dead Code Elimination; Generation of 

insert/extract operations
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– Properties of Main Memories, Caches and Scratchpads

– Fix SPM Allocation (Functions, global Variables)
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– SPM Allocations for Multi-Process Applications (partitioned, 

exclusive, hybrid)
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Follow-Up: Data Flow Graphs

Data Flow Graph

– Node represents an operation

– Edges between nodes represent definitions (DEFs) and uses (USEs) of 

data

Accuracy of a DFG

– At the LIR level, a DFG node denotes a single machine operation

– Since the operands of machine operations are usually processor 

registers, the edges thus represent the data flow through entire registers.
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DFGs & Bit-Packets

Bit-Packets

– Sequence of consecutive bits

– of arbitrary length

– starting at arbitrary positions

– and eventually crossing word-boundaries

DFGs and Bit-Packets

– DFGs model data flow based on atomic registers

 Information about irregularly-structured portions of registers is not 

provided

 Classical DFG-based techniques are usually inappropriate to 

generate bit-packet operations!
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Example

TPM and Bit-Packets

– Composed rule

dreg: tpm_BinaryExpAND( tpm_BinaryExpSHR(

dreg, const ), const )

can cover the expression(c >> 4) & 0x7 and generate the efficient 

operation EXTR.U d_0, d_c, 4, 3

– But: TPM reaches its limits for more complex code patterns to be covered

 What if numbers 4 / 0x7 are not given as constants, but as values of 

variables?

 What if other combinations of operators beyond & / >> are used to 

extract and insert bit-packets in C?

 Tree grammar would grow quickly and would still generate code of rather 

poor quality!
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Approach

Application of a Conventional Code Selection

– Tree grammar produces LIR containing machine operations that use 

entire registers as operands

– Tree grammar produces no bit-packet operations

– Using rules like, e.g.,

dreg: tpm_BinaryExpAND( dreg, const )

dreg: tpm_BinaryExpSHR( dreg, const )

the expression (c >> 4) & 0x7 would naively be covered and 

translated into

SH d_0, d_c, -4; AND d_1, d_0, 7;

Subsequent LIR Optimization

– Detects operations that extract / insert bit-packets and creates 

corresponding extr / insert bit-packet operations.
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Classical Data Flow Analysis

Problem

– Classical data flow analyses (DFA) allow reasoning about the flow of 

information at the register-level:

 Which operation uses / defines a certain piece of data residing in a 

certain register?

 Which operations are data flow-dependent?

– Classical data flow analyses allow no statements about

 the value of information, i.e., the potential value that a register can 

have at a certain point of time, or about

 the potential value that a part of a register can have at a certain point 

of time.
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Bit-True Value Flow Analysis

Value Flow Analysis (VFA)

– Analyzes data flow, similar to DFA

– but performs additional estimations about the contents of the memory 

cells involved in the computations.

Bit-True Data and Value Flow Analysis (BDVFA)

– Value flow analysis is done for each individual bit of the involved memory 

cells.

 Allows statements about the potential value of each bit of a memory cell 

at a certain point of time.

 In the following: Presentation of a BDVFA with multi-valued logic for 

registers as supported memory cells.
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Data and Value Flow Graph (DVFG)

Definition (Data and Value Flow Graph)

Let F be an LIR function. The Data and Value Flow Graph (DVFG) of F is a 

directed graph DVFG = (V, E, d, u) with

– Node set V identical with that of classical DFGs ( cf. chapter 6)

– Let opi(pi,1, ..., pi,n) and opj(pj,1, ..., pj,m) be two operations of F with 

parameters pi,x and pj,y, resp. Let vi and vj be the nodes representing opi

and opj. For each use of a register r by pj,y that is defined by pi,x, the 

DVFG contains an edge e = (vi, vj) ∈ E.

– d and u provide bit-true value estimates for the edges e ∈ E (Down and 

Up values). Let r be that register that is modeled by e, and let r have a 

width of k bits. Then, d and u are functions d | u: E → L4
k with L4 being a 

partial order representing the potential value of a single bit.
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The Partial Order L4 (1)

Per bit of a register, an element from L4 is used to 

model which value this bit can have:

– 0 – The considered bit has the value 0

– 1 – A bit has a value of 1

– U – A bit’s value is completely unknown

– X – The value of a bit is irrelevant (don’t care)

– L – The value of a bit is unknown, but its 

provenience (Location) is known

– N – Like L, but the bit with known provenience 

has been inverted once (Negated location)

L N

U

X

0 1
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The Partial Order L4 (1)

L4 is a partial order:

– A ‘<‘ operator defines a less-than relation 

between elements from L4 as shown by the 

directed edges in the Hasse chart

– U provides least information and is thus the 

smallest element according to the < operator

– X provides most information and is thus the 

largest element according to the < operator

Hasse chart has four horizontal levels

 L4U

X

0 1

L N
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Examples for L4 (1)

For some edge e, let r be an 8-bit register that is modeled by e.

Graphical notation:    represents up value,    down value

Exemplary labels for edge e and their interpretation:

The values of all bits of r are completely unknown.

The value of r is 42.

Bit 3 of r is irrelevant; r can be equal to 34 or 42.

r is completely irrelevant

 r has no effect on the data flow at all

UUUUUUUU

00101010

0010X010

XXXXXXXX
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Examples for L4 (2)

In addition, r’ is an 8-bit register that represents an input value for the 

considered LIR function F (e.g., a function parameter).

Exemplary labels for edge e and their interpretation:

The value of bit 5 of r is unknown. But it is identical

with the value of bit 2 of r’.

The value of bit 5 of r is unknown. But it is identical

with the negated value of bit 4 of r’.

r contains a bit-packet consisting of bits 2 to 0 of r’,

starting at bit position 3 inside r.

