
Compilers for Embedded Systems

Summer Term 2022

Heiko Falk

Institute of Embedded Systems

Electrical Engineering, Computer Science and Mathematics

Hamburg University of Technology

Chapter 5

HIR Optimizations and

Transformations

Compilers for Embedded Systems (CfES) SoSe 2022Slide 3/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Outline

1. Introduction & Motivation

2. Compilers for Embedded Systems – Requirements & Dependencies

3. Internal Structure of Compilers

4. Pre-Pass Optimizations

5. HIR Optimizations and Transformations

6. Code Generation

7. LIR Optimizations and Transformations

8. Register Allocation

9. WCET-Aware Compilation

10.Outlook

Compilers for Embedded Systems (CfES) SoSe 2022Slide 4/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Chapter Contents

5. HIR Optimizations and Transformations

– Motivation

– Function Specialization / Procedure Cloning

– General-Purpose Functions in specialized Contexts

– Interlude: Standard Optimizations & WCET Estimation

– Function Specialization and WCETs

– Results (WCETEST, ACET, Code Size)

– Parallelization for Homogeneous Multi-DSPs

– Introduction, Multi-DSP Architectures

– Program Recovery

– Data Partitioning & Strip Mining

– Parallelization

– Memory Assignment, Array Descriptors, DMA

– Results

Compilers for Embedded Systems (CfES) SoSe 2022Slide 5/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Motivation of HIR Optimizations

High-Level IRs:

– Very close to source language

– High-level language constructs (esp. loops, function calls with parameter

passing, array accesses) preserved

High-Level Optimizations

– Exploit particularly these HIR features

– Focus on strong reorganization of loops and function relationships

– Are difficult to realize at lower abstraction levels, since required high-level

information (e.g., loop bounds or function call relationships) get lost and

are difficult to reconstruct

Compilers for Embedded Systems (CfES) SoSe 2022Slide 6/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Chapter Contents

5. HIR Optimizations and Transformations

– Motivation

– Function Specialization / Procedure Cloning

– General-Purpose Functions in specialized Contexts

– Interlude: Standard Optimizations & WCET Estimation

– Function Specialization and WCETs

– Results (WCETEST, ACET, Code Size)

– Parallelization for Homogeneous Multi-DSPs

– Introduction, Multi-DSP Architectures

– Program Recovery

– Data Partitioning & Strip Mining

– Parallelization

– Memory Assignment, Array Descriptors, DMA

– Results

Compilers for Embedded Systems (CfES) SoSe 2022Slide 7/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Function Specialization

Also Called “Procedure Cloning”

– Rather old and well-known compiler technique (1993)

– Goals: To enable other optimizations, to reduce the overhead to pass

parameters during function calls

– Approach: Of particular functions, specialized copies (“clones”) are

created which have less parameters than the original function

Specialization so-called Interprocedural Optimization

– Explicit consideration of calling relationships between functions during an

optimization

In Contrast to Intraprocedural Optimizations

– Optimization just locally inside a function f, without consideration of

functions that f calls, or by which f is called

Compilers for Embedded Systems (CfES) SoSe 2022Slide 8/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Typical Function Calls

Observations

– f is called several times

– f has 3 arguments

– Arguments n and p are

instantiated several times with

constants 5 and 2

int f(int *x, int n, int p) {

for (i=0; i<n; i++) {

x[i] = p * x[i];

if (i == 10) { ... }

}

return x[n-1];

}

int main() {

... f(y, 5, 2) ...

... f(z, 5, 2) ...

return f(a, 5, 2);

}

Compilers for Embedded Systems (CfES) SoSe 2022Slide 9/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

More Observations

– f is so-called general-purpose

function: Via parameter n, an array

x of arbitrary size can be treated

– Control flow in f depends on

function parameter

– f is used in main in a special-

purpose context: Processing of

arrays of size n = 5.

int f(int *x, int n, int p) {

for (i=0; i<n; i++) {

x[i] = p * x[i];

if (i == 10) { ... }

}

return x[n-1];

}

int main() {

... f(y, 5, 2) ...

