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Motivation

Memory Hierarchies ( Chapter 7 – Scratchpad Optimizations)

Memories are the more efficient w.r.t. run-time and energy consumption ...

– ... the smaller they are, and ...

– ... the closer they are placed to the processor.

Registers

– Memory hierarchies of computers are usually mentioned in the context of 

hard disks, main memories or caches (e.g., in advertisements)

 But: Registers are those memories that, among all memories of a 

computer, are the smallest ones and that are placed directly inside the 

processor.

 Registers are by far the most efficient memories of a computer.
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Role of Register Allocation

Register Allocation

– Mapping of scalar data of an LIR to physical registers

– Best-possible exploitation of the (scarce) resource of processor registers

 Is considered to be the most important compiler optimization ever
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Interdependencies Register Allocation  Code Generation

Variant 1: Code Generator Produces Virtual Code

– LIR uses infinite amount of virtual registers ( chapter 3)

 Register allocation has to map each individual (of the potentially many) 

virtual registers to a physical register.

Variant 2: Code Generator Produces Stack Accesses

– Before each USE of an operand, the LIR contains a load instruction in 

order to fetch the operand from the stack

– Analogously: Each DEF of an LIR operand is followed by a store 

instruction

 Register allocation has to map the LIR operands to processor registers 

such that all these load and store instructions can mostly be removed.

 In the following: Assumption of virtual code (variant 1)
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Motivation

When is a Mapping of Virtual to Physical Registers valid?

Two virtual registers r0 and r1 may be mapped to the same physical register 

if

 r0 and r1 are never “in use” simultaneously.

When is a Virtual Register “in Use”, and when not?

– Life Time Analysis (LTA) determines when the life times of virtual 

registers start and end

– A virtual register is live if it holds a value that could eventually be used in 

the future

– LTA bases on the control flow graph and DEF/USE information
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Example CFG

– Note: CFG nodes here represent single 

machine instructions instead of basic blocks

( cf. chapter 5)

– Code makes use of three virtual registers:

r_a, r_b, r_c

MOV r_a,0; # r_a = 0

L1: ADD r_b,r_a,1; # r_b = r_a+1

ADD r_c,r_c,r_b; # r_c = r_c+r_b

MUL r_a,r_b,2; # r_a = r_b*2

JLT r_a,N,L1; # if r_a<N goto L1

L2: RET r_c; # return r_c

ADD r_c,r_c,r_b

ADD r_b,r_a,1

MOV r_a,0

MUL r_a,r_b,2

JLT r_a,N,L1

RET r_c
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Example: Life Time of r_b

– A register is live if it holds a value that could 

eventually be used in the future

 LTA works “from the future” towards “the past”

– Last USE of r_b: Node 4

 r_b is live along edge (3, 4)

– Node 3 is not a DEF of r_b

 r_b is live along edge (2, 3), too

– Node 2 defines r_b:

 Content of r_b irrelevant for node 2

 r_b is not live along edge (1, 2)

ADD r_c,r_c,r_b

ADD r_b,r_a,1

MOV r_a,0

MUL r_a,r_b,2

JLT r_a,N,L1

RET r_c
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Example: Life Time of r_a

– Last USE of r_a: Node 5

 r_a is live along edge (4, 5)

– Node 4 defines r_a

 r_a is not alive along edge (3, 4)

– Node 2 is a USE of r_a:

 r_a is defined in node 1

 r_a is live along edge (1, 2)

 r_a is also live along edge (5, 2), since the 

DEF of r_a in node 4 reaches node 2 via the 

loop’s back-edge

ADD r_c,r_c,r_b

ADD r_b,r_a,1

MOV r_a,0

MUL r_a,r_b,2

JLT r_a,N,L1

RET r_c
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Example: Life Time of r_c

– Last USE of r_c: Node 6

 r_c is live along edge (5, 6)

 r_c is live along edges (4, 5) and (3, 4)

– Another USE of r_c: Node 3

 DEF of r_c in node 3 reaches the USE in node 

3 via the loop’s back-edge

 r_c is also live along edges (2, 3) and (5, 2)

– Additionally:

 Since r_c is not properly initialized outside the 

loop: r_c is also live along edge (1, 2)

ADD r_c,r_c,r_b

ADD r_b,r_a,1

MOV r_a,0

MUL r_a,r_b,2

JLT r_a,N,L1

RET r_c
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Example: Complete LTA

– Life time of r_c overlaps that of r_a as well as 

that of r_b

 r_c must not be allocated to the same physical 

register as r_a

 r_c must not be allocated to the same physical 

register as r_b

– Life times of r_a and r_b are disjoint

 r_a and r_b may/should share the same 

physical register

ADD r_c,r_c,r_b

ADD r_b,r_a,1

MOV r_a,0

MUL r_a,r_b,2

JLT r_a,N,L1

RET r_c
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Definitions for LTA

– Let v be a node of the control flow graph

– predv / succv Sets of all predecessors/successors of v in the CFG

– defv / usev Sets of all virtual registers defined/used by v

– A virtual register r is live along a CFG edge if there is a directed path in 

the CFG from that edge to some use of r that contains no other definition 

of r.

