Computer Graphics

Dr. rer. nat. Martin Moddel
April 6, 2021

Institut fiir Biomedizinische Bildgebung

Object Ordered Rendering

The stages of a graphics pipeline

Application

Command Stream

[Vertex Processing]

Transformed Geometry Vertex Processor

— e Processes vertices
(Rasterization)
e Arrangement of geometric objects
Fragments
and camera
[Fragment Processing) e Transform vertices to pixel space
[Blending)

Framebuffer Image

Display

[Object space] Viewing

Modeling transformation e In OOR a series of quite simple
matrix transformations are used to
[World space] . .
project points onto the 2D screen
Camera transformation space
1. Modeling transformation
[Camera space] .
2. Camera transformation

Projection transformation 3. Projection transformation
4. Viewport transformation

[Canonical view volume]

e Specific APIs may have slightly

Viewport transformation different conventions

[Screen space]

Viewport Transformation

Canonical Viewing Volume
The canonical viewing volume is the subset [-1,1]* ¢ R3.

Screen Space
The screen space is the subset
[-0.5, nx — 0.5] x [-0.5,n, —0.5] C R?.

e Project the canonical viewing volume onto the screen space
e x = —1 and x = +1 are projected to the left and right side of
the screen respectively
e y=—1and y = +1 are projected to the bottom and top side
of the screen respectively
e Pixels have integer coordinates (i,j), i =0,1,...,n, — 1 and
j=01,...,n, —1
e For now assume that all geometric objects are completely

inside the viewing volume

Viewport Transformation

1. Transformation with the viewport matrix

n nx—1
Xscreen > 0 0 5 Xcanonical
0o ™ o ny,—1 .
Yscreen 5 5 Ycanonical (1)
Zcanonical 0 0 1 0 Zcanonical
1 0 0 0 1 1
Myp

2. Projection onto the screen coordinates (Xscreens Yscreen)
Remarks

e If drawing routines require pixel coordinates the screen
coordinates may be rounded to the nearest pixel coordinate

® Zeanonical 1S kept in the transformation process for later use,
e.g. z-buffering

Orthographic Projection

Orthographic View Volume
The orthographic view volume is [/, r] x [b, t] x [f,n] C R3

e [and r determine the left and right plane respectively
e b and t determine the bottom and top plane respectively

e n and f determine the near and far plane respectively

e To be able to render geometry in some region other than the
canonical viewing volume the projection and camera
transformation are required

e For now special case of orthographic view is handled
(perspective view later)

e The orthographic projection allows us to view the
orthographic view volume

Orthographic Projection

e Assume a camera with gazing direction along its —z-direction
and upwards direction along y

e The orthographic projection allows us to view the
orthographic view volume

e Due to the viewing direction being —z we have n > f which
might seem counter intuitive

e The matrix transformation transforming from camera space to

the canonical view volume is

2 r+1

Xcanonical —i 0 0 i Xcamera
2 t+b

Ycanonical | _ 0 —b 0 T i—bh Ycamera (2)

. o 0 0 2 _ ntf

Zcanonical 7 = Zcamera

1 0 0 0 1 1
Morth

Camera Transformation

e Assume a camera with gazing direction along its —z-direction
and upwards direction along y
e A convention to specify the camera position and orientation in
world coordinates
e the eye position e where the observer views from
e the gaze direction g where the observer is looking towards
e the view-up vector t which lies in the plane, which bisects the
viewers head into left and right

Camera Transformation

e The three directions can be used to construct an orthonormal

basis (Xcameraa Ycameras anmera) for the camera

Zcamera — _ﬁ (3)
t Xz
Xcamera = Sk (4)

||t X anmera||2
Ycamera = Zcamera X Xcamera (5)

e According to the lecture on transformations we can use this
basis to transform from world into camera coordinates by

Xcamera | Xworld
Ycamera | [Xcamera Ycamera Zcamera € Yworld
Zcamera 0 0 0 1 Zworld
1 1
Mcam

