TUHH

Hamburg University of Technology

Compilers for Embedded Systems

Summer Term 2022

Heiko Falk

Institute of Embedded Systems
Electrical Engineering, Computer Science and Mathematics
Hamburg University of Technology

TUHH

Hamburg U sity of Technology

Chapter 4

Pre-Pass Optimizations

SICCKISI Compilers for Embedded Systems (CfES) SoSe 2022

Outline

Introduction & Motivation

Compilers for Embedded Systems — Requirements & Dependencies
Internal Structure of Compilers

Pre-Pass Optimizations

HIR Optimizations and Transformations

Code Generation

LIR Optimizations and Transformations

Register Allocation

WCET-Aware Compilation

10.Outlook

© 00N Ok wwDdhRE

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SRS Compilers for Embedded Systems (CfES) SoSe 2022

Chapter Contents

4. Pre-Pass Optimizations

— Motivation of Pre-Pass Optimizations
— Loop Nest Splitting

Embedded Multimedia: MPEG 4 Motion Estimation
Workflow of Loop Nest Splitting

Condition Satisfiability

Condition Optimization & Genetic Algorithms
Search Space Generation

Search Space Exploration

Results (ACET, Energy, Code Size)

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIS Compilers for Embedded Systems (CfES) SoSe 2022

Motivation of Pre-Pass Optimizations (1)

% Retrospect: Structure of an Optimizing Compiler with 2 IRs:

Source

Code

Low-
lLeveI IR

Lexical Token | Syntactical |Syntax | Semantical
Analysis Sequence Analysis Tree Analysis

Code | _Low- Code | High- Code
Optimization|Level IR| Generation |Level IR|Optimization
Register | Low- Flnstruction | || Ay
Allocation |Level IR| Scheduling Code

Question: May only the compiler optimize code?

© H. Falk | 17.03.2022

4 - Pre-Pass Optimizations

Level IR

SR Compilers for Embedded Systems (CfES) SoSe 2022

Motivation of Pre-Pass Optimizations (2)

Optimizations outside a compiler are called

Post-pass if they take place after the compiler
Pre-pass if they take place before the compiler

Advantages of Pre-Pass Optimizations 3)

Source code transformations more easily comprehensible.

Allow for manually “playing” with an optimization technique before a
laborious implementation.

Independent of the actual compiler due to source code-level; principally
applicable for each individual compiler of the source language.

Due to source code-level independent of the actual target architecture;
principally applicable for arbitrary architectures.

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIS Compilers for Embedded Systems (CfES) SoSe 2022

Abstraction Levels of Optimizations

X 4-20

cification
Optimization

Algorithm
Pre-Pass < / Selection \X 4-9
Optimizations Memory Transfer 4
Optimization X
Processor-independent Global 3 CfES
Source Code Optimization X Chapter 4
Processor-specific Source 2
\ Code Optimization X
/ Processor-independent Compiler Optimization
= : — X 2-3
/ Processor-specific Compiler Optimization \

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SRS Compilers for Embedded Systems (CfES) SoSe 2022

Chapter Contents

4. Pre-Pass Optimizations

— Motivation of Pre-Pass Optimizations
— Loop Nest Splitting

Embedded Multimedia: MPEG 4 Motion Estimation
Workflow of Loop Nest Splitting

Condition Satisfiability

Condition Optimization & Genetic Algorithms
Search Space Generation

Search Space Exploration

Results (ACET, Energy, Code Size)

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIERJCIM Compilers for Embedded Systems (CfES) SoSe 2022

Application Domain of Loop Nest Splitting

Embedded Multimedia Applications

— Data flow dominated, i.e., get large amounts of data as inputs, compute
large volumes of data as output
(in contrast to control flow dominated control applications).

— Largest part of the run-time consumed by (deeply) nested loops

— Simple loop structures with statically known or analyzable lower and
upper bounds

— Manipulation of large, multi-dimensional arrays

— Typical example: Streaming applications like MPEG4

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SNV Compilers for Embedded Systems (CfES) SoSe 2022

Example: MPEG4 Motion Estimation

.
e,
.
s

............
wert
.
.
o
o
.
.
.
.
o
o

(Actual Frame

w :
[X ;
X e g
o < {o |
< R x4
q- £¢>

— . .,- Ay4

D
D

U,
. .