– Register r is live-in at a CFG node v if r is live along some incoming 

edge of v.

– Register r is live-out at v if r is live along some outgoing edge of v.
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Liveliness of Virtual Registers

– Let v be a CFG node, r a virtual register

– If r ∈ usev: r is live-in at v

– If r is live-in at v: r is live-out at

all w ∈ predv

– If r is live-out at v and r  defv: r is live-in at v

– Data flow equations for life time analysis:

– = Set of all registers that are live-in at v (        analogously)

–

–
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Algorithm for LTA

Given: Control flow graph G = (V, E) at the level of machine instructions

Approach: Iterative resolution of data flow equations from previous slide

– for ( <all nodes v ∈ V> )

– do

– for ( <all nodes v ∈ V in reverse-topological order> )

– ;

–

–

– while (                                          for some arbitrary v ∈ V )
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Remarks

Reverse-Topological Order

– Create graph G’ from control flow graph G, by reverting the sense of all 

edges

– Perform a depth-first search (DFS) on G’, starting at the source nodes of 

G’, i.e., those nodes without incoming edges. During DFS, create the 

post-order sequence of visited nodes

– Revert the post-order in which the nodes of G’ are visited during the DFG 

traversal

Example from Slide 10

– DFS post-order of the “reverted” graph: 1, 2, 3, 4, 5, 6

– Reverse-topological order: 6, 5, 4, 3, 2, 1
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Graph Coloring and Register Allocation (1)

Definition (Graph Coloring)

Let G = (V, E) be an undirected graph, K  ℕ

Graph coloring denotes the problem to assign each node v ∈ V one color

such that:

(No two adjacent nodes may have the same color)

Idea of a Graph-Coloring Based Register Allocation

– Create graph G with one node v per virtual register

– Color G using K colors where the considered target processor has K

physical registers

– The color kv specifies to which physical register the virtual register 

associated with node v is allocated



Compilers for Embedded Systems (CfES) SoSe 2022Slide 21/33

© H. Falk | 17.03.2022 8 - Register Allocation

Graph Coloring and Register Allocation (2)

Definition (Interference Graph)

Let Rv = {r1, ..., rn} be the set of all virtual registers occurring in an LIR, and 

let Rp = {R1, ..., RK} be the set of all physical registers.

The interference graph is an undirected graph G = (V, E) with

– V = Rv  Rp and

– e = {v, w} ∈ E if v and w may never share the same physical register, i.e., 

if v and w interfere.

Register Interference: A virtual register ri and ...

– ... a virtual register rj interfere if their life times overlap.

– ... a physical register Rj interfere if some LIR operation op uses or 

defines ri, but op cannot address the physical register Rj.
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Graph Coloring and Register Allocation (3)

Special Case: Register Moves

– Lite times of r0 and r1 overlap: Strictly speaking, an edge {r0, r1} has 

to be inserted into G.

– But: The edge {r0, r1} is not necessary, since r0 and r1 carry the same 

value. r0 and r1 may share the same physical register in this situation.

 In this particular case, no edge {r0, r1} is created

 If r0 and r1 get the same color k later, the MOV operation is redundant 

and can simply be removed

MOV r0, r1; /* DEF: r0, USE: r1 */

...

ADD ri, rj, r0; /* USE: r0 */

...

MUL rk, rl, r1; /* USE: r1 */
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Creation of the Interference Graph (1)

Given

– LIR L

– Set Rp = {R1, ..., RK} of all physical registers

Base Algorithm

– ;

– for ( <all functions f ∈ L> )

– for ( <all basic blocks b ∈ f> )

– for ( <all instructions i ∈ b> )

– ;

– for ( <all pairs (rj, rk) with rj ∈ defi and rk ∈ live, j ≠ k> )

– if ( !isMOV( i ) || ( isMOV( i ) && ( rk  usei ) ) )

E = E  {rj, rk};
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Creation of the Interference Graph (2)

Extension of the Base Algorithm

Processor-specific interferences have to be added to G explicitly after the 

base algorithm, e.g., if

– an LIR operation cannot access all physical registers

– conventions for calling functions and for returning from function calls 

enforce that parameter or return values must reside in specific physical 

registers (so-called Calling Conventions)

– the use of extended registers ( chapter 2) imposes additional 

restrictions on the register allocator: For a virtual extended register E_0

consisting of sub-registers d_0 and d_1, it has to be ensured that, e.g., 

d_0 is always allocated to an “even” physical register, and d_1 to the 

next following “odd” physical register
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Graph Coloring by Simplification (1)

1. Build: Creation of the interference graph G

2. Simplify: Repeatedly remove nodes v from G that have a degree less 

than K, i.e., that have at most K-1 neighbors in the graph. Push these 

nodes on some compiler-internal stack S.