00Lr’,200000

00Nr’,400000

00Lr’,2Lr’,1Lr’,0000
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Arithmetic in L4 – Conjunction

Remark:

If L/N values with

different

provenience are

combined, the 

conjunction always 

produces U.

 1 0 Li Ni U X

1 1 0 Li Ni U X

0 0 0 0 0 0 0

Li Li 0 Li 0 U U

Ni Ni 0 0 Ni U U

U U 0 U U U U

X X 0 U U U X
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Arithmetic in L4 – Disjunction

Remark:

If L/N values with

different

provenience are

combined, the 

disjunction always 

produces U.

 1 0 Li Ni U X

1 1 1 1 1 1 1

0 1 0 Li Ni U X

Li 1 Li Li 1 U U

Ni 1 Ni 1 Ni U U

U 1 U U U U U

X 1 X U U U X
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Arithmetic in L4 – Negation

 1 0 Li Ni U X

0 1 Ni Li U X
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Workflow of the BDVFA

Given

– A low-level intermediate representation LIR to be optimized

Two-Phased Approach

– For each function F of LIR:

– Compute the initial data and value flow graph D = (V, E, Ø, Ø) of F

with empty down and up functions d und u

– Determine down values d(e) of all edges by applying forward analysis

– Determine up values u(e) of all edges by applying backward analysis
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Forward Analysis

Goal

– To compute only    values for D

– value d(e) represents the bit-true result of a node v ∈ V (i.e., of an 

outgoing edge of v), if the operator of v is applied to all its operands (i.e., 

to the    values of incoming edges of v).

Approach

– (Repeated) traversal through D following the edges’ direction

 “Forward” Analysis

– For each currently visited node v ∈ V:

– Apply Forward Simulation of v’s operator to all    values of all 

incoming edges

– Store new    values for the outgoing edges of v
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Workflow of Forward Analysis (1)

– queue<DVFG_node> q = <set of all source nodes of D>;

d(e) = U* for all edges e ∈ E;

– while ( !q.empty() )

– DVFG_node v = <first element of q>; q.remove( v );

Eout = { e ∈ E | e = (v, vx) }; Ein = { e ∈ E | e = (vx, v) };

– if ( <v represents a constant number c> )

d’(e) = {0, 1}* = <binary representation of c> for all e ∈ Eout;

– else

if ( <v represents an unknown input variable i of F> )

d’(e) = {Li}* = <bit locations of i> for all e ∈ Eout;

– else

d’(e) = <forward simulation of v> for all e ∈ Eout;
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Workflow of Forward Analysis (2)

– while ( !q.empty() )

– ... <see previous slide>;

– for ( <all edges e = (v, vx) ∈ Eout> )

– if ( <current d(e) is bit-wise less than d’(e) according to < operator

in L4> )

– d(e) = d’(e);

– if ( !q.contains( vx ) )

q.insert( vx );
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Remarks

– Constants and input variables provide initial values for the     values of 

leaf nodes with elements 0, 1 and L.

– For a k-bit register r modeled by edge e, forward analysis firstly computes 

an intermediate    value d’(e).

– d(e) ∈ L4
k is only set to this intermediate value d’(e) ∈ L4

k if

– for at least one bit position i (0 ≤ i ≤ k) di(e) < d’i(e) holds

AND

– for no bit position i (0 ≤ i ≤ k) d’i(e) < di(e) holds

 Since only steadily increasing bit values are assigned to the    values in 

the course of the analysis, each node v ∈ V is only added a finite number 

of times to the queue q.

 Forward analysis terminates necessarily, run-time complexity is O( |E| ).
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Forward Simulation (1)

Goal

– For each node v ∈ V that represents a machine operation op in the LIR of 

F, and for each outgoing edge e ∈ Eout:

Forward simulation computes the    value of e depending on the    values 

of all incoming edges ein,1, ..., ein,N ∈ Ein:

d’(e) = FSop( d(ein,1), ..., d(ein,N) )

Challenge

– To provide a bit-true simulation function FSop for each possible machine 

operation of LIR based on L4
k.

– FSop must model the behavior of op for the considered target processor 

exactly and bit-true!
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Forward Simulation (2)

Overall Approach

– Each and every machine operation op can in principle be described at 

the bit-level using the Boolean standard operators ,  and .

 Describe FSop as formula over the operators ,  and  of L4
k, in analogy 

to a Boolean description of op.

Bitwise Logical Operators

– Bitwise logical machine operations op (e.g., AND, OR, NOT, XOR, NOR, 

NAND, ...) can easily be modeled in L4
k using ,  and .

 Approach clear.
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Forward Simulation (3)

Arithmetical Operations

– Derivation of a representation in L4
k for arithmetical machine operations 

op laborious, but doable.

 Example addition:

– Half-adder: Adds bits a, b ∈ L4, produces bits s, c ∈ L4:

s = a  b = (a  b)  (a  b); c = a  b;

– Full-adder: Adds bits a, b, cin ∈ L4, produces bits s, cout ∈ L4:

s = (a  b)  cin; cout = (a  b)  (a  cin)  (b  cin);

– k-bit addition in L4
k:

Successively apply formulae of full-adder to bit positions 0, ..., k and 

compute bits of the resulting sum.
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Forward Simulation (4)

Register Transfer Operations

– Copying of register contents (Register-Register-Moves) is easily modeled 

in L4
k by copying of    values.

Memory Transfer Operations

– Since the BDVFA provides bit-true data and value flow information 

explicitly only for registers and NOT for external memories,

– store-operations anyways do not generate any    values, since they 

are typically sinks in the DVFG,

– load-operations only generate U* as    values.

 Other classes of machine operations need to be modeled similarly.