.
D
g

0
5

“”

' y

36x36 Pixels
A

N

Search Region

VX
R .,
' v
vy

—_—

196 Pixels

© H. Falk | 17.03.2022

4 - Pre-Pass Optimizations

SNV Compilers for Embedded Systems (CfES) SoSe 2022

Source Code MPEG4 Motion Estimation

for (i = 0; i < 20; i++)
for (x = 0; x < 36; x++)
for (y = 0; y < 49; y++)
for (vx = 0; vx < 9; vx++)
for (vy = 0; vy < 9; vy++)
for (x4 = 0; x4 < 4; x4++)
for (y4 = 0; y4 < 4; y4++) {
if (4*x+x4<0 || 4*x+x4>35 ||
4*y+y4<0 || 4*y+y4>48)
then block 1; else else block 1;
if (4*x+vx+x4-4<0 || 4*x+vx+x4-4>35 ||
4*y+vy+y4-4<0 || 4*y+vy+y4-4>48)
then block 2; else else block 2; }

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SNV Compilers for Embedded Systems (CfES) SoSe 2022

Observations

When Compiling and Executing this Source Code

— Execution of 91,445,760 if-statements in total

— Very irregular control flow due to if-statements

— Additional arithmetical overhead:
Multiplications, additions, comparisons, logical or, ...

< Performance of this code limited by control flow, and not by the
computation of motion vectors!

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIS Compilers for Embedded Systems (CfES) SoSe 2022

Loop Nest Splitting

Automated Loop & If-Statement Analysis
— X, y, x4 and y4 never carry values such that conditions 4*x+x4<0 and

4*y+y4<0 are ever true.
% Conditions can be replaced by constant truth value 0.

— For x 210 or y =2 14, both if-statements are always satisfied so that their

then-parts are always executed.
For more than 92% of all executions of the innermost y4-loop, both if-

statements are satisfied.

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SICHEI Compilers for Embedded Systems (CfES) SoSe 2022

Source Code after Loop Nest Splitting

for (1 = 0; 1 < 20; i++4)
for (x = 0; x < 36; x++)
for (y = 0; y < 49; y++)

if (x >= 10 || y >= 14) // Splitting-If
for (; y < 49; y++) // Second y-loop
for (vx = 0; vx < 9; vx++) ... { // No
then block 1; then block 2; } // If-Stmts
else
for (vx = 0; vx < 9; vx++) ... {

if (0 || 4*x+x4>35 || O || 4*y+y4>48) // o01d
then block 1; else else block 1; // If-Stmts
if (4*x+vx+x4-4<0 || 4*x+vx+x4-4>35 ||
then block 2; else else block 2; }

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIS Compilers for Embedded Systems (CfES) SoSe 2022

Optimized Code Structure

Splitting-If

— Whenever the condition of the splitting-if is satisfied, the conditions of all
original if-statements are automatically also satisfied.

< Then-part of the splitting-if thus contains no original if-statements any
more, but only their then-parts.

— If splitting-if is not satisfied, no safe statement about the conditions of the
original if-statements is possible.

* Else-part of the splitting-if contains all original if-statements in order to
keep the code correct.

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIUCCHITEIM Compilers for Embedded Systems (CfES) SoSe 2022

Why Second y-Loop?

Intuitive Code: + Splitting-If:
for (x=0; x<36; x++) 1 execution for

for (y=0; y<49;) each individual Y € [14, 48]
d y = 16

Optimized Code: & Splitting-If:
for (x=0; x<36; x++) 1 execution for
for (y=0; y<49; y++) all y € [14, 48] altogether

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SNV Compilers for Embedded Systems (CfES) SoSe 2022

Phases of Loop Nest Splitting

— Condition Satisfiability: Finds individual conditions in if-statements that
are always or never satisfied.

— Condition Optimization: For each single condition C, find a “simpler”
condition C’such that C’= C holds (whenever C’is true, C is also true).

— Search Space Generation: Combine all single conditions C’to one data
structure G that models all if-statements including their structure (&&, | |).

— Search Space Exploration: Using G, determine a condition for the
splitting-if that minimizes the number of totally executed if-statements.

