Computer Graphics

Dr. rer. nat. Martin Möddel April 6, 2021

Institut für Biomedizinische Bildgebung

Meshes in Computer Graphics

Meshes

Polygon Mesh

In computer graphics a polygon mesh is a collection of vertices,

edges and faces (polygons) defining the surfaces of an object. Most often triangle meshes are considered

Figure 1: "An example of a polygon mesh" by en:User:Chrschn realeased into the public domain

Mesh Creation

- Mesh creation refers to the process of finding a suitable polygonal mesh for a given surface
- Common strategies are
 - Triangularization of parametric surfaces
 - Cutting cube triangularization of implicit surfaces
 - Marching triangularization of implicit surfaces
- Refining known meshes, such as the Platonic solids

Figure 2: "Platonic-solids set of five dice, (from left) tetrahedron (d4), cube (d6), octahedron (d8), dodecahedron (d12), and icosahedron (d20)." by unknown author licensed under https://creativecommons.org/licenses/by-sa/3.0/deed.en

Triangularization of parametric surfaces

Figure 3: "Triangulierung einer parametrisierten Fläche (Affensattel)" by Ag2gaeh realeased under the CC BY-SA 4.0 license

Triangularization of parametric surfaces

- Triangularization of an explicitly defined parametric surface is quite straight forward
- At first a triangularization of the parameter space is required
- The vertices of the parameter space triangularization can then directly be mapped by the parametric mapping to define corresponding triangles in 3D space

Remark

- The mapping will usually change the size of the triangles
- Take care at parameter space boundaries, e.g. pole or Greenwich meridian arc for sphere

Cutting Cube Triangularization

Figure 4: "Polygonisierung eines Torus mit der cutting cube Methode" by Ag2gaeh realeased under the CC BY-SA 4.0 license

- Divide the 3D space into cubes
- Intersecting edges of the cubes with the implicit surface creates polygons on the surface
- The polygons can then further be subdivided into triangles

Remark

- Intersection problem might be difficult to solve
- Great overhead for managing the data

Figure 5: "Triangulation eines Torus" by Ag2gaeh realeased under the CC BY-SA 4.0 license

Idea

A marching method for the triangulation of surfaces by Erich Hartmann (1998)

- 1. Choose a starting point on the surface and build a hexagon in tangent space and project it onto the surface
 - The triangles of the hexagon are the starting triangles
 - The six outer vertices create the first "primary outer front polygon" Π_0
- 2. Determine the angle of the area still to be triangulated at each vertex of Π_0
- 3. Check if any vertex of Π_0 is near a non-neighbouring point of Π_0 or a point of another front polygon Π_k , k > 0
 - In the first case divide the primary front polygon Π_0 into smaller parts
 - Else unite Π_0 and Π_k

- 4. Surround the point $p_m \in \Pi_0$ with minimal angle by isosceles triangles with approximately 60° angles and leg length δ_t , delete p_m from Π_0 and add the new points into Π_0
- 5. Repeat the steps 2-4 until there are only three points left in Π_0 , which generate the final triangle
 - If there is still a front polygon left then take it as new front polygon Π_0 and proceed with steps 2-4
 - If there is no front polygons left then the triangularization is finished

Remark

For the algorithm to converge the surface should have finite size

Figure 6: Pictures (in the following) taken fromwww.mathematik.tu-darmstadt.de/ ehartmann/cdgen0104.pdf

10

- As the triangles are created in tangent space, we need a method to project the triangle vertices q₁ from tangent space onto a surface points p₁
- Assume the surface is implicitly given by f(x) = 0 with non-zero gradient ∇f at any point q
- p, the corresponding surface normal and the two tangent vectors at p can be calculated by the following three steps

- 1. Decent onto the surface along the gradient
 - a $u_0 = q$ b repeat $u_{k+1} = u_k - \frac{f(u_k)}{\|\nabla f(u_k)\|_2^2} \nabla f(u_k)$ until $\|u_{k+1} - u_k\|_2 < \varepsilon$ for some preset $\varepsilon > 0$ and set $p = u_{k+1}$
- 2. The surface normal at p is $n = (n_x, n_y, n_z) = \frac{\nabla f(p)}{\|\nabla f(p)\|_2}$
- 3. The tangent vectors are

a t₁ =
$$\frac{(n_y, -n_x, 0)}{\|(n_y, -n_x, 0)\|_2}$$
 if $n_x > 0.5$ or $n_y > 0.5$ else t₁ = $\frac{(-n_x, 0, n_x)}{\|(-n_x, 0, n_x)\|_2}$
b t₂ = n × t₁

