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Motivation of HIR Optimizations

High-Level IRs:

– Very close to source language

– High-level language constructs (esp. loops, function calls with parameter 

passing, array accesses) preserved

High-Level Optimizations

– Exploit particularly these HIR features

– Focus on strong reorganization of loops and function relationships

– Are difficult to realize at lower abstraction levels, since required high-level 

information (e.g., loop bounds or function call relationships) get lost and 

are difficult to reconstruct
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Function Specialization

Also Called “Procedure Cloning”

– Rather old and well-known compiler technique (1993)

– Goals: To enable other optimizations, to reduce the overhead to pass 

parameters during function calls

– Approach: Of particular functions, specialized copies (“clones”) are 

created which have less parameters than the original function

Specialization so-called Interprocedural Optimization

– Explicit consideration of calling relationships between functions during an 

optimization

In Contrast to Intraprocedural Optimizations

– Optimization just locally inside a function f, without consideration of 

functions that f calls, or by which f is called
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Typical Function Calls

Observations

– f is called several times

– f has 3 arguments

– Arguments n and p are 

instantiated several times with 

constants 5 and 2

int f( int *x, int n, int p ) {

for (i=0; i<n; i++) {

x[i] = p * x[i];

if ( i == 10 ) { ... }

}

return x[n-1];

}

int main() {

... f( y, 5, 2 ) ...

... f( z, 5, 2 ) ...

return f( a, 5, 2 );

}
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More Observations

– f is so-called general-purpose 

function: Via parameter n, an array 

x of arbitrary size can be treated

– Control flow in f depends on 

function parameter

– f is used in main in a special-

purpose context: Processing of 

arrays of size n = 5.

int f( int *x, int n, int p ) {

for (i=0; i<n; i++) {

x[i] = p * x[i];

if ( i == 10 ) { ... }

}

return x[n-1];

}

int main() {

... f( y, 5, 2 ) ...

... f( z, 5, 2 ) ...

return f( a, 5, 2 );

}
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Specialization of General-Purpose Functions

int f( int *x, int n, int p ) {

for (i=0; i<n; i++) {

x[i] = p * x[i];

if ( i == 10 ) { ... }

}

return x[n-1];

}

int main() {

... f_5_2( y ) ...

... f_5_2( z ) ...

return f_5_2( a );

}

int f_5_2( int *x ) {

for (i=0; i<5; i++) {

x[i] = 2 * x[i];

if ( i == 10 ) { ... }

}

return x[4];

}
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Expected Effects of Specialization

Reduction of the Average-Case Execution Time ACET due to

– Enabling of other standard compiler optimizations inside the specialized 

function

– Less code to be executed for parameter passing when calling the 

specialized function



Compilers for Embedded Systems (CfES) SoSe 2022Slide 12/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Standard Optimizations after Cloning (1)

Constant Folding

– Pre-computation of expressions with purely constant operands already at 

compile-time

– Example:

Original code + Cloning + ConstFold

a = p * n;         a = 2 * 5; a = 10;
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Standard Optimizations after Cloning (2)

Constant Propagation

– Replacement of accesses to variables that provably have constant 

content by the constant itself

– Example:

Original code + Cloning + ConstFold

+ ConstProp

a = p * n; a = 2 * 5; a = 10;

for (…; i<a; …)    for (…; i<a; …)    for (…; i<10; …)
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Standard Optimizations after Cloning (3)

Strength Reduction

– Replacement of computationally expensive computations (e.g., 

multiplications, divisions, ...) by “cheaper” operations (e.g., additions, 

subtractions, shifts, ...)

