
Computer Graphics

Dr. rer. nat. Martin Möddel

April 6, 2021

Institut für Biomedizinische Bildgebung

Object Ordered Rendering

The stages of a graphics pipeline

Application

Command Stream

Vertex Processing

Transformed Geometry

Rasterization

Fragments

Fragment Processing

Blending

Framebu�er Image

Display

Vertex Processor

� Processes vertices

� Arrangement of geometric objects

and camera

� Transform vertices to pixel space

1

Viewing

Object space

Modeling transformation

World space

Camera transformation

Camera space

Projection transformation

Canonical view volume

Viewport transformation

Screen space

Viewing

� In OOR a series of quite simple

matrix transformations are used to

project points onto the 2D screen

space

1. Modeling transformation

2. Camera transformation

3. Projection transformation

4. Viewport transformation

� Speci�c APIs may have slightly

di�erent conventions

2

Viewport Transformation

Canonical Viewing Volume
The canonical viewing volume is the subset [−1, 1]3 ⊂ R3.

Screen Space
The screen space is the subset

[−0.5, nx − 0.5]× [−0.5, ny − 0.5] ⊂ R2.

� Project the canonical viewing volume onto the screen space

� x = −1 and x = +1 are projected to the left and right side of

the screen respectively

� y = −1 and y = +1 are projected to the bottom and top side

of the screen respectively

� Pixels have integer coordinates (i , j), i = 0, 1, . . . , nx − 1 and

j = 0, 1, . . . , ny − 1

� For now assume that all geometric objects are completely

inside the viewing volume

3

Viewport Transformation

1. Transformation with the viewport matrix
xscreen

yscreen

zcanonical

1

 =


nx
2 0 0 nx−1

2

0
ny
2 0

ny−1
2

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

Mvp


xcanonical

ycanonical

zcanonical

1

 (1)

2. Projection onto the screen coordinates (xscreen, yscreen)

Remarks

� If drawing routines require pixel coordinates the screen

coordinates may be rounded to the nearest pixel coordinate

� zcanonical is kept in the transformation process for later use,

e.g. z-bu�ering

4

Orthographic Projection

Orthographic View Volume
The orthographic view volume is [l , r]× [b, t]× [f , n] ⊂ R3

� l and r determine the left and right plane respectively

� b and t determine the bottom and top plane respectively

� n and f determine the near and far plane respectively

� To be able to render geometry in some region other than the

canonical viewing volume the projection and camera

transformation are required

� For now special case of orthographic view is handled

(perspective view later)

� The orthographic projection allows us to view the

orthographic view volume

5

Orthographic Projection

� Assume a camera with gazing direction along its −z-direction
and upwards direction along y

� The orthographic projection allows us to view the

orthographic view volume

� Due to the viewing direction being −z we have n > f which

might seem counter intuitive

� The matrix transformation transforming from camera space to

the canonical view volume is
xcanonical

ycanonical

zcanonical

1

 =


2

r−l 0 0 − r+l
r−l

0 2
t−b 0 − t+b

t−b
0 0 2

n−f −n+f
n−f

0 0 0 1


︸ ︷︷ ︸

Morth


xcamera

ycamera

zcamera

1

 (2)

6

Camera Transformation

� Assume a camera with gazing direction along its −z-direction
and upwards direction along y

� A convention to specify the camera position and orientation in

world coordinates

� the eye position e where the observer views from

� the gaze direction g where the observer is looking towards

� the view-up vector t which lies in the plane, which bisects the

viewers head into left and right

7

Camera Transformation

� The three directions can be used to construct an orthonormal

basis (xcamera, ycamera, zcamera) for the camera

zcamera = −
g

‖g‖2
(3)

xcamera =
t× zcamera

‖t× zcamera‖2
(4)

ycamera = zcamera × xcamera (5)

� According to the lecture on transformations we can use this

basis to transform from world into camera coordinates by
xcamera

ycamera

zcamera

1

 =

(
xcamera ycamera zcamera e

0 0 0 1

)−1
︸ ︷︷ ︸

Mcam


xworld

yworld

zworld

1


(6)

8

Modeling Transformation

� Each object has its own object space attached

� Transform objects from object space to world space
xworld

yworld

zworld

1

 =

(
A t

0T 1

)
︸ ︷︷ ︸

Mmod


xobject

yobject

zobject

1

 (7)

