
Computer Graphics

Dr. rer. nat. Martin Möddel

April 6, 2021

Institut für Biomedizinische Bildgebung

Ray Tracing

Ray Tracing

1

Ray Tracing

2

De�nition

A ray tracer is an IOR algorithm, where a ray is traced into a scene

until it hits a scene object. Information on hit point and object are

used to color image pixels. A basic ray tracer has three parts

1. Ray generation: compute origin and direction of pixels viewing

ray based on camera geometry and orientation

2. Ray intersection: Find closest object intersecting the viewing

ray

3. Shading: Compute pixel color based on the result of the ray

intersection

3

Rays

De�nition
A ray is a 3D parametric line

p(t) = o+ t(s− o). (1)

Here o is the origin of the ray, d = s− o is the direction and t ∈ R
is the fractional distance of p(t) to o.

� p(0) = o and p(1) = s

� If 0 < t1 < t2 then p(t1) is closer to the origin o than p(t2)

� If t < 0 then p(t) is behind o

Remark
Ray generation is tied to the camera and is usually performed in the

camera coordinate system.

4

Ray Intersection

Apart from ray generation, intersection methods are an integral

part of ray tracing, though they �nd their use in many other

applications in computer graphics. Intersection methods should

answer the following questions:

� Is my ray hitting any object?

� Are the objects in front of my camera, on its back or

surrounding the camera?

� Which object is closest in front of the camera?

� Where does the object get hit?

� Where does the normal of the surface points towards?

5

Ray Sphere Intersection

Using the implicit formula we can describe a sphere centered at

c ∈ R3 with radius r by f (x) = ‖x− c‖2 − r = 0. Let p(t) = o+ td

be a ray then

0 = ‖o+ td− c‖ − r

⇔ r = ‖o+ td− c‖
⇔ r2 = ‖o+ td− c‖2

⇔ 0 = t2 + t
2d · (o− c)

d · d
+

(o− c) · (o− c)− r2

d · d
⇔ 0 = t2 + 2tb + c ,

where b = d·(o−c)
d·d and c = (o−c)·(o−c)−r2

d·d .

6

Ray Sphere Intersection

The possibly complex roots are then given by

t± = −b ±
√

b2 − c. (2)

� If b2 − c < 0 then the roots are complex. Meaning the ray

does not intersect with the sphere.

� If b2 = c then the two roots coincide and the ray intersects

with the sphere at one point.

� If b2 − c > 0 then there are two intersection points.

� If b >
√
b2 − c then the sphere is behind the camera

� If b < −
√
b2 − c then the sphere is in front of the camera

� If
√
b2 − c > b > −

√
b2 − c then camera is inside the sphere

7

Ray Sphere Intersection - Optimizations

c

o d

l
c

o d

l

c
o d m

l

r

� Compute the vector l = c− o and its length l2 = l · l
� If l2 < r2 the ray origin is inside the sphere (right)

� Compute s = l · d
� If s < 0 and the origin is outside the sphere the sphere is

behind the camera

� Compute distance between ray and sphere center m2 = l2 − s2

� If m2 > r2 the sphere is going to be missed

� If not intersections occur at t± = s ± q, where q2 = r2 −m2

8

Ray OBB Intersection

De�nition
An oriented bounding box is a box whose faces have normals u, v,

and w which make up an orthonormal basis. It is described by its

center c and its positive half-lengths hu, hv, and hw, i.e. the

shortest distance from center to face along the respective normal

directions.

Alternative Description
Consider a slab which is the in�nitely large volume in between two

parallel planes. For each direction consider the slab de�ned by the

opposing faces of an OBB then the intersection of all three slabs

equals the oriented bounding box.