– Example:

Original code + Cloning + StrengthRed

x[i] = p*x[i]; x[i] = 2*x[i]; x[i] = x[i]<<1;
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Standard Optimizations after Cloning (4)

Control Flow Optimizations

– Determination of possible value ranges of variables after constant folding 

and propagation; removal of redundant if-statements whose conditions 

are always true or always false

( see also chapter 4 – Loop Nest Splitting / Condition Satisfiability)

– Example:

Original code + Cloning + ControlFlowOpt

for(i=0;i<n;i++)   for(i=0;i<5;i++)   for(i=0;i<5;i++)

{                  {                  {

…;                 …;                 …;

if (i==10) …;      if (i==10) …; }

}                  }
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Expected Effects of Specialization

Reduction of the Average-Case Execution Time ACET due to

– Enabling of other standard compiler optimizations inside the specialized 

function

– Fewer code for parameter passing to be executed when calling the 

specialized function

Increase of Code Size due to

– Generation of potentially many novel, specialized clones
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Impact of Cloning on WCET Estimation

Function Specialization and WCET considered only in very recent 

research

Recall

– Worst-Case Execution Time WCET:

Upper bound of a program’s run-time over all possible input data

WCET Estimation

– Via static analysis of the binary code of executable programs

– In the following: Workflow of the static WCET Analyzer aiT

[AbsInt Angewandte Informatik GmbH,
http://www.absint.com/ait, Saarbrücken, 2020]

http://www.absint.com/ait
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Workflow of the WCET Analyzer aiT (1)

– Input: Binary executable P to be 

analyzed

– exec2crl: Disassembler, translates 

P into aiT’s low-level intermediate 

representation CRL2

– Value analysis: Computes 

possible contents of processor 

registers for any point in time 

during P’s execution.

Note: P is never executed by aiT! 

P is „only“ analyzed.
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Workflow of the WCET Analyzer aiT (2)

– Loop bound analysis: Tries to 

determine lower and upper bounds 

for the number of iterations of each 

loop in P.

– Cache analysis: Makes use of a 

formal cache model, classifies 

each memory access in P as 

definite cache hit, definite cache 

miss, or unknown.
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Workflow of the WCET Analyzer aiT (3)

– Pipeline analysis: Includes an 

accurate model of the processor’s 

pipeline. Depending on the 

pipeline’s initial state, possible 

cache states etc., possible states 

of the pipeline at the end of each 

basic block of P are determined. 

Result of the pipeline analysis is 

the WCETEST of each individual 

basic block.
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Workflow of the WCET Analyzer aiT (4)

– Path analysis: Models all possible 

execution paths within P under 

consideration of the WCETEST of 

all basic blocks. Determines the 

longest possible execution path 

within P which leads to the overall 

WCETEST of P.

Result of the path analysis is, e.g., 

the length of this longest path, i.e., 

P’s WCETEST.
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Workflow of the WCET Analyzer aiT (5)

Control Flow Graph (CFG)

– Fundamental code representation during path analysis

Definition: CFG = (V, E, s) is a directed graph with

– V = { b1, ..., bn } (set of all basic blocks, cf. chapter 2)

– E = { (bi → bj) | basic block bj can be executed immediately after bi }

– s  V = the unique start node of the CFG

int fun2() {

for (; a1<30; a1++ ) {

for (; b1<a1; b1++ )

printf( “%d\n”, b1 );

printf( „%d\n“, a1 );

}

return a1; }
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Complexity Issues

– Problem: WCET analysis is not 

computable with today’s machines! 

If WCET were computable, one 

could decide in O(1) if WCET < 

and thus solve the Halting 

problem.

– Reason: It is not computable how 

long P stays in loops. Automatic 

loop bound analysis is applicable 

only to simple classes of loops. 

(Analogously for recursive function 

calls.)
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Annotations for WCET Analysis

– Solution: The user of aiT must 

mandatorily provide information 

about, e.g., minimal and maximal 

iteration bounds of loops and 

recursion depths.

– Annotation file: Contains such 

user-provided annotations (“flow 

facts”) and is – besides the 

program P to be analyzed –

another external input to aiT.
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Why Specialization and WCETEST?

Motivation

– Frequent occurrences of general-purpose functions in special-purpose 

contexts in embedded software

– Loop bounds are particularly often controlled by function parameters

– Loop bounds are particularly critical for WCET estimates

– Procedure Cloning allows the extremely precise annotation of loop 

bounds for WCET analysis

[P. Lokuciejewski. Influence of Procedure Cloning on WCET Prediction. 