Marching Triangularization - Gradient Projection

Marching Triangularization - Gradient Projection

Marching Triangularization - Gradient Projection

Marching Triangularization - Hexagon Initialization

- Start at any point in the vicinity of the surface and determine the closest surface point p_0 , the corresponding normal vector n_0 and tangential vectors t_{01} and t_{02}
- Calculate the vertices q_1,\ldots,q_6 of the initial hexagon in tangent space by

$$q_i = p_0 + \delta_t \cos((i-1)\pi/3)t_{01} + \delta_t \sin((i-1)\pi/3)t_{02} \quad (1)$$

- Project q₁,...,q₆ onto the surface using the gradient projection to obtain the surface points p₁,..., p₆
- Each point p_i has normal vector n_i and tangential vectors t_{i1} and t_{i2} assigned
- The initial six triangles have vertices (p_0, p_1, p_2) , (p_0, p_2, p_3) , (p_0, p_3, p_4) , (p_0, p_4, p_5) , (p_0, p_5, p_6) , and (p_0, p_6, p_1)
- The outer vertices define the primary front polygon $\Pi_0 = \{p_1, \ldots, p_6\}$

Marching Triangularization - Angle Determination

For each point $p_i \in \Pi_0 = \{p_1, \dots, p_N\}$ new or neighbouring a new point recalculate the front angle ω_i

- Set $v_1 = p_{i-1}$ if i > 1 or $v_1 = p_N$ if i = 1
- Set $v_2 = p_{i+1}$ if i < N or $v_2 = p_1$ if i = N
- Express both vertices in the local coordinate system of the *i*-th vertex

$$v_1 = p_i + \eta_1 n_i + \tau_1 t_{i1} + \vartheta_1 t_{i2}$$
(2)

$$v_{2} = p_{i} + \eta_{2}n_{i} + \tau_{2}t_{i1} + \vartheta_{2}t_{i2}$$
(3)

- Calculate the polar angle of the two vertices in tangent space $\varphi_1 = \operatorname{atan2}(\tau_1, \vartheta_1)$ and $\varphi_2 = \operatorname{atan2}(\tau_2, \vartheta_2)$
- The front angle is then given by

$$\omega_{i} = \begin{cases} \varphi_{2} - \varphi_{1} & \varphi_{2} \ge \varphi_{1} \\ 2\pi + \varphi_{2} - \varphi_{1} & \text{else} \end{cases}$$
(4)

Marching Triangularization - Avoid Overlap

Splitting

- If so split Π_0 into the new $\Pi_0 = \{p_1, \dots, p_i, p_j, \dots, p_N\}$ and a new front polygon $\Pi_{new} = \{p_i, \dots, p_j\}$
- Exclude p_i and p_j from **any** later (not only the present iteration) distance checks
- Repeat this check until no more pair is found
- Recalculate the angles at p_i and p_j in Π_0

Marching Triangularization - Avoid Overlap

Joining

- Check the distance of Π_0 to all further front polygons $\Pi_k, \ k>0$
- If there are $p_i \in \Pi_0$ and $r_j \in \Pi_k = \{r_1, \dots, r_M\}$ with $\|p_i - r_j\|_2 < \delta_t$ then the union of Π_0 and Π_k defines the new primary front polygon

$$\Pi_0 = \{p_1, \dots, p_i, r_j, \dots, r_M, r_1, \dots, r_j, p_i, \dots p_N\}$$
 (5)

- Calculate the front angles at p; and r; at their first appearance
- Surround the vertex with smallest angle with triangles first
- Surround the remaining vertex next

Figure 7: Dividing (left) and uniting (right) the actual front polygon.