Compilers for Embedded Systems (CfES) SoSe 2022Slide 28/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Example Forward Simulation

&

a 3

<<

3

b

5

|

>>

<<

3

|

&

>>

b 2

7

r

La,7La,6La,5La,4La,3La,2La,1La,0

Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2Lb,1Lb,0

00000111

00000011

00000101

00Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2

00000Lb,4Lb,3Lb,2

000000La,1La,0

000La,1La,0000

00000Lb,7Lb,6Lb,5

000La,1La,0Lb,7Lb,6Lb,5

La,1La,0Lb,7Lb,6Lb,5000

La,1La,0Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2

00000010
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Backward Analysis (1)

Motivation and Goals

– Conjunction, disjunction and negation in L4 produce X (don’t care) only if 

one of their operands is already X.

 Since the    values of source nodes of the DVFG only consist of 0, 1 and 

L, the forward analysis never generates X.

– Goal of backward analysis is thus to generate X for individual bit positions 

under consideration of the    values computed so far.



Compilers for Embedded Systems (CfES) SoSe 2022Slide 30/106

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations

Backward Analysis (2)

Approach

– (Repeated) traversal through D in reverse direction of the edges

 “Backward” Analysis

– For each currently visited node v ∈ V:

– Answering of the question which bits of the    values of incoming 

edges of v are irrelevant, so that still the exact    values of v’s 

outgoing edges are created.

– Apply Backward Simulation of v’s operator to    values of the incoming 

and outgoing edges

– Store new    values for the incoming edges of v
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Workflow of Backward Analysis

– queue<DVFG_node> q = <set of all sink nodes of D>;

u(e) = d(e) for all edges e ∈ E;

– while ( !q.empty() )

– DVFG_node v = <first element of q>; q.remove( v );

Eout = { e ∈ E | e = (v, vx) }; Ein = { e ∈ E | e = (vx, v) };

– for ( <all edges e = (vx, v) ∈ Ein> )

– u’(e) = <backward simulation of v using Eout and Ein \ {e}>;

– if ( <current u(e) is bit-wise less than u’(e) according to < operator

in L4> )

– u(e) = u’(e);

– if ( !q.contains( vx ) )

q.insert( vx );
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Backward Simulation (1)

Goal

– For each node v ∈ V that represents a machine operation op in the LIR of 

F, and for each incoming edge e ∈ Ein:

Backward simulation computes the    value of e depending on the    

values of all outgoing edges eout,1, ..., eout,N ∈ Eout and of all incoming 

edges except e itself:

u’(e) = BSop( u(eout,1), ..., u(eout,N), u( ein ∈ Ein \ {e} ) )

In Analogy to Forward Simulation

– A bit-true simulation function BSop must be provided for each possible 

machine operation of LIR based on L4
k.
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Backward Simulation (2)

Overall Approach

– Exploitation of neutral elements and of zero elements of operators in 

order to identify don’t cares.

Bitwise Logical Operators

– Let b1,k and b2,k ∈ L4 be single bits at position k of the    value of the two 

operands of a logical operation and let b3,k be the k-th bit of the    value of 

the operation’s result.

– For b2,k = b3,k = 0:

b1,k AND b2,k = b3,k  b1,k AND 0 = 0  X AND 0 = 0

– Analogously for OR: b1,k OR 1 = 1  X OR 1 = 1

 Approach for other logical operations similar.
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Backward Simulation (3)

Arithmetical Operations

– Identification of irrelevant bits due to complexity of arithmetical operations 

often difficult.

 Plain example – Shift operator:

– a << 3: Shifts contents of a left by 3 bits

Least-significant 3 bits are filled with 0,

Most-significant 3 bits are shifted out / truncated

 In the    value of a, the 3 most-significant bits are X

– a >> 3: Analogously for least-significant 3 bits, under consideration

of arithmetical or logical shifting

 Other machine operations need to be analyzed carefully and must 

be modeled similarly.
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Example Backward Simulation (1)

&

a 3

<<

3

b

5

|

>>

<<

3

|

&

>>

b 2

7

r

La,7La,6La,5La,4La,3La,2La,1La,0 Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2Lb,1Lb,0

00000111

00000011

00000101

00Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2

00000Lb,4Lb,3Lb,2

000000La,1La,0

000La,1La,0000

00000Lb,7Lb,6Lb,5

000La,1La,0Lb,7Lb,6Lb,5

La,1La,0Lb,7Lb,6Lb,5000

La,1La,0Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2

00000010

Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2Lb,1Lb,0
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Example Backward Simulation (2)

&

a 3

<<

3

b

5

|

>>

<<

3

|

&

>>

b 2

7

r

La,7La,6La,5La,4La,3La,2La,1La,0

00000011

Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2Lb,1Lb,0

00000101

00000Lb,7Lb,6Lb,5

00Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2

00000010

00000111

00000Lb,4Lb,3Lb,2

La,1La,0Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2

La,1La,0Lb,7Lb,6Lb,5000

000La,1La,0Lb,7Lb,6Lb,5

000La,1La,0000

000000La,1La,0

Lb,7Lb,6Lb,5Lb,4Lb,3Lb,2Lb,1Lb,0

XXXXXLb,4Lb,3Lb,2

XXXLb,4Lb,3Lb,2XX

XXXLa,1La,0Lb,7Lb,6Lb,5

XXXLa,1La,0000

XXX00Lb,7Lb,6Lb,5

Lb,7Lb,6Lb,5XXXXX

XXXXXXLa,1La,0

XXXXXXLa,1La,0
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Application of BDVFA: Dead Code Elimination (DCE)

Definition (Dead Code)

(LIR-) Operations that compute only values that are not used on any 

executable path from the operation are called Dead Code.

Dead Code and BDVFA

– In the DVFG, individual bits that are completely irrelevant for subsequent 

computations are set to X in the    values of edges.