CODES+ISSS, Salzburg, 2007]
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Loop Bound Annotations & Cloning (1)

Original code

– Loop annotation extremely 

imprecise since annotation must 

cover all invocations of f.

int f( int *x, int n, int p ) {

// loopbound min 0, max n

for (i=0; i<n; i++ ) {

x[i] = p * x[i];

if ( i == 10 ) { ... }

}

return x[n-1];

}

– If f is called somewhere with n = 2,000 as maximal value, 2,000 loop 

iterations have to be considered always.

– For calls like, e.g., f( a, 5, 2 ), 2,000 loop iterations are likewise 

assumed

 Heavy WCET overestimation
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Loop Bound Annotations & Cloning (2)

Cloned code

– Loop annotation extremely precise 

since annotation covers all

invocations of f_5_2 exactly.

– For calls like, e.g., f_5_2( a ), exactly 5 iterations are assumed

 Exact WCET estimation

– Original function f or other additional clones of f are fully independent 

of annotations in f_5_2

 No interdependencies between all these versions of f w.r.t. WCET 

analysis

int f_5_2( int *x ) {

// loopbound min 5, max 5

for (i=0; i<5; i++ ) {

x[i] = 2 * x[i];

if ( i == 10 ) { ... }

}

return x[4];

}
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Realization of Function Specialization (1)

Caution when Applying Function Specialization

– Increase of code size during cloning must not be neglected!

– Cloning of every possible function which is called at least twice with the 

same constant as argument is usually unacceptable

Parameter-Driven Application of Function Specialization

– Size G: Never clone a function f which is larger than G

– Amount of constant arguments K: clone a function f only if at least K% of 

all calls of f contain constant arguments that can be used for cloning
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Realization of Function Specialization (2)

Given

– Function f to be specialized

– Dictionary arg that maps the arguments of f to be specialized to the 

constant values to be used

Approach Using HIR ICD-C

– Create new function type T’ that corresponds to the Type T of f, but 

without those arguments from arg to be specialized

– Create new function symbol S’ of type T’; add S’ to that symbol table in 

which f is declared

– Create a copy f’ of the code of f with function symbol S’; add f’ to the 

same compilation unit that also holds f
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Realization of Function Specialization (3)

Given

– Function f to be specialized

– Dictionary arg that maps the arguments of f to be specialized to the 

constant values to be used

Approach Using HIR ICD-C (ctd.)

– For each argument a  arg to be specialized:

– Create new local variable v’ in f’

– Create assignment v’ = <arg[a]>; at the very beginning of f’

– Replace each occurrence of a in f’ by v’
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Realization of Function Specialization (4)

Given

– Function f to be specialized

– Dictionary arg that maps the arguments of f to be specialized to the 

constant values to be used

Approach Using HIR ICD-C (ctd.)

– For each function call c of f to be specialized:

– Remove all arguments a  arg to be specialized from the parameter 

list of c

– Replace called function f by f’ within c
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Workflow of Function Specialization

– Function specialization

– Constant folding & propagation

– Strength reduction

– If-statements

– G = 2,000 ICD-C expressions

– K = 50%

Compiler
Backend

Binary
Executable

ANSI-C
Source

Optimized
High-Level

IR

WCET

Timing
Analyzer

Simulator

Simulated
Time

Flow
Facts

ICD-C
Optimizer

Considered Processors

– Infineon TriCore TC1796

– ARM 7 TDMI (ARM and 

THUMB instruction sets)
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Relative WCETEST after Procedure Cloning

– WCETEST reductions from 13% up to 95%!
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Relative ACETs after Procedure Cloning

– Marginal ACET reductions of 3% max.

 Impact of overhead for parameter passing and of successive 

optimization on ACET apparently negligible.
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Relationship between WCETEST and ACET

Very Astonishing

How can one and the same optimization have such a different influence on 

seemingly similar criteria like WCETEST and ACET?

