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Object Ordered Rendering



The stages of a graphics pipeline

Application

Command Stream

[ Vertex Processing ]

Transformed Geometry Vertex Processor

— e Processes vertices
( Rasterization )
e Arrangement of geometric objects
Fragments
and camera
[ Fragment Processing ) e Transform vertices to pixel space
[ Blending )

Framebuffer Image

Display



[ Object space ] Viewing

Modeling transformation e In OOR a series of quite simple
matrix transformations are used to
[ World space ] . .
project points onto the 2D screen
Camera transformation space
1. Modeling transformation
[ Camera space ] .
2. Camera transformation

Projection transformation 3. Projection transformation
4. Viewport transformation

[ Canonical view volume ]

e Specific APIs may have slightly

Viewport transformation different conventions

[ Screen space ]




Viewport Transformation

Canonical Viewing Volume
The canonical viewing volume is the subset [-1,1]* ¢ R3.

Screen Space
The screen space is the subset
[-0.5, nx — 0.5] x [-0.5,n, —0.5] C R?.

e Project the canonical viewing volume onto the screen space
e x = —1 and x = +1 are projected to the left and right side of
the screen respectively
e y=—1and y = +1 are projected to the bottom and top side
of the screen respectively
e Pixels have integer coordinates (i,j), i =0,1,...,n, — 1 and
j=01,...,n, —1
e For now assume that all geometric objects are completely

inside the viewing volume



Viewport Transformation

1. Transformation with the viewport matrix

n nx—1
Xscreen > 0 0 5 Xcanonical
0o ™ o ny,—1 .
Yscreen 5 5 Ycanonical (1)
Zcanonical 0 0 1 0 Zcanonical
1 0 0 0 1 1
Myp

2. Projection onto the screen coordinates (Xscreens Yscreen)
Remarks

e If drawing routines require pixel coordinates the screen
coordinates may be rounded to the nearest pixel coordinate

® Zeanonical 1S kept in the transformation process for later use,
e.g. z-buffering



Orthographic Projection

Orthographic View Volume
The orthographic view volume is [/, r] x [b, t] x [f,n] C R3

e [ and r determine the left and right plane respectively
e b and t determine the bottom and top plane respectively

e n and f determine the near and far plane respectively

e To be able to render geometry in some region other than the
canonical viewing volume the projection and camera
transformation are required

e For now special case of orthographic view is handled
(perspective view later)

e The orthographic projection allows us to view the
orthographic view volume



Orthographic Projection

e Assume a camera with gazing direction along its —z-direction
and upwards direction along y

e The orthographic projection allows us to view the
orthographic view volume

e Due to the viewing direction being —z we have n > f which
might seem counter intuitive

e The matrix transformation transforming from camera space to

the canonical view volume is

2 r+1

Xcanonical —i 0 0 i Xcamera
2 t+b

Ycanonical | _ 0 —b 0 T i—bh Ycamera (2)

. o 0 0 2 _ ntf

Zcanonical 7 = Zcamera

1 0 0 0 1 1
Morth



Camera Transformation

e Assume a camera with gazing direction along its —z-direction
and upwards direction along y
e A convention to specify the camera position and orientation in
world coordinates
e the eye position e where the observer views from
e the gaze direction g where the observer is looking towards
e the view-up vector t which lies in the plane, which bisects the
viewers head into left and right



Camera Transformation

e The three directions can be used to construct an orthonormal

basis (Xcameraa Ycameras anmera) for the camera

Zcamera — _ﬁ (3)
t Xz
Xcamera = Sk (4)

||t X anmera||2
Ycamera = Zcamera X Xcamera (5)

e According to the lecture on transformations we can use this
basis to transform from world into camera coordinates by

Xcamera | Xworld
Ycamera | [ Xcamera Ycamera Zcamera € Yworld
Zcamera 0 0 0 1 Zworld
1 1
Mcam
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Modeling Transformation