 An LIR operation whose outgoing edges all

carry only X* as    value is dead code.
DC

XXXXXXXX...
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Workflow of Bit-True Dead Code Elimination

– queue<DVFG_node> q;

for ( <all edges e = (v, w) ∈ E with u(e) = X*> )

q.insert( v );

– while ( !q.empty() )

– DVFG_node v = <first element of q>; q.remove( v );

Eout = { e ∈ E | e = (v, vx) }; Ein = { e ∈ E | e = (vx, v) };

– if ( ( u(e) = X* for all e ∈ Eout ) && ( <v has no side-effects> ) )

– mark v;

– for ( <all edges e = (vx, v) ∈ Ein> )

– u(e) = X*;

– if ( <vx is not yet marked> ) q.insert( vx );

– remove all LIR operations associated with marked nodes;
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Application of BDVFA: Bit-Packet Insert Operations (1)

Insert Operations and BDVFA

– Insertion of a bit-packet into a register by some arbitrary part of the DVFG 

directly visible from the    values:

 An optimization has to partition the    value of an edge into disjoint bit-

packets according to the edge’s L values and needs to generate 

matching insert operations according to this partitioning.

XXXXLa,3La,2La,1La,0

Sub-Graph

Lb,7Lb,6XXXXLb,1Lb,0

Lb,7Lb,6La,3La,2La,1La,0Lb,1Lb,0
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Application of BDVFA: Bit-Packet Insert Operations (2)

Insert Operations and BDVFA (ctd.)

– Optimization of the example by generation of an insert operation and by 

adjustment of edges:

 Provided that no further edges leave the sub-graph after adjustment of 

edges, the entire sub-graph will be removed by a subsequent DCE!

XXXXLa,3La,2La,1La,0 Lb,7Lb,6XXXXLb,1Lb,0

Lb,7Lb,6La,3La,2La,1La,0Lb,1Lb,0

Sub-Graph

Lb,7Lb,6La,3La,2La,1La,0Lb,1Lb,0

insert

XXXXLa,3La,2La,1La,0 Lb,7Lb,6XXXXLb,1Lb,0
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Application of BDVFA: Bit-Packet Extract Operations (1)

Extract Operations and BDVFA

– An extraction of a bit-packet by some arbitrary sub-graph of the DVFG is 

again visible from the    values:

Sub-Graph

0000La,7La,6La,5La,4

Lb,7Lb,6La,7La,6La,5La,4Lb,1Lb,0
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Application of BDVFA: Bit-Packet Extract Operations (2)

Extract Operations and BDVFA (ctd.)

– Optimization of the example by generation of an extract operation and by 

adjustment of edges:

 Possibly, the sub-graph can again be removed by a DCE.

0000La,7La,6La,5La,4

Lb,7Lb,6La,7La,6La,5La,4Lb,1Lb,0

Teilgraph

0000La,7La,6La,5La,4

extract

XXLa,7La,6La,5La,4XX Sub-Graph
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Chapter Contents

7. LIR Optimizations and Transformations

– Generation of Bit-Packet Operations for NPUs

– Motivation of Bit-True Data and Value Flow Analyses

– Partial Order L4

– Bit-True Analysis: Forward and Backward Simulation

– Bit-True Optimizations: Dead Code Elimination; Generation of 

insert/extract operations

– Scratchpad Memory Optimizations

– Properties of Main Memories, Caches and Scratchpads

– Fix SPM Allocation (Functions, global Variables)

– Fix SPM Allocation (Functions, Basic Blocks, global Variables)

– SPM Allocations for Multi-Process Applications (partitioned, 

exclusive, hybrid)
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Properties of Today’s Memories (1)

– Speed gap between CPUs 

and DRAMs doubles every 2 

years.

– Fast CPUs are massively 

slowed down by slow 

memories

 ”Memory Wall” problem

[P. Machanik. Approaches to Addressing 

the Memory Wall. Technical Report, 

University of Brisbane, Nov 2003]

2

4

8

2 4 5

Relative speed

time [years]31

 Factor 2

every 2 years

1

0
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Properties of Today’s Memories (2)

– With increasing size of a 

memory, a single memory 

access consumes 

disproportionately high 

energy.

– With increasing size, memory 

accesses also take 

proportionally longer.

 Fabrication technology of 

memories suggests to use 

small memories!
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Properties of Today’s Memories (3)

– Memory subsystem often 

consumes more than 50% of 

the entire system’s total 

energy budget.

– Pie charts show averages 

over more than 160 different 

energy measurements each.

34,8%

65,2%

Prozessor
Energie

Hauptspeicher
Energie

54,1%

4,1%

20,6%

10,3%

10,8%

Prozessor
Energie

Hauptspeicher
Energie

Scratchpad
Energie

I-Cache
Energie

D-Cache
Energie

– ARM7 Mono-Core without Cache:

– ARM7 Multi-Core with Caches:

[M. Verma, P. Marwedel. Advanced 

Memory Optimization Techniques for 

Low-Power Embedded Processors. 

Springer, 2007]
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Properties of Today’s Memories (4)

– Orders of magnitudes for 

energy consumption of 

memories also confirmed by 

other independent groups 

from industry and academia.

[S. Segars (ARM Ltd.). Low power 

design techniques for microprocessors. 