Reasons

– Code before cloning only poorly annotatable

 aiT computes quite imprecise WCET estimates

– Code after cloning precisely annotatable

 aiT computes much more precise WCET estimates

 Specialization obviously improves tightness of WCETEST considerably

( cf. chapter 3 – Objective Functions)

 The real (and unknown) WCETs are expected to be reduced only as 

marginally as ACETs are
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Relative Code Sizes after Procedure Cloning

– Code size increases from 2% up to 225%!
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Parallelization for Multi-DSPs

Material kindly made available by

Björn Franke and Michael O’Boyle

University of Edinburgh, UK

School of Informatics
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Parallelization for Multi-DSPs

Motivation

– Performance demands of complex systems often exceed capabilities of a 

single processor

(e.g., radar, sonar, medical image processing, HDTV, ...)

– Multiple DSPs operating in parallel provide enough performance, but...

 little or no hardware support for the parallel execution of software

 even less support of parallel programming paradigms by development 

tools

 existing source codes are often written in low-level style which 

impedes an effective parallelization
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Parallelizing Compilers

Research Area “High-Performance Computing”

– Research on vectorizing compilers for more than 40 years

– Traditionally Fortran compilers

– These vectorizing compilers are usually not suitable for Multi-DSPs, since 

their assumptions on the memory hierarchy are unrealistic:

 Communication between processes via shared memory

 Memory has only one single, shared address space

 Caches can be local and/or shared, but cache coherence issues are 

solved in hardware

 De facto no parallelizing compilers available for Multi-DSPs
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Multi-DSPs

DSP Core 0

Mem
Bank 1

Mem
Bank 2

DSP Core X

Mem
Bank 1

Mem
Bank 2

External

Memory

<Int 1, 100>

Bus

<Int 2, 100>

<Ext, 100>

<Remote X1, 100>

– Several address spaces:

Internal 1 & 2, external, remote DSP core

– Use of internal memories:

High bandwidth, low access latencies

– Use of remote memories:

ID of remote DSPs must be known
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Workflow of Parallelization

Program Recovery

– Removal of undesired low-level constructs from code

– Replacement by high-level constructs

Detection of Parallelism

– Identification of loops amenable for parallelization

Partitioning and Allocation of Data

– Minimization of communication overhead between DSPs

Locality Improvement of Memory Accesses

– Minimization of accesses to memories of remote DSPs

Optimization of Memory Transfers

– Use of DMA for burst transfers
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Code Example for 2 parallel DSPs

/* Array declarations */

int A[16], B[16], C[16], D[16];

/* Declaration & initialization of pointers */

int *p_a = A, *p_b = &B[15], *p_c = C, *p_d = D;

/* Loop over all array elements */

for (i = 0; i < 16; i++)

*p_d++ = *p_c++ + *p_a++ * *p_b--;

– Low-level array accesses via pointers; explicit pointer 

arithmetic ( cf. chapter 2, auto-increment addressing)

– Disadvantageous for parallelization since ad hoc no

structure in array accesses visible and analyzable

*p_d++ = *p_c++ + *p_a++ * *p_b--;
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Program Recovery

/* Array declarations */

int A[16], B[16], C[16], D[16];

/* Loop over all array elements */

for (i = 0; i < 16; i++)

D[i] = C[i] + A[i] * B[15-i];

– Replacement of pointer accesses by explicit array operators [ ]

– Structure of array accesses better visible, more amenable for 

subsequent analyses
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Program Recovery

/* Array declarations */

int A[16], B[16], C[16], D[16];

/* Loop over all array elements */

for (i = 0; i < 16; i++)

D[i] = C[i] + A[i] * B[15-i];

– One-dimensional “flat” arrays too unstructured for parallelization
for Multi-DSPs

– Partitioning of arrays onto available parallel DSPs unclear
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Data Partitioning

/* Partitioned array declarations */

int A[2][8], B[2][8], C[2][8], D[2][8];

/* Loop over all array elements */

for (i = 0; i < 16; i++)

D[i/8][i%8] = C[i/8][i%8] +

A[i/8][i%8] * B[(15-i)/8][(15-i)%8];

– New, two-dimensional array declarations

– First dimension equals number of available parallel DSPs

– Original flat arrays now partitioned in disjoint areas that can

be processed independently from each other
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Data Partitioning

/* Partitioned array declarations */

int A[2][8], B[2][8], C[2][8], D[2][8];

/* Loop over all array elements */

for (i = 0; i < 16; i++)

