Computer Graphics

Dr. rer. nat. Martin Möddel April 6, 2021

Institut für Biomedizinische Bildgebung

[Object Ordered Rendering](#page-1-0)

The stages of a graphics pipeline

Application

Command Stream

Vertex Processing

Rasterization

Fragments

Fragment Processing

Blending

Framebuffer Image

Display

Vertex Processor

- **•** Processes vertices
- Arrangement of geometric objects and camera
- Transform vertices to pixel space

Object space

Modeling transformation

World space

Camera transformation

Camera space

Projection transformation

Canonical view volume

Viewport transformation

Screen space

Viewing

- In OOR a series of quite simple matrix transformations are used to project points onto the 2D screen space
	- 1. Modeling transformation
	- 2. Camera transformation
	- 3. Projection transformation
	- 4. Viewport transformation
- · Specific APIs may have slightly different conventions

Canonical Viewing Volume

The canonical viewing volume is the subset $\left[-1,1\right]^3\subset\mathbb{R}^3.$

Screen Space The screen space is the subset

 $[-0.5, n_x - 0.5] \times [-0.5, n_y - 0.5] \subset \mathbb{R}^2$.

- Project the canonical viewing volume onto the screen space
	- \bullet $x = -1$ and $x = +1$ are projected to the left and right side of the screen respectively
	- \bullet y = -1 and y = $+1$ are projected to the bottom and top side of the screen respectively
- Pixels have integer coordinates (i, j) , $i = 0, 1, \ldots, n_x 1$ and $j = 0, 1, \ldots, n_{v} - 1$
- For now assume that all geometric objects are completely inside the viewing volume

Viewport Transformation

1. Transformation with the viewport matrix

2. Projection onto the screen coordinates (x_{screen}, y_{screen})

Remarks

- If drawing routines require pixel coordinates the screen coordinates may be rounded to the nearest pixel coordinate
- \bullet $z_{\mathsf{canonical}}$ is kept in the transformation process for later use, e.g. z-buffering

Orthographic View Volume

The orthographic view volume is $[l,r] \times [b,t] \times [f,n] \subset \mathbb{R}^3$

- I and r determine the left and right plane respectively
- \bullet b and t determine the bottom and top plane respectively
- \bullet n and f determine the near and far plane respectively
- To be able to render geometry in some region other than the canonical viewing volume the projection and camera transformation are required
- For now special case of orthographic view is handled (perspective view later)
- The orthographic projection allows us to view the orthographic view volume

Orthographic Projection

- Assume a camera with gazing direction along its −z-direction and upwards direction along y
- The orthographic projection allows us to view the orthographic view volume
- Due to the viewing direction being $-z$ we have $n > f$ which might seem counter intuitive
- The matrix transformation transforming from camera space to the canonical view volume is

- Assume a camera with gazing direction along its −z-direction and upwards direction along y
- A convention to specify the camera position and orientation in world coordinates
	- the eye position e where the observer views from
	- the gaze direction g where the observer is looking towards
	- the view-up vector t which lies in the plane, which bisects the viewers head into left and right

Camera Transformation

 The three directions can be used to construct an orthonormal basis (xcamera, ycamera, zcamera) for the camera

$$
z_{\text{camera}} = -\frac{g}{\|g\|_2}
$$
(3)

$$
x_{\text{camera}} = \frac{t \times z_{\text{camera}}}{\|t \times z_{\text{camera}}\|_2}
$$
(4)

$$
y_{\text{camera}} = z_{\text{camera}} \times x_{\text{camera}}
$$
(5)

 According to the lecture on transformations we can use this basis to transform from world into camera coordinates by

$$
\begin{pmatrix} x_{\text{camera}} \\ y_{\text{camera}} \\ z_{\text{camera}} \\ 1 \end{pmatrix} = \underbrace{\begin{pmatrix} x_{\text{camera}} & y_{\text{camera}} & z_{\text{camera}} & e \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{M_{cam}} \underbrace{\begin{pmatrix} x_{\text{world}} \\ y_{\text{world}} \\ z_{\text{world}} \\ 1 \end{pmatrix}}_{(6)}
$$

Modeling Transformation

- Each object has its own object space attached
- Transform objects from object space to world space

$$
\begin{pmatrix} x_{world} \\ y_{world} \\ z_{world} \\ 1 \end{pmatrix} = \underbrace{\begin{pmatrix} A & t \\ 0 & 1 \end{pmatrix}}_{M_{mod}} \begin{pmatrix} x_{object} \\ y_{object} \\ z_{object} \\ 1 \end{pmatrix}
$$

- A and t depend on application
- Might be as simple as a translation
- Might be more sophisticated

(7)

Complete Transformation

- From the individual building blocks a single transformation can be build
- \bullet It transforms coordinates from object space directly to screen space

$$
\begin{pmatrix}\n x_{\text{screen}} \\
 y_{\text{screen}} \\
 z_{\text{canonical}} \\
 1\n\end{pmatrix} = \underbrace{M_{vp}M_{orth}M_{cam}M_{mod}}_{M} \begin{pmatrix}\n x_{\text{object}} \\
 y_{\text{object}} \\
 z_{\text{object}} \\
 1\n\end{pmatrix}
$$
\n(8)