ISSCC 2001]

26%

26%

9%

8%

10%
5%

16%

StrongARM
Prozessor

I-Cache

D-Cache

I-MMU

D-MMU

Taktversorgung

Sonstiges

25%

25%

4%

5%

4%

18%

19%

ARM920T
Prozessor

I-Cache

D-Cache

I-MMU

D-MMU

Taktversorgung

Sonstiges

[O. S. Unsal, I. Koren, C. M. Krishna, 

C. A. Moritz. University of 

Massachusetts, Amherst, 2001]
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Properties of Today’s Memories (5)

– Energy consumption of mobile devices

[O. Vargas (Infineon). Minimum power consumption in mobile-phone 

memory subsystems. Pennwell Portable Design, Sep. 2005]
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Scratchpad Memories

Structure

– Scratchpads (SPMs) are small, physically separate memories

– They are mostly placed on the same chip as the processor (so-called on-

chip memories)

 Due to little size and on-chip placement: Extremely fast and energy-

efficient memories

– Are seamlessly mapped into the

processor’s address space:

0x000…

0xFFF…

Scratchpad Memory

SPM

select

– Access by a simple address 

decoder that recognizes 

addresses on the bus from the 

SPM’s address region:
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Recall: Structure of Set-Associative Caches

Tag Index

Address

Tag

Memory

Data

Memory

Tag

Memory

Data

Memory

Way 0 Way 1

= =

Data
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Properties of Scratchpad Memories (1)

Predictability

– Each SPM access takes only constant time, usually 1 clock cycle.

– In contrast to this: A cache access takes a variable time, depending on 

whether it results in a cache hit or cache miss.

 Run-time behavior of scratchpads is 100% predictable while behavior of 

caches is difficult to impossible to predict.

 Caches are severely limited regarding real-time capabilities while SPMs 

are frequently used in the domain of hard real-time systems.
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Properties of Scratchpad Memories (2)

Current Drain Compared to Main Memories

– Measurements using real hardware (Atmel ARM7 evaluation board) show 

that, e.g., a load instruction draws a factor 3 less current if both the 

instruction and the data to be loaded reside in SPM instead of the off-chip 

main memory:

48,2 50,9 44,4 53,1

116
77,2 82,2

1,16

0

50

100

150

200

Prog Main/ Data MainProg Main/ Data SPMProg SPM/ Data MainProg SPM/ Data SPM

m
A

Current Drawn by Load Instruction

Main
Memory

ARM7 +
SPM
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Properties of Scratchpad Memories (3)

Energy Consumption Compared to Main Memories

– Similar measurements using the same hardware reveal that energy 

consumption of the load instruction can be reduced by factor of 7:

Recall:

Assumption: Supply

voltage is constant and 

drawn current does not 

vary too much over time

115,8

51,6

76,5

16,4

0,0

20,0

40,0
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140,0
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Properties of Scratchpad Memories (4)

Energy Consumption Compared to Caches

– Size and number of tag memories, comparators and multiplexors 

depends on the size of the cached memory region.

– Energy consumed by these hardware components considerable:
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Memory Size

Scratchpad

Cache, 2way, 4GB space

Cache, 2way, 16 MB space

Cache, 2way, 1 MB space

[R. Banakar. Comparison of 

Cache- and Scratch-Pad based 

Memory Systems... Technical 

Report #762, Universität 

Dortmund, Sep. 2001]
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Properties of Scratchpad Memories (5)

Energy Consumption Compared to Caches

– Energy consumption of caches additionally depends heavily on the 

degree of associativity:

Caution: Underlying

technology for this diagram

different to that from the

previous slide.

Thus, there are deviations in

the absolute values shown

here and on the previous

slide!
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Integer-Linear Programming

Technique to Model Linear Optimization Problems

– Optimization of an objective function    under consideration of constraints     

, ....,

– Objective function and constraints are linear expressions of the integer 

decision variables     , ..., 

→ to be minimized or maximized

Constants

Variables

– Optimal resolution of so-called ILPs (Integer Linear Programs) using 

standard ILP solvers (e.g., lp_solve, cplex)

Complexity: exponential in the worst case, but usually “OK”.
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Fix SPM Allocation: Functions & Global Variables (1)

Goal

– Allocation of the code of complete LIR functions and of global variables 

onto the SPM

(local variables usually lie on the stack and will not be considered here 

for this reason)

– Compiler determines at compile-time which functions and global 

variables occupy the SPM.

This SPM allocation remains fix during run-time of the optimized 

program, i.e., the assignment of functions and variables to the SPM does 

not change at all during the entire run-time.
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Fix SPM Allocation: Functions & Global Variables (2)

Definitions

Notation: Upper-case letters  constants,

lower-case letters  variables

– Set of all memory objects to be considered

for SPM allocation, i.e., functions    and

global variables   , resp.

– Size of the available SPM in bytes

– Size of memory object          in bytes

– Energy that is saved if          is moved from

main memory to SPM, per single execution

of                 or per single access to

, resp.
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Fix SPM Allocation: Functions & Global Variables (3)

Definitions (ctd.)

– Total amount of accesses or of executions 

to

– Totally saved energy if          is moved from

main memory to SPM for the overall

execution of the program to be optimized

– Binary decision variable for

is moved onto SPM
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Fix SPM Allocation: Functions & Global Variables (4)

Determination of Parameter Values

– : Provided by user, constant

– : Easy to determine using an LIR: Either the sum of the sizes of all 

machine instructions of a function, or the sum of the sizes of all sub-

variables (e.g. for composed types like arrays or structs)

– : 

For                : Energy model ( cf. chapter 3) provides difference

between access to main memory and SPM

For                : Energy model provides difference               between

instruction fetch from main memory or from SPM.

Simulation of the program to be optimized yields

amount             of executed instructions for

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations
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Fix SPM Allocation: Functions & Global Variables (5)

Determination of Parameter Values (ctd.)

– : Same simulation that provides                 can be used to obtain 

access and execution frequencies for

 Prior to the scratchpad optimization of a program, a simulation run is 

performed in order to determine parameters required for the optimization

 Such a simulation creates a run-time profile of the program to be 

optimized. Thus:

This simulation phase before an optimization is called Profiling.