D[i/8][i%8] = C[i/8][i%8] +

A[i/8][i%8] * B[(15-i)/8][(15-i)%8];

– Extremely costly and complex addressing required

– Reason: Arrays are multi-dimensional; loop index variable 
i used to index the arrays is purely sequential
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Strip Mining of i-Loop

/* Partitioned array declarations */

int A[2][8], B[2][8], C[2][8], D[2][8];

/* Nested loop over all array elements */

for (j = 0; j < 2; j++)

for (i = 0; i < 8; i++)

D[j][i] = C[j][i] + A[j][i] * B[1-j][7-i];

– Splitting of sequential iteration space of i into two 

independent, two-dimensional iteration spaces

– Iteration spaces of new loop nest now matches nicely with 

data layout

– Only affine expressions for array accesses
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Strip Mining of i-Loop

/* Partitioned array declarations */

int A[2][8], B[2][8], C[2][8], D[2][8];

/* Nested loop over all array elements */

for (j = 0; j < 2; j++)

for (i = 0; i < 8; i++)

D[j][i] = C[j][i] + A[j][i] * B[1-j][7-i];

– How can this code be parallelized for two DSPs?
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Parallelization (for Processor 0)

/* Definition of the processor ID */

#define MYID 0

/* Partitioned array declarations */

int A[2][8], B[2][8], C[2][8], D[2][8];

/* Simple loop over all array elements for DSP No. MYID */

for (i = 0; i < 8; i++)

D[MYID][i] = C[MYID][i] + A[MYID][i] * B[1-MYID][7-i];

– Insertion of an explicit 

processor ID

– Array accesses now make use of processor ID

– For N parallel processors, N different HIR codes are 

generated each of which with a unique processor ID
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Parallelization (for Processor 0)

/* Definition of the processor ID */

#define MYID 0

/* Partitioned array declarations */

int A[2][8], B[2][8], C[2][8], D[2][8];

/* Simple loop over all array elements for DSP No. MYID */

for (i = 0; i < 8; i++)

D[MYID][i] = C[MYID][i] + A[MYID][i] * B[1-MYID][7-i];

– This structure makes explicit which code will run on which DSP

– It still remains unclear how the arrays are distributed onto local 

memory banks or on external memories, and how accesses to 

memory banks of remote DSPs happen
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Array Descriptors

– Two-dimensional array A[2][8] is partitioned into two sub-arrays A0

and A1 along the first dimension

– Each sub-array An is assigned to the memory of processor n

– Original, two-dimensional array accesses need to be re-directed towards 

A0 and A1 using array descriptors

Sub-Array
A0[0...7]

A0 | A1

DSP 0

Sub-Array
A1[0...7]

A0 | A1

DSP 1

Array Descriptors

A[0][5] A[0][5]
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Memory Assignment (for Processor 0)

– Array accesses via descriptors in unchanged syntax

/* Definition of the processor ID */

#define MYID 0

/* Partitioned array declarations & array descriptors */

int A0[8]; extern int A1[8]; int *A[2] = { A0, A1 };

int B0[8]; extern int B1[8]; int *B[2] = { B0, B1 }; ...

/* Simple loop over all array elements for DSP No. MYID */

for (i = 0; i < 8; i++)

D[MYID][i] = C[MYID][i] + A[MYID][i] * B[1-MYID][7-i];

– Arrays in DSP-internal 

and remote memories
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Memory Assignment (for Processor 0)

– Descriptor access to local arrays inefficient due to additional indirection
– Scheduling problems: A[i][j] can have varying access latency if i

references local or remote memory

/* Definition of the processor ID */

#define MYID 0

/* Partitioned array declarations & array descriptors */

int A0[8]; extern int A1[8]; int *A[2] = { A0, A1 };

int B0[8]; extern int B1[8]; int *B[2] = { B0, B1 }; ...