... f(z, 5, 2) ...

return f(a, 5, 2);

}

Compilers for Embedded Systems (CfES) SoSe 2022Slide 10/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Specialization of General-Purpose Functions

int f(int *x, int n, int p) {

for (i=0; i<n; i++) {

x[i] = p * x[i];

if (i == 10) { ... }

}

return x[n-1];

}

int main() {

... f_5_2(y) ...

... f_5_2(z) ...

return f_5_2(a);

}

int f_5_2(int *x) {

for (i=0; i<5; i++) {

x[i] = 2 * x[i];

if (i == 10) { ... }

}

return x[4];

}

Compilers for Embedded Systems (CfES) SoSe 2022Slide 11/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Expected Effects of Specialization

Reduction of the Average-Case Execution Time ACET due to

– Enabling of other standard compiler optimizations inside the specialized

function

– Less code to be executed for parameter passing when calling the

specialized function

Compilers for Embedded Systems (CfES) SoSe 2022Slide 12/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Standard Optimizations after Cloning (1)

Constant Folding

– Pre-computation of expressions with purely constant operands already at

compile-time

– Example:

Original code + Cloning + ConstFold

a = p * n; a = 2 * 5; a = 10;

Compilers for Embedded Systems (CfES) SoSe 2022Slide 13/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Standard Optimizations after Cloning (2)

Constant Propagation

– Replacement of accesses to variables that provably have constant

content by the constant itself

– Example:

Original code + Cloning + ConstFold

+ ConstProp

a = p * n; a = 2 * 5; a = 10;

for (…; i<a; …) for (…; i<a; …) for (…; i<10; …)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 14/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Standard Optimizations after Cloning (3)

Strength Reduction

– Replacement of computationally expensive computations (e.g.,

multiplications, divisions, ...) by “cheaper” operations (e.g., additions,

subtractions, shifts, ...)

– Example:

Original code + Cloning + StrengthRed

x[i] = p*x[i]; x[i] = 2*x[i]; x[i] = x[i]<<1;

Compilers for Embedded Systems (CfES) SoSe 2022Slide 15/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Standard Optimizations after Cloning (4)

Control Flow Optimizations

– Determination of possible value ranges of variables after constant folding

and propagation; removal of redundant if-statements whose conditions

are always true or always false

(see also chapter 4 – Loop Nest Splitting / Condition Satisfiability)

– Example:

Original code + Cloning + ControlFlowOpt

for(i=0;i<n;i++) for(i=0;i<5;i++) for(i=0;i<5;i++)

{ { {

…; …; …;

if (i==10) …; if (i==10) …; }

} }

Compilers for Embedded Systems (CfES) SoSe 2022Slide 16/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Expected Effects of Specialization

Reduction of the Average-Case Execution Time ACET due to

– Enabling of other standard compiler optimizations inside the specialized

function

– Fewer code for parameter passing to be executed when calling the

specialized function

Increase of Code Size due to

– Generation of potentially many novel, specialized clones

Compilers for Embedded Systems (CfES) SoSe 2022Slide 17/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Impact of Cloning on WCET Estimation

Function Specialization and WCET considered only in very recent

research

Recall

– Worst-Case Execution Time WCET:

Upper bound of a program’s run-time over all possible input data

WCET Estimation

– Via static analysis of the binary code of executable programs

– In the following: Workflow of the static WCET Analyzer aiT

[AbsInt Angewandte Informatik GmbH,
http://www.absint.com/ait, Saarbrücken, 2020]

http://www.absint.com/ait

Compilers for Embedded Systems (CfES) SoSe 2022Slide 18/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Workflow of the WCET Analyzer aiT (1)

– Input: Binary executable P to be

analyzed

– exec2crl: Disassembler, translates

P into aiT’s low-level intermediate

representation CRL2

– Value analysis: Computes

possible contents of processor

registers for any point in time

during P’s execution.

Note: P is never executed by aiT!

