
Compilers for Embedded Systems

Summer Term 2022

Heiko Falk

Institute of Embedded Systems

Electrical Engineering, Computer Science and Mathematics

Hamburg University of Technology

Chapter 9

WCET-Aware Compilation

Compilers for Embedded Systems (CfES) SoSe 2022Slide 3/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Outline

1. Introduction & Motivation

2. Compilers for Embedded Systems – Requirements & Dependencies

3. Internal Structure of Compilers

4. Pre-Pass Optimizations

5. HIR Optimizations and Transformations

6. Code Generation

7. LIR Optimizations and Transformations

8. Register Allocation

9. WCET-Aware Compilation

10.Outlook

Compilers for Embedded Systems (CfES) SoSe 2022Slide 4/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Chapter Contents

9. WCET-Aware Compilation

– Introduction

– Integration of a WCET Timing Model into a Compiler

– Challenges for WCET-Aware Optimization

– Procedure Cloning & Positioning

– WCET-Aware Procedure Cloning

– Procedure Positioning for Cache Miss Reduction

– Register Allocation

– Problem of Classical Graph Coloring

– WCET-Aware Graph Coloring

– Scratchpad Allocation of Data and Code

– Allocation of global Data

– Allocation of Basic Blocks

Compilers for Embedded Systems (CfES) SoSe 2022Slide 5/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Software Design for Real-Time Systems

Current Industrial Practice (Automotive, Avionics)

1. Specification using graphical / high-level tools

2. Automatic generation of ANSI-C code

3. Compilation of binary machine code for a given processor architecture

4. Repeated executions / simulations of generated machine code, usage of

“representative” input data

5. Time measurements provide “observed execution times”

6. Addition of safety margin (e.g., 20%) to greatest observed execution

time: “observed Worst-Case Execution Time”

7. Observed WCET ≤ Real-time constraint? No: Go to 1

Compilers for Embedded Systems (CfES) SoSe 2022Slide 6/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Problems of this Design Flow

Safety

– No guarantee that observed WCET (even only approximately) matches

the actual WCET

 No guarantee that a real-time system always terminates in time

Design Time

– How many iterations are required until step 7 successful?

 Depends on in how far steps 2-3 lead to the effective acceleration of the

generated code in the worst case

 Try & Error until step 7 successful

Compilers for Embedded Systems (CfES) SoSe 2022Slide 7/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Current State of the Art in Compiler Construction

Objective Function of Compiler Optimizations

– Usually reduction of Average-Case Execution Times (ACET):

Accelerate a “typical” execution of a program using “typical” input data

 No statements about the impact of optimizations on WCETs possible

Optimization Strategy

– Naive: Current compilers lack precise ACET timing model

– Application of an optimization if “promising”

 ACET-related effects of optimizations unknown to compiler

 ACET optimizations potentially increase WCETs – Compilers often

invoked without any optimizations for real-time systems

Compilers for Embedded Systems (CfES) SoSe 2022Slide 8/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Motivation

Design of a Compiler that

– considers WCETEST instead of average-case runtimes,

– allows formal guarantees on worst-case properties, instead of relying on

observed execution times,

– applies fully automated optimizations to minimize WCETEST

Approach

– Integration of a WCETEST timing model into compiler by coupling compiler

back-end with static WCET analyzer.

– Exploitation of WCETEST timing model by novel optimizations explicitly

aiming at WCETEST minimization.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 9/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Integration of WCETEST Model into Compiler (1)

– Re-implementation of a WCET timing

model in compiler makes no sense

– Instead: Tight integration of aiT

(chapter 5)

– Coupling inside processor-specific compiler

back-end (LLIR)

– Seamless exchange of information via

translation LLIR CRL2

– Transparent invocation of aiT inside the

compiler

– Import of WCET-related data into compiler

back-end

Compilers for Embedded Systems (CfES) SoSe 2022Slide 10/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Integration of WCETEST Model into Compiler (2)

Relevant WCET data:

– WCETEST of entire

program, function or

basic block

– Worst-case execution

frequency per function,

basic block or CFG edge

– Potential register

contents

– Cache Hits / Misses per

basic block

Compilers for Embedded Systems (CfES) SoSe 2022Slide 11/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

WCC – The WCET-aware C Compiler (1)

Flow Facts

– WCET analysis: max.

iteration counts &

recursion depths

– WCC: Annotation directly

in C source code:

_Pragma(

”loopbound min 10

max 10”);

– Automatic flow fact

update during control

flow-modifying

optimizations

Compilers for Embedded Systems (CfES) SoSe 2022Slide 12/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

WCC – The WCET-aware C Compiler (2)

Loop Analyzer

– Manual annotation of

Flow Facts tedious and

error-prone

– WCC: Automated loop

analysis that determines

maximal iteration counts

– Partially bases on

polyhedral models (

chapter 4)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 13/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

WCC – The WCET-aware C Compiler (3)

Back-Annotation

– WCETEST data of aiT only

available in back-end

– HIR optimizations have

no accesses to WCETEST

data

 WCETEST minimization at

HIR level impossible

– WCC: Back-annotation

translates WCETEST data

from LIR to HIR

Compilers for Embedded Systems (CfES) SoSe 2022Slide 14/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

WCC – The WCET-aware C Compiler (4)

Memory Hierarchy

– aiT operates on binary

code using physical

addresses

– WCC must provide

correct physical

addresses for code, data,

branches and load/store

operations to aiT

– WCC requires detailed

knowledge about

memories

Compilers for Embedded Systems (CfES) SoSe 2022Slide 15/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

WCC – The WCET-aware C Compiler (5)

Memory Hierarchy

– Memory regions, their

start addresses, sizes,

access latencies, access

attributes (code, data,

read-/writable, ...)