/* Simple loop over all array elements for DSP No. MYID */

for (i = 0; i < 8; i++)

D[MYID][i] = C[MYID][i] + A[MYID][i] * B[1-MYID][7-i];
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Locality Improvement for Array Accesses

– Direct accesses to local arrays; refrain from accesses via descriptors 

whenever possible

– Maximal exploitation of high bandwidths of local memories

/* Definition of the processor ID */

#define MYID 0

/* Partitioned array declarations & array descriptors */

int A0[8]; extern int A1[8]; int *A[2] = { A0, A1 };

int B0[8]; extern int B1[8]; int *B[2] = { B0, B1 }; ...

/* Simple loop over all array elements for DSP No. MYID */

for (i = 0; i < 8; i++)

D0[i] = C0[i] + A0[i] * B[1-MYID][7-i];
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Locality Improvement for Array Accesses

– 8 sequential accesses to consecutive array elements in remote 

memory

– Inefficient, since 8 full bus cycles are required

/* Definition of the processor ID */

#define MYID 0

/* Partitioned array declarations & array descriptors */

int A0[8]; extern int A1[8]; int *A[2] = { A0, A1 };

int B0[8]; extern int B1[8]; int *B[2] = { B0, B1 }; ...

/* Simple loop over all array elements for DSP No. MYID */

for (i = 0; i < 8; i++)

D0[i] = C0[i] + A0[i] * B[1-MYID][7-i];
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Insertion of DMA Burst Transfers

/* Definition of the processor ID */

#define MYID 0

/* Partitioned array declarations & array descriptors */

int A0[8]; extern int A1[8]; int *A[2] = { A0, A1 };

int B0[8]; extern int B1[8]; int *B[2] = { B0, B1 }; ...

/* Temporary DMA buffer */

int temp[8];

DMA_get( temp, &(B[1-MYID]), 8 * sizeof( int ) );

/* Simple loop over all array elements for DSP No. MYID */

for (i = 0; i < 8; i++)

D0[i] = C0[i] + A0[i] * temp[7-i];

– Block-wise loading of a 

local buffer from remote 

memory via DMA

– Array accesses in loop use 

only local memory
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Experimental Setup

Multi-DSP Hardware

– 4 parallel Analog Devices TigerSHARC TS-101 @250 MHz

– 768 kB local SRAM per DSP, 128 MB external DRAM

Parallelized Benchmark Programs

– DSPstone: small DSP kernels, low code complexity

– UTDSP: complex applications, compute-intensive code

Results: Run-times

– for purely sequential code running on 1 DSP

– for code after program recovery

– for code after data partitioning and memory assignment

– for code after locality improvement & DMA



Compilers for Embedded Systems (CfES) SoSe 2022Slide 59/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Results – DSPstone

0

1

2

3

4

5

6

7

S
p

e
e
d

u
p

Sequential

Program Recovery

Partitioning & Allocation

Locality & DMA



Compilers for Embedded Systems (CfES) SoSe 2022Slide 60/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Results – UTDSP
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Discussion

Mean Overall Speedups

– DSPstone: 4.06x

– UTDSP: 3.38x

– All benchmarks: 3.68x

Very Astonishing

– How is it possible to achieve (mean) speedups of a factor of 4 for 

DSPstone if parallelization is done for 4 DSPs?
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Reasons for Over-Proportional Speedups

Over-Proportional Speedups > 4 for 4 parallel DSPs

– Parallelized code is more amenable for subsequent compiler 

optimizations than original sequential code

– Example:

Sequential i-loop ( cf. Slide 47): 16 iterations

i-loop parallelized for 2 DSPs (Slide 49): 8 iterations

 Parallelized loops possibly candidates for Loop Unrolling:

– Fully unrolled loop without any branches!

 No delay slots, no potential for branch misprediction

for (i = 0; i < 8; i++)

<loop body>;

<loop body>;

<loop body>;

...

<loop body>;

8 times
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Summary

HIR Optimizations

– Restructuring of Loops

– Restructuring of functions and their calling relationships

Function Specialization / Procedure Cloning

– Specialization of general-purpose functions

– Enable standard optimizations within specialized functions, simplify code 

for parameter passing

– Impact on ACET marginal, but huge for WCETEST

Parallelization for Homogeneous Multi-DSPs

– Focus on exploitation of local memories and address ranges

– Speedups mostly linear in the number of available parallel DSPs