P is „only“ analyzed.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 19/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Workflow of the WCET Analyzer aiT (2)

– Loop bound analysis: Tries to

determine lower and upper bounds

for the number of iterations of each

loop in P.

– Cache analysis: Makes use of a

formal cache model, classifies

each memory access in P as

definite cache hit, definite cache

miss, or unknown.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 20/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Workflow of the WCET Analyzer aiT (3)

– Pipeline analysis: Includes an

accurate model of the processor’s

pipeline. Depending on the

pipeline’s initial state, possible

cache states etc., possible states

of the pipeline at the end of each

basic block of P are determined.

Result of the pipeline analysis is

the WCETEST of each individual

basic block.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 21/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Workflow of the WCET Analyzer aiT (4)

– Path analysis: Models all possible

execution paths within P under

consideration of the WCETEST of

all basic blocks. Determines the

longest possible execution path

within P which leads to the overall

WCETEST of P.

Result of the path analysis is, e.g.,

the length of this longest path, i.e.,

P’s WCETEST.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 22/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Workflow of the WCET Analyzer aiT (5)

Control Flow Graph (CFG)

– Fundamental code representation during path analysis

Definition: CFG = (V, E, s) is a directed graph with

– V = { b1, ..., bn } (set of all basic blocks, cf. chapter 2)

– E = { (bi → bj) | basic block bj can be executed immediately after bi }

– s V = the unique start node of the CFG

int fun2() {

for (; a1<30; a1++) {

for (; b1<a1; b1++)

printf(“%d\n”, b1);

printf(„%d\n“, a1);

}

return a1; }

Compilers for Embedded Systems (CfES) SoSe 2022Slide 23/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Complexity Issues

– Problem: WCET analysis is not

computable with today’s machines!

If WCET were computable, one

could decide in O(1) if WCET <

and thus solve the Halting

problem.

– Reason: It is not computable how

long P stays in loops. Automatic

loop bound analysis is applicable

only to simple classes of loops.

(Analogously for recursive function

calls.)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 24/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Annotations for WCET Analysis

– Solution: The user of aiT must

mandatorily provide information

about, e.g., minimal and maximal

iteration bounds of loops and

recursion depths.

– Annotation file: Contains such

user-provided annotations (“flow

facts”) and is – besides the

program P to be analyzed –

another external input to aiT.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 25/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Why Specialization and WCETEST?

Motivation

– Frequent occurrences of general-purpose functions in special-purpose

contexts in embedded software

– Loop bounds are particularly often controlled by function parameters

– Loop bounds are particularly critical for WCET estimates

– Procedure Cloning allows the extremely precise annotation of loop

bounds for WCET analysis

[P. Lokuciejewski. Influence of Procedure Cloning on WCET Prediction.

CODES+ISSS, Salzburg, 2007]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 26/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Loop Bound Annotations & Cloning (1)

Original code

– Loop annotation extremely

imprecise since annotation must

cover all invocations of f.

int f(int *x, int n, int p) {

// loopbound min 0, max n

for (i=0; i<n; i++) {

x[i] = p * x[i];

if (i == 10) { ... }

}

return x[n-1];

}

– If f is called somewhere with n = 2,000 as maximal value, 2,000 loop

iterations have to be considered always.

– For calls like, e.g., f(a, 5, 2), 2,000 loop iterations are likewise

assumed

 Heavy WCET overestimation

Compilers for Embedded Systems (CfES) SoSe 2022Slide 27/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Loop Bound Annotations & Cloning (2)

Cloned code

– Loop annotation extremely precise

since annotation covers all

invocations of f_5_2 exactly.

– For calls like, e.g., f_5_2(a), exactly 5 iterations are assumed

 Exact WCET estimation

– Original function f or other additional clones of f are fully independent

of annotations in f_5_2

 No interdependencies between all these versions of f w.r.t. WCET

analysis

int f_5_2(int *x) {

// loopbound min 5, max 5

for (i=0; i<5; i++) {

x[i] = 2 * x[i];

if (i == 10) { ... }

}

return x[4];

}

Compilers for Embedded Systems (CfES) SoSe 2022Slide 28/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Realization of Function Specialization (1)

Caution when Applying Function Specialization

– Increase of code size during cloning must not be neglected!