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SR Compilers for Embedded Systems (CfES) SoSe 2022

Workflow of Loop Nest Splitting (1)

(4*x+3*x4>20 && x-x4>3)
x4 i x4 i

Fr=a0 | |

6*x-20*x4<61

| 1 - Condition Satisfiability I

© H. Falk | 17.03.2022

Note:

This example does not
correspond to the MPEG4 code
from the previous slides!
Assumed loop bounds:
0<x<13

0<x4<3

4 - Pre-Pass Optimizations

SR Compilers for Embedded Systems (CfES) SoSe 2022

Workflow of Loop Nest Splitting (2)

4*x+3*%x4>20 x-x4>3 3F%ad<0 6*x-20*x4<61

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIEPAVETI Compilers for Embedded Systems (CfES) SoSe 2022

Workflow of Loop Nest Splitting (3)

4*x+3*x4>20 x-x4>3 3¥%ad<0 6*x-20*x4<61
x4 x4
o e
x4 - x4 x4 o

3 - Search Space Generation I

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

1 - Condition Satisfiability I | 2 - Condition Optimization I :,

SIPAV Compilers for Embedded Systems (CfES) SoSe 2022

Workflow of Loop Nest Splitting (4)

(4*x+3*x4>20 && x-x4>3) || 3Fw+=a<0 || 6*x-20*x4<61
x4 X4
o s

> X

x>=7 || x4>=1

1 - Condition Satisfiability I 2 - Condition Optimization I
3 - Search Space Generation I 4 - Search Space Exploration I

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

i\
rav

N

P\
L1l

N

SIPPI Compilers for Embedded Systems (CfES) SoSe 2022

Prerequisites

Bounds of Loops L
— All lower and upper bounds (I1,ur) are constant

If-Statements
— Sequence of loop-dependent conditions, all of which are combined using

logical AND or OR
— Format: if (C; ® Cy ® ...) ® € {&&, | |}

Loop-Dependent Conditions

— Linear expressions over index variables i;, of the loops
N

— Format: C, ~ Y (cp*ip)+¢>0 cr,c €7
L=1

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIEPRIT Compilers for Embedded Systems (CfES) SoSe 2022

Polytopes & Linear Conditions

Definition (Polyhedra / Polytopes)
— Polyhedron P = {z € Z"|Axz > b} Aezm™*N pezm

— Polyhedron P is called Polytope iff |P| < oo

Example: Model of Linear Conditions in Nested Loops

— 4*x + 3*x4 > 35 for xe |0, 35], x4 € [0, 3] as polytope
4 3 36
RN
- P={peZ’| -1 0 |p>| -35
0 1 0
\ o 1)\ =3

x4

X

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIPLZI Compilers for Embedded Systems (CfES) SoSe 2022

Convexity of Polytopes

Definition (Convexity)
— Aset S c ZVis called convex if each convex combination azx + by of

r,ye€ SisinS and (a+b=1;b>0).

Less Formally
— Each line between any two arbitrary points = and y from .S must lie

completely in S.
% Polytopes are convex.

""""""" 0000000 000000000000000000000000
z DQ 00000 00000000000000000
00QO0O0000000000000000VO0OCO > D0UQRO0000000000

Q00PWOO0O0O0O0O0O0O00DO0DO0O0DO0O0O0O0OVOO CROOO0O000000QO000000000
000QO000000000000000000HO 00000WOOO0DO0O0O000COODO0OD00OD0OO0OCO
0000QO00000000000000O00YOO OOOOOOOOOOOOOOOOOOOOO
000000000000000000000000 > ONG .

000000QO0O0O0O0DO000O0O0O0O0O0O0LOOO

0000000000000

Convex Not convex

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIS Compilers for Embedded Systems (CfES) SoSe 2022

Operations on Polytopes

Properties
— The Intersection of two polytopes is again a polytope.

— The Union of two polytopes is not a polytope, since the resulting set is
not necessarily convex.

Definition (Finite Union of Polyhedra, FUP)
— For polyhedra Py,...,P,(neNn<), V. ={P,U---UP,}Iiscalled a
Finite Union of Polyhedra (FUP).

