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Rotations in Computer Graphics



Motivation

� Animations → keyframing

� Standard interpolation technqiques lead to practical problems

� Besides transations, rotations are the only motion leaving the

shape of an object unchanged
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Rotations

� The set of all distance preserving transformations of the

euclidean space of dimension n is the orthogonal group O(n)

� Equivalently, it is the group of orthogonal n × n matrices with

the matrix multiplication as group operation

O(n) =
{
A ∈ Rn×n|ATA = AAT = In

}
(1)

� An important subset of these transformations are the matrices,

which have determinant 1, the special orthogonal group

SO(n) =
{
A ∈ Rn×n|ATA = AAT = In and det(A) = 1

}
(2)

� We also refer to this group as rotation group, since its

elements are rotations

� In this lecture we will speci�cally discuss the group of rotations

in 3D Euclidean space SO(3)
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Basic Rotations

� Basic rotations rotate around one of the canonical axis x , y , z

� They are speci�ed by an angle ϕ (right hand rule) like

Rx(ϕ) =

1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ

 (3)

Ry (ϕ) =

 cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ

 (4)

Rz(ϕ) =

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 (5)

3



General Rotations

Figure 1: �Portrait of Leonhard Euler (1707-1783)� by the

Kunstmuseum Basel in public domain
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http://sammlungonline.kunstmuseumbasel.ch/eMuseumPlus?service=ExternalInterface&module=collection&objectId=1429&viewType=detailView


General Rotations

� General rotations can be achieved by concatenation of the

standard rotations

� One way is to use Euler angles α, β, and γ, which can also be

used to describe the orientation of a rigid body

� The classic Euler angles correspond to three rotations around

two axes

� z-x-z , x-y -x , y -z-y , z-y -z , x-z-x , y -x-y

� Another possibility to describe rotations are the Tait-Bryan

angles with the corresponding rotations are around

� x-y -z , y -z-x , z-x-y , x-z-y , z-y -x , y -x-z
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General Rotations

Figure 2: �Euler angles� by Lionel Brits licensed under the CC BY 3.0
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https://en.wikipedia.org/wiki/File:Eulerangles.svg
https://creativecommons.org/licenses/by/3.0/deed.en


Exercise - Euler Angles

Question
Find the Euler angles for a rotation of ϕ = 80◦ around the rotation

axis n = 1√
3
(1, 1, 1)T .
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General Rotations

Reminder
Within our camera coordinate system we have the viewing direction

aligned along the negative z-axis, the upwards direction aligned

along the y -axis and the right hand side along the x-axis.

� For camera transformations we use the y -x-z rotation

� The Rotation by α = h (head) around the y makes the camera

shake its head

� The Rotation by β = p (pitch) around the x makes the camera

nod its head

� The Rotation by γ = r (roll) around the z makes the camera

roll around the viewing direction

� Other rotation orders can also be useful depending on the

orientation of your object in your local coordinate system
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General Rotations

Figure 3: �Plane with ENU embedded axes� by Juansempere licensed

under CC BY-SA 3.0. Rotation order is ϕ (yaw), θ (pitch), ψ (roll)

around z-y -x 9

https://en.wikipedia.org/wiki/User:Juansempere
https://creativecommons.org/licenses/by-sa/3.0/


General Rotation - Angle Extraction

� In some situations it might be useful to extract the Euler
parameters h, p and r from

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (6)

� This can be done using

E (h, p, r) =

cos r cos h − sin r sin p sin h − sin r cos p cos r sin h + sin r sin p cos h

sin r cos h + cos r sin p sin h cos r cos p sin r sin h − cos r sin p cos h

− cos p sin h sin p cos p cos h

 (7)

� Whenever we are not in a gimbal lock situation we get

h = atan2(−R31,R33) (8)

p = arcsin(R32) (9)

r = atan2(−R12,R22) (10)

� Due to the ambiguity of arcsin we might not be able to recover

the angle, if R was not created with an angle p ∈
(
−π

2 ,
π
2

]
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General Rotations - Rotation About Arbitrary Axis