– Cloning of every possible function which is called at least twice with the

same constant as argument is usually unacceptable

Parameter-Driven Application of Function Specialization

– Size G: Never clone a function f which is larger than G

– Amount of constant arguments K: clone a function f only if at least K% of

all calls of f contain constant arguments that can be used for cloning

Compilers for Embedded Systems (CfES) SoSe 2022Slide 29/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Realization of Function Specialization (2)

Given

– Function f to be specialized

– Dictionary arg that maps the arguments of f to be specialized to the

constant values to be used

Approach Using HIR ICD-C

– Create new function type T’ that corresponds to the Type T of f, but

without those arguments from arg to be specialized

– Create new function symbol S’ of type T’; add S’ to that symbol table in

which f is declared

– Create a copy f’ of the code of f with function symbol S’; add f’ to the

same compilation unit that also holds f

Compilers for Embedded Systems (CfES) SoSe 2022Slide 30/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Realization of Function Specialization (3)

Given

– Function f to be specialized

– Dictionary arg that maps the arguments of f to be specialized to the

constant values to be used

Approach Using HIR ICD-C (ctd.)

– For each argument a arg to be specialized:

– Create new local variable v’ in f’

– Create assignment v’ = <arg[a]>; at the very beginning of f’

– Replace each occurrence of a in f’ by v’

Compilers for Embedded Systems (CfES) SoSe 2022Slide 31/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Realization of Function Specialization (4)

Given

– Function f to be specialized

– Dictionary arg that maps the arguments of f to be specialized to the

constant values to be used

Approach Using HIR ICD-C (ctd.)

– For each function call c of f to be specialized:

– Remove all arguments a arg to be specialized from the parameter

list of c

– Replace called function f by f’ within c

Compilers for Embedded Systems (CfES) SoSe 2022Slide 32/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Workflow of Function Specialization

– Function specialization

– Constant folding & propagation

– Strength reduction

– If-statements

– G = 2,000 ICD-C expressions

– K = 50%

Compiler
Backend

Binary
Executable

ANSI-C
Source

Optimized
High-Level

IR

WCET

Timing
Analyzer

Simulator

Simulated
Time

Flow
Facts

ICD-C
Optimizer

Considered Processors

– Infineon TriCore TC1796

– ARM 7 TDMI (ARM and

THUMB instruction sets)

Compilers for Embedded Systems (CfES) SoSe 2022Slide 33/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Relative WCETEST after Procedure Cloning

– WCETEST reductions from 13% up to 95%!

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TriCore ARM Thumb

R
e

l.
 W

C
E

T
E

S
T

[%
]

EPIC MPEG2 GSM Geo. Mean

Compilers for Embedded Systems (CfES) SoSe 2022Slide 34/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Relative ACETs after Procedure Cloning

– Marginal ACET reductions of 3% max.

 Impact of overhead for parameter passing and of successive

optimization on ACET apparently negligible.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

TriCore ARM Thumb

R
e

l.
 A

C
E

T
 [

%
]

EPIC MPEG2 GSM Geo. Mean

Compilers for Embedded Systems (CfES) SoSe 2022Slide 35/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Relationship between WCETEST and ACET

Very Astonishing

How can one and the same optimization have such a different influence on

seemingly similar criteria like WCETEST and ACET?

Reasons

– Code before cloning only poorly annotatable

 aiT computes quite imprecise WCET estimates

– Code after cloning precisely annotatable

 aiT computes much more precise WCET estimates

 Specialization obviously improves tightness of WCETEST considerably

(cf. chapter 3 – Objective Functions)

 The real (and unknown) WCETs are expected to be reduced only as

marginally as ACETs are

Compilers for Embedded Systems (CfES) SoSe 2022Slide 36/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Relative Code Sizes after Procedure Cloning

– Code size increases from 2% up to 225%!