– SPM allocations also

require this information

for their optimizations

Compilers for Embedded Systems (CfES) SoSe 2022Slide 16/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

WCC – The WCET-aware C Compiler (6)

Memory Hierarchy

– WCC decides on memory

layout of code and data

but produces no binary

code

– Linker must generate

binary code in strict

compliance with WCC’s

memory layout

– WCC: Automatic

generation of an adapted

linker script

[http://www.tuhh.de/es/esd/research/wcc]

http://ls12-www.cs.tu-dortmund.de/research/activities/wcc

Compilers for Embedded Systems (CfES) SoSe 2022Slide 17/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Challenges during WCETEST Minimization

The Worst-Case Execution Path (WCEP)

– WCET of a program = Length of the program’s longest execution path

(WCEP)

– WCETEST minimization: Optimization of only those parts of a program

lying on the WCEP

 Code optimization apart the WCEP will not reduce WCETEST

 Optimizations minimizing WCETEST require detailed knowledge of the

WCEP!

 WCET analyzer aiT provides such detailed information by means of

execution frequencies of CFG edges.

But...

Compilers for Embedded Systems (CfES) SoSe 2022Slide 18/88

9 - WCET-Aware Compilation

Instability of the WCEP (1)

main

a

b

c

d

10 Cyc.

50 Cyc.

80 Cyc.

65 Cyc.

120 Cyc.

WCETEST of

basic block a

© H. Falk | 17.03.2022

– Example: Simple CFG with 5 basic blocks

Compilers for Embedded Systems (CfES) SoSe 2022Slide 19/88

9 - WCET-Aware Compilation

Instability of the WCEP (2)

main

a

b

c

d

10 Cyc.

50 Cyc.

80 Cyc.

65 Cyc.

120 Cyc.

– Initial WCEP: main, a, b, c

– Length of WCEP = WCETEST = 205

– In the following: Optimization of b

WCETEST = 205 Cyc.

© H. Falk | 17.03.2022

Compilers for Embedded Systems (CfES) SoSe 2022Slide 20/88

9 - WCET-Aware Compilation

Instability of the WCEP (3)

main

a

c

d

10 Cyc.

50 Cyc.

80 Cyc.

65 Cyc.

120 Cyc.

– Initial WCEP: main, a, b, c

– Length of WCEP = WCETEST = 205

– In the following: Optimization of b

WCETEST = 205 Cyc.

b 40

© H. Falk | 17.03.2022

Compilers for Embedded Systems (CfES) SoSe 2022Slide 21/88

9 - WCET-Aware Compilation

Instability of the WCEP (4)

main

a

c

d

10 Cyc.

50 Cyc.

80 Cyc.

65 Cyc.

120 Cyc.

– Novel WCEP: main, d, c

– Novel WCETEST: 195

 WCEP has changed due to an optimization!

b 40

WCETEST = 195 Cyc.

© H. Falk | 17.03.2022

Compilers for Embedded Systems (CfES) SoSe 2022Slide 22/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Consequences for Compiler Optimizations

WCET-Aware Optimizations...

– ... always have to be aware that the WCEP can change after each

individual optimization decision.

– ... should take the decision where to optimize something not only based

on local information, but should always consider the global effects of an

optimization decision.

(The optimization of b in the previous example locally reduces the

WCETEST of b by 40 cycles. But globally, only 10 cycles were saved!)

 Challenge: To design novel compiler optimizations that fulfill the

above requirements and that always consider the entire CFG and

the current WCEP therein.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 23/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Chapter Contents

9. WCET-Aware Compilation

– Introduction

– Integration of a WCET Timing Model into a Compiler

– Challenges for WCET-Aware Optimization

– Procedure Cloning & Positioning

– WCET-Aware Procedure Cloning

– Procedure Positioning for Cache Miss Reduction

– Register Allocation

– Problem of Classical Graph Coloring

– WCET-Aware Graph Coloring

– Scratchpad Allocation of Data and Code

– Allocation of global Data

– Allocation of Basic Blocks

Compilers for Embedded Systems (CfES) SoSe 2022Slide 24/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Why Procedure Cloning and WCETEST?

Motivation (cf. chapter 5)

– Frequent occurrences of general-purpose functions in special-purpose

contexts in embedded software

– Loop bounds are particularly often controlled by function parameters

– Loop bounds are particularly critical for WCET estimates

– Procedure Cloning allows the extremely precise annotation of loop

bounds for WCET analysis

[P. Lokuciejewski. Influence of Procedure Cloning on WCET Prediction.

CODES+ISSS, Salzburg, 2007]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 25/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Results after Classical Cloning

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TriCore ARM Thumb

R
e
l.

 W
C

E
T

E
S

T
[%

]

EPIC MPEG2 GSM Geo. Mean

0%
25%
50%
75%

100%
125%
150%
175%
200%
225%
250%
275%
300%
325%
350%

TriCore ARM Thumb

R
e
l.
 C

o
d

e
 S

iz
e
 [

%
]

EPIC MPEG2 GSM Geo. Mean

– WCETEST improvements

from 13% up to 95%!