Set Operations on FUPs A =| J4;,B=|] B,

J

- AnB:=(JA)n(By = J4inBy)
i J i

— AUB:(UAZ)U(B])

1

_/
J

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Sl Compilers for Embedded Systems (CfES) SoSe 2022

Phase 1 — Condition Satisfiability

Goal
— To identify loop-dependent conditions C, that constantly evaluate to ‘true’

or ‘false’, irrespectively of the values of index variables of all surrounding
loops.

Approach
— Translate each condition C, into a polytope P, (= slide 23)

— Test for the empty set: P, == @ = C, always ‘false’
— Test for the universe: P, == U = C, always ‘true’

Source Code Modification
— Replacement of all these constantly true or false conditions in the source

code by constants ‘0" or ‘1".

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIS Compilers for Embedded Systems (CfES) SoSe 2022

Phase 2 — Condition Optimization

Given N
— N loops and one condition C' = » "(cz xi) +¢ >0
L=1

Assumed fictive Situation

for (loop L) Assumption: The loops contain only 1 if-
.. statement with only 1 condition. All other if-
for (loop Ly) statements & conditions are quasi
if (C) ... suppressed.
Goal: To determine intervals [lc1,uc 1] - - . [lo ~N,uc, n]Such that:

— (' Is satisfied for all loop iterations within these intervals
— Minimization of the number of executions of if-statements after a
hypothetical loop nest splitting based on these intervals.

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

Sle[PATl Compilers for Embedded Systems (CfES) SoSe 2022

Optimization of a Condition C

N
C’:Z(CL*QZL)JrczO

L=1

— Determination of values /¢ ; and uc, . for every loop L

— Interpretation: C' Is satisfied forall o 1 <ip <wucp

— Optimization goal:
All values [1, and uc, , minimize the total amount of executed if-
statements

— Simplification: The linearity of C'implies
either [, =1, Of uc,L = ug

— Consequence: Determination of only one value v¢ 1,
Either (v 1, uc] or [lo L, ve,] satisfies condition C

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIPAJI Compilers for Embedded Systems (CfES) SoSe 2022

Some Definitions...

N
Given: C:Z(CL*iL)"‘CEO lr,ur (Yol 3
L=1
— Total Iteration Space (#Executions of the innermost loop’s body)
N
TIS = || (up — 1z +1)
L=1
— Constrained Iteration Space (#Executions of the innermost
N loop’s body, constrained to regions
cis= 1] rc specified by values v¢. 1)
L=1
ur, —lp +1 for ¢, =0,
ry = ur, —ve, +1 forcp >0,

ve.r, —lr +1 otherwise

— Splitting Loop (Index of that loop where splitting
A=max{i| L; e A\,rp #Fur —lp+1} will take place)

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SRV Compilers for Embedded Systems (CfES) SoSe 2022

lllustration (1)

Loop 1 for (1 = 0; 1 < 20; 1i++4)
for (x = 0; x < 36; x++)
for (y = 0; y < 49; y++)
for (vx = 0; vx < 9; vx++)
for (vy = 0; vy < 9; vy++)
for (x4 = 0; x4 < 4; x4++)

Loop N=7 for (y4 = 0; yv4 < 4; yi++) {
if (4*x+vx+x4-4>35)
; else ;
Note:
— Loops are enumerated from 1 ... N from the outermost to the innermost
loop.

— Only 1 condition in if-statement instead of the many ones from slide 11!

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SNV Compilers for Embedded Systems (CfES) SoSe 2022

lllustration (2)

Loop 1 for (1 = 0; 1 < 20; 1i++4)
for (x = 0; x < 36; x++)
for (y = 0; y < 49; y++)
for (vx = 0; vx < 9; vx++)
for (vy = 0; vy < 9; vy++)
for (x4 = 0; x4 < 4; x4++)

Loop N=7 for (y4 = 0; y4 < 4; y4++) {
if (4*x+vx+x4-4>35)
; else
TIS:

— Amount of executions of the code within the curly braces.
— Here: 20*36*49*9*9*4*4 =45,722,880

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SICEREPI Compilers for Embedded Systems (CfES) SoSe 2022

lllustration (3)

Loop 1 for (1 = 0; 1 < 20; 1i++4)
for (x = 0; x < 36; x++)
for (y = 0; y < 49; y++)
for (vx = 0; vx < 9; vx++)
for (vy = 0; vy < 9; vy++)
for (x4 = 0; x4 < 4; x4++)

Loop for (y4 = 0; yv4 < 4; y4++) {
if (4*x+vx+x4-4>35)
; else
Let vo1 = 0;v02 = 10;v03 =--- =0 be given.