0%
25%
50%
75%

100%
125%
150%
175%
200%
225%
250%
275%
300%
325%
350%

TriCore ARM Thumb

R
e

l.
 C

o
d

e
 S

iz
e

 [
%

]

EPIC MPEG2 GSM Geo. Mean

Compilers for Embedded Systems (CfES) SoSe 2022Slide 37/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Chapter Contents

5. HIR Optimizations and Transformations

– Motivation

– Function Specialization / Procedure Cloning

– General-Purpose Functions in specialized Contexts

– Interlude: Standard Optimizations & WCET Estimation

– Function Specialization and WCETs

– Results (WCETEST, ACET, Code Size)

– Parallelization for Homogeneous Multi-DSPs

– Introduction, Multi-DSP Architectures

– Program Recovery

– Data Partitioning & Strip Mining

– Parallelization

– Memory Assignment, Array Descriptors, DMA

– Results

Compilers for Embedded Systems (CfES) SoSe 2022Slide 38/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Parallelization for Multi-DSPs

Material kindly made available by

Björn Franke and Michael O’Boyle

University of Edinburgh, UK

School of Informatics

Compilers for Embedded Systems (CfES) SoSe 2022Slide 39/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Parallelization for Multi-DSPs

Motivation

– Performance demands of complex systems often exceed capabilities of a

single processor

(e.g., radar, sonar, medical image processing, HDTV, ...)

– Multiple DSPs operating in parallel provide enough performance, but...

 little or no hardware support for the parallel execution of software

 even less support of parallel programming paradigms by development

tools

 existing source codes are often written in low-level style which

impedes an effective parallelization

Compilers for Embedded Systems (CfES) SoSe 2022Slide 40/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Parallelizing Compilers

Research Area “High-Performance Computing”

– Research on vectorizing compilers for more than 40 years

– Traditionally Fortran compilers

– These vectorizing compilers are usually not suitable for Multi-DSPs, since

their assumptions on the memory hierarchy are unrealistic:

 Communication between processes via shared memory

 Memory has only one single, shared address space

 Caches can be local and/or shared, but cache coherence issues are

solved in hardware

 De facto no parallelizing compilers available for Multi-DSPs

Compilers for Embedded Systems (CfES) SoSe 2022Slide 41/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Multi-DSPs

DSP Core 0

Mem
Bank 1

Mem
Bank 2

DSP Core X

Mem
Bank 1

Mem
Bank 2

External

Memory

<Int 1, 100>

Bus

<Int 2, 100>

<Ext, 100>

<Remote X1, 100>

– Several address spaces:

Internal 1 & 2, external, remote DSP core

– Use of internal memories:

High bandwidth, low access latencies

– Use of remote memories:

ID of remote DSPs must be known

Compilers for Embedded Systems (CfES) SoSe 2022Slide 42/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Workflow of Parallelization

Program Recovery

– Removal of undesired low-level constructs from code

– Replacement by high-level constructs

Detection of Parallelism

– Identification of loops amenable for parallelization

Partitioning and Allocation of Data

– Minimization of communication overhead between DSPs

Locality Improvement of Memory Accesses

– Minimization of accesses to memories of remote DSPs

Optimization of Memory Transfers

– Use of DMA for burst transfers

Compilers for Embedded Systems (CfES) SoSe 2022Slide 43/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Code Example for 2 parallel DSPs

/* Array declarations */

int A[16], B[16], C[16], D[16];

/* Declaration & initialization of pointers */

int *p_a = A, *p_b = &B[15], *p_c = C, *p_d = D;

/* Loop over all array elements */

for (i = 0; i < 16; i++)

*p_d++ = *p_c++ + *p_a++ * *p_b--;

– Low-level array accesses via pointers; explicit pointer

arithmetic (cf. chapter 2, auto-increment addressing)

– Disadvantageous for parallelization since ad hoc no

structure in array accesses visible and analyzable

*p_d++ = *p_c++ + *p_a++ * *p_b--;