Remarks

- Sometimes the line segment between p_i and r_j intersects an already triangulated area (this must be detected and avoided)
 - To determine this case we can compare the front angle ω_i at vertex p_i with $\tilde{\omega}_i$, which is calculated using $v_2 = r_j$ for the angle determination
 - p_i and r_j are connected through an already triangulated area, if $\omega_i<\tilde{\omega}_i$
 - No joining in this case
- Add and remove vertices during the triangle surrounding step as discussed below

Marching Triangularization - Triangle Creation

- 1. Consider $p_i \in \Pi_0$ with minimal front angle ω_i
- 2. Determine its neighbours v1 and v2 as discussed above
- 3. Determine the number of triangles to be created

$$n_t = \left\lfloor \frac{3\omega_i}{\pi}
ight
floor + 1 ext{ and } \Delta \omega = \omega_i / n_t$$
 (6)

- a If $\Delta \omega <$ 0.8 and $n_t >$ 1 then $n_t o n_t -$ 1 and $\Delta \omega = \omega_i / n_t$
- b If $n_t = 1$ and $\Delta \omega > 0.8$ and $\|\mathbf{v}_1 \mathbf{v}_2\|_2 > 1.25\delta_t$ then $n_t = 2$ and $\Delta \omega \rightarrow \frac{\Delta \omega}{2}$
- c If $\Delta \omega < 3$ and either $\|\mathbf{v}_1 \mathbf{p}_i\|_2 \le 0.5\delta_t$ or $\|\mathbf{v}_2 \mathbf{p}_i\| \le 0.5\delta_t$ then $n_t = 1$ and $\Delta \omega = \omega_i$

Marching Triangularization - Triangle Creation

- 4. If $n_t = 1$ generate the triangle with vertices v_1 , v_2 and p_i , else
 - a Project v₁ and v₂ onto the tangent plane at p_i, i.e. onto q₀ and q_{nt} respectively, where

$$q_j = p_i + \tau_j t_{i1} + \vartheta_j t_{i2} \tag{7}$$

- b The remaining q_k , $k = 1, ..., n_t 1$ are calculated by rotating $p_i + \delta_t \frac{(q_0 p_i)}{\|q_0 p_i\|_2}$ by the angle $k\Delta\omega$ around the surface normal at p_i
- c Gradient projection of q $_k$ onto the surface yields p_{N+k} for all $k=1,\ldots,n_t-1$
- d The n_t new triangles have vertices (p_i , v_1 , p_{N+1}), (p_i , p_{N+1} , p_{N+2}), ..., (p_i , p_{N+n_t-1} , v_2)
- 5. Delete p_i from Π_0 and insert the points $p_{N+1}, \ldots, p_{N+n_t-1}$ at its position (no points added for $n_t = 1$)

Marching Triangularization - Example Sphere

starting hexagon

Marching Triangularization - Example Sphere

Marching Triangularization - Example Sphere

still a hole

final triangulation

Remarks

- Apart from visualization mesh creation plays an important role in the application of finite element methods
- The methods presented are conceptionally easy to understand
- There are much more elaborate methods available, e.g. those which adapt the size of the triangles to the local curvature of the surface

Triangle Meshes

- As many models in computer graphic are composed of triangular meshes efficient handling of these meshes is crucial
- Apart from transferring meshes in between graphics application and graphics pipeline one might want to draw, subdivide and edit the meshes
- For some applications not only the triangles are required, but also adjacency information, i.e. information about shared vertices and edges or neighbouring triangles
- Apart from the minimal information (triangles and vertices) one often stores additional information assigned to the vertices or triangle faces

Triangle Meshes - Topology

- In mesh topology one is concerned with the properties of the mesh that are preserved under continuous deformations
- A common assumption is that meshes are manifolds
 - Each edge is shared by exactly two triangles
 - Each vertex has a single complete loop of triangles around it
- A relaxation of this topology is a manifold with boundary where
 - Each edge is used by either one or two triangles
 - Each vertex connects to a single edge-connected set of triangles
- Another topological property the orientation of the mesh which allows to distinguish front and back side
 - The front of a triangle is, where the vertices are arranged in counter clockwise order (right hand rule)
 - A mesh is consistently oriented if all pair of adjacent triangles within the mesh agree on front side