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations



Compilers for Embedded Systems (CfES) SoSe 2022Slide 62/106

Fix SPM Allocation: Functions & Global Variables (6)

ILP Formulation

– Objective function: Maximize energy savings for the whole program

– Constraint: The SPM’s capacity must not be exceeded

[S. Steinke. Untersuchung des Energieeinsparungspotenzials in eingebetteten 

Systemen durch energieoptimierende Compilertechnik. Dortmund 2002]

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations
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Fix SPM Allocation: Functions & Global Variables (7)

Results (MultiSort Benchmark)
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– 64b SPM too small to hold 

global variables/functions.

– Steady energy and run-

time reductions until 1kB 

SPM due to allocation of 

more MOs to SPM.

– From 2kB onwards minor 

degradations w.r.t. energy 

consumption since no 

more MOs can be 

allocated (all MOs already 

reside on SPM) but the 

energy consumption of 

larger SPMs increases for 

technological reasons.
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Fix SPM Allocation: Functions, Basic Blocks & Global 
Variables (1)

Motivation

– Allocation of entire functions possibly disadvantageous:

 Entire functions contain lots of code and occupy large space in the SPM

 Parts of a function’s code (e.g., code outside loops) are executed rarely. 

They thus produce only very small energy savings but, however, occupy 

costly SPM capacity.

 (Scarce resource) SPM capacity exploited only in a sub-optimal way.

Goal

– Allocation of the code of complete LIR functions, of individual basic 

blocks and of global variables onto the SPM.
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Fix SPM Allocation: Functions, Basic Blocks & Global 
Variables (2)

Problem when Moving Single Basic Blocks

Remember: A basic block b may contain a branch instruction only as very 

last instruction

– If the branch at the end of b is conditional, b has two successors b1 and 

b2 in the CFG that are executed if the conditional branch is either taken 

or not taken:

b:  ...

jnz %d_0, b2

b1: ... b2: ...
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Fix SPM Allocation: Functions, Basic Blocks & Global 
Variables (3)

Problem when Moving Single Basic Blocks

– b1 is reached from b implicitly if the conditional branch is not taken, since

 the program counter is incremented after the non-taken branch and thus 

points to the next following instruction, and

 the code of b1 directly follows that of b in memory.

b:  ...

jnz %d_0, b2

b1: ... b2: ...
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Fix SPM Allocation: Functions, Basic Blocks & Global 
Variables (4)

Problem when Moving Single Basic Blocks

What if b resides in SPM but b1 not (or vice versa)?

– If the branch is not taken, the next instruction following b in the SPM will 

be executed.

 Since b1 no longer follows b in the memory, incorrect code will be 

executed!

b:  ...

jnz %d_0, b2

b1: ... b2: ...
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Fix SPM Allocation: Functions, Basic Blocks & Global 
Variables (5)

A Naive Solution

– Extend all basic blocks b featuring such an implicit CFG edge by an 

unconditional branch to b1:

Disadvantage

– Unconditional branch extremely inefficient (code size, run-time and 

energy consumption) if both b and b1 still reside in the same memory.

b:  ...

jnz %d_0, b2

j   b1

b1: ... b2: ...
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Fix SPM Allocation: Functions, Basic Blocks & Global 
Variables (6)

A Better Approach

– Extension of a basic block b featuring such an implicit CFG edge by an 

unconditional branch only if b and b1 are actually allocated to different 

memories

Advantage

– Unconditional branches are generated additionally only there where it is 

really necessary

Problem

– Code size     of b now depends on the decision variables     and

that model the memory allocation of b in the ILP.

 How to model a non-constant/variable parameter     in the ILP?
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Fix SPM Allocation: Functions, Basic Blocks & Global 
Variables (7)

Multi-Basic Blocks

– Sets of basic blocks that are connected in the CFG.

– Let G be the CFG of a function f, G’ be a connected sub-graph of G. The 

set of all basic blocks of G’ is a multi-basic block.

– {b, b1}, {b, b2} and {b, b1, b2} are multi-basic blocks.

– {b1, b2} is no multi-basic block: Its associated G’ is not connected.

b1: ... b2: ...

b:  ...
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Fix SPM Allocation: Functions, Basic Blocks & Global 
Variables (8)

(Multi-) Basic Blocks in the ILP Formulation

– ILP for SPM allocation optimizes memory objects from the sets of all 

functions    , of all single basic blocks   , of all multi-basic blocks       and 

of all global variables  .

– is constructed by generating all possible connected sub-graphs G’ of 

the CFG.

Definitions

– Set of all memory objects to be considered

for SPM allocation

– Meaning of all other terms (                              ) as before

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations
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Fix SPM Allocation: Functions, Basic Blocks & Global 
Variables (9)

Determination of Parameter Values

– : For                 or                 : as before;

For                : Size of all instructions of the basic block, plus the size

of an unconditional branch if          has an implicit

successor in the CFG;

For                    : Size of all instructions of all basic blocks included in

, plus the size of k unconditional branches if

has k implicit successors outside         in the CFG.

– : as before, but now just analogously to     under consideration

of the novel unconditional branches

– : as before per profiling, now just also for all

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations
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Fix SPM Allocation: Functions, Basic Blocks & Global 
Variables (10)

ILP Formulation

– Objective function: Maximize energy savings for the whole program

– Constraint 1: The SPM’s capacity must not be exceeded

– Additional constraint per                 :          may only be allocated to the 

SPM by at most one decision variable within the ILP (for b itself, for b´s 

function or for all multi-basic blocks that contain b)

© H. Falk | 17.03.2022 7 - LIR Optimizations and Transformations
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Fix SPM Allocation: Functions, Basic Blocks & Global 
Variables (11)

Results (MultiSort Benchmark) – 64b SPM are now 

successfully exploited for 

the allocation of pieces of 

code.