Compilers for Embedded Systems (CfES) SoSe 2022Slide 44/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Program Recovery

/* Array declarations */

int A[16], B[16], C[16], D[16];

/* Loop over all array elements */

for (i = 0; i < 16; i++)

D[i] = C[i] + A[i] * B[15-i];

– Replacement of pointer accesses by explicit array operators []

– Structure of array accesses better visible, more amenable for

subsequent analyses

Compilers for Embedded Systems (CfES) SoSe 2022Slide 45/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Program Recovery

/* Array declarations */

int A[16], B[16], C[16], D[16];

/* Loop over all array elements */

for (i = 0; i < 16; i++)

D[i] = C[i] + A[i] * B[15-i];

– One-dimensional “flat” arrays too unstructured for parallelization
for Multi-DSPs

– Partitioning of arrays onto available parallel DSPs unclear

Compilers for Embedded Systems (CfES) SoSe 2022Slide 46/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Data Partitioning

/* Partitioned array declarations */

int A[2][8], B[2][8], C[2][8], D[2][8];

/* Loop over all array elements */

for (i = 0; i < 16; i++)

D[i/8][i%8] = C[i/8][i%8] +

A[i/8][i%8] * B[(15-i)/8][(15-i)%8];

– New, two-dimensional array declarations

– First dimension equals number of available parallel DSPs

– Original flat arrays now partitioned in disjoint areas that can

be processed independently from each other

Compilers for Embedded Systems (CfES) SoSe 2022Slide 47/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Data Partitioning

/* Partitioned array declarations */

int A[2][8], B[2][8], C[2][8], D[2][8];

/* Loop over all array elements */

for (i = 0; i < 16; i++)

D[i/8][i%8] = C[i/8][i%8] +

A[i/8][i%8] * B[(15-i)/8][(15-i)%8];

– Extremely costly and complex addressing required

– Reason: Arrays are multi-dimensional; loop index variable
i used to index the arrays is purely sequential

Compilers for Embedded Systems (CfES) SoSe 2022Slide 48/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Strip Mining of i-Loop

/* Partitioned array declarations */

int A[2][8], B[2][8], C[2][8], D[2][8];

/* Nested loop over all array elements */

for (j = 0; j < 2; j++)

for (i = 0; i < 8; i++)

D[j][i] = C[j][i] + A[j][i] * B[1-j][7-i];

– Splitting of sequential iteration space of i into two

independent, two-dimensional iteration spaces

– Iteration spaces of new loop nest now matches nicely with

data layout

– Only affine expressions for array accesses

Compilers for Embedded Systems (CfES) SoSe 2022Slide 49/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Strip Mining of i-Loop

/* Partitioned array declarations */

int A[2][8], B[2][8], C[2][8], D[2][8];

/* Nested loop over all array elements */

for (j = 0; j < 2; j++)

for (i = 0; i < 8; i++)

D[j][i] = C[j][i] + A[j][i] * B[1-j][7-i];

– How can this code be parallelized for two DSPs?

Compilers for Embedded Systems (CfES) SoSe 2022Slide 50/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Parallelization (for Processor 0)

/* Definition of the processor ID */

#define MYID 0

/* Partitioned array declarations */

int A[2][8], B[2][8], C[2][8], D[2][8];

/* Simple loop over all array elements for DSP No. MYID */

for (i = 0; i < 8; i++)

D[MYID][i] = C[MYID][i] + A[MYID][i] * B[1-MYID][7-i];

– Insertion of an explicit

processor ID

– Array accesses now make use of processor ID

– For N parallel processors, N different HIR codes are

generated each of which with a unique processor ID

Compilers for Embedded Systems (CfES) SoSe 2022Slide 51/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Parallelization (for Processor 0)

/* Definition of the processor ID */

#define MYID 0

/* Partitioned array declarations */

int A[2][8], B[2][8], C[2][8], D[2][8];