– Code size increases from

2% up to 325%!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 26/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Key Problems of Classical Cloning

– WCETEST of a program corresponds to length of WCEP

– Classical Procedure Cloning is fully unaware of WCEP

– Properties of functions that potentially yield WCETEST reductions

(parameter-dependent loops) are not considered by the classical

standard optimization

 Potential cloning of functions that do not lie on the WCEP

 Potential cloning of functions that do not contribute to a WCETEST

reduction

 Unnecessary code size increases without any benefit in terms of

WCETEST reduction

Compilers for Embedded Systems (CfES) SoSe 2022Slide 27/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

WCET-aware Cloning (1)

Input

– Program P to be optimized, given in the form of an HIR

– Float value maxFactor that denotes the maximally acceptable code size

increase

Initialization

maxCodeSize = getCodeSize(P) * maxFactor;

Phase 1 – Determination of the WCEP

Perform a WCET analysis of P;

Determine set F of all original functions lying on the WCEP of P;

wcetorig = getWCET(P);

csorig = getCodeSize(P);

Compilers for Embedded Systems (CfES) SoSe 2022Slide 28/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

WCET-aware Cloning (2)

Phase 2 – Determination of WCETEST Data per Function

for (<all functions f F>)

if (<f is called with constant value as some parameter p> &&

(<p is used as loop bound> ||

<p is used in a condition of an if-statement> ||

<p is argument in some other function call inside f>))

// Cloning of f eventually beneficial w.r.t. WCETEST

HIR P’ = P.copy();

doCloning(P’, f); // Try out cloning of f

updateLoopBounds(P’, f);

deleteRedundantIfStmts(P’, f);

Perform WCET analysis of P’;

wcetf = getWCET(P’);

csf = getCodeSize(P’);

Compilers for Embedded Systems (CfES) SoSe 2022Slide 29/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

WCET-aware Cloning (3)

Phase 3 – Determination of that Function with highest Profit

for (<all functions f F>)

profitf = (wcetorig – wcetf) / (csf – csorig);

Determine function fopt with maximal profitf AND

csf ≤ maxCodeSize;

if (<fopt exists>)

doCloning(P, fopt);

goto <Phase 1>;

[P. Lokuciejewski. WCET-Driven, Code-Size Critical Procedure Cloning.

SCOPES, Munich, 2008]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 30/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Relative WCETEST after WCET-aware Cloning

– 100% = WCETEST without any procedure cloning

– WCETEST reductions from 14% up to 64%!

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GSM MPEG2 EPIC G.721 MD5

R
e

la
tiv

e
 W

C
E

T
 [

%
]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 31/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Relative Code Sizes after WCET-aware Cloning

– 100% = Code size without any procedure cloning

– Code size increase of EPIC: 190% instead of 300%

0%

50%

100%

150%

200%

250%

GSM MPEG2 EPIC G.721 MD5

R
e

la
tiv

e
 C

o
d

e
 S

iz
e

 [
%

]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 32/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Eviction of Code from Instruction Caches

– Caches exploit locality of memory accesses

– Spatial Locality: Memory accesses target a spatially small memory

region that should be kept in the cache completely

– Temporal Locality: In a short period of time, spatially scattered

memory regions are accessed so that these regions should be kept in

the cache

– Poor layout of code (or data) in memory can lead to a bad cache

performance if temporal locality is high:

– Scattered memory regions with high temporal locality can, when

arranged badly in memory, evict themselves repeatedly from the cache,

thus yielding many cache misses – so-called conflict misses.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 33/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Example of I-Cache Evictions (1)

foo1

foo2

foo3

Main MemoryI-Cache

W
a
y

0
W

a
y

1

foo1

foo2

foo3

0
1
2
3
4
5
6

S
...

0
1
2
3
4
5
6

S
...

Set

...

...

...

0
1
2
3
4
5

S
...

Set

0
1
2
3
4
5

S
...

0
1
2

void foo1()

{

for (i=0; i<n; i++) {

foo2();

foo3();

// More Code

}

}

Here: 2-way set-associative

I-Cache

foo1

Compilers for Embedded Systems (CfES) SoSe 2022Slide 34/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Example of I-Cache Evictions (2)

foo1

foo2

foo3

I-Cache

W
a
y

0
W

a
y

1

foo1

foo2

foo3

0
1
2
3
4
5
6

S
...

0
1
2
3
4
5
6

S
...

Set

...

...

...

0
1
2
3
4
5

S
...

Set

0
1
2
3
4
5

S
...

0
1
2

foo1

foo2

void foo1()

{

for (i=0; i<n; i++) {

foo2();

foo3();

// More Code

}

}

Here: 2-way set-associative

I-Cache

Main Memory

Compilers for Embedded Systems (CfES) SoSe 2022Slide 35/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Example of I-Cache Evictions (3)

foo1

foo2

foo3

I-Cache

W
a
y

0
W

a
y

1

foo1

foo2

foo3

0
1
2
3
4
5
6

S
...

0
1
2
3
4
5
6

S
...

Set

...

...

...

0
1
2
3
4
5

S
...

Set

0
1
2
3
4
5

S
...

0
1
2

foo1

foo2

foo3

void foo1()

{

for (i=0; i<n; i++) {

foo2();

foo3();

// More Code

}

}

Here: 2-way set-associative

I-Cache

Main Memory

Compilers for Embedded Systems (CfES) SoSe 2022Slide 36/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Example of I-Cache Evictions (4)

foo1

foo2

foo3

I-Cache

W
a
y

0
W

a
y

1

foo1

foo2

foo3

0
1
2
3
4
5
6

S
...

0
1
2
3
4
5
6

S
...

Set

...

...

...

0
1
2
3
4
5

S
...

Set

0
1
2
3
4
5

S
...

0
1
2

foo1

foo2

foo3

void foo1()

{

for (i=0; i<n; i++) {

foo2();

foo3();

// More Code

}

}

Here: 2-way set-associative

I-Cache

Main Memory

Compilers for Embedded Systems (CfES) SoSe 2022Slide 37/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

A better Memory Layout without Evictions (1)

foo1

foo2

foo3

I-Cache

W
a
y

0
W

a
y

1

foo1

foo2

foo3
0
1
2
3
4
5
6

S
...