— Condition C' is satisfied forall x =210and 1, vy, ..., y4 2 0.
— CIS:20*(36-10)*49*9*9*4 *4 = 33,022,080

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIERRKII Compilers for Embedded Systems (CfES) SoSe 2022

lllustration (4)

for (i = 0; 1 < 20; i++) CIS: Number of executions of the
for (x = 0; x < 36; x++) code in curly braces for x = 10.

if (x >= 10)
for (; x < 36; x++)
for (y4 = 0; y4 < 4; y4++) {...}
else
for (y = 0; y < 49; y++)
for (y4 = 0; y4 < 4; y4++) {
if (4*x+vx+x4-4>35) ... }

Hypothetical Code for vo o = 10
— Splitting Loop A = 2 since splitting-if needs to be placed in 2" loop.
— Question: How often would all if-statements shown here be executed?

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIS Compilers for Embedded Systems (CfES) SoSe 2022

Counting of If-Statement Executions

— #If-Statements after Splitting (#Original if’'s + #Splitting-if’s)
TFrota1 = IFOrig + IFSplit

— #Original if’s (Total iterations without constrained
IFore = TIS — CIS iterations)

— #Splitting-if’s
IFsp1ic = # Then-blocks + # Else-blocks = TB + EB

— #Then-Blocks (CIS without iterations of loops
N inside of)
TB:CIS/(H (uL—lL+1)*T)\)
L=X+1
— #Else-Blocks (#QOriginal if’s without loop iterations
inside of)\)

N
EB=IFoug/ || (ur—1p+1)
L=X+1
© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIS Compilers for Embedded Systems (CfES) SoSe 2022

lllustration (5)

for (i = 0;

for (x =

i < 20; i++)
0; x < 36; x++)

if (x >= 10)

for (

for (y4 = 0; y4 < 4; y4++) {...

else

; X < 36; x++)

for (y = 0; y < 49; y++)

for (y4 = 0; y4 < 4; y4++) {

© H. Falk | 17.03.2022

if (4*x+vx+x4-4>35)

4 - Pre-Pass Optimizations

}

Frgn

} IFOrig

B IFTotal

SIS Compilers for Embedded Systems (CfES) SoSe 2022

lllustration (6)

for (i = 0; i < 20; i++)
for (x = 0; x < 36; x++)
if (x >= 10)
for (; x < 36; x++)
for (y4 = 0; yv4 < 4; y4++) {...}

else
CIS
for (y = 0; y < 49; y++)
for (y4 = 0; y4 < 4; y4++) {
if (4*x+vx+x4-4>35) ... }]‘Hth

TIS
IForg =20% 36 49 %9+ 9 x4 x4 —
20% (36 —10) *49 %« 9x9x 4 x4
= 45,722,880 — 33,022,080 = 12, 700, 800

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SRV Compilers for Embedded Systems (CfES) SoSe 2022

lllustration (7)

for (i = 0; i < 20; i++)
for (x = 0; x < 36; x++)
if (x >= 10)
}br (; x < 36; x++)
for (y4 = 0; yv4 < 4; y4++) {...}

else

Cor (y = 0, vy < 49, y+4) > 4 Flse-blocks

for (y4 = 0; y4 < 4; y4++) {
if (4*x+vx+x4-4>35) ... }

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

> 4 Then-blocks

F i

SI[SReII Compilers for Embedded Systems (CfES) SoSe 2022

lllustration (8)

for (i = 0; i < 20; i++)
for (x = 0; x < 36; x++)
if (x >= 10)
for (; x < 36; x++)
for (y4 = 0; yv4 < 4; y4++) {...}

else
for (y = 0; y < 49; y++) 'I€Orig/4/4/9/9/49
for (vx = 0; vk < 9; vx++) > IForig/4/4/9/9
%or (vy = 0; vy < 9; vy++))IFbH&MWA/g
for (x4 = 0; x4 < 4; x4++))“H%;?/4¢z
; > 1P Orig

for (y4 = 0; y4 < 4; y4++) {
if (4*x+vx+x4-4>35) ... }
Else-blocks = IForig /(49 %9 % 9 x 4 x 4)