Each object has its own object space attached

Transform objects from object space to world space

Xworld Xobject
Yworld | At Yobject (7)
- T
Zworld 0 1 Zobject
1 " 1
M
mod

A and t depend on application

Might be as simple as a translation

Might be more sophisticated



Complete Transformation

e From the individual building blocks a single transformation can
be build

e |t transforms coordinates from object space directly to screen

space
Xscreen Xobject
Yscreen Yobject
= Mvaorth Mcam Mmod (8)
Zcanonical Zobject
M
1 1

e For the overall performance it is most often beneficial to
recompute M as early as possible
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Projective Projection

e In the camera coordinate system the viewing direction is along
the negative z-axis
e The image is projected onto a plane at distance d in front of

the eye
e The object size on the screen depends on d and its distance to
the eye |z|
d
Ys =¥ (9)
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Projective Projection - Projective Transformations

d
|z]

of our homogeneous space transformations

e The transformation £y is not affine so we need an extension

e To do so we allow for the transformations to change the extra
coordinate which remains 1 otherwise (it is not required to

transform normal vectors to this point)

e Moreover we consider all points x,y € R* equivalent for which
there exists an aw € R\ {0}

y = ax (10)

e The 3D coordinates (x’, y’, z’) are obtained not from any 4D
vector (X, y,Z, W), w # 0 in the equivalence class, but from

(%/w,y/w,2/w,1)
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Projective Projection - Projective Transformations

e By doing so linear rational functions

o axX + byy + cxz + dy
ex+fy+gz+h

, _ ayx+byy+cz+d,
. ex+fydgzth

S azx + byy + c;z+ dy
ex+fy+gz+h

can be implemented by a homogeneous matrix transform and
subsequent projection onto the 3D space
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Projective Projection - Projective Transformations

o First the matrix transformation

X ax by o dx X

y1_|a by ¢ d ||y (11)

z a, b, ¢, d, z

W e f g h 1

e Second the homogeneous divide

x' %
V=12 (12
z £

Remark
If we concatenate transformations later on we can choose at which

point the homogeneous divide is performed, so we can perform all
matrix-vector multiplications in homogeneous space prior to the

homogeneous divide. »



Projective Projection - The Projective View Volume

e The projective viewing volume is defined by the same values as
the orthographic viewing volume

e [ and r determine the left and right plane respectively
e b and t determine the bottom and top plane respectively
e 0> n> f determine the near and far plane respectively

e The details work out a little bit differently
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Projective Projection - Perspective Projection

e Projection onto the viewing plane is done in a two step
procedure
1. The projective view volume is mapped to the orthographic
view volume by

Xocamera n 0 0 0 Xcamera
Vocamera _ 0 n 0 0 Ycamera (13)
Zocamera 0 0 n+f —fn Zcamera
Wocamera 0 0 1 0 1
P

2. The orthographic view volume is mapped to the canonical view

volume by
Xcanonical Xocamera
)N/canonical )N/ocamera
- = Morth(rvla (b b7 n, f) ~ (14)
Zcanonical Zocamera
Weanonical Wocamera

16



Projective Projection - Perspective Projection

Remarks

e The actual perspective projection matrix is then simply
Mper = MornP and

5 2n I+r
Xcanonical =l 0 T=F 0 Xcamera
& 2n b+
Veanonical | | 0 £ 35 0 Ycamera 15
= o f+n  2fn ( )
Zcanonical 0 0 n—f f-n Zcamera
VNVcanonicaI 0 0 1 0 1

Mper

e The matrix P does not change points on the near plane, but
squishes them on all other planes by the correct amount
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Projective Projection - Perspective Projection

Remarks

e The transform also preserves the relative z-order of points

inside the perspective view volume n > Zcamera > f

fn
Zycamera = N+ — (16)
Zcamera
Let n > z, > zr > f then
fi fi
m.n (17)
Zn Zf
fi fi
et f- s fo (18)
Zn zf

e Lines are mapped to lines

e Planes are mapped to planes
18



Projective Projection - Perspective Projection

Remarks

e Sometimes the inverse of P

0 0
_ 0 0
Pl = 0 1 (19)
+

O O O 3+
O O 3k O

1 n+f

fn n

is required, e.g. for picking a screen and z-coordinate in world
space
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Projective Projection - Perspective Projection