0
1
2
3
4
5
6

Set

...

...

0
1
2
3
4
5

7

Set

8
9

S
...

0
1
2

7
8
9

6

foo1

void foo1()

{

for (i=0; i<n; i++) {

foo2();

foo3();

// More Code

}

}

Here: 2-way set-associative

I-Cache

Main Memory

Compilers for Embedded Systems (CfES) SoSe 2022Slide 38/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

A better Memory Layout without Evictions (2)

foo1

foo2

foo3

I-Cache

W
a
y

0
W

a
y

1

foo1

foo2

foo3
0
1
2
3
4
5
6

S
...

0
1
2
3
4
5
6

Set

...

...

0
1
2
3
4
5

7

Set

8
9

S
...

0
1
2

7
8
9

6

foo1

foo2

void foo1()

{

for (i=0; i<n; i++) {

foo2();

foo3();

// More Code

}

}

Here: 2-way set-associative

I-Cache

Main Memory

Compilers for Embedded Systems (CfES) SoSe 2022Slide 39/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

A better Memory Layout without Evictions (3)

foo1

foo2

foo3

I-Cache

W
a
y

0
W

a
y

1

foo1

foo2

foo3
0
1
2
3
4
5
6

S
...

0
1
2
3
4
5
6

Set

...

...

0
1
2
3
4
5

7

Set

8
9

S
...

0
1
2

7
8
9

6

foo1

foo2

foo3

void foo1()

{

for (i=0; i<n; i++) {

foo2();

foo3();

// More Code

}

}

Here: 2-way set-associative

I-Cache

Main Memory

Compilers for Embedded Systems (CfES) SoSe 2022Slide 40/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

A better Memory Layout without Evictions (4)

foo1

foo2

foo3

I-Cache

W
a
y

0
W

a
y

1

foo1

foo2

foo3
0
1
2
3
4
5
6

S
...

0
1
2
3
4
5
6

Set

...

...

0
1
2
3
4
5

7

Set

8
9

S
...

0
1
2

7
8
9

6

foo1

foo2

foo3

void foo1()

{

for (i=0; i<n; i++) {

foo2();

foo3();

// More Code

}

}

Here: 2-way set-associative

I-Cache

Main Memory

Compilers for Embedded Systems (CfES) SoSe 2022Slide 41/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Procedure Positioning using Call Graphs

Definition (Call Graph):

The Call Graph is an undirected weighted graph G = (V, E, w) with

– V contains a node v per function of a program

– E contains an edge e = {v, w} if a function v calls function w

– Each edge e = {v, w} is weighted with the frequency w(e) how often v and

w call themselves

Concept of WCET-aware Procedure Positioning

– Generate call graphs with edge weights equal to worst-case call

frequencies as determined during static WCET analysis

– Repeatedly place two functions with high edge weights consecutively in

memory

Compilers for Embedded Systems (CfES) SoSe 2022Slide 42/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

WCET-aware Procedure Positioning (1)

Input

– Program P to be optimized, given in the form of an LIR

Initialization

Perform a WCET analysis of P;

Generate call graph Gorig = (Vorig, Eorig, worig) of P based on WCET data;

Generate call graph Gnew = (Vnew, Enew, wnew) = Gorig.copy();

[P. Lokuciejewski et al. WCET-driven Cache-based Procedure Positioning

Optimizations. ECRTS, Prague, 2008]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 43/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

WCET-aware Procedure Positioning (2)

Optimization Loop

do

wcetcurrent = getWCET(P);

for (<all edges e = {v, w} Enew,

sorted in descending order w.r.t. wnew>)

if (Positioning(e, Gnew, Gorig, P, wcetcurrent) == true)

// If contiguous placement of nodes v and w in memory reduces

// WCETEST, terminate for-loop and continue with do-while-loop.

break;

while (<P was modified during last iteration>);

Compilers for Embedded Systems (CfES) SoSe 2022Slide 44/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

WCET-aware Procedure Positioning (3)

Positioning(e = {v, w} Enew, Gnew, Gorig, P, wcetcurrent)

Generate LIR P’ with v and w placed contiguously in memory;

Perform a WCET analysis of P’;

wcetnew = getWCET(P’);

if (wcetnew < wcetcurrent)

P = P’;

Merge nodes v and w in Gnew;

Update wnew based on novel WCET data;

return true;

else

return false;

Compilers for Embedded Systems (CfES) SoSe 2022Slide 45/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Merging of Nodes

Contiguous Placement of merged Nodes in Memory

– Problem: How shall (A, B) and (D, E) be placed in the next step?

– Gorig reveals that A and D should be placed contiguously

 Best placement is (B, A, D, E).

 That’s why Gorig is kept throughout the positioning algorithm!

