Computer Graphics

Dr. rer. nat. Martin Möddel April 6, 2021

Institut für Biomedizinische Bildgebung

[Meshes in Computer Graphics](#page-1-0)

Meshes

Polygon Mesh

In computer graphics a polygon mesh is a collection of vertices, edges and faces (polygons) defining the surfaces of an object. Most often triangle meshes are considered

Figure 1: "An example of a polygon mesh" by [en:User:Chrschn](https://en.wikipedia.org/wiki/User:Chrschn) realeased into the public domain

Mesh Creation

- \bullet Mesh creation refers to the process of finding a suitable polygonal mesh for a given surface
- Common strategies are
	- Triangularization of parametric surfaces
	- Cutting cube triangularization of implicit surfaces
	- Marching triangularization of implicit surfaces
- Refining known meshes, such as the Platonic solids

Figure 2: "Platonic-solids set of five dice, (from left) tetrahedron (d4), cube (d6), octahedron (d8), dodecahedron (d12), and icosahedron (d20)." by unknown author licensed under [https://creativecommons.org/licenses/by-sa/3.0/deed.en](CC BY-SA 3.0)

Triangularization of parametric surfaces

Figure 3: "Triangulierung einer parametrisierten Fläche (Affensattel)" by [Ag2gaeh](https://commons.wikimedia.org/wiki/User:Ag2gaeh) realeased under the [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/deed.en) license

Triangularization of parametric surfaces

- \bullet Triangularization of an explicitly defined parametric surface is quite straight forward
- \bullet At first a triangularization of the parameter space is required
- The vertices of the parameter space triangularization can then directly be mapped by the parametric mapping to define corresponding triangles in 3D space

Remark

- The mapping will usually change the size of the triangles
- Take care at parameter space boundaries, e.g. pole or Greenwich meridian arc for sphere

Cutting Cube Triangularization

Figure 4: "Polygonisierung eines Torus mit der cutting cube Methode" by [Ag2gaeh](https://commons.wikimedia.org/wiki/User:Ag2gaeh) realeased under the [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/deed.en) license

- Divide the 3D space into cubes
- Intersecting edges of the cubes with the implicit surface creates polygons on the surface
- The polygons can then further be subdivided into triangles

Remark

- \bullet Intersection problem might be difficult to solve
- Great overhead for managing the data

Marching Triangularization

Figure 5: "Triangulation eines Torus" by [Ag2gaeh](https://commons.wikimedia.org/wiki/User:Ag2gaeh) realeased under the [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/deed.en) license

Idea

A marching method for the triangulation of surfaces by Erich Hartmann (1998)

- 1. Choose a starting point on the surface and build a hexagon in tangent space and project it onto the surface
	- The triangles of the hexagon are the starting triangles
	- \bullet The six outer vertices create the first "primary outer front polygon" Π₀
- 2. Determine the angle of the area still to be triangulated at each vertex of Π_{0}
- 3. Check if any vertex of Π_0 is near a non-neighbouring point of Π_0 or a point of another front polygon Π_k , $k > 0$
	- \bullet In the first case divide the primary front polygon Π_0 into smaller parts
	- **E**lse unite Π_0 and Π_k 8

Marching Triangularization

- 4. Surround the point $p_m \in \Pi_0$ with minimal angle by isosceles triangles with approximately 60° angles and leg length $\delta_t,$ delete p_m from Π_0 and add the new points into Π_0
- 5. Repeat the steps 2-4 until there are only three points left in Π_0 , which generate the final triangle
	- \bullet If there is still a front polygon left then take it as new front polygon Π_0 and proceed with steps 2-4
	- \bullet If there is no front polygons left then the triangularization is finished

Remark

For the algorithm to converge the surface should have finite size

Marching Triangularization

Figure 6: Pictures (in the following) taken fro[mwww.mathematik.tu-darmstadt.de/ ehartmann/cdgen0104.pdf](http://www.mathematik.tu-darmstadt.de/~ehartmann/cdgen0104.pdf) ¹⁰