= 12,700, 800/63, 504 = 200
© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

> IFOrig

SIS Compilers for Embedded Systems (CfES) SoSe 2022

lllustration (9)

for (i = 0; i < 20; i++)
for (x = 0; x < 36; x++)
if (x >= 10)

or (<36 % - CIS/4/4/9/9/49/26
.for (y = 0; y < 49; y++) >(C1S/4/4/9/9/49]
for (vx = 0; vx < 9; vx++) %;
for (vy = 0; vy < 9; vy++) %
for (x4 = 0; x4 < 4; x4++) §

for (y4 = 0; y4 < 4; y4++) {

> (1S

.}

else

Then-blocks = CIS/(26 « 49 % 9% 9 x4 x 4)

= 33,022,080/1, 651,104 = 20
© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

previous slide

SICEIVET Compilers for Embedded Systems (CfES) SoSe 2022

lllustration (10)

for (i = 0; i < 20; i++)
for (x = 0; x < 36; x++)
if (x >= 10) Ji.
for (; x < 36; x++)
for (y4 = 0; y4 < 4; ya4++) {...}
else
for (y = 0; y < 49; y++)
for (y4 = 0; y4 < 4; y4++) {
if (4*x+vx+x4-4>35) ... }]‘Hﬂhg

IFrotal = [Forig + IFsplic = [Forig + # Then-Blocks + # Else-Blocks
= 12,700, 800 + 20 + 200
= 12,701,020

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

—

B IFTotal

SNV Compilers for Embedded Systems (CfES) SoSe 2022

Computation of Values vc .

Wrap-Up
— For a condition €' and given values v¢ 1, we can compute how many if-
statements would be executed after splitting based on v¢ 1.

Very nice, but...
... who produces good values for v¢, ,?

& A Genetic Algorithm

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIS Compilers for Embedded Systems (CfES) SoSe 2022

Workflow of Genetic Algorithms (1)

P, = InitPopulation;
i =0;

L

(i<=N) and
(stopping criterion = false)

RepairMechanism(P);
F = Fitness(P);

P, = Selection(P,, F);
P.., = Variation(P’, F);
=+ 1

return best
individual of P,

© H. Falk | 17.03.2022

— In the style of natural evolution,
‘survival of the fittest”

— Optimization loopi=0, 1, ...

— Each iteration i maintains

- population P;; a population
contains several individuals
— An individual represents one
possible solution for the modeled
optimization problem
4—

4 - Pre-Pass Optimizations =

SICECIT Compilers for Embedded Systems (CfES) SoSe 2022

Workflow of Genetic Algorithms (2)

— An individual’s data structure is

P

0
=

InitPopulation;

0;

called chromosome.

L

(i<=N) and
(stopping criterion = false)

RepairMechanism(P);
F = Fitness(P);

P, = Selection(P,, F);
P.., = Variation(P’, F);
=+ 1

return best
individual of P,

© H. Falk | 17.03.2022

chromosome

no

— A chromosome consists of many
genes that are used to save data.

— One actual value stored in a gene
Is called allele.

4 - Pre-Pass Optimizations =

SIS Compilers for Embedded Systems (CfES) SoSe 2022

Workflow of Genetic Algorithms (3)

— Afitness function computes the

fitness of each individual inside P,.
| — From P,, a subset P;" of highest /
lowest fithess is selected
(selection, depending on whether
a minimization or maximization
problem is optimized).

P, = InitPopulation;
i =0;

(i<=N) and
(stopping criterion = false)

no

RepairMechanism(P); .