9

Ray OBB Intersection

Slab Ray intersection
Each ray intersects the plane twice at (tu−, tv−, tw−) and

(tu+, tv+, tw+) respectively. A ray hits the OBB if it enters all slabs

before it leaves any

max(tu−, tv−, tw−) ≤ min(tu+, tv+, tw+). (3)

c

tu−

tv−
tu+

tv+

10

Ray OBB Intersection

1: procedure RaysOBBIntersect(Ray, OBB)

2: tmin = −∞
3: tmax =∞
4: for direction a ∈ {u, v,w} do
5: e = a · (c− o)

6: f = a · d
7: if |f | > �oating point precision then

8: t1 = (e + ha)/f

9: t2 = (e − ha)/f

10: if t1 > t2 then swap(t1, t2)

11: end if

12: if t1 > tmin then tmin = t1

13: end if

14: if t2 < tmax then tmax = t2

15: end if 11

Ray OBB Intersection

16: if tmin > tmax then return OBB not hit

17: end if

18: if tmax < 0 then return OBB behind camera

19: end if

20: else if −e − ha > 0 or − e + ha < 0 then return Ray

parallel to OBB but not hitting

21: end if

22: end for

23: if tmin > 0 then return intersect at tmin

24: else return intersect at tmax

25: end if

26: end procedure

12

Ray Polygon Intersection

De�nition Plane
A plane can be de�ned by a normal vector n and a point on the

plane p by {x|n · (x− p) = 0}. Alternatively, we can use the

distance of the plane to the origin δ = n · p to de�ne the plane

{x|n · x− δ = 0} . (4)

De�nition Polygon
A simple planar polygon of n vertices (n-gon) is de�ned by an

ordered vertex list {pi}ni=1 and a plane with normal vector n and its

distance to the origin δ. The vertices pi and pi+1 form an edge for

all i = 1, . . . , n − 1 and the polygon is closed by the edge from pn

to p1, where non of the edges intersect each other.

13

Ray Polygon Intersection

� To intersect a ray p(t) = o+ td and a polygon �rst calculate

the intersection between the polygon plane and the ray

n · (o+ td) + δ = 0. (5)

� If |n · d| � 1 the ray is considered parallel to the plane (avoid

over�ow when dividing), otherwise the intersection occurs for

tintersect =
−δ − n · o

n · d
. (6)

� Project all vertices and the intersection point p(tintersect) to

one of the xy -, yz-, or xz-plane, where the area of the

projected polygon is maximized and relabel the new

coordinates by u and v . I.e. skip the coordinate component,

where n is largest (skip y if n = (1, 2, 0.5)).

� Shift the projected intersection point into the origin.

14

Ray Polygon Intersection

� Count crossings with positive u-axis.

� odd number: Origin inside polygon

� even number: Origin outside polygon

� in�nite crossings: Rotate vertices slightly and repeat test

0 u

v

15

Ray Polygon Intersection

1: procedure CountCrossings

2: ncrossings = 0

3: for edge vertex pairs (a, b) do

4: if (av > 0 and bv < 0) or (av < 0 and bv > 0) then

5: if (au > 0 and bu > 0) then

6: ncrossings = ncrossings + 1

7: else if intersection edge u-axis positive then

8: ncrossings = ncrossings + 1

9: else no crossing possible

10: end if

11: else no crossing possible

12: end if

13: end for return ncrossings

14: end procedure

16

Instancing

Geometry instancing is the practice of rendering multiple copies of

the same possibly distorted object in a scene. This method can also

be applied to ray tracing where one can chose to

1. Transform the object and intersect with the untransformed ray

2. Apply the inverse transformation to the ray and intersect with

the untransformed object

� Homogeneous coordinates can be used to transform the ray

origin (point) and ray direction.

� Untransformed objects may have simpler intersection routines

(sphere vs. ellipsoid)

� Many transformed objects might share the same

untransformed object reducing storage

17

Instancing

untransformed object

inverse transformed ray

transformed object

untransformed ray

18

Optimization Techniques in Intersection

� Order comparisons such that easy to compute reject or accept

intersections come �rst to possibly escape expensive

computations

� Exploit the results from previous tests whenever possible

� Try out di�erent orders if you have multiple tests. Minor

changes might result in a signi�cant performance boost

� Postpone expensive calculations such as trigonometric

functions and square roots until they are required

� Dimensionality reduction simplify an intersection problem quite

signi�cantly

� In some cases pre-calculations can be worth the e�ort, though

they require memory

� Take all special cases into account even if they are unlikely to

occur

� Intersect with bounding boxes �rst, for complicated calculation

intensive objects

19

Bounding Volumes

� A Bounding Volume is a volume enclosing an object which is

used for performant intersection rejection

� Common bounding volumes are spheres, axis aligned bounding

boxes and oriented bounding boxes

� Finding optimal boxes is usually a non-trivial problem

� Often suboptimal boxes are chosen trading speed vs. e�ciency

� In order to minimize intersection costs it is important to �nd

tight �ttings for an object.