Triangle Meshes - Indexed Mesh Storage

- The simplest storage form of a triangle mesh is to store the three vertex positions for each triangle
- However since most vertices are used multiple times by multiple triangles we can do better by using an indexed mesh
 - Store the vertices in a list
 - Store three indices per triangle
- Assuming n_t triangles, n_v vertices and the same storage requirements for floats and indices we need
 - Three vertices per triangle $(9n_t \text{ in total})$
 - One vector per vertex and three indices per triangle $(3n_v + 3n_t in total)$
 - For large meshes $n_t \approx 2 n_v$ (each vertex connected to six triangles) the storage requirements are reduced by about two

Separate Triangles

#t	Vertices
0	(p_0, p_1, p_2)
1	(p_0, p_2, p_3)
2	(p_0, p_3, p_4)
3	(p_0, p_4, p_5)
4	(p_0, p_5, p_6)
5	(p_0, p_6, p_1)

Triangle Meshes - Indexed Mesh Storage

Triangle Meshes - Triangle Strips and Fans

If we want an even more compact representation of our mesh we can use triangle strips and triangle fans

Triangle Fan

- In a triangle fan all triangles share a common vertex
- The other vertices generate triangles like the vanes of a fan
- A fan can be described by an ordered list of indices

Triangle Stripe

- In a triangle stripe we start with a single triangle
- New vertices are added alternating top and bottom to define the next triangle
- Here too an ordered list of indices suffices

Triangle Meshes - Triangle Strips and Fans

Triangle Fans							
# ∨	0	1	2	3	4	5	6
Pos	p ₀	р ₁	p ₂	р ₃	p4	р ₅	р ₆
The sequence $(0, 1, 2, 3, 4, 5, 6)$ specifies							
the triangles							

#t	Vertices
0	(0, 1, 2)
1	(0, 2, 3)
2	(0,3,4)
3	(0, 4, 5)
4	(0,5,6)

Triangle Meshes - Triangle Strips and Fans

Triangle Strips #∨ 0 1 2 3 4 5 6 Pos p_0 p_1 p₂ p3 **p**4 **p**5 **p**6 The sequence (0, 1, 2, 3, 4, 5, 6) specifies the triangles

#t	Vertices
0	(0, 1, 2)
1	(1, 3, 2)
2	(2, 3, 4)
3	(3, 5, 4)
4	(4, 5, 6)

Triangle Meshes - Mesh Connectivity

- To modify or edit meshes it is often necessary to obtain connectivity information
 - Which triangles are adjacent to a given one
 - Which triangles share a specific edge
 - Which triangles share a certain vertex
 - Which edges share a given vertex
- Obtaining this information from the data structures discussed so far is computationally demanding
- Storage of all these informations seem to costly in terms of memory
- There are data structures which allow to obtain connectivity information
 - Triangle-neighbour structure
 - Winged-edge structure

Triangle Meshes - Triangle-Neighbour Structure

- By modifying the indexed mesh storage structure we can ensure that all of the queries are answered in constant time
- Add a pointer to one adjacent triangle for each vertex
- Add pointers to all three neighbouring triangles for each triangle
- Store the pointers in such an order, that the k-th pointer points to the neighbouring triangle, which shares vertices k and k + 1 with the current triangle
- This structure allows to efficiently answer the questions above by clever movement along the mesh

Triangle Meshes - Triangle-Neighbour Structure

4

Part of a Large Triangle Mesh

Triangle neighbour structure

# ∨	0	1	2	3	4	5	6
Position	PO	P1	P2	рз	P4	P 5	P6
ΔPointer	0		•	·	•	•	•
	#t	Vertices		Neighbours		_	
	0	(0, 1, 2)		$(5, \cdot, 1)$			
	1	(0, 2, 3)		$(0, \cdot, 2)$			
	2	(0,3,4)		$(1, \cdot, 3)$			
	3	(0, 4, 5)		(2, •	, 4)		
	4	(0, 5, 6)		$(3, \cdot, 5)$			
	5	(0,6	, 1)	(4, •	, 6)		
Adjaceno	Adjacency Query						
Input: verte	× in de×	i					
function FindAdjacentTriangles(i)							
$t_i = \Delta P$	ointer[<i>i</i>]					
$t_0 = t_i$							
repeat							
Add to to output list							
Find <i>i</i> in to's vertices							
Assign the corresponding vertices-index to j							
Assign the j-th neighbouring triangle of $t_{f 0} o t_{f 0}$							
until t not t _i							
end function							