/* Simple loop over all array elements for DSP No. MYID */

for (i = 0; i < 8; i++)

D[MYID][i] = C[MYID][i] + A[MYID][i] * B[1-MYID][7-i];

– This structure makes explicit which code will run on which DSP

– It still remains unclear how the arrays are distributed onto local

memory banks or on external memories, and how accesses to

memory banks of remote DSPs happen

Compilers for Embedded Systems (CfES) SoSe 2022Slide 52/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Array Descriptors

– Two-dimensional array A[2][8] is partitioned into two sub-arrays A0

and A1 along the first dimension

– Each sub-array An is assigned to the memory of processor n

– Original, two-dimensional array accesses need to be re-directed towards

A0 and A1 using array descriptors

Sub-Array
A0[0...7]

A0 | A1

DSP 0

Sub-Array
A1[0...7]

A0 | A1

DSP 1

Array Descriptors

A[0][5] A[0][5]

Compilers for Embedded Systems (CfES) SoSe 2022Slide 53/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Memory Assignment (for Processor 0)

– Array accesses via descriptors in unchanged syntax

/* Definition of the processor ID */

#define MYID 0

/* Partitioned array declarations & array descriptors */

int A0[8]; extern int A1[8]; int *A[2] = { A0, A1 };

int B0[8]; extern int B1[8]; int *B[2] = { B0, B1 }; ...

/* Simple loop over all array elements for DSP No. MYID */

for (i = 0; i < 8; i++)

D[MYID][i] = C[MYID][i] + A[MYID][i] * B[1-MYID][7-i];

– Arrays in DSP-internal

and remote memories

Compilers for Embedded Systems (CfES) SoSe 2022Slide 54/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Memory Assignment (for Processor 0)

– Descriptor access to local arrays inefficient due to additional indirection
– Scheduling problems: A[i][j] can have varying access latency if i

references local or remote memory

/* Definition of the processor ID */

#define MYID 0

/* Partitioned array declarations & array descriptors */

int A0[8]; extern int A1[8]; int *A[2] = { A0, A1 };

int B0[8]; extern int B1[8]; int *B[2] = { B0, B1 }; ...

/* Simple loop over all array elements for DSP No. MYID */

for (i = 0; i < 8; i++)

D[MYID][i] = C[MYID][i] + A[MYID][i] * B[1-MYID][7-i];

Compilers for Embedded Systems (CfES) SoSe 2022Slide 55/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Locality Improvement for Array Accesses

– Direct accesses to local arrays; refrain from accesses via descriptors

whenever possible

– Maximal exploitation of high bandwidths of local memories

/* Definition of the processor ID */

#define MYID 0

/* Partitioned array declarations & array descriptors */

int A0[8]; extern int A1[8]; int *A[2] = { A0, A1 };

int B0[8]; extern int B1[8]; int *B[2] = { B0, B1 }; ...

/* Simple loop over all array elements for DSP No. MYID */

for (i = 0; i < 8; i++)

D0[i] = C0[i] + A0[i] * B[1-MYID][7-i];

Compilers for Embedded Systems (CfES) SoSe 2022Slide 56/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Locality Improvement for Array Accesses

– 8 sequential accesses to consecutive array elements in remote

memory

– Inefficient, since 8 full bus cycles are required

/* Definition of the processor ID */

#define MYID 0

/* Partitioned array declarations & array descriptors */

int A0[8]; extern int A1[8]; int *A[2] = { A0, A1 };

int B0[8]; extern int B1[8]; int *B[2] = { B0, B1 }; ...

/* Simple loop over all array elements for DSP No. MYID */

for (i = 0; i < 8; i++)

D0[i] = C0[i] + A0[i] * B[1-MYID][7-i];

Compilers for Embedded Systems (CfES) SoSe 2022Slide 57/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Insertion of DMA Burst Transfers

/* Definition of the processor ID */

#define MYID 0

/* Partitioned array declarations & array descriptors */

int A0[8]; extern int A1[8]; int *A[2] = { A0, A1 };

int B0[8]; extern int B1[8]; int *B[2] = { B0, B1 }; ...