F = Fitness(P): — Py is completed to the next

P, = Selection(P,, F); - _

P = Variation(B, F) populatl.on Pii1 by r.ar.ldomly

i=i+1: generating new individuals
(variation)

return best
individual of P,

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations €

SICEES Compilers for Embedded Systems (CfES) SoSe 2022

Workflow of Genetic Algorithms (4)

— Variation makes use of two basic
genetic operators:
l — Cross-over:

o 0000 DO L0

=

ofriofrio (010 0@
RepairMechanism(P);

F = Fitness(P): — Mutation:
P’ = Selection(P, F);
P... = Variation(P;, F);

\ v
=i+ 1 0/1(0/110) =>

return best
individual of P,

P, = InitPopulation;
| = 0;

(i<=N) and
(stopping criterion = false)

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations S

SICEIET Compilers for Embedded Systems (CfES) SoSe 2022

Workflow of Genetic Algorithms (5)

P, = InitPopulation;
i =0;

L

(i<=N) and
(stopping criterion = false)

RepairMechanism(P);
F = Fitness(P);

P, = Selection(P,, F);
P.., = Variation(P,, F);
=+ 1

return best
individual of P,

© H. Falk | 17.03.2022

— Due to the randomness in
variation, P; can contain individuals
that do not represent valid
solutions: Repair mechanism.

— Termination of the GA if

no

— max. N iterations reached,

— best observed fithess
unchanged for y iterations,

— Final result is that individual from
last population with best fithess.

4 - Pre-Pass Optimizations

SIS Compilers for Embedded Systems (CfES) SoSe 2022

Genetic Algorithm for Condition Optimization

Chromosomal Representation
— For N nested loops, each chromosome has N genes

— Each gene holds one integer number
— Gene L represents the value v 1, to be optimized
— Domain of each gene L restricted to interval [I1, uy]

Fitness
— Fitness of an individual = IFpqta
— Invalid individuals (vc1,...,ve n) represent iterations within the loop

nest in which condition C is not always satisfied
— Invalid individuals obtain a very poor fitness

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SICEEI Compilers for Embedded Systems (CfES) SoSe 2022

Result of Condition Optimization

Inputs to Condition Optimization
— Linear condition C

— Loop bounds [iz, ur]

Output of the Genetic Algorithm
— Values (vc,1,...,vc,n) Of the individual with best fitness

Output of Condition Optimization Phase
— Polytope
lL g XL S ur,

P, =< (z1,...,zn) €Z" | ¥ Loops L: xp >ve,p if e >0,
ngvcyL if ¢ <O

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIEEEJT Compilers for Embedded Systems (CfES) SoSe 2022

Phase 3 — Search Space Generation

Given: If-statements, conditions & polytopes

IF,; = (C/L',l 0% Ci,Q Q- & Ci,n)a ® € {&&7 | I} Vciaj el P?':j

Construction of FUPs P, for each full if-statement IF,

v

L Coga 11 oy | — L J

v

Construction of a Global FUP (Global Search Space)
FUP G models iteration space in which all if-statements are satisfied.
Constructed by intersecting all FUPs P; of the individual if-statements:

- G=(\P

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SISV Compilers for Embedded Systems (CfES) SoSe 2022

Phase 3 — Structure of the FUP G

Consequence of Using the U Operator on the Previous Slide
— G is a finite union of polytopes and can thus be seen as:

— G=Ri1URyU---URpy

— Interpretation:
Each polytope 2, denotes
one region Iin the iteration space of the entire loop nest in which all if-
statements are satisfied.

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SNV Compilers for Embedded Systems (CfES) SoSe 2022

Global Search Space for MPEG Code

— IF] = 4*%x+x4<0 || 4*x+x4>35 || 4xy+y4<0 || 4*y+y4>48
P 1=0,Po={x>9},Pi3=0,P 4 ={y>13}
P ={x>9}uU{y > 13}

— IFg = 4xx+vx+x4<4 || 4xx+vx+x4>39 || 4xy+vy+yd<4 || 4*y+vy+y4>52
P ={x=0 A vx =0}, oo = {x > 10},
Pos={y=0 A vy =0}, P4 = {y > 14}
Po={x=0 A vx=0}U{x>10}U{y=0 A vy =0} U{y > 14}

- GZPlﬂPQZ

{x=0Avx=0Ay>13} U {x>10} U
=0 ANvy=0Ax>9} U y>14
y y

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SV Compilers for Embedded Systems (CfES) SoSe 2022

Global Search Space & Splitting-If (1)