20

Bounding Volumes

Axis Aligned Bounding Box (AABB)

� Find extreme coordinate values for each direction

� create tight axis aligned box from these values

Sphere

� Sphere center set to coincide with center from AABB

� radius given by largest distance to center position

c c

21

Spatial Data Structures

� In case not only a few but a large number n of objects is

considered the intersection costs increase by O(n)
� Spatial data structures organizes objects in some space to

accelerate intersection queries typically to O(log n)
� Most spatial data structures organize objects hierarchically

� Construction of these structures is expensive and usually done

in a preprocessing step

� Common types are bounding volume hierarchies (BVHs) and

binary space partitioning (BSP) trees

� In BHVs each object belongs to exactly one of a number of

nodes within each hierarchy level, whereas spatial points may

belong to a number of nodes

� In BSPs each spatial point belongs to exactly one of a number

of nodes within each hierarchy level, whereas an object may

belong to a number of nodes
22

Tree Structures in Computer Graphics

The scene is organized in a hierarchical tree structure consisting of

a root, internal nodes, and leaves.

� The topmost node is the root containing all scene objects

� A leaf node holds a single scene object

� An internal node holds a number of children (nodes and/or

leafs)

� Each node/leaf has a bounding volume enclosing all objects in

its entire sub-tree

Figure 1: Example of bounding volume hierarchy (BVH) in two dimensions, where bounding

volumes are AABB by Schreiberx licencend under CC BY-SA 3.0. 23

https://commons.wikimedia.org/wiki/File:Example_of_bounding_volume_hierarchy.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Spatial Data Structures - Ray Scene Intersection

Find �rst object in hierarchy

� Start intersection with the root bounding volume

� If the ray misses it misses all objects

� otherwise continue recursively by testing the bounding volumes

of the children

� Whenever a bounding volume is missed the entire sub-tree can

be dismissed

� If the bounding volume of a leaf node is hit intersection with

the object contained within is tested

24

Spatial Data Structures - Ray Scene Intersection

Find closest object in hierarchy

� Store the identity and distance of the �rst object hit

� When intersecting bounding volumes discard sub-trees if the

distance to the volume is larger than the stored distance

� Update identity and distance if a closer object is hit

� Continue until the whole tree is traversed

25

Bounding Volume Hierarchy

Example Hierarchy Creation
1: Chose an integer constant c

2: Decide on method to chose direction e, e.g. cycle through axis-

directions as we go deeper into the hierarchy

3: Create AABB for all objects of scene

4: procedure bvh(objects)

5: if Number of objects ≤ c then

6: Create Bounding box enclosing all objects

7: Create a leaf for each object

8: else

9: Order objects along e (AABB center)

10: Partition objects into c sets

11: Call bhv for each set

12: end if

13: end procedure 26

Binary Space partitioning trees

Example Space Partitioning
1: Create AABB for all objects of scene

2: procedure bps(AABB, objects)

3: if Some continuation criterion is met then

4: Divide the AABB in two along an axis, e.g. the axis where

the AABB is largest

5: for each sub-box AABBi do

6: Oi = set of objects (partially) inside AABBi

7: bps(AABBi , Oi)

8: end for

9: else

10: create one leaf containing the objects

11: end if

12: end procedure

27

Spatial Data Structures

Remarks

� There is no recipe on which data structure to use

� Depends on task to be accelerated

� Depends on scene to be rendered

� There a more spatial data structures availible, which might be

usefull depending on your application

� Regular grids

� Octrees

� Constructive Solid Geometry trees

28

	Ray Tracing