• For the overall performance it is most often beneficial to recompute M as early as possible

Projective Projection

- \bullet In the camera coordinate system the viewing direction is along the negative z-axis
- \bullet The image is projected onto a plane at distance d in front of the eye
- \bullet The object size on the screen depends on d and its distance to the eye |z|

Projective Projection - Projective Transformations

- The transformation $\frac{d}{|z|}y$ is not affine so we need an extension of our homogeneous space transformations
- To do so we allow for the transformations to change the extra coordinate which remains 1 otherwise (it is not required to transform normal vectors to this point)
- $\bullet\,$ Moreover we consider all points $\mathsf{x},\mathsf{y}\in\mathbb{R}^4$ equivalent for which there exists an $\alpha \in \mathbb{R} \setminus \{0\}$

$$
y = \alpha x \tag{10}
$$

• The 3D coordinates (x', y', z') are obtained not from any 4D vector $(\tilde{x}, \tilde{y}, \tilde{z}, \tilde{w})$, $w \neq 0$ in the equivalence class, but from $(\tilde{x}/\tilde{w}, \tilde{y}/\tilde{w}, \tilde{z}/\tilde{w}, 1)$

By doing so linear rational functions

$$
x' = \frac{a_x x + b_x y + c_x z + d_x}{ex + fy + gz + h}
$$

\n
$$
y' = \frac{a_y x + b_y y + c_y z + d_y}{ex + fy + gz + h}
$$

\n
$$
z' = \frac{a_z x + b_z y + c_z z + d_z}{ex + fy + gz + h}
$$

can be implemented by a homogeneous matrix transform and subsequent projection onto the 3D space

Projective Projection - Projective Transformations

First the matrix transformation

$$
\begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \\ \tilde{w} \end{pmatrix} = \begin{pmatrix} a_x & b_x & c_x & d_x \\ a_y & b_y & c_y & d_y \\ a_z & b_z & c_z & d_z \\ e & f & g & h \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}
$$
(11)

Second the homogeneous divide

$$
\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \frac{\tilde{x}}{\tilde{w}} \\ \frac{\tilde{y}}{\tilde{w}} \\ \frac{\tilde{z}}{\tilde{w}} \end{pmatrix}
$$
 (12)

Remark

If we concatenate transformations later on we can choose at which point the homogeneous divide is performed, so we can perform all matrix-vector multiplications in homogeneous space prior to the homogeneous divide.

Projective Projection - The Projective View Volume

- \bullet The projective viewing volume is defined by the same values as the orthographic viewing volume
	- \bullet *l* and *r* determine the left and right plane respectively
	- \bullet b and t determine the bottom and top plane respectively
	- \bullet 0 > n > f determine the near and far plane respectively
- The details work out a little bit differently

Projective Projection - Perspective Projection

- Projection onto the viewing plane is done in a two step procedure
	- 1. The projective view volume is mapped to the orthographic view volume by

$$
\begin{pmatrix} \tilde{x}_{ocamera} \\ \tilde{y}_{ocamera} \\ \tilde{z}_{ocamera} \\ \tilde{w}_{ocamera} \end{pmatrix} = \underbrace{\begin{pmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{P} \begin{pmatrix} x_{camera} \\ y_{camera} \\ z_{camera} \\ 1 \end{pmatrix}
$$
 (13)

2. The orthographic view volume is mapped to the canonical view volume by

$$
\begin{pmatrix}\n\tilde{x}_{\text{canonical}} \\
\tilde{y}_{\text{canonical}} \\
\tilde{z}_{\text{canonical}} \\
\tilde{w}_{\text{canonical}}\n\end{pmatrix} = M_{orth}(r, l, t, b, n, f) \begin{pmatrix}\n\tilde{x}_{\text{ocamera}} \\
\tilde{y}_{\text{ocamera}} \\
\tilde{z}_{\text{ocamera}} \\
\tilde{w}_{\text{coamera}}\n\end{pmatrix}
$$
\n(14)

Remarks

 The actual perspective projection matrix is then simply $M_{\text{per}} = M_{\text{orth}}P$ and

 The matrix P does not change points on the near plane, but squishes them on all other planes by the correct amount

Projective Projection - Perspective Projection

Remarks

 The transform also preserves the relative z-order of points inside the perspective view volume $n \geq z_{\text{camera}} > f$

$$
z_{\text{ocamera}} = n + f - \frac{fn}{z_{\text{camera}}}
$$
 (16)

Let $n > z_n > z_f > f$ then

$$
\frac{fn}{z_n} < \frac{fn}{z_f} \tag{17}
$$
\n
$$
\Rightarrow n + f - \frac{fn}{z_n} > n + f - \frac{fn}{z_f} \tag{18}
$$

- Lines are mapped to lines
- Planes are mapped to planes

Remarks

Sometimes the inverse of P

$$
P^{-1} = \begin{pmatrix} \frac{1}{n} & 0 & 0 & 0\\ 0 & \frac{1}{n} & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & -\frac{1}{fn} & \frac{n+f}{fn} \end{pmatrix}
$$
(19)

is required, e.g. for picking a screen and z-coordinate in world space

Remarks

 \bullet We can rescale any 4 \times 4 matrix without changing the underlying 3D mapping

$$
P^{-1} = \begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 0 & f_n \\ 0 & 0 & -1 & n+f \end{pmatrix}
$$
 (20)

- This is possible due to the equivalence relation we introduced earlier
- Why? Cause math is awesome!