Remarks

e We can rescale any 4 x 4 matrix without changing the

underlying 3D mapping

f 0 0 0
0 f 0 0

P! = 20
00 0 fn (20)
0 0 -1 n+f

e This is possible due to the equivalence relation we introduced

earlier

e Why? Cause math is awesome!
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Culling

e For now we assumed all objects are inside the view volume

e Let us now assume that objects may also be inside the view

volumes complement

e Especially in a large scene much of the geometry might be
outside the view volume, occluded or facing away from the
observer and therefore not contributing to the final image

e The process of identifying and removing such geometry from
the pipeline is known as culling

e There are three common culling procedures

e View volume culling
e Occlusion culling
e Backface culling
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View Volume Culling

e Test if a primitive lies outside the view volume
e Remove the object from the pipeline if so

e Most obvious would be to test all triangles of the object
against all faces of the view volume

e A triangle is outside the view volume if it is located at the
outside side of at least one of the view volume planes

e Better to perform the test on a bounding volume of the
object, e.g. intersection sphere and viewing volume

e Even better to use the spatial data structures we discussed in
ray tracing
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Occlusion Culling

e Test if primitive is occluded by other objects in scene

e Remove the object from the pipeline if so
e This is a quite complex topic with many approaches

e Precomputed culling (Smartphone), e.g. precomputed visibility

volumes
e Software occlusion culling, e.g. Masked Software Occlusion

Culling

e GPU assisted culling, e.g. depth buffer reprojection

e GPU driven culling (high-end GPU), e.g. GPU-driven
rendering pipelines
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Backface Culling

e Consider closed polygonal models bounding a closed space
with no holes in the surface

e Common assumption on the surface normal of each primitive is
that it faces outwards

e In such a case primitive facing away from the viewer can never
be visible

e Removed such primitives
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Clipping

e The only case remaining now is where primitives intersect with
the view volume boundaries

e This case has to be handled with caution since the perspective
projection transformation may map points outside the view
volume to nonsensical locations

e More specifically, the problem is that points behind the eye
might get mapped to points in front of the eye behind the far
plane

e The clipping operation removes parts that could extend
behind the eye

e More general clipping is an operation, where primitives are cut
by some geometric entity (e.g. plane) and the part cut off is
discarded, whereas the other part is kept
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Clipping

e The simples scenario is where a triangle is clipped against a
plane

/\
[N [\

e Triangle might be on the outside side of the cutting plane in

which case it is removed

e Triangle might be on the inside side of the cutting plane in
which case it is kept

e Triangle might lie inside the plane in which case it is kept

e Triangle might be cut in two by plane in which case the part
on the outside side is removed

e If quadrilateral remaining, split it up into two triangles
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Clipping

e The two most common approaches for clipping are

1. In world/camera coordinates before the projection
transformation
2. In 4D homogeneous space before the homogeneous divide

e In both cases we have to calculate the intersection of triangle
edges (line segments) and hyperplanes
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Line Hyperplane Intersection

e Using one point q on the plane and the normal vector n we

can describe the plane implicitly by
f(p)=n-(p—a)=0 (21)
e The line segment between two vertices a or b is given by
I(t) =a+t(b—a)0<t<1 (22)
e If (a —b) and n non-orthogonal, intersection occurs at

t:::(a_q) (23)
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Clipping in Homogeneous Space

Lemma
Let n € R3 be the normal vector and q € R? a point on a

Hyperplane in R3, such that d = —n - q # 0. The hyperplane in
homogeneous space, which maps onto the 3D hyperplane by
homogeneous divide, is defined by the implicit equation

Sketch of ;< @f) : <d> | <<”p”> _ @) =@

e Let (p,w), w # 0 a point on the plane then either

1. w==2E
n-q

2.w=1andn-(p—q)=0

e In both cases (p, w) is mapped to w!p by homogeneous

divide and satisfies the implicit equation n- (w~!p —q) = 0 for

the 3D Hyperplane 2
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