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Rotations in Computer Graphics
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e Animations — keyframing

e Standard interpolation technqiques lead to practical problems

e Besides transations, rotations are the only motion leaving the
shape of an object unchanged



e The set of all distance preserving transformations of the
euclidean space of dimension n is the orthogonal group O(n)

e Equivalently, it is the group of orthogonal n x n matrices with
the matrix multiplication as group operation

O(n) = {AER”X”|ATA:AAT: /n} (1)

e An important subset of these transformations are the matrices,
which have determinant 1, the special orthogonal group
SO(n) = {A e R™MATA = AAT = I, and det(A) = 1}
(2)
e We also refer to this group as rotation group, since its
elements are rotations

e In this lecture we will specifically discuss the group of rotations
in 3D Euclidean space SO(3)



Basic Rotations

e Basic rotations rotate around one of the canonical axis x, y, z

e They are specified by an angle ¢ (right hand rule) like

1 0 0
Rx(¥) 0 cosp —singp (3)
0 singp cosyp
cosp 0 singp
Ry () 0 1 0 (4)
—sinp 0 cosy
cosp —sinp 0
R2(p) sinp cosp 0 (5)
0 0 1




General Rotations

Figure 1: “Portrait of Leonhard Euler (1707-1783)" by the
Kunstmuseum Basel in public domain


http://sammlungonline.kunstmuseumbasel.ch/eMuseumPlus?service=ExternalInterface&module=collection&objectId=1429&viewType=detailView

General Rotations

e General rotations can be achieved by concatenation of the

standard rotations

e One way is to use Euler angles o, 3, and -y, which can also be
used to describe the orientation of a rigid body

e The classic Euler angles correspond to three rotations around
two axes
® Z-X-Z, X-Y-X, Y-Z-Y, Z-Y-Z, X-Z-X, Y-X-Y
e Another possibility to describe rotations are the Tait-Bryan
angles with the corresponding rotations are around

® X-y-Z, Y-Z-X, Z-X-Y, X-Z-Y, Z-Y-X, Y-X-Z



General Rotations

Figure 2: “Euler angles’ by Lionel Brits licensed under the CC BY 3.0


https://en.wikipedia.org/wiki/File:Eulerangles.svg
https://creativecommons.org/licenses/by/3.0/deed.en

Exercise - Euler Angles

Question
Find the Euler angles for a rotation of ¢ = 80° around the rotation

axis n = \/(1 1,1)".
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General Rotations

Reminder
Within our camera coordinate system we have the viewing direction

aligned along the negative z-axis, the upwards direction aligned
along the y-axis and the right hand side along the x-axis.

e For camera transformations we use the y-x-z rotation
e The Rotation by « = h (head) around the y makes the camera
shake its head
e The Rotation by 8 = p (pitch) around the x makes the camera
nod its head
e The Rotation by v = r (roll) around the z makes the camera
roll around the viewing direction

e Other rotation orders can also be useful depending on the
orientation of your object in your local coordinate system



General Rotations

Figure 3: “Plane with ENU embedded axes” by Juansempere licensed
under CC BY-SA 3.0. Rotation order is ¢ (yaw), 6 (pitch), ¢ (roll)
around z-y-x 9


https://en.wikipedia.org/wiki/User:Juansempere
https://creativecommons.org/licenses/by-sa/3.0/

General Rotation - Angle Extraction

e In some situations it might be useful to extract the Euler
parameters h, p and r from

Ri1 Ri2  Ris
R=|[R2z1 R22 R23 (6)
R3s1  R32 Rss

e This can be done using

cosrcosh —sinrsinpsinh  —sinrcosp  cosrsinh + sinrsinpcosh
E(h,p,r) = | sinrcosh + cosrsinpsinh Cos r cos p sinrsin h — cos rsin pcos h (7)
—cospsinh sin p cospcosh

e Whenever we are not in a gimbal lock situation we get

h = atan2(—R31, R33) ®
p = arcsin(R32) (9)
r = atan2(—Ry2, R22) (10)

e Due to the ambiguity of arcsin we might not be able to recover

the angle, if R was not created with an angle p € (-3, %]
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General Rotations - Rotation About Arbitrary Axis

e Sometimes one has only a normalized direction r and a
rotation angle « specified and wants to write down the
corresponding rotation matrix

e Completing r to a orthonormal basis (r,s,t) we define the
transformation from the rst-coordinate system to the canonical
xyz-coordinate system

Mz(r s t) (11)

e The final transformation can be obtained by transforming from
rst to xyz, followed by a rotation by « around the x-axis (old
r-axis) and a back transformation into rst-coordinates

R(r,a) = MTR, ()M (12)
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General Rotations - Rotation About Arbitrary Axis

e To obtain a second direction we can use
(0, —rz, ry), if |rx| <|ry| and |ry| < |ry]
S=q(=rz0,r), if [ry| < |rx| and |ry| < || (13)
(—ry,rX,O), if [rz] <|n| and |rz| < ‘ry‘
and normalize this direction
s= (14)

13]]2

e The last direction can be found using the cross product

t=rxs (15)
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General Rotations - Rotation About Arbitrary Axis

Euler’s rotation theorem
Any displacement of a rigid body such that a point on the rigid

body remains fixed, is equivalent to a single rotation about an axis
that runs through the fixed point.

e The theorem does not state, which axis, but merely that such
an axis exists

e Apart from the initial fixed points all other points on the axis

remain fixed
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Figure 4: Each rotation can be expressed by a single angle and direction 13



Quaternions

Figure 5: Sir William Rowan Hamilton (1805-1865)
14



Quaternions

Figure 6: “William Rowan Hamilton Plaque Plaque on Broome Bridge

on the Royal Canal commemorating William Rowan Hamilton’s discovery.