� Sometimes one has only a normalized direction r and a

rotation angle α speci�ed and wants to write down the

corresponding rotation matrix

� Completing r to a orthonormal basis (r, s, t) we de�ne the

transformation from the rst-coordinate system to the canonical

xyz-coordinate system

M =
(
r s t

)
(11)

� The �nal transformation can be obtained by transforming from

rst to xyz , followed by a rotation by α around the x-axis (old

r -axis) and a back transformation into rst-coordinates

R(r, α) = MTRx(α)M (12)
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General Rotations - Rotation About Arbitrary Axis

� To obtain a second direction we can use

s̃ =


(0,−rz , ry ), if |rx | < |ry | and |rx | < |rz |

(−rz , 0, rx), if |ry | < |rx | and |ry | < |rz |

(−ry , rx , 0), if |rz | < |rx | and |rz | < |ry |

(13)

and normalize this direction

s =
s̃

‖s̃‖2
(14)

� The last direction can be found using the cross product

t = r × s (15)
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General Rotations - Rotation About Arbitrary Axis

Euler's rotation theorem
Any displacement of a rigid body such that a point on the rigid

body remains �xed, is equivalent to a single rotation about an axis

that runs through the �xed point.

� The theorem does not state, which axis, but merely that such

an axis exists

� Apart from the initial �xed points all other points on the axis

remain �xed

Figure 4: Each rotation can be expressed by a single angle and direction 13



Quaternions

Figure 5: Sir William Rowan Hamilton (1805-1865)
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Quaternions

Figure 6: �William Rowan Hamilton Plaque Plaque on Broome Bridge

on the Royal Canal commemorating William Rowan Hamilton's discovery.

The plaque reads: Here as he walked by on the 16th of October 1843 Sir

William Rowan Hamilton in a �ash of genius discovered the fundamental

formula for quaternion multiplication i2 = j2 = k2 = ijk = −1 & cut it

on a stone of this bridge.� by JP licensed under CC BY-SA 2.0 15

https://www.geograph.org.uk/profile/8888
https://creativecommons.org/licenses/by-sa/2.0/


Quaternions

De�nition
A quaternion q̂ ∈ H can be de�ned in the following equivalent ways

q̂ = (qs , qv ) = qs + iqx + jqy + kqz , (16)

where qv = iqx + jqy + kqz is the imaginary part of the quaternion,

qs is its real part and the imaginary units i , j , k satisfy

i2 = j2 = k2 = −1 (17)

jk = −kj = i (18)

ki = −ik = j (19)

ij = −ji = k (20)
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Quaternions - Scalar and Vector Part

De�nition
Let (qs , qv ) = qs + iqx + jqy + kqz be any quaternion then we refer

to qs as its scalar part and to qv or iqx + jqy + kqz as its vector

part.

� A quaternion is called real if its vector part is zero

� A quaternion is called pure imaginary if its scalar part is zero
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Quaternions - Vector Space

De�nition
The set of quaternions H forms a real vector space with component
wise addition

(qs + iqx + jqy + kqz ) + (ps + ipx + jpy + kpz ) = (qs + ps ) + i(qx + px ) + j(qy + py ) + k(qz + pz ) (21)

and scalar multiplication

λ(qs + iqx + jqy + kqz ) = λqs + iλqx + jλqy + kλqz , (22)

with λ ∈ R
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Quaternions - Hamilton Product

De�nition
The Hamilton product q̂p̂ of two quaternions is de�ned by

q̂p̂ = + (qsps − qxpx − qypy − qzpz ) (23)

+ i(qypz − qzpy + psqx + qspx ) (24)

+ j(qzpx − qxpz + psqy + qspy ) (25)

+ k(qxpy − qypx + psqz + qspz ) (26)

= (qsps − qv · pv , qv × pv + psqv + qspv ), (27)

where · is the dot product and × is the cross product.