6

Modeling Transformation

Each object has its own object space attached

Transform objects from object space to world space

Xworld Xobject
Yworld | At Yobject (7)
- T
Zworld 0 1 Zobject
1 " 1
M
mod

A and t depend on application

Might be as simple as a translation

Might be more sophisticated

Complete Transformation

e From the individual building blocks a single transformation can
be build

e |t transforms coordinates from object space directly to screen

space
Xscreen Xobject
Yscreen Yobject
= Mvaorth Mcam Mmod (8)
Zcanonical Zobject
M
1 1

e For the overall performance it is most often beneficial to
recompute M as early as possible

10

Projective Projection

e In the camera coordinate system the viewing direction is along
the negative z-axis
e The image is projected onto a plane at distance d in front of

the eye
e The object size on the screen depends on d and its distance to
the eye |z|
d
Ys =¥ (9)
E4
(]
c
©
a
& y
[Q)/s
e 8
—
ya d A
|| 11

Projective Projection - Projective Transformations

d
|z]

of our homogeneous space transformations

e The transformation £y is not affine so we need an extension

e To do so we allow for the transformations to change the extra
coordinate which remains 1 otherwise (it is not required to

transform normal vectors to this point)

e Moreover we consider all points x,y € R* equivalent for which
there exists an aw € R\ {0}

y = ax (10)

e The 3D coordinates (x’, y’, z’) are obtained not from any 4D
vector (X, y,Z, W), w # 0 in the equivalence class, but from

(%/w,y/w,2/w,1)

12

Projective Projection - Projective Transformations

e By doing so linear rational functions

o axX + byy + cxz + dy
ex+fy+gz+h

, _ ayx+byy+cz+d,
. ex+fydgzth

S azx + byy + c;z+ dy
ex+fy+gz+h

can be implemented by a homogeneous matrix transform and
subsequent projection onto the 3D space

13

Projective Projection - Projective Transformations

o First the matrix transformation

X ax by o dx X

y1_|a by ¢ d ||y (11)

z a, b, ¢, d, z

W e f g h 1

e Second the homogeneous divide

x' %
V=12 (12
z £

Remark
If we concatenate transformations later on we can choose at which

point the homogeneous divide is performed, so we can perform all
matrix-vector multiplications in homogeneous space prior to the

homogeneous divide. »

Projective Projection - The Projective View Volume

e The projective viewing volume is defined by the same values as
the orthographic viewing volume

e [and r determine the left and right plane respectively
e b and t determine the bottom and top plane respectively
e 0> n> f determine the near and far plane respectively

e The details work out a little bit differently

15

Projective Projection - Perspective Projection

e Projection onto the viewing plane is done in a two step
procedure
1. The projective view volume is mapped to the orthographic
view volume by

Xocamera n 0 0 0 Xcamera
Vocamera _ 0 n 0 0 Ycamera (13)
Zocamera 0 0 n+f —fn Zcamera
Wocamera 0 0 1 0 1
P

2. The orthographic view volume is mapped to the canonical view

volume by
Xcanonical Xocamera
)N/canonical)N/ocamera
- = Morth(rvla (b b7 n, f) ~ (14)
Zcanonical Zocamera
Weanonical Wocamera

16

Projective Projection - Perspective Projection

Remarks

e The actual perspective projection matrix is then simply
Mper = MornP and

5 2n I+r
Xcanonical =l 0 T=F 0 Xcamera
& 2n b+
Veanonical | | 0 £ 35 0 Ycamera 15
= o f+n 2fn ()
Zcanonical 0 0 n—f f-n Zcamera
VNVcanonicaI 0 0 1 0 1

Mper

e The matrix P does not change points on the near plane, but
squishes them on all other planes by the correct amount

17

Projective Projection - Perspective Projection

Remarks

e The transform also preserves the relative z-order of points

inside the perspective view volume n > Zcamera > f

fn
Zycamera = N+ — (16)
Zcamera
Let n > z, > zr > f then
fi fi
m.n (17)
Zn Zf
fi fi
et f- s fo (18)
Zn zf

e Lines are mapped to lines

e Planes are mapped to planes
18

Projective Projection - Perspective Projection

Remarks

e Sometimes the inverse of P

0 0
_ 0 0
Pl = 0 1 (19)
+

O O O 3+
O O 3k O

1 n+f

fn n

is required, e.g. for picking a screen and z-coordinate in world
space

19

Projective Projection - Perspective Projection

Remarks

e We can rescale any 4 x 4 matrix without changing the

underlying 3D mapping

f 0 0 0
0 f 0 0

P! = 20
00 0 fn (20)
0 0 -1 n+f

e This is possible due to the equivalence relation we introduced

earlier

e Why? Cause math is awesome!