- As the triangles are created in tangent space, we need a method to project the triangle vertices q_I from tangent space onto a surface points p_l
- Assume the surface is implicitly given by $f(x) = 0$ with non-zero gradient ∇f at any point q
- p, the corresponding surface normal and the two tangent vectors at p can be calculated by the following three steps

1. Decent onto the surface along the gradient

a
$$
u_0 = q
$$

b repeat $u_{k+1} = u_k - \frac{f(u_k)}{\|\nabla f(u_k)\|_2^2} \nabla f(u_k)$ until $||u_{k+1} - u_k||_2 < \varepsilon$
for some preset $\varepsilon > 0$ and set $p = u_{k+1}$

2. The surface normal at p is $n = (n_x, n_y, n_z) = \frac{\nabla f(p)}{\|\nabla f(p)\|_2}$

3. The tangent vectors are

a
$$
t_1 = \frac{(n_y, -n_x, 0)}{\|(n_y, -n_x, 0)\|_2}
$$
 if $n_x > 0.5$ or $n_y > 0.5$ else $t_1 = \frac{(-n_x, 0, n_x)}{\|(-n_x, 0, n_x)\|_2}$
b $t_2 = n \times t_1$

Marching Triangularization - Gradient Projection

Marching Triangularization - Gradient Projection

Marching Triangularization - Gradient Projection

Marching Triangularization - Hexagon Initialization

- Start at any point in the vicinity of the surface and determine the closest surface point p_0 , the corresponding normal vector n_0 and tangential vectors t_{01} and t_{02}
- \bullet Calculate the vertices q_1, \ldots, q_6 of the initial hexagon in tangent space by

$$
q_i = p_0 + \delta_t \cos((i-1)\pi/3)t_{01} + \delta_t \sin((i-1)\pi/3)t_{02} \quad (1)
$$

- Project q_1, \ldots, q_6 onto the surface using the gradient projection to obtain the surface points p_1, \ldots, p_6
- \bullet Each point p_i has normal vector n_i and tangential vectors t_{i1} and t_{i2} assigned
- \bullet The initial six triangles have vertices (p_0, p_1, p_2) , (p_0, p_2, p_3) , (p_0, p_3, p_4) , (p_0, p_4, p_5) , (p_0, p_5, p_6) , and (p_0, p_6, p_1)
- The outer vertices define the primary front polygon $\Pi_0 = \{p_1, \ldots, p_6\}$ 16

Marching Triangularization - Angle Determination

For each point $p_i \in \Pi_0 = \{p_1, \ldots, p_N\}$ new or neighbouring a new point recalculate the front angle ω_i

- Set $v_1 = p_{i-1}$ if $i > 1$ or $v_1 = p_N$ if $i = 1$
- Set $v_2 = p_{i+1}$ if $i < N$ or $v_2 = p_1$ if $i = N$
- Express both vertices in the local coordinate system of the i-th vertex

$$
\mathsf{v}_1 = \mathsf{p}_i + \eta_1 \mathsf{n}_i + \tau_1 \mathsf{t}_{i1} + \vartheta_1 \mathsf{t}_{i2} \tag{2}
$$

$$
v_2 = p_i + \eta_2 n_i + \tau_2 t_{i1} + \vartheta_2 t_{i2}
$$
 (3)

- Calculate the polar angle of the two vertices in tangent space $\varphi_1 = \text{atan2}(\tau_1, \vartheta_1)$ and $\varphi_2 = \text{atan2}(\tau_2, \vartheta_2)$
- The front angle is then given by

$$
\omega_i = \begin{cases} \varphi_2 - \varphi_1 & \varphi_2 \ge \varphi_1 \\ 2\pi + \varphi_2 - \varphi_1 & \text{else} \end{cases}
$$
 (4)

Marching Triangularization - Avoid Overlap

Splitting

- Check if there are any $p_j, p_j \in \Pi_0$, $i < j$ such that $\|{\bf p}_i - {\bf p}_i\| < \delta_t$ and the vertices are neither next nor nearest next neighbours
- **If** so split Π_0 into the new $\Pi_0 = \{p_1, \ldots, p_i, p_j, \ldots, p_N\}$ and a new front polygon $\Pi_{\mathsf{new}} = \{\mathsf{p}_i, \dots, \mathsf{p}_j\}$
- \bullet Exclude p_i and p_j from \overline{any} later (not only the present iteration) distance checks
- Repeat this check until no more pair is found
- Recalculate the angles at p_i and p_j in Π_0

