
Computer Graphics

Dr. rer. nat. Martin Möddel

April 6, 2021

Institut für Biomedizinische Bildgebung

OpenGL

OpenGL - What is OpenGL

� API for real-time computer graphics

� Large state machine with state-changing and state-using

functions

� Supported across many platforms, languages and devices

� Provides to implementers support for extensions (can be

vendor speci�c), which eventually become part of the standard

� Applied in computer-aided design, virtual reality, video games,

and more

� Managed by a non-pro�t technology consortium (Khronos

Group).

� Initial release in june 30th 1992

� Latest stable release is version 4.6 (july 31st 2017)

1

OpenGL - Software Pipeline

Application

Abstraction

Device Drivers

Hardware

Software Pipeline
The software pipeline exists to describe

what we'd like to see on the screen and

consists of several di�erent layers, each

with their own very speci�c purposes.

This pipeline serves as a relay from your

program to the dedicated hardware and

the only part of the software pipeline

that you will actually use in your

programs is the Application layer, which

exposes the APIs to you.

2

OpenGL - Software Pipeline

Application

Abstraction

Device Drivers

Hardware

Application Layer
This is the program that invokes

drawing commands. The application

serves as a controller of the overall

process and oversees all of the user-level

operations such as

� creating windows

� threads

� memory allocation

� complex user data-types

� making calls to external libraries

such as OpenGL

3

OpenGL - Software Pipeline

Application

Abstraction

Device Drivers

Hardware

Abstraction Layer
This layer contains the OpenGL API

implementations, which are di�erent

from the API in the Application layer. In

C terms: you can think of the

Application layer as the header �le

containing only de�nitions, while the

Abstraction layer is the source �le

containing the actual functionality.

4

OpenGL - Software Pipeline

Application

Abstraction

Device Drivers

Hardware

Device Driver
Is a software communication layer to the

hardware, which is entirely invisible to

the developer, since it cannot be

interacted with through your program.

The device driver interprets the

commands passed to it by the

Abstraction layer and relays them to the

underlying device in a format that the

hardware can understand and easily

process.

5

OpenGL - History

� OpenGL was released by Silicon Graphics (founded in 1981) as

speci�cation of how the API should work

� The OpenGL Architecture Review Board (ARB) was founded

in 1992, which comprised of several high pro�le software and

hardware vendors who collectively decided the future of the

OpenGL standard

� True OpenGL implementation are approved by the ARB

through conformance testing

� Microsoft implemented OpenGL in Windows NT 3.5, which

was released in 1994 (very slow implementation)

� Time of support ended whith OpenGL 1.1 for Windows 95 and

Windows NT 4.0 in favor for their own API Direct3D

6

OpenGL - History

� In the late 1990s, OpenGL established itself as an industry

standard for 3D computer graphics

� Games such as Quake 2, Unreal, and Half-Life took full

advantage of OpenGL and were widely popular

� First consumer-grade dedicated 3D graphics hardware appeared

(Voodoo Graphics by 3Dfx Interactive and 3D Rage by ATI)

� In 1999 NVIDIA caught up with their GeForce 256 add-on card

that they termed GPU (Graphics Processing Unit)

� GPU performance grew exponentially during the early 2000s

and more features were moved to the GPU

� CPU became the major bottleneck for real-time 3D graphics

� To solve the issue data would be stored the GPU's memory

and stay there until no longer needed

7

OpenGL - History

� Microsoft released Direct3D 8.0 in 2000, which supported

shaders (little programs that run directly on the GPU)

� OpenGL did not o�cially support shaders until the release of

OpenGL 2.0 in 2004 and the simultaneous release of the

OpenGL Shading Language (GLSL)

� From 2004 to 2006, Direct3D 9.0 was dominating the games

market

� From 2006 the Khronos Group took over management of

OpenGL

� It took until 2009 when OpenGL 3.2 �nally cached up with

Direct3D

� OpenGL 4.0 was released in 2010 as an API for the latest

generation of GPUs similar to Direct3D 11.

8

OpenGL - Initialization

� Before OpenGL can be used in a program it must be initialized

� Create a OpenGL context

� Create an application window to draw in

� Load all of the necessary functions to use OpenGL

� Libraries such as GLFW can be used to create a window,

attach an OpenGL context to this window, and manage basic

input for that window

9

OpenGL - Context

� A context stores all of the state associated with an instance of

OpenGL

� Contexts are localized within a particular process of execution

� A process can create multiple OpenGL contexts each with its

own set of OpenGL Objects, which are independent of those

from other contexts but may be shared with other contexts

� Any OpenGL commands only a�ects the current