— G=1IF NIk =
{x=0Avx=0Ay>13} U {x>10} U
{y=0 A vy=0 A x>9} U {y>14}

Direct Translation of G into Splitting-If
if ((x == 0 && vx == 0 && y >= 13) || (x >= 10) ||
(y == 0 && vy == 0 && x >= 9) || (y >= 14))

Not a Good Idea
< This splitting-if must be placed in vy-loop (3"-innermost!)
& |Leads to 10,103,760 executions of if-statements in total

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIEEKII Compilers for Embedded Systems (CfES) SoSe 2022

Global Search Space & Splitting-If (2)

- G:IFlﬂIFQZ
{x=0Avx=0Ay>13} U {x>10} U
{y=0 A vy=0 A x>9} U {y>14}

Alternative: Use only sub-polytopes R, of G for splitting-if.
Legal, since each sub-polytope R, by itself already satisfies all if-
statements.

if (x >= 10)

— This sub-polytope is also not a good solution
*|Leads to 25,401,820 if-statement executions

if (((x> 10) || (y >=14))

— This combination of sub-polytopes is a good solution
#|Leads to 7,261,120 if-statement executions

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIS Compilers for Embedded Systems (CfES) SoSe 2022

Phase 4 — Search Space Exploration

GA: Selects regions fromG = Ry URs U --- U Ry
— Individual: Bit-vector that marks the selected regions

1 if region R, selected,

Individual I = (I,...,1y), I, = { 0 otherwise

— Fitness function computes again
#{If-statement executions} after loop nest splitting
— Fitness function minimized by GA

Resulting Splitting-If
— Placed in the outermost possible loop of the loop nest
— Contains all conditions and operators as specified by the selected

regions R,

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIS Compilers for Embedded Systems (CfES) SoSe 2022

Relative Run-Times after Loop Nest Splitting

110%
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

© H.

BCAVITY OME OQSDPCM

I |II 1
HP

Sun Pentium MIPS Power-PC DEC TriMedia TI C6x ARM7 ARM7 Geo.
Alpha thmb arm Mean

100% = Run-times of the benchmarks without Loop Nest Splitting

Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIS Compilers for Embedded Systems (CfES) SoSe 2022

Relative Energy Consumption (ARM7) after LNS

130%

BCAVITY OME OQSDPCM
120%

110%

100%

90%

80%

70% +

60% -

40% - ‘ ‘

50% - }
.l B | }

Wl B E N
10% +

0% -

[]
Instr Read Data Read Data Write Mem Accesses Mem Energy CPU Energy Total Energy

100% = Values of the Benchmarks without Loop Nest Splitting

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SICEEYAS Compilers for Embedded Systems (CfES) SoSe 2022

Relative Code Size after Loop Nest Splitting

200%]
m CAVITY o ME 3 QSDPCM
180%] ,_ —
160% —
0% - I I -
o I I I I I I
- I I I I I I I I
- I I I I I I I I
- I I I I I I I I
- I I I I I I I I
0% R 2 o +
O & 2 WO °
& ‘&\o > Q\Q e‘g %Q‘O e.& «\G‘b \,9@
Q¢ & & N &
A4 Q Yg.

100% = Size of the benchmarks without Loop Nest Splitting

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SIEESII Compilers for Embedded Systems (CfES) SoSe 2022

References

Loop Nest Splitting
— H. Falk, P. Marwedel. Control Flow driven Splitting of Loop Nests at the

Source Code Level. DATE Conference, Munich, 2003.

— H. Falk. Control Flow Optimization by Loop Nest Splitting at the Source
Code Level. University of Dortmund, Technical Report No. 773,
Dortmund 2003.

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

SISV Compilers for Embedded Systems (CfES) SoSe 2022

Summary

Non-Compiler Optimizations
— Post-pass after compiler, e.g., at linker-level
— Pre-pass before compiler, at source code level

Loop Nest Splitting

— Control flow optimization in data flow-dominated multimedia applications

— Polytopes used to model linear conditions and loops

— Genetic algorithms used to optimize polytope models

— Significant reductions in terms of ACET and energy (and WCET), but
partially heavy code size increases

© H. Falk | 17.03.2022 4 - Pre-Pass Optimizations