Marching Triangularization - Avoid Overlap

Joining

- Check the distance of Π_0 to all further front polygons Π_k , $k > 0$
- If there are $p_i \in \Pi_0$ and $r_j \in \Pi_k = \{r_1, \ldots, r_M\}$ with $\|\mathbf{p}_i - \mathbf{r}_i\|_2 < \delta_t$ then the union of Π_0 and Π_k defines the new primary front polygon

$$
\Pi_0 = \{p_1, \ldots, p_i, r_j, \ldots, r_M, r_1, \ldots, r_j, p_i, \ldots p_N\} \qquad (5)
$$

- Calculate the front angles at p_i and r_j at their first appearance
- \bullet Surround the vertex with smallest angle with triangles first
- Surround the remaining vertex next

Marching Triangularization

Figure 7: Dividing (left) and uniting (right) the actual front polygon.

Remarks

- \bullet Sometimes the line segment between p_i and r_j intersects an already triangulated area (this must be detected and avoided)
	- \bullet To determine this case we can compare the front angle ω_i at vertex p_i with $\tilde{\omega}_i$, which is calculated using $\mathsf{v}_2=\mathsf{r}_j$ for the angle determination
	- \bullet p_i and r_j are connected through an already triangulated area, if $\omega_i < \tilde{\omega}_i$
	- No joining in this case
- Add and remove vertices during the triangle surrounding step as discussed below

Marching Triangularization - Triangle Creation

- 1. Consider $p_i \in \Pi_0$ with minimal front angle ω_i
- 2. Determine its neighbours v_1 and v_2 as discussed above
- 3. Determine the number of triangles to be created

$$
n_t = \left\lfloor \frac{3\omega_i}{\pi} \right\rfloor + 1 \text{ and } \Delta\omega = \omega_i/n_t \tag{6}
$$

- a If $\Delta \omega$ < 0.8 and $n_t > 1$ then $n_t \to n_t 1$ and $\Delta \omega = \omega_i / n_t$ b If $n_t = 1$ and $\Delta \omega > 0.8$ and $||v_1 - v_2||_2 > 1.25\delta_t$ then $n_t = 2$
- and $\Delta\omega\rightarrow \frac{\Delta\omega}{2}$
- c If $\Delta \omega < 3$ and either $||v_1 p_i||_2 \leq 0.5\delta_t$ or $||v_2 p_i|| \leq 0.5\delta_t$ then $n_t = 1$ and $\Delta \omega = \omega_i$

Marching Triangularization - Triangle Creation

- 4. If $n_t = 1$ generate the triangle with vertices v_1 , v_2 and p_i , else
	- a Project v_1 and v_2 onto the tangent plane at p_i , i.e. onto q_0 and $\mathsf{q}_{\mathsf{n}_t}$ respectively, where

$$
q_j = p_i + \tau_j t_{i1} + \vartheta_j t_{i2} \tag{7}
$$

- b The remaining q_k , $k = 1, \ldots, n_t 1$ are calculated by rotating $p_i + \delta_t \frac{(q_0 - p_i)}{\|q_0 - p_i\|}$ $\frac{(q_0-p_i)}{\|q_0-p_i\|_2}$ by the angle $k\Delta\omega$ around the surface normal at pⁱ
- c Gradient projection of q_k onto the surface yields p_{N+k} for all $k = 1, \ldots, n_t - 1$
- d The n_t new triangles have vertices $(p_i, v_1, p_{N+1}), (p_i, p_{N+1}, p_{N+2}), \ldots, (p_i, p_{N+n_t-1}, v_2)$
- 5. Delete p_i from Π_0 and insert the points $\mathsf{p}_{\mathsf{N}+1},\ldots,\mathsf{p}_{\mathsf{N}+n_t-1}$ at its position (no points added for $n_t = 1$)