/* Temporary DMA buffer */

int temp[8];

DMA_get(temp, &(B[1-MYID]), 8 * sizeof(int));

/* Simple loop over all array elements for DSP No. MYID */

for (i = 0; i < 8; i++)

D0[i] = C0[i] + A0[i] * temp[7-i];

– Block-wise loading of a

local buffer from remote

memory via DMA

– Array accesses in loop use

only local memory

Compilers for Embedded Systems (CfES) SoSe 2022Slide 58/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Experimental Setup

Multi-DSP Hardware

– 4 parallel Analog Devices TigerSHARC TS-101 @250 MHz

– 768 kB local SRAM per DSP, 128 MB external DRAM

Parallelized Benchmark Programs

– DSPstone: small DSP kernels, low code complexity

– UTDSP: complex applications, compute-intensive code

Results: Run-times

– for purely sequential code running on 1 DSP

– for code after program recovery

– for code after data partitioning and memory assignment

– for code after locality improvement & DMA

Compilers for Embedded Systems (CfES) SoSe 2022Slide 59/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Results – DSPstone

0

1

2

3

4

5

6

7

S
p

e
e
d

u
p

Sequential

Program Recovery

Partitioning & Allocation

Locality & DMA

Compilers for Embedded Systems (CfES) SoSe 2022Slide 60/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Results – UTDSP

0

1

2

3

4

5

6

S
p

e
e
d

u
p

Sequential

Program Recovery

Partitioning & Allocation

Locality & DMA

Compilers for Embedded Systems (CfES) SoSe 2022Slide 61/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Discussion

Mean Overall Speedups

– DSPstone: 4.06x

– UTDSP: 3.38x

– All benchmarks: 3.68x

Very Astonishing

– How is it possible to achieve (mean) speedups of a factor of 4 for

DSPstone if parallelization is done for 4 DSPs?

Compilers for Embedded Systems (CfES) SoSe 2022Slide 62/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Reasons for Over-Proportional Speedups

Over-Proportional Speedups > 4 for 4 parallel DSPs

– Parallelized code is more amenable for subsequent compiler

optimizations than original sequential code

– Example:

Sequential i-loop (cf. Slide 47): 16 iterations

i-loop parallelized for 2 DSPs (Slide 49): 8 iterations

 Parallelized loops possibly candidates for Loop Unrolling:

– Fully unrolled loop without any branches!

 No delay slots, no potential for branch misprediction

for (i = 0; i < 8; i++)

<loop body>;

<loop body>;

<loop body>;

...

<loop body>;

8 times

Compilers for Embedded Systems (CfES) SoSe 2022Slide 63/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

References

Function Specialization

– D. Bacon, S. Graham, O. Sharp. Compiler Transformations for High-

Performance Computing. ACM Computing Surveys 26(4), 1994.

(Excellent survey paper on compiler optimizations in general!)

– P. Lokuciejewski, H. Falk, H. Theiling. Influence of Procedure Cloning on

WCET Prediction. CODES+ISSS, Salzburg 2007.

Parallelization for Homogeneous Multi-DSPs

– B. Franke, M. O´Boyle. A Complete Compiler Approach to Auto-

Parallelizing C Programs for Multi-DSP Systems. IEEE Transactions on

Parallel and Distributed Systems 16(3), 2005.

Compilers for Embedded Systems (CfES) SoSe 2022Slide 64/64

© H. Falk | 17.03.2022 5 - HIR Optimizations and Transformations

Summary

HIR Optimizations

– Restructuring of Loops

– Restructuring of functions and their calling relationships

Function Specialization / Procedure Cloning

– Specialization of general-purpose functions

– Enable standard optimizations within specialized functions, simplify code

for parameter passing

– Impact on ACET marginal, but huge for WCETEST

Parallelization for Homogeneous Multi-DSPs

– Focus on exploitation of local memories and address ranges

– Speedups mostly linear in the number of available parallel DSPs

