
Computer Graphics

Dr. rer. nat. Martin Möddel

April 6, 2021

Institut für Biomedizinische Bildgebung



Rendering



De�nition

Rendering refers to the process of creating 2D raster images from

2D or 3D models using computer programs.

Rendering is grouped into two di�erent algorithmic families

Object ordered rendering
Each object is considered, one at a time, and the pixels in the

image in�uenced by the object are found and updated.

Image ordered rendering
Each pixel is considered, one at a time, and the objects in�uencing

this pixel are found. The pixels value is updated accordingly.

1



Remarks

Algorithmically the di�erence between the two can be described by

the order of the nested loops. In OOR the object loop is outer and

the pixel loop is inner, while in IOR the order is reversed.

� In theory both algorithmic families compute the same raster

image

� In practice that is not true, due to simpli�cations made within

each family

� Sophisticated rendering models that are complicated to

implement in OOR are most often quite simple in IOR

� IOR is thus algorithmically simpler but requires much more

execution time

2



Ray Tracing



Ray Tracing

3



Ray Tracing

4



De�nition

A ray tracer is an IOR algorithm, where a ray is traced into a scene

until it hits a scene object. Information on hit point and object are

used to color image pixels. A basic ray tracer has three parts

1. Ray generation: compute origin and direction of pixels viewing

ray based on camera geometry and orientation

2. Ray intersection: Find closest object intersecting the viewing

ray

3. Shading: Compute pixel color based on the result of the ray

intersection

5



Algorithm

1: A: a scene (collection of objects)

2: Shader: program to calculate pixel values

3: procedure traceRays(A,Shader)

4: for each pixel do

5: compute viewing ray

6: �nd nearest object hit by ray in scene A

7: calculate pixel color using the Shader

8: set pixel color

9: end for

10: end procedure

6



Rays

De�nition
A ray is a 3D parametric line

p(t) = o+ t(s− o). (1)

Here o is the origin of the ray, d = s− o is the direction and t ∈ R
is the fractional distance of p(t) to o.

� p(0) = o and p(1) = s

� If 0 < t1 < t2 then p(t1) is closer to the origin o than p(t2)

� If t < 0 then p(t) is behind o

7



Camera

Ray generation starts within the camera coordinate system, which

is de�ned by

� e view point (eye point)

� u rightwards direction of the camera

� v upwards direction of the camera

� w backwards direction of the camera

{u, v,w} forms a right-handed coordinate system. Usually only the

upward and backward directions are provided, since u = v × w.

8



Orthographic View

� each ray points towards d = −w
� each ray should starts on the plane spanned by u and v

containing e

� The image size is de�ned by the left, right, bottom and top

edges of the image l < 0 < r , b < 0 < t

� A canonical choice of the edges is given by r = t = 1 and

l = b = −1
� With nx × ny pixels the ray (i,j) has origin o = e+ uu+ vv,

where

u = l + (r − l)(i + 0.5)/nx (2)

v = t + (b − t)(j + 0.5)/ny . (3)

Remark
Both o and (s− o) are then given in the global coordinate system

9



Orthographic View

e

w
u

v

10



Perspective View

� The ray origin is o = e for all rays

� The image plane is positioned at −dw, i.e. some distance d in

front of e

� One sometimes refers to d as focal length

� The viewing direction is given by vector pointing from e to the

pixel on the image plane d = −dw + uu+ vv with u and v

de�ned as in the orthographic view

� Usually the ray origin is shifted by d, such that the ray origin is

on the image plane and the ray direction is normalized, such

that the parameter t denotes the Euclidean distance from the

image plane

11



Perspective View

w

u

v

e

12



Ray Intersection

Apart from ray generation, intersection methods are an integral

part of ray tracing, though they �nd their use in many other

applications in computer graphics. Intersection methods should

answer the following questions:

� Is my ray hitting any object?

� Are the objects in front of my camera, on its back or

surrounding the camera?

� Which object is closest in front of the camera?

� Where does the object get hit?

� Where does the normal of the surface points towards?

13



Ray Intersection

If one tries to �nd the intersection between an object and a ray it is

often simpler to not consider the object as a whole, but only its

surface. To mathematically describe surfaces there are essentially

two possible ways, both of which are used in computer graphics:

� Implicit surfaces

� Explicit surfaces

14



Implicit Surfaces

Let f : R3 → R be a function mapping points to the real numbers,

then the kernel of f de�nes an implicit surface{
x ∈ R3|f (x) = 0

}
. (4)

An example is the sphere of radius r , which is implicitly given by

the function f (x) = ‖x‖22 − r2.

15



Ray Intersection with Implicit Surfaces

Let p(t) = o+ td be a ray and f : R3 → R be a function describing

an implicit surface. The set of hit points between ray and surface is

then given by

{p(t)|t ∈ R such that f (o+ td) = 0} . (5)

Note
The intersection problem boils down to a one dimensional

root-�nding problem, which can be solved numerically, though that

might be quite demanding.

16



Normal Vectors of Implicit Surfaces

Let f : R3 → R be a smooth function de�ning an implicit surface

and x be a point on the surface. The normal vector of the surface

at this point is given by the gradient of the function at this point

n = ∇f (x). (6)

Example
For f (x) = ‖x‖22 − r2 we have

∇f (x) = (2x , 2y , 2z). (7)

17



Explicit Surfaces

An explicit surface on the other hand is given by the range of a

parameter function f : P → R3

{f(x)|x ∈ P} . (8)

An example is again the sphere of radius r , where

f(%, ϕ) = (r sin % cosϕ, r sin % sinϕ, r cos %), (9)

(%, ϕ) ∈ P = [0, π)× [0, 2π).

18



Ray Intersection with Explicit Surfaces

Let p(t) = o+ td be a ray and f : P → R3 be a function describing

an explicit surface. The set of hit points between ray and surface is

then given by

{f(x)|∃(t, x) ∈ R× P such that p(t) = f(x)} . (10)

Note

� The intersection problem can be reformulated into a multi

dimensional root �nding problem

{(t, x)|F(t, x) = p(t)− f(x) = 0} . (11)

� The hit points are then simply given by f(x) for all

(t, x) ∈ {(t, x)|F(t, x) = 0}
19



Normal Vectors of Explicit Surfaces

Let f : P ⊆ R2 → R3 be a smooth function de�ning an explicit

surface over the open subset P and p = (p1, p2) ∈ P be the

parameter mapping to the surface location x = f(p) then the

surface normal is orthogonal to the partial derivatives spanning the

tangent space

n = ∂p1 f(p)× ∂p2 f(p). (12)

Example

∂%f(%, ϕ) = r(cos % cosϕ, cos % sinϕ,− sin %) (13)

∂ϕf(%, ϕ) = r(− sin % sinϕ, sin % cosϕ, 0) (14)

∂%f(%, ϕ)× ∂ϕf(%, ϕ) = r2 sin %(sin % cosϕ, sin % sinϕ, cos %) (15)

20


	Rendering
	Ray Tracing