The corresponding identity element is

î = (1, 0). (28)

Remark
The Hamilton product is not commutative.
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Quaternions - Inverse

De�nition
The conjugate of a quaternion q̂ is given by

q̂∗ = (qs ,−qv ). (29)

The norm of a quaternion q̂ is given by

n(q̂) =
√
q̂∗q̂ =

√
q̂q̂∗ (30)

The inverse of a quaternion q̂ is given by

q̂−1 =
1

n(q̂)2
q̂∗ (31)
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Quaternions - Rules

Using the de�nitions above it is quite simple to derive

� (q̂∗)∗ = q̂

� (q̂+ p̂)∗ = q̂∗ + p̂∗

� (q̂p̂)∗ = p̂∗q̂∗

� n(q̂∗) = n(q̂)

� n(q̂p̂) = n(q̂)n(p̂)

� p̂(αq̂+ β r̂) = αp̂q̂+ βp̂r̂

� (αq̂+ β r̂)p̂ = αq̂p̂+ β r̂p̂

� p̂(q̂r̂) = (p̂q̂)̂r
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Quaternions - Unit Quaternions

De�nition
A unit quaternion q̂ ∈ H satis�es n(q̂) = 1.

� For each unit quaternion q̂ = (qs , qv ) there exists a unit vector

uq ∈ R3 and angle ϕ ∈ R such that

q̂ = (cosϕ, sinϕuq) (32)

� Vice versa each quaternion of the form

(cosϕ, sinϕuq), (33)

with ϕ ∈ R and unit vector uq ∈ R3 is a unit quaternion
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Quaternions - Rotations

� Let r, ‖r‖2 = 1 be an arbitrary rotation axis and ϕ a rotation

angle

� These can be used to construct the unit quaternion

q̂ = (cos
ϕ

2
, sin

ϕ

2
r) (34)

� For this unit quaternion

%q̂ : H→ H (35)

x̂ 7→ q̂x̂q̂∗ (36)

is a rotation on the imaginary part of H around r by the angle

ϕ

� We can rotate x ∈ R3 by ϕ around r ∈ R3 by concatenation of

the various mappings

x 7→ (0, x) = x̂ 7→ q̂x̂q̂∗ = (0, x′) 7→ x′ (37)
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Quaternions - Rotations

� Given two unit quaternions q̂1 and q̂2 representing two

rotations we can concatenate these rotations by

q̂2(q̂1x̂q̂
∗
1)q̂
∗
2 = (q̂2q̂1)x̂(q̂2q̂1)

∗ (38)

� I.e. the concatenation of rotations is equivalent to the

multiplication of the corresponding unit quaternions

� It directly follows that the inversion of a rotation is equivalent

to the inversion of the corresponding quaternion q̂−1 = q̂∗

� Note that q̂ and −q̂ de�ne the same rotation
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Quaternions - Rotations from One Vector to Another

Question
A common operation is, where we want to rotate one unit vector s

into another t. What steps do you need to perform to implement

such a rotation with quaternions ?
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Quaternions - Spherical Linear Interpolation

� Another problem often encountered is the interpolation

between rotations, e.g. given two orientations of a camera

�nding a smooth transition in between

� One can not simply interpolate the rotation matrices R1 and

R2, as in general

αR1 + (1− α)R2 6∈ SO(3) (39)

� However we can de�ne an easy interpolation method for unit

quaternions, which achieves this task

� Let q̂1 and q̂2 be two unit quaternions and t ∈ [0, 1] an

interpolation parameter then

ŝ(q̂1, q̂2, t) = (q̂1q̂
−1
2 )t q̂2 (40)

is the interpolated unit quaternion, where

q̂t = (cosϕ, sinϕuq)
t = (cos(ϕt), sin(ϕt)uq)
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Quaternions - Spherical Linear Interpolation

� We have

ŝ(q̂1, q̂2, 1) = q̂1 (41)

ŝ(q̂1, q̂2, 0) = q̂2 (42)

� For �xed q̂1 and q̂2 this interpolation constitutes the shortest

path (geodesies) from q̂1 and q̂2 on the four dimensional unit

sphere

� The computed unit quaternion ŝ(q̂1, q̂2, t) rotates with a

constant speed around a �xed axis with the parameter t

� The method can be extended to �nd a smooth spline through

a series of unit quaternions

� Achieving something similar with Euler angles is quite involved
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Quaternions - Spherical Linear Interpolation

Figure 7: Geodesies on the S2
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