D

C

B

EA

4 1

2

3
8 6

D

C

A,B

E

4 1

5

6

D,E

C

A,B

4 1

5

Gorig Gnew

Compilers for Embedded Systems (CfES) SoSe 2022Slide 46/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Properties

– Algorithm greedily places two nodes of the current graph Gnew

contiguously in memory in one iteration

– Here, always those two nodes are considered which call themselves

most frequently according to wnew

– Instable WCEPs are considered by the algorithm, because a WCET

analysis is done for each placement, and because the edge weights wnew

are updated according to this novel WCET data

– Since WCET-aware Procedure Cloning places the novel clones at the

end of a program, it makes sense to combine WCET-aware Cloning and

Positioning

Compilers for Embedded Systems (CfES) SoSe 2022Slide 47/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Relative WCETEST after WCET-Cloning & Positioning

– 100% = WCETEST w/o Procedure Cloning and Positioning

– I-Cache: 16kB, 2-way set-associative, LRU replacement

– WCET-Positioning of clones: additional WCETEST reduction

by up to 7% compared to cloning w/o positioning

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

R
e

la
ti

v
e

 W
C

E
T

 [
%

]

Cloning w/o Positioning Cloning with Positioning

C
a

u
ti

o
n

:
D

o
n

’t
 c

o
m

p
a

re
 t
h

is
 d

ia
g

ra
m

 w
it
h

 s
lid

e

3
0

,
s
in

c
e

 I
-c

a
c
h

e
 w

a
s
 d

is
a

b
le

d
 in

 s
lid

e
 3

0
!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 48/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Conclusions

Comparison with Consequences for WCETEST Optimizations

WCET-aware optimizations...

– ... mandatorily need detailed knowledge of the WCEP

 WCET-Cloning and WCET-Positioning both consider the WCEP

– ... always have to be aware that the WCEP can change after each

individual optimization decision

 Both optimizations update the WCEP after each modification of the code

– ... should take the decision where to optimize something not only based

on local information, but should always consider the global effects of an

optimization decision

 WCET-Cloning and WCET-Positioning are both greedy heuristics that are

driven solely by local data per function

Compilers for Embedded Systems (CfES) SoSe 2022Slide 49/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Chapter Contents

9. WCET-Aware Compilation

– Introduction

– Integration of a WCET Timing Model into a Compiler

– Challenges for WCET-Aware Optimization

– Procedure Cloning & Positioning

– WCET-Aware Procedure Cloning

– Procedure Positioning for Cache Miss Reduction

– Register Allocation

– Problem of Classical Graph Coloring

– WCET-Aware Graph Coloring

– Scratchpad Allocation of Data and Code

– Allocation of global Data

– Allocation of Basic Blocks

Compilers for Embedded Systems (CfES) SoSe 2022Slide 50/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Register Allocation by Graph Coloring

1. Build: Create interference graph G = (V, E) with

V = {virtual registers} ∪ {K physical processor registers},

e = (v, w) ∈ E VREGs v and w may never share the same PHREG,

i.e. v and w interfere

2. Simplify: Remove all nodes v ∈ V with degree < K

3. Spill: After step 2, each node of G has degree ≥ K. Select one node

v ∈ V; mark v as potential spill; remove v from G

4. Repeat Simplify and Spill until G = Ø

5. Select: Re-insert nodes v into G in reverse order; if there is a free color

kv, color v; otherwise, mark v as actual spill

6. Generate Spill Code before/after actual spills; go to step 1 if

#VREGS > 0

[A. W. Appel. Modern compiler implementation in C. 2004]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 51/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Problem of Standard Graph Coloring

3. Spill: After step 2, each node of G has degree ≥ K. Select one node

v ∈ V; mark v as potential spill; remove v from G

Which node v should be selected as potential spill?

Common graph coloring implementations select ...

– ... the first node v according to the order in which VREGs were

generated during code generation,

– ... the node with highest degree in the interference graph,

– ... a node with high degree, with few DEFs/USEs, not in some

inner loop – maybe depending on profiling data.

 Uncontrolled spill code generation – potentially along Worst-Case

Execution Path (WCEP) defining the WCET!

Compilers for Embedded Systems (CfES) SoSe 2022Slide 52/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

A Chicken-Egg Problem

A WCET-aware Register Allocator...

– ... relies on WCET data provided by WCET analysis using aiT,

– ... but cannot obtain WCET data since code containing virtual registers is

not executable and thus not analyzable!

The Way Out

– Start by marking all VREGs as actual spill

 Code has lousy quality, but is fully analyzable

– Perform WCET analysis, get WCEP P

– Apply standard graph coloring to all VREGs of that basic block b ∈ P with

most executions of spill code in the worst case

– Re-evaluate novel WCEP

Compilers for Embedded Systems (CfES) SoSe 2022Slide 53/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

WCET-aware Graph Coloring (1)

LLIR WCET_GC_RA(LLIR P)

{

// Iterate until current WCEP is fully allocated.

while (true)

{

// Copy P, spill all VREGs of P’ onto stack.

LLIR P’ = P.copy();

P’.spillAllVREGs();

// Compute Worst-Case Execution Path for fully spilled LIR.

set<basic_blocks> WCEP = computeWCEP(P’);

// If there are no more VREGs, the allocation loop is over.

if (getVREGs(WCEP) ==)

break;

Compilers for Embedded Systems (CfES) SoSe 2022Slide 54/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

WCET-aware Graph Coloring (2)

// Determine that block on the WCEP with highest product of

// Worst-Case Execution Count * spilling instructions.

basic_block b’ = getMaxSpillCodeBlock(WCEP);

basic_block b = getBlockOfOriginalP(b’);

// Collect all VREGs of this most critical block.

list<virtualRegister> vregs = getVREGs(b);

// Sort VREGs by #occurrences, apply standard graph coloring.

vregs.sort(occurrences of VREG in b);

traditionalGraphColoring(P, vregs);

}

// Allocate all remaining VREGs not lying on the WCEP.

traditionalGraphColoring(P, getVREGs(P));

return P;

}

Compilers for Embedded Systems (CfES) SoSe 2022Slide 55/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Properties (1)

– Algorithm simultaneously handles a program P to be register allocated,

and a copy P’ where all VREGs are completely spilled to memory in order

to enable WCET analysis.