( Such nodes v are a priori always K-colorable, since there must 

always be a free color for v that is not used in the neighborhood of v.)

3. Spill: Step 2 stops if all remaining graph nodes have degree ≥ K. Then, 

one of these remaining high-degree nodes v is chosen, marked as 

potential spill, removed from G and pushed onto S.

( Spilling = Swapping in/out of a register v from/to the main memory if 

no physical register is available for v.)

4. Repeat Simplify and Spill until G = Ø.
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Graph Coloring by Simplification (2)

5. Select: Repeatedly pop nodes v from the stack S and re-insert them 

into G. If v is not a potential spill, v must be colorable. If v is a potential 

spill, v may be colorable. In both cases, assign v a free color kv. If a 

potential spill is not colorable, mark v as actual spill.

6. Spill Code Generation: For each actual spill v, insert a load operation 

before each USE of v and a store operation after each DEF of v.

( This way, the life time of the virtual register v is split into many tiny 

intervals that are likely to be colored in the next round of the algorithm.)

7. Start Over: If G still contains uncolored nodes, go to step 1.

8. MOV Operations with source register = target register are removed.
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Coalescing (1)

Register Moves

– During creation of the interference graph, no artificial edges were 

inserted for MOV operations. This happened in the hope that source and 

target of the MOV are allocated to the same physical register.

– But: The graph coloring algorithm from slides 25 & 26 does not actively 

enforce that source and target are actually allocated to the same physical 

register.

Register Coalescing

– For an operation MOV r0, r1 with non-interfering virtual source and 

target operands, coalescing merges the nodes of r0 and r1 in the 

interference graph to one single super-node so that it is enforced by 

construction that r0 and r1 are colored with the same color.
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Coalescing (2)

Effects of Coalescing MOV r0, r1;

– Pros: Lots of unnecessary register MOVes are removed, machine 

operations store their results directly in those registers where the results 

are effectively required, without the need to move results around.

– Cons: A coalesced node can have a higher degree than the original 

nodes so that an originally K-colorable interference graph can become 

uncolorable after coalescing.

r0 r1 r0/
r1
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Coalescing (3)

Safe Coalescing

– Coalescing is called safe if it can never happen that a previously K-

colorable interference graph becomes K-uncolorable after coalescing.

 Safe coalescing thus does eventually not remove all possible register 

MOVes from the code.

 But: The remaining MOV operations are still better and more acceptable 

than spill code that is generated for a K-uncolorable interference graph.

Workflow

– Coalescing is performed after step “Simplify” and before step “Spill”. If 

there are opportunities for coalescing, graph coloring continues with 

“Simplify” afterwards.

– “Simplify” only removes such nodes v from G that are neither source nor 

target of a MOV operation.
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Coalescing (4)

Safe Coalescing According to Briggs

– Coalesce two nodes v0 and v1 only if the resulting coalesced node v0/v1

has less than K neighbors with degree ≥ K.

– If v0/v1 has less than K neighbors with degree ≥ K after coalescing, then 

each of the two nodes v0 and v1 must also have less than K neighbors 

with degree ≥ K before coalescing.

– If the interference graph is K-colorable before coalescing, it must also be 

K-colorable afterwards, since v0/v1 will be removed during the following 

“Simplify” step.

 Coalescing according to Briggs is safe.
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Coalescing (5)

Safe Coalescing According to George

– Coalesce two nodes v0 and v1 only if for each neighbor vi of v0 it holds: 

either vi interferes with v1, or vi has degree less than K.

– Neighbors vi with degree < K also have degree < K after coalescing and 

will thus be removed during the subsequent “Simplify” step.

– Other neighbors vi that interfere with v1 before coalescing have by 

definition two edges {vi, v0} and {vi, v1}.

After coalescing, these two edges collapse to one single edge

{vi, v0/v1} so that the degrees of the involved nodes can only become 

smaller.

 Coalescing according to George is safe.
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Summary

Life Time Analysis

– Computation of the starts and ends of life times of registers

– Virtual registers may only share the same physical register if they are not 

simultaneously live

– Iterative solving of data flow equations

Register Allocation by Graph Coloring

– Interference graph G models overlapping life times of virtual registers, 

plus processor-specific allocation constraints

– Coloring of G represents a mapping of virtual to physical registers

– Graph coloring done by iterative simplification, spilling and coloring

– Safe Coalescing to remove redundant register MOVes