20

Culling

e For now we assumed all objects are inside the view volume

e Let us now assume that objects may also be inside the view

volumes complement

e Especially in a large scene much of the geometry might be
outside the view volume, occluded or facing away from the
observer and therefore not contributing to the final image

e The process of identifying and removing such geometry from
the pipeline is known as culling

e There are three common culling procedures

e View volume culling
e Occlusion culling
e Backface culling

21

View Volume Culling

e Test if a primitive lies outside the view volume
e Remove the object from the pipeline if so

e Most obvious would be to test all triangles of the object
against all faces of the view volume

e A triangle is outside the view volume if it is located at the
outside side of at least one of the view volume planes

e Better to perform the test on a bounding volume of the
object, e.g. intersection sphere and viewing volume

e Even better to use the spatial data structures we discussed in
ray tracing

22

Occlusion Culling

e Test if primitive is occluded by other objects in scene

e Remove the object from the pipeline if so
e This is a quite complex topic with many approaches

e Precomputed culling (Smartphone), e.g. precomputed visibility

volumes
e Software occlusion culling, e.g. Masked Software Occlusion

Culling

e GPU assisted culling, e.g. depth buffer reprojection

e GPU driven culling (high-end GPU), e.g. GPU-driven
rendering pipelines

23

Backface Culling

e Consider closed polygonal models bounding a closed space
with no holes in the surface

e Common assumption on the surface normal of each primitive is
that it faces outwards

e In such a case primitive facing away from the viewer can never
be visible

e Removed such primitives

24

Clipping

e The only case remaining now is where primitives intersect with
the view volume boundaries

e This case has to be handled with caution since the perspective
projection transformation may map points outside the view
volume to nonsensical locations

e More specifically, the problem is that points behind the eye
might get mapped to points in front of the eye behind the far
plane

e The clipping operation removes parts that could extend
behind the eye

e More general clipping is an operation, where primitives are cut
by some geometric entity (e.g. plane) and the part cut off is
discarded, whereas the other part is kept

25

Clipping

e The simples scenario is where a triangle is clipped against a
plane

/\
[N [\

e Triangle might be on the outside side of the cutting plane in

which case it is removed

e Triangle might be on the inside side of the cutting plane in
which case it is kept

e Triangle might lie inside the plane in which case it is kept

e Triangle might be cut in two by plane in which case the part
on the outside side is removed

e If quadrilateral remaining, split it up into two triangles

26

Clipping

e The two most common approaches for clipping are

1. In world/camera coordinates before the projection
transformation
2. In 4D homogeneous space before the homogeneous divide

e In both cases we have to calculate the intersection of triangle
edges (line segments) and hyperplanes

27

Line Hyperplane Intersection

e Using one point q on the plane and the normal vector n we

can describe the plane implicitly by
f(p)=n-(p—a)=0 (21)
e The line segment between two vertices a or b is given by
I(t) =a+t(b—a)0<t<1 (22)
e If (a —b) and n non-orthogonal, intersection occurs at

t:::(a_q) (23)

28

Clipping in Homogeneous Space

Lemma
Let n € R3 be the normal vector and q € R? a point on a

Hyperplane in R3, such that d = —n - q # 0. The hyperplane in
homogeneous space, which maps onto the 3D hyperplane by
homogeneous divide, is defined by the implicit equation

Sketch of ;< @f) : <d> | <<”p”> _ @) =@

e Let (p,w), w # 0 a point on the plane then either

1. w==2E
n-q

2.w=1andn-(p—q)=0

e In both cases (p, w) is mapped to w!p by homogeneous

divide and satisfies the implicit equation n- (w~!p —q) = 0 for

the 3D Hyperplane 2

	Object Ordered Rendering