Marching Triangularization - Example Sphere

starting hexagon

Marching Triangularization - Example Sphere

Marching Triangularization - Example Sphere

still a hole

final triangulation

Remarks

- Apart from visualization mesh creation plays an important role in the application of finite element methods
- The methods presented are conceptionally easy to understand
- There are much more elaborate methods available, e.g. those which adapt the size of the triangles to the local curvature of the surface

[Triangle Meshes](#page-29-0)

- As many models in computer graphic are composed of triangular meshes efficient handling of these meshes is crucial
- Apart from transferring meshes in between graphics application and graphics pipeline one might want to draw, subdivide and edit the meshes
- For some applications not only the triangles are required, but also adjacency information, i.e. information about shared vertices and edges or neighbouring triangles
- Apart from the minimal information (triangles and vertices) one often stores additional information assigned to the vertices or triangle faces

Triangle Meshes - Topology

- \bullet In mesh topology one is concerned with the properties of the mesh that are preserved under continuous deformations
- A common assumption is that meshes are manifolds
	- Each edge is shared by exactly two triangles
	- Each vertex has a single complete loop of triangles around it
- A relaxation of this topology is a manifold with boundary where
	- Each edge is used by either one or two triangles
	- Each vertex connects to a single edge-connected set of triangles
- Another topological property the orientation of the mesh which allows to distinguish front and back side
	- The front of a triangle is, where the vertices are arranged in counter clockwise order (right hand rule)
	- A mesh is consistently oriented if all pair of adjacent triangles within the mesh agree on front side $\frac{29}{29}$

Triangle Meshes - Indexed Mesh Storage

- The simplest storage form of a triangle mesh is to store the three vertex positions for each triangle
- However since most vertices are used multiple times by multiple triangles we can do better by using an indexed mesh
	- **Store the vertices in a list**
	- **Store three indices per triangle**
- \bullet Assuming n_t triangles, n_v vertices and the same storage requirements for floats and indices we need
	- Three vertices per triangle $(9n_t$ in total)
	- \bullet One vector per vertex and three indices per triangle $(3n_{\nu} + 3n_{\nu})$ in total)
	- \bullet For large meshes $n_t ≈ 2n_v$ (each vertex connected to six triangles) the storage requirements are reduced by about two

Triangle Meshes - Indexed Mesh Storage

Shared Vertices

Triangle Meshes - Triangle Strips and Fans

If we want an even more compact representation of our mesh we can use triangle strips and triangle fans

Triangle Fan

- In a triangle fan all triangles share a common vertex
- The other vertices generate triangles like the vanes of a fan
- A fan can be described by an ordered list of indices

Triangle Stripe

- . In a triangle stripe we start with a single triangle
- New vertices are added alternating top and bottom to define the next triangle
- \bullet Here too an ordered list of indices suffices

Triangle Meshes - Triangle Strips and Fans

Triangle Meshes - Triangle Strips and Fans

Triangle Strips #v 0 1 2 3 4 5 6 Pos p⁰ p¹ p² p³ p⁴ p⁵ p⁶ The sequence $(0, 1, 2, 3, 4, 5, 6)$ specifies the triangles

Triangle Meshes - Mesh Connectivity

- To modify or edit meshes it is often necessary to obtain connectivity information
	- Which triangles are adjacent to a given one
	- . Which triangles share a specific edge
	- Which triangles share a certain vertex
	- Which edges share a given vertex
- Obtaining this information from the data structures discussed so far is computationally demanding
- Storage of all these informations seem to costly in terms of memory
- There are data structures which allow to obtain connectivity information
	- Triangle-neighbour structure
	- Winged-edge structure

Triangle Meshes - Triangle-Neighbour Structure

- By modifying the indexed mesh storage structure we can ensure that all of the queries are answered in constant time
- Add a pointer to one adjacent triangle for each vertex
- Add pointers to all three neighbouring triangles for each triangle
- \bullet Store the pointers in such an order, that the k -th pointer points to the neighbouring triangle, which shares vertices k and $k + 1$ with the current triangle
- \bullet This structure allows to efficiently answer the questions above by clever movement along the mesh

Triangle Meshes - Triangle-Neighbour Structure

Part of a Large Triangle Mesh

Triangle neighbour structure