– Register allocation is done basic block-wise along the WCEP.

– After the allocation of one basic block, the WCEP in P’ is recomputed.

– In one iteration of the algorithm: Allocation of all VREGs occurring in that

basic block b that contains many spill instructions in P’ and that is

executed very often.

 The VREGs of this most timing-critical block b should be kept in PHREGs

if possible.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 56/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Properties (2)

– Spilling of VREGs in b cannot be avoided in general. If spilling is required

in b, spill only those VREGs v of b that occur least frequently in b, since

few occurrences of v in b imply few spill instructions inside b.

– Register allocation itself, i.e., assigning colors to b’s VREGs, and spill

code generation are handed over to standard graph coloring.

– After the allocation loop, the WCEP is completely allocated. But there

may still be some VREGs in blocks besides the WCEP.

 One final run of standard graph coloring in order to catch all those

remaining VREGs.

[H. Falk. WCET-aware Register Allocation based on Graph Coloring. DAC,

San Francisco, 2009]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 57/88

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

R
e

la
ti

v
e

 W
C

E
T

 [
%

]
(O

p
ti

m
iz

a
ti

o
n

 L
e

v
e

l
-O

3
)

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Relative WCETEST after WCET-aware Graph Coloring

100% = WCETEST using Standard Graph Coloring (highest degree)

93%

24%

66%

Compilers for Embedded Systems (CfES) SoSe 2022Slide 58/88

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

R
e

la
ti

v
e

 A
C

E
T

 [
%

]
(O

p
ti

m
iz

a
ti

o
n

 L
e

v
e

l
-O

3
)

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Relative ACET after WCET-aware Graph Coloring

100% = ACET using Standard Graph Coloring (highest degree)

-6% – -12%

Compilers for Embedded Systems (CfES) SoSe 2022Slide 59/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Discussion

– WCETEST reductions from 6.9% up to 75.9%, on average 33.9%.

– Allocation of all 46 benchmarks: total of 1,979 WCET analyses.

– Run-time of WCET graph coloring: 12:15 hours for all 46 benchmarks

 16 minutes per benchmark on average

– ACET reductions of up to 47.9%, but decreases of up to 12.7%. On

average, 15.2% ACET reduction.

– Benchmarks behave very different w.r.t. WCETEST and ACET:

gsm family: 51.5% – 66.2% WCETEST reduction

6.8% – 12.7% ACET degradation

– Reason: WCET graph coloring avoids spilling along WCEP but inserts

spill code at other places in the CFG which are frequently executed in an

average-case scenario.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 60/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Conclusions

Comparison with Consequences for WCETEST Optimizations

WCET-aware optimizations...

– ... mandatorily need detailed knowledge of the WCEP

 WCET graph coloring considers the WCEP

– ... always have to be aware that the WCEP can change after each

individual optimization decision

 WCET graph coloring updates the WCEP after each modification of the

code

– ... should take the decision where to optimize something not only based

on local information, but should always consider the global effects of an

optimization decision

 WCET graph coloring is greedy heuristic that is driven solely by local

data per basic block

Compilers for Embedded Systems (CfES) SoSe 2022Slide 61/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Chapter Contents

9. WCET-Aware Compilation

– Introduction

– Integration of a WCET Timing Model into a Compiler

– Challenges for WCET-Aware Optimization

– Procedure Cloning & Positioning

– WCET-Aware Procedure Cloning

– Procedure Positioning for Cache Miss Reduction

– Register Allocation

– Problem of Classical Graph Coloring

– WCET-Aware Graph Coloring

– Scratchpad Allocation of Data and Code

– Allocation of global Data

– Allocation of Basic Blocks

Compilers for Embedded Systems (CfES) SoSe 2022Slide 62/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

In the Following: Harvard Architectures

– Separate busses and memories for code and data

– Scratchpad allocation of code and data can be solved

independently from each other

 Two separate ILPs for these optimizations

 Non-Harvard architectures with unified busses and memories for

code and data: Straightforward combination of both ILPs

Processor

D-SPM

Main Data

Memory

P-SPM

Main Code

Memory

Compilers for Embedded Systems (CfES) SoSe 2022Slide 63/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

ILP for WCET-aware SPM Allocation of Data

Goal

– Determine set of data objects (global variables or static local variables) to

be allocated to the data SPM,

– such that selected data objects lead to overall minimization of WCETEST

– under consideration of switching WCEPs.

Approach

– Integer-linear programming (ILP)

 Optimality of results

– Notation: Upper-case letters constants,

lower-case letters variables

Compilers for Embedded Systems (CfES) SoSe 2022Slide 64/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Decision Variables & Costs

– Binary decision variables per data object:

– Costs of basic block bj:

cj models the WCETEST of bj, depending on whether the data objects

accessed by bj are allocated to main memory or SPM, resp.

Cj: bj’s WCETEST if all data objects reside in main memory

Gi,j: WCET reduction of bj if data object di is assigned to SPM

Compilers for Embedded Systems (CfES) SoSe 2022Slide 65/88

9 - WCET-Aware Compilation

– Treat body of inner-

most loop like

acyclic sub-graph

– Fold loop

– Costs of :

– Continue with next

innermost loop

Intraprocedural Control Flow (1)

– Modeling of a function’s control flow:

A

CB

D

E

Acyclic sub-graphs: (Reducible) Loops:

G

F

H

I

J
= WCET of longest path

starting at A

Loop L

G, H, I

© H. Falk | 17.03.2022

[V. Suhendra et al. WCET Centric

Data Allocation to Scratchpad

Memory. RTSS, Miami, 2005]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 66/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Intraprocedural Control Flow (2)