� A and t depend on application

� Might be as simple as a translation

� Might be more sophisticated

9

Complete Transformation

� From the individual building blocks a single transformation can

be build

� It transforms coordinates from object space directly to screen

space 
xscreen

yscreen

zcanonical

1

 = MvpMorthMcamMmod︸ ︷︷ ︸
M


xobject

yobject

zobject

1

 (8)

� For the overall performance it is most often bene�cial to

recompute M as early as possible

10

Projective Projection

� In the camera coordinate system the viewing direction is along

the negative z-axis

� The image is projected onto a plane at distance d in front of

the eye

� The object size on the screen depends on d and its distance to

the eye |z |

ys =
d

|z |
y (9)

e

vi
ew

p
la
n
e

g

y

ys

d

|z | 11

Projective Projection - Projective Transformations

� The transformation d
|z|y is not a�ne so we need an extension

of our homogeneous space transformations

� To do so we allow for the transformations to change the extra

coordinate which remains 1 otherwise (it is not required to

transform normal vectors to this point)

� Moreover we consider all points x, y ∈ R4 equivalent for which

there exists an α ∈ R \ {0}

y = αx (10)

� The 3D coordinates (x ′, y ′, z ′) are obtained not from any 4D

vector (x̃ , ỹ , z̃ , w̃), w 6= 0 in the equivalence class, but from

(x̃/w̃ , ỹ/w̃ , z̃/w̃ , 1)

12

Projective Projection - Projective Transformations

� By doing so linear rational functions

x ′ =
axx + bxy + cxz + dx

ex + fy + gz + h

y ′ =
ayx + byy + cyz + dy

ex + fy + gz + h

z ′ =
azx + bzy + czz + dz

ex + fy + gz + h

can be implemented by a homogeneous matrix transform and

subsequent projection onto the 3D space

13

Projective Projection - Projective Transformations

� First the matrix transformation
x̃

ỹ

z̃

w̃

 =


ax bx cx dx

ay by cy dy

az bz cz dz

e f g h




x

y

z

1

 (11)

� Second the homogeneous dividex ′

y ′

z ′

 =


x̃
w̃
ỹ
w̃
z̃
w̃

 (12)

Remark
If we concatenate transformations later on we can choose at which

point the homogeneous divide is performed, so we can perform all

matrix-vector multiplications in homogeneous space prior to the

homogeneous divide.
14

Projective Projection - The Projective View Volume

� The projective viewing volume is de�ned by the same values as

the orthographic viewing volume

� l and r determine the left and right plane respectively

� b and t determine the bottom and top plane respectively

� 0 > n > f determine the near and far plane respectively

� The details work out a little bit di�erently

z

y

n f

b

t
z

x

n f

l

r

15

Projective Projection - Perspective Projection

� Projection onto the viewing plane is done in a two step

procedure

1. The projective view volume is mapped to the orthographic

view volume by
x̃ocamera

ỹocamera

z̃ocamera

w̃ocamera

 =


n 0 0 0

0 n 0 0

0 0 n + f −fn
0 0 1 0


︸ ︷︷ ︸

P


xcamera

ycamera

zcamera

1

 (13)

2. The orthographic view volume is mapped to the canonical view

volume by
x̃canonical

ỹcanonical

z̃canonical

w̃canonical

 = Morth(r , l , t, b, n, f)


x̃ocamera

ỹocamera

z̃ocamera

w̃ocamera

 (14)

16

Projective Projection - Perspective Projection

Remarks

� The actual perspective projection matrix is then simply

Mper = MorthP and
x̃canonical

ỹcanonical

z̃canonical

w̃canonical

 =


2n
r−l 0 l+r

l−r 0

0 2n
t−b

b+t
b−t 0

0 0 f+n
n−f

2fn
f−n

0 0 1 0


︸ ︷︷ ︸

Mper


xcamera

ycamera

zcamera

1

 (15)

� The matrix P does not change points on the near plane, but

squishes them on all other planes by the correct amount

17

Projective Projection - Perspective Projection

Remarks

� The transform also preserves the relative z-order of points

inside the perspective view volume n ≥ zcamera ≥ f

zocamera = n + f − fn

zcamera
(16)

Let n ≥ zn > zf ≥ f then

fn

zn
<

fn

zf
(17)

⇒ n + f − fn

zn
> n + f − fn

zf
(18)

� Lines are mapped to lines

� Planes are mapped to planes

18

Projective Projection - Perspective Projection

Remarks

� Sometimes the inverse of P

P−1 =


1
n

0 0 0

0 1
n

0 0

0 0 0 1

0 0 − 1
fn

n+f
fn

 (19)

is required, e.g. for picking a screen and z-coordinate in world

space

19

Projective Projection - Perspective Projection

Remarks

� We can rescale any 4× 4 matrix without changing the

underlying 3D mapping

P−1 =


f 0 0 0

0 f 0 0

0 0 0 fn

0 0 −1 n + f

 (20)

� This is possible due to the equivalence relation we introduced

earlier

� Why? Cause math is awesome!