The plaque reads: Here as he walked by on the 16th of October 1843 Sir
William Rowan Hamilton in a flash of genius discovered the fundamental
formula for quaternion multiplication i2 = j? = k> = ijk = —1 & cut it

on a stone of this bridge." by JP licensed under CC BY-SA 2.0 15


https://www.geograph.org.uk/profile/8888
https://creativecommons.org/licenses/by-sa/2.0/

Quaternions

Definition _
A quaternion § € H can be defined in the following equivalent ways

4 =1(9s,9v) = gs + iqx +qu+qu, (16)

where q, = igx + jq, + kq; is the imaginary part of the quaternion,
gs is its real part and the imaginary units /, j, k satisfy

Fei=F ==l (17)
jk=—kji=i (18)
ki = —ik =j (19)
j=—Jji=k (20)
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Quaternions - Scalar and Vector Part

Definition
Let (gs,9v) = gs + igx + jq, + kq, be any quaternion then we refer
to gs as its scalar part and to q, or igx + jq, + kg as its vector

part.

e A quaternion is called real if its vector part is zero

e A quaternion is called pure imaginary if its scalar part is zero
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Quaternions - Vector Space

Definition

The set of quaternions H forms a real vector space with component
wise addition

(9s +igx +jay + kqz) + (ps + ipx +jpy + kpz) = (qs + ps) +i(ax + px) +i(ay + py) + k(az + pz) (21)

and scalar multiplication

A(qs +iqx +jay + kqz) = Aqs +iXgx +jAqy + kAqz, (22)

with A ¢ R
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Quaternions - Hamilton Pr t

Definition _
The Hamilton product §p of two quaternions is defined by

Gp =+ (4sPs — AxPx — dyPy — 4zPz) (23)
+i(aypz — qzpy + PsAx + dspPx) (24)
+J(azPx — qxPz + Psqy + aspy) (25)
+ k(qxPy — qypPx + Psqz + qspPz) (26)
= (gsPs — Qv - Pv,Av X Pv + PsAv + 4sPv), (27)

where - is the dot product and X is the cross product.

The corresponding identity element is

i=(1,0). (28)

Remark
The Hamilton product is not commutative.
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Quaternions - Inverse

Definition
The conjugate of a quaternion § is given by

§" = (gs, —qv)- (29)
The norm of a quaternion § is given by

n(d) = V64 = /44" (30)

The inverse of a quaternion § is given by

~—1 Ak
q9 = 74
n(4)?
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Quaternions - Rules

Using the definitions above it is quite simple to derive

e (@) =4

* (@+p) =8"+p"

« (ap)" =p0"

e n(§") = n(q)

e n(Gp) = n(G)n(p)

* p(ag + BF) = abg + BpF
o (ag+ BP)p = adp + PP
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Quaternions - Unit Quaternions

Definition
A unit quaternion § € H satisfies n(g§) = 1.

e For each unit quaternion § = (gs,qy) there exists a unit vector
ug € R? and angle € R such that

§ = (cos p,sin puq) (32)
e Vice versa each quaternion of the form
(cos g, sin pug), (33)

with ¢ € R and unit vector ugy € R® is a unit quaternion
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Quaternions - Rotations

° rllo = 1 be an arbitrary rotation axis and ¢ a rotation
angle
e These can be used to construct the unit quaternion
G = (cos %7sin %r) (34)

e For this unit quaternion
g H—H (35)
PEENGH (36)
is a rotation on the imaginary part of H around r by the angle

¥
e We can rotate x € R3 by ¢ around r € R3 by concatenation of
the various mappings
x — (0,x) =%+ §%§* = (0,x) > x’ (37)
23



Quaternions - Rotations

e Given two unit quaternions §; and g representing two
rotations we can concatenate these rotations by

~n

G2(61%41)d; = (6261)%(4241)" (38)

e l.e. the concatenation of rotations is equivalent to the
multiplication of the corresponding unit quaternions

e It directly follows that the inversion of a rotation is equivalent
to the inversion of the corresponding quaternion §~! = §*

e Note that § and —§ define the same rotation

24



Quaternions - Rotations from One Vector to Another

Question
A common operation is, where we want to rotate one unit vector s

into another t. What steps do you need to perform to implement

such a rotation with quaternions ?

25



Quaternions - Spherical Linear Interpolation

e Another problem often encountered is the interpolation
between rotations, e.g. given two orientations of a camera
finding a smooth transition in between

e One can not simply interpolate the rotation matrices R; and
R, as in general

aRy + (1 — )Rz & SO(3) (39)

e However we can define an easy interpolation method for unit
quaternions, which achieves this task

e Let §; and Gz be two unit quaternions and t € [0,1] an
interpolation parameter then

§(G1, G2, t) = (4187 1) G2 (40)
is the interpolated unit quaternion, where

4" = (cos ¢, sin puq)" = (cos(it), sin(pt)ug) 26



Quaternions - Spherical Linear Interpolation

o We have

e For fixed §; and §» this interpolation constitutes the shortest
path (geodesies) from §; and G, on the four dimensional unit
sphere

e The computed unit quaternion §(q1,qp, t) rotates with a
constant speed around a fixed axis with the parameter t

e The method can be extended to find a smooth spline through

a series of unit quaternions

e Achieving something similar with Euler angles is quite involved
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Quaternions - Spherical Linear Interpolation

Figure 7: Geodesies on the S?
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