– Modeling of a function’s control flow:

– For sink nodes bj of an acyclic sub-graph, wj is set to the costs cj

– For all other nodes bj of an acyclic sub-graph, the WCET of the paths

starting in bj must be greater or equal than the WCET of each

successor bsucc, PLUS the costs cj of bj

– For each successor bsucc of bj, one constraint is created in the ILP

Variable wj actually models all paths starting in bj. Due to the ≥

operator in the inequations, the maximum over all paths starting in wj

is modeled

 Potential changes of the WCEP from one successor bsucc1 to another

successor bsucc2 of bj are considered by construction

Compilers for Embedded Systems (CfES) SoSe 2022Slide 67/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Intraprocedural Control Flow (3)

– Modeling of a function’s control flow:

– Reducible loops L have exactly one entry basic block bL
entry

– By “ignoring” of the back-edge of a reducible loop L, the CFG of the

loop body becomes acyclic

– Create constraints for acyclic loop body as shown on slide 65 (left

part)

Variable wL
entry models WCETEST of the entire body of loop L if it is

executed exactly once

– Multiplication of wL
entry by the maximal number CL

max of iterations of L

provides WCETEST for all executions of the loop

Costs of L are equal to the WCETEST of L for all executions

Compilers for Embedded Systems (CfES) SoSe 2022Slide 68/88

9 - WCET-Aware Compilation

Interprocedural Control Flow

– Modeling function calls:

– Each function has dedicated entry BB

– Variable models WCETEST of the longest path in that starts

in

 models WCETEST of for exactly 1 execution of

 If calls function : Add to WCETEST of

– Function calls in basic block :

– “Call penalty” for

calling basic block:

– ILP constraint

per basic block:

© H. Falk | 17.03.2022

Compilers for Embedded Systems (CfES) SoSe 2022Slide 69/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Scratchpad Capacity and Objective Function

– Scratchpad capacity constraint:

The sum of the sizes of all data objects allocated onto the SPM is less

than or equal to the totally available SPM capacity.

– Objective function:

– models WCETEST of if is executed exactly once

– Variable models WCETEST of the entire program

 . [F. Rotthowe. Scratchpad Allocation of Data for

Worst-Case Execution Time Minimization (in

German). Diploma Thesis, TU Dortmund, 2008]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 70/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Rel. WCETEST after D-SPM Allocation of petrinet

– Notable WCETEST reductions already for SPMs of only a few bytes

– 6 global variables of 72 bytes size in total

– WCETEST reductions by 28.6% for 32 bytes SPM

– X-Axis: Absolute SPM sizes

– Y-Axis: 100% = WCETEST when not using SPM at all

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

40
96

0

SPM Size [bytes]

R
e
la

ti
v
e
 W

C
E

T
E

S
T
 [

%
]

petrinet

Compilers for Embedded Systems (CfES) SoSe 2022Slide 71/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Rel. WCETEST after D-SPM Allocation of fsm

– More steady WCETEST reductions for increasing SPM sizes

– 98 global variables à 4 bytes size each

– WCETEST reductions by 21.4% for 256 bytes SPM

– X-Axis: Absolute SPM sizes

– Y-Axis: 100% = WCETEST when not using SPM at all

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

40
96

0

SPM Size [bytes]

R
e
la

ti
v
e
 W

C
E

T
E

S
T
 [

%
]

fsm

Compilers for Embedded Systems (CfES) SoSe 2022Slide 72/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Rel. WCETEST after D-SPM Allocation of 14 Benchmarks

– Steady WCETEST reductions for increasing SPM sizes

– WCETEST reductions from 2.7% – 20.6%

– X-Axis: Absolute SPM sizes

– Y-Axis: 100% = WCETEST when not using SPM at all

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

A
v
g

.
R

e
la

ti
v
e
 W

C
E

T
E

S
T

[%
]

SPM Size [bytes]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 73/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

ILP for WCET-aware SPM Allocation of Code

Goal

– Determine set of basic blocks to be allocated to the SPM

– such that selected basic blocks lead to overall minimization of WCETEST

– under consideration of switching WCEPs.

Approach

– Integer-linear programming (ILP)

 Optimality of results

– Notation: Upper-case letters constants,

lower-case letters variables

Compilers for Embedded Systems (CfES) SoSe 2022Slide 74/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Decision Variables & Costs

– Binary decision variables per basic block:

– Costs of basic block bi:

models the WCETEST of if it is allocated to main memory or SPM,

resp.

– Modeling of the intraprocedural control flow:

As before in the WCET-aware SPM allocation of data

Compilers for Embedded Systems (CfES) SoSe 2022Slide 75/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Cross-Memory Jumps

– Allocation of consecutive basic blocks:

– Allocation of consecutive basic blocks in the CFG to different

memories requires adaption/insertion of dedicated jumping code

– Cross-memory jumps are costly: Often need more than 1 instruction

– Jumping code: Variable overhead in terms of WCETEST and code

size, depending on decision variables (cf. chapter 7)

– Jump Scenarios:
bi

bk

bj

bi

bk

bj

bi

bj

a) Implicit b) Unconditional c) Conditional

Compilers for Embedded Systems (CfES) SoSe 2022Slide 76/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Penalties for Cross-Memory Jumps

– Jump Penalty (Boolean XOR):

– Penalty for implicit jumps:

High penalty if basic blocks i and j are placed in different memories

– Penalty for unconditional jumps:

– If bi and bj in different memories:

– If bi and bj adjacent in same memory: 0

– If bi and bj not adjacent in same memory:

– Conditional jumps: Obvious combination of and

bi

bk

bj

bj

bk bj

Compilers for Embedded Systems (CfES) SoSe 2022Slide 77/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Jump Penalties and Interprocedural Control Flow

– Jump penalties for basic block bi:

– Penalty for function calls for basic block bi:

If block calls function : Add WCETEST of to WCETEST of

. Furthermore, add if function call is cross-memory call. If function

call stays in the same memory, add only .