Culling

- For now we assumed all objects are inside the view volume
- Let us now assume that objects may also be inside the view volumes complement
- Especially in a large scene much of the geometry might be outside the view volume, occluded or facing away from the observer and therefore not contributing to the final image
- The process of identifying and removing such geometry from the pipeline is known as culling
- There are three common culling procedures
	- View volume culling
	- · Occlusion culling
	- Backface culling

View Volume Culling

- Test if a primitive lies outside the view volume
- Remove the object from the pipeline if so
- Most obvious would be to test all triangles of the object against all faces of the view volume
- A triangle is outside the view volume if it is located at the outside side of at least one of the view volume planes
- Better to perform the test on a bounding volume of the object, e.g. intersection sphere and viewing volume
- Even better to use the spatial data structures we discussed in ray tracing
- Test if primitive is occluded by other objects in scene
- Remove the object from the pipeline if so
- This is a quite complex topic with many approaches
	- Precomputed culling (Smartphone), e.g. precomputed visibility volumes
	- Software occlusion culling, e.g. Masked Software Occlusion Culling
	- · GPU assisted culling, e.g. depth buffer reprojection
	- GPU driven culling (high-end GPU), e.g. GPU-driven rendering pipelines
- Consider closed polygonal models bounding a closed space with no holes in the surface
- Common assumption on the surface normal of each primitive is that it faces outwards
- \bullet In such a case primitive facing away from the viewer can never be visible
- Removed such primitives

Clipping

- The only case remaining now is where primitives intersect with the view volume boundaries
- This case has to be handled with caution since the perspective projection transformation may map points outside the view volume to nonsensical locations
- \bullet More specifically, the problem is that points behind the eye might get mapped to points in front of the eye behind the far plane
- The clipping operation removes parts that could extend behind the eye
- More general clipping is an operation, where primitives are cut by some geometric entity (e.g. plane) and the part cut off is discarded, whereas the other part is kept

Clipping

 The simples scenario is where a triangle is clipped against a plane

- Triangle might be on the outside side of the cutting plane in which case it is removed
- Triangle might be on the inside side of the cutting plane in which case it is kept
- Triangle might lie inside the plane in which case it is kept
- Triangle might be cut in two by plane in which case the part on the outside side is removed
- If quadrilateral remaining, split it up into two triangles
- The two most common approaches for clipping are
	- 1. In world/camera coordinates before the projection transformation
	- 2. In 4D homogeneous space before the homogeneous divide
- \bullet In both cases we have to calculate the intersection of triangle edges (line segments) and hyperplanes

 Using one point q on the plane and the normal vector n we can describe the plane implicitly by

$$
f(p) = n \cdot (p - q) = 0 \tag{21}
$$

The line segment between two vertices a or b is given by

$$
I(t) = a + t(b - a) 0 \le t \le 1
$$
 (22)

If (a − b) and n non-orthogonal, intersection occurs at

$$
t = \frac{n \cdot (a - q)}{n \cdot (a - b)}\tag{23}
$$

Clipping in Homogeneous Space

Lemma

Let $n \in \mathbb{R}^3$ be the normal vector and $\mathsf{q} \in \mathbb{R}^3$ a point on a Hyperplane in \mathbb{R}^3 , such that $d = -n \cdot q \neq 0$. The hyperplane in homogeneous space, which maps onto the 3D hyperplane by homogeneous divide, is defined by the implicit equation

$$
f\left(\begin{pmatrix} p \\ w \end{pmatrix}\right) = \begin{pmatrix} n \\ d \end{pmatrix} \cdot \left(\begin{pmatrix} p \\ w \end{pmatrix} - \begin{pmatrix} q \\ 1 \end{pmatrix}\right) = 0. \tag{24}
$$

Sketch of the Proof

• Let (p, w) , $w \neq 0$ a point on the plane then either

1.
$$
w = \frac{n \cdot p}{n \cdot q}
$$
\n2. $w = 1$ and $n \cdot (p - q) = 0$

• In both cases (p, w) is mapped to $w^{-1}p$ by homogeneous divide and satisfies the implicit equation $\mathsf{n} \cdot (\mathsf{w}^{-1} \mathsf{p} - \mathsf{q}) = 0$ for the 3D Hyperplane 29