– Caution: The diagram 

here also features the 

allocation of the run-time 

stack onto the SPM. For 

this reason, this diagram 

cannot directly be 

compared with that from 

slide 63!
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Fix SPM Allocation: Functions, Basic Blocks & Global 
Variables (12)

Detailed Results only for Memory Subsystem
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Fix SPM Allocation: Functions, Basic Blocks & Global 
Variables (13)

Comparison of ACET and WCETEST for Scratchpads and Caches

– SPMs are, in contrast to caches, perfectly predictable: WCETEST scales 

nicely with ACETs

– Only for larger memory sizes (beyond 2kB), caches outperform SPMs in 

terms of ACET
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Multi-Process SPM Allocation: Partitioned SPM (1)

– Available SPM capacity is partitioned into disjoint 

areas during compile-time

– Each process Pi obtains a dedicated SPM partition 

for functions, (multi-) BBs & global variables of Pi

– Expectation: Good results for large SPMs

Process P1

Process P3

Process P2

Scratchpad

P1

P2

P3

Time
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Multi-Process SPM Allocation: Partitioned SPM (2)

Energy Arrays of Single Processes

– Let P1, ..., PN be the processes of a multi-process application

– S denotes the size of the available SPM capacity in bytes,

S’ < S is a user-provided parameter that cuts the SPM into slices of S’

bytes size each

– For each process Pi, we will determine an energy array        .          

denotes how much energy Pi consumes if Pi has x bytes of SPM at its 

disposal.

– is pre-computed for all sizes x = S’, 2S’, 3S’, ... that are multiples of 

S’. This is achieved by repeated solution of the ILP for fix SPM allocation 

of functions, multi-BBs and global variables for each value of x above.
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Multi-Process SPM Allocation: Partitioned SPM (3)

Energy Arrays for Multi-Process System and Partitioned SPM

– For a complete multi-process system consisting of processes P1, ..., PN, 

its energy array           has to be determined.           denotes how much 

energy the entire multi-process system consumes if it has x bytes of SPM 

at its disposal.

–

for all those values of x, x1, ..., xN for which the individual     are defined

– For a fixed available SPM size S and a multi-process system, an SPM 

allocation yielding the minimal           has to be determined.
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Multi-Process SPM Allocation: Partitioned SPM (4)

The binmin Function

– Example: A multi-process system consists of 3 processes P1, P2 and P3.

–

– binmin is a binary function that combines two energy arrays g and h and 

again computes an energy array:

– Due to its associativity, computing the minimum over an N-fold sum in

can be reduced to the binary min in binmin.
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Multi-Process SPM Allocation: Partitioned SPM (5)

Example:

System with 3 

processes (receive, 

decode, ui)
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Multi-Process SPM Allocation: Partitioned SPM (6)

Algorithm to Compute binmin( g, h )

– for ( x = 0; x <= S; x += S’ )

– int min = ∞;

– for ( tmp = 0; tmp <= x; tmp += S’ )

– if ( g[ tmp ] + h[ x – tmp ] < min )

min = g[ tmp ] + h[ x – tmp ];

– b[ x ] = min;

– return b;
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Multi-Process SPM Allocation: Partitioned SPM (7)

Algorithm to Compute

PartitionedSPM(                  )

– if ( N > 2 )

– = PartitionedSPM(                     );

– = binmin(                );

– else

– = binmin(    ,   );

– return     ;

– binmin can easily be 

adapted such that it not 

only returns array b[ ], 

but also that value of 

tmp for which b[ x ] is 

minimal.

 This way, the algorithm 

not only computes

but also the partition 

sizes xi for all 

processes Pi.
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Multi-Process SPM Allocation: Exclusive SPM (1)

– Each process Pi can freely and exclusively use the 

complete SPM for its functions, (multi-) BBs & 

global variables

– During context switches, the SPM content must be 

stored and reloaded

Process P1

Scratchpad

P1

P2

P3

Time

Reload of

SPM Contents
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Multi-Process SPM Allocation: Exclusive SPM (1)

– Each process Pi can freely and exclusively use the 

complete SPM for its functions, (multi-) BBs & 

global variables

– During context switches, the SPM content must be 

stored and reloaded

Process P2

Scratchpad

P1

P2

P3

Time
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Multi-Process SPM Allocation: Exclusive SPM (1)

– Each process Pi can freely and exclusively use the 

complete SPM for its functions, (multi-) BBs & 

global variables

– During context switches, the SPM content must be 

stored and reloaded

Process P3

Scratchpad

P1

P2

P3

Time
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Multi-Process SPM Allocation: Exclusive SPM (1)

– Each process Pi can freely and exclusively use the 

complete SPM for its functions, (multi-) BBs & 

global variables

– During context switches, the SPM content must be 

stored and reloaded

– Expectation: Good results for small SPMs
Scratchpad

P1

P2

P3

Time

Process P1

Process P2

Process P3
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Multi-Process SPM Allocation: Exclusive SPM (2)

Energy Arrays of Single Processes

– For each process Pi, si denotes its scheduling frequency. si is pre-

computed using profiling.

– For each process Pi, we will determine an energy array        .          

denotes how much energy Pi consumes if Pi has x bytes of SPM at its 

disposal that need to be stored and reloaded during context switches.

– is pre-computed analogously for all sizes x = S’, 2S’, 3S’, ...:

– = Energy consumed during the execution of Pi using x Bytes SPM + 

additional energy used to copy x bytes from SPM to main memory and 

back (copy energy CE), multiplied by the frequency of context switches 

for Pi.
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Multi-Process SPM Allocation: Exclusive SPM (3)

Energy Arrays for Multi-Process System and Exclusive SPM

– For a complete multi-process system consisting of processes P1, ..., PN, 

its energy array          has to be determined.          denotes how much 

energy the entire multi-process system consumes if it has x bytes of SPM 

at its disposal that (partially) need to be reloaded during context switches.

–

for all those values of x and xj for which the individual     are defined

– For a fixed available SPM size S and a multi-process system, an SPM 

allocation yielding the minimal           has to be determined.
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Multi-Process SPM Allocation: Exclusive SPM (4)

Algorithm to Compute

ExclusiveSPM(                  )

– for ( <all processes Pi> )

– prev_min[ i ] = ∞;

– for ( x = 0; x <= S; x += S’ )

– = 0;

– for ( <all processes Pi> )

– min[ i ] = (           < prev_min[ i ] ) ?          : prev_min[ i ];

– += min[ i ];

– prev_min[ i ] = min[ i ];

– return      ;
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Multi-Process SPM Allocation: Hybrid SPM (1)

– SPM is grouped into a partitioned and an exclusive 

area.

– Each process Pi can make use of the exclusive 

area and of a dedicated part of the partitioned area.Scratchpad

P1

P2

P3

Time

Reload of the

exclusive SPM areaProcess P1

Process P3

Process P2

Process P1
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Multi-Process SPM Allocation: Hybrid SPM (1)

– SPM is grouped into a partitioned and an exclusive 

area.

– Each process Pi can make use of the exclusive 

area and of a dedicated part of the partitioned area.Scratchpad
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P2

P3

Time

Process P1

Process P3

Process P2

Process P2
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Multi-Process SPM Allocation: Hybrid SPM (1)

– SPM is grouped into a partitioned and an exclusive 

area.

– Each process Pi can make use of the exclusive 

area and of a dedicated part of the partitioned area.Scratchpad

P1

P2

P3

Time

Process P1

Process P3

Process P2

Process P3
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Multi-Process SPM Allocation: Hybrid SPM (1)

– SPM is grouped into a partitioned and an exclusive 

area.

– Each process Pi can make use of the exclusive 

area and of a dedicated part of the partitioned area.

– Expectation: Good results for all kinds of SPMs
Scratchpad

P1

P2

P3

Time

Process P1

Process P3

Process P2

Process P1Process P2Process P3
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Multi-Process SPM Allocation: Hybrid SPM (2)

Energy Arrays of Single Processes

– For each process Pi, we will determine an energy array             .              

denotes how much energy Pi consumes if Pi has x bytes of partitioned 

and y bytes of exclusive SPM to be reloaded during context switches at 

its disposal.

– is again pre-computed for all sizes of x and y = S’, 2S’, 3S’, ... 

This is achieved by solving a special variant of the ILP for fix SPM 

allocation (not shown here) that supports two different SPMs of sizes x

and y.
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Multi-Process SPM Allocation: Hybrid SPM (3)

Energy Arrays for Multi-Process System and Hybrid SPM

– For a complete multi-process system consisting of processes P1, ..., PN, 

its energy array              has to be determined.              denotes how 

much energy the entire multi-process system consumes if it has x bytes 

partitioned and y bytes exclusive SPM at its disposal.

–

for all those values of x1, ..., xN, y1, ..., yN, for which the individual       are 

defined

– For a fixed available SPM size S and a multi-process system, an SPM 

allocation yielding the minimal              has to be determined such that

holds.
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Multi-Process SPM Allocation: Hybrid SPM (4)

The hybrid_binmin Function

– Example: A multi-process system consists of 3 processes P1, P2 and P3.

–

– hybrid_binmin is a binary function that combines two energy arrays g

and h and again computes an energy array:

– Due to its associativity, computing the minimum over an N-fold sum in

can be reduced to the binary min in hybrid_binmin.
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Multi-Process SPM Allocation: Hybrid SPM (5)

Algorithm to Compute hybrid_binmin( g, h )

– for ( y = 0; y <= S; y += S’ )

– int min = ∞;

– for ( x = 0; x <= S - y; x += S’ )

– for ( tmp = 0; tmp <= x; tmp += S’ )

– if ( g[ tmp, y ] + h[ x – tmp, y ] < min )

min = g[ tmp, y ] + h[ x – tmp, y ];

– b[ x, y ] = min;

– return b;
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Multi-Process SPM Allocation: Hybrid SPM (6)

Algorithm to Compute

HybridSPM(                   )

– if ( N > 2 )

– = HybridSPM(                      );

– = hybrid_binmin(                );

– else

– = hybrid_binmin(     ,      );

– return     ;

– Functionality in analogy 
to PartitionedSPM

( slide 83)
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Multi-Process SPM Allocation: Results (1)

– Here: Media application (processes adpcm, g721, mpeg4, edge 

detection)

– Energy (single-process): SPM is completely assigned to that single 

process using fix SPM allocation that reduces energy consumption most.
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Multi-Process SPM Allocation: Results (2)

– Partitioned SPM: In fact beneficial for large memories

– Partitioning of the SPM outperforms exclusive SPM allocation from 1kB 

SPM size on
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Multi-Process SPM Allocation: Results (3)

– Exclusive SPM: In fact beneficial for small memories

– Exclusive SPM allocation including reloading of SPM content outperforms 

partitioned SPMs up to 512 bytes SPM size
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Multi-Process SPM Allocation: Results (4)

– Hybrid SPM: Is in fact the best allocation scheme for all SPM sizes

– At 4kB SPM: 27% energy savings compared to bar “single-process”

– Similar results also for “Video Phone” and “DSP” multi-process systems

27%
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Summary

Generation of Bit-Packet Operations for NPUs

– Conventional data flow analysis are not bit-true

– Bit-true data and value flow analysis via forward and backward simulation

– Detection of bit-Packets using    values of the BDVFA

Optimizations for Scratchpad Memories

– Scratchpads extremely beneficial regarding energy consumption, run-

time and WCETEST, as compared to caches and main memories

– Integer-linear programming (ILP) as optimization approach

– SPM contents: Functions, basic blocks and global variables

– SPM allocation for single- and multi-process systems