Compilers for Embedded Systems (CfES) SoSe 2022Slide 78/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Sizes of Basic Blocks

– Constraint for all successors bsucc of bi:

– Size of a basic block bi:

– Size of bi depends on actual jumping code for bi

– Size of jumping code of bi depends on jump scenario:

– Total size of basic block bi:

Size Si of bi without any jumping code plus

Size si of bi’s jumping code

Compilers for Embedded Systems (CfES) SoSe 2022Slide 79/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Scratchpad Capacity and Objective Function

– Scratchpad capacity constraint:

The sum of the sizes of all basic blocks allocated onto the SPM without

jumping code, plus the size of jumping code in bi is less than or equal to

the totally available SPM capacity.

– Objective function:

[H. Falk, J. C. Kleinsorge. Optimal Static WCET-aware Scratchpad Allocation

of Program Code. DAC, San Francisco, 2009]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 80/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Determination of the Constants of the ILPs (1)

WCETEST of BB

bi for SPM and

main memory:

,

Max. iteration

count of loop

L: Size of BB bi:

SPM size = 47 kB

SPM access = 1 cycle

Flash access = 6 cycles

Other parameters

hard-coded:

, , …

Compilers for Embedded Systems (CfES) SoSe 2022Slide 81/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Determination of the Constants of the ILPs (2)

– WCETEST , per basic block for both memories:

Determined by two WCET analyses, one in which all basic blocks lie in

the SPM, one with all blocks in main memory.

– Max. iteration count of loops :

Either annotated in the source code using flow facts, or determined by

WCC’s automatic loop bound analysis.

– Size of a basic block without jumping code:

By simple enumeration of all LIR operations

– Size of the scratchpad:

Taken from WCC’s memory hierarchy specifications

– Remaining parameters determined experimentally:

= 16 = 8

= = 10 = 12

Compilers for Embedded Systems (CfES) SoSe 2022Slide 82/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Rel. WCETEST after P-SPM Allocation of g721_encode

– Steady WCETEST decreases for increasing SPM sizes

– WCETEST reductions from 29% – 48%

– X-Axis: SPM size = x% of benchmark’s code size

– Y-Axis: 100% = WCETEST when not using SPM at all

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R
e

la
ti

v
e

 W
C

E
T

E
S

T
[%

]

Relative SPM Size [%]

g721_encode

Compilers for Embedded Systems (CfES) SoSe 2022Slide 83/88

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R
e

la
ti

v
e

 W
C

E
T

E
S

T
[%

]

Relative SPM Size [%]

cover

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Rel. WCETEST after P-SPM Allocation of cover

– Stepwise WCETEST decreases: Useful content allocated to SPM

only at 40%, 70% and 100% relative SPM size

– WCETEST reductions of 10%, 35% and 44%

– X-Axis: SPM size = x% of benchmark’s code size

– Y-Axis: 100% = WCETEST when not using SPM at all

Compilers for Embedded Systems (CfES) SoSe 2022Slide 84/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Rel. WCETEST after P-SPM Allocation of md5

– Almost invariable WCETEST reductions for all SPM sizes: 40% - 44%

– ILP clearly finds tiny but time-critical hot-spot of md5 and allocates it

to SPM

– X-Axis: SPM size = x% of benchmark’s code size

– Y-Axis: 100% = WCETEST when not using SPM at all

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R
e

la
ti

v
e

 W
C

E
T

E
S

T
[%

]

Relative SPM Size [%]

md5

Compilers for Embedded Systems (CfES) SoSe 2022Slide 85/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Rel. WCETEST after P-SPM Allocation of 73 Benchmarks

– Steady WCETEST reductions for increasing SPM sizes

– WCETEST reductions from 8% – 41%

– X-Axis: SPM size = x% of benchmark’s code size

– Y-Axis: 100% = WCETEST when not using SPM at all

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v
g

.
R

e
la

ti
v
e

 W
C

E
T

E
S

T
[%

]

Relative SPM Size [%]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 86/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Conclusions

Comparison with Consequences for WCETEST Optimizations

WCET-aware optimizations...

– ... mandatorily need detailed knowledge of the WCEP

 SPM allocations consider the WCEP

– ... always have to be aware that the WCEP can change after each

individual optimization decision

 SPM allocations inherently capture WCEP changes inside the ILP

– ... should take the decision where to optimize something not only based

on local information, but should always consider the global effects of an

optimization decision

 Objective functions of the ILPs model the global WCET of a program that

is subject to minimization.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 87/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

References

WCC Compiler Infrastructure

– H. Falk, P. Lokuciejewski. A compiler framework for the reduction of

worst-case execution times. Springer Real-Time Systems 46(2), October

2010.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 88/88

© H. Falk | 17.03.2022 9 - WCET-Aware Compilation

Summary

Compilers for WCETEST Minimization

– Integration of a formal WCET timing model into compiler

– Challenge: To consider unstable WCEPs in the course of optimizations

WCET-aware Optimizations

– Procedure Cloning & Positioning: Greedy heuristics that determine

current WCEP via repeated WCET analyses

– Register allocation: cyclic dependencies between register allocation and

WCET analysis; graph coloring along the always current WCEP

– Scratchpad allocations: Inherent modelling of WCEP in the ILPs;

eliminates need for repeated WCET analyses during optimization