20

Culling

� For now we assumed all objects are inside the view volume

� Let us now assume that objects may also be inside the view

volumes complement

� Especially in a large scene much of the geometry might be

outside the view volume, occluded or facing away from the

observer and therefore not contributing to the �nal image

� The process of identifying and removing such geometry from

the pipeline is known as culling

� There are three common culling procedures

� View volume culling

� Occlusion culling

� Backface culling

21

View Volume Culling

� Test if a primitive lies outside the view volume

� Remove the object from the pipeline if so

� Most obvious would be to test all triangles of the object

against all faces of the view volume

� A triangle is outside the view volume if it is located at the

outside side of at least one of the view volume planes

� Better to perform the test on a bounding volume of the

object, e.g. intersection sphere and viewing volume

� Even better to use the spatial data structures we discussed in

ray tracing

22

Occlusion Culling

� Test if primitive is occluded by other objects in scene

� Remove the object from the pipeline if so

� This is a quite complex topic with many approaches

� Precomputed culling (Smartphone), e.g. precomputed visibility

volumes

� Software occlusion culling, e.g. Masked Software Occlusion

Culling

� GPU assisted culling, e.g. depth bu�er reprojection

� GPU driven culling (high-end GPU), e.g. GPU-driven

rendering pipelines

23

Backface Culling

� Consider closed polygonal models bounding a closed space

with no holes in the surface

� Common assumption on the surface normal of each primitive is

that it faces outwards

� In such a case primitive facing away from the viewer can never

be visible

� Removed such primitives

24

Clipping

� The only case remaining now is where primitives intersect with

the view volume boundaries

� This case has to be handled with caution since the perspective

projection transformation may map points outside the view

volume to nonsensical locations

� More speci�cally, the problem is that points behind the eye

might get mapped to points in front of the eye behind the far

plane

� The clipping operation removes parts that could extend

behind the eye

� More general clipping is an operation, where primitives are cut

by some geometric entity (e.g. plane) and the part cut o� is

discarded, whereas the other part is kept

25

Clipping

� The simples scenario is where a triangle is clipped against a

plane

� Triangle might be on the outside side of the cutting plane in

which case it is removed

� Triangle might be on the inside side of the cutting plane in

which case it is kept

� Triangle might lie inside the plane in which case it is kept

� Triangle might be cut in two by plane in which case the part

on the outside side is removed

� If quadrilateral remaining, split it up into two triangles

26

Clipping

� The two most common approaches for clipping are

1. In world/camera coordinates before the projection

transformation

2. In 4D homogeneous space before the homogeneous divide

� In both cases we have to calculate the intersection of triangle

edges (line segments) and hyperplanes

27

Line Hyperplane Intersection

� Using one point q on the plane and the normal vector n we

can describe the plane implicitly by

f (p) = n · (p− q) = 0 (21)

� The line segment between two vertices a or b is given by

l(t) = a+ t(b− a) 0 ≤ t ≤ 1 (22)

� If (a− b) and n non-orthogonal, intersection occurs at

t =
n · (a− q)

n · (a− b)
(23)

28

Clipping in Homogeneous Space

Lemma
Let n ∈ R3 be the normal vector and q ∈ R3 a point on a

Hyperplane in R3, such that d = −n · q 6= 0. The hyperplane in

homogeneous space, which maps onto the 3D hyperplane by

homogeneous divide, is de�ned by the implicit equation

f

((
p

w

))
=

(
n

d

)
·

((
p

w

)
−

(
q

1

))
= 0. (24)

Sketch of the Proof

� Let (p,w), w 6= 0 a point on the plane then either

1. w = n·p
n·q

2. w = 1 and n · (p− q) = 0

� In both cases (p,w) is mapped to w−1p by homogeneous

divide and satis�es the implicit equation n · (w−1p− q) = 0 for

the 3D Hyperplane 29

	Object Ordered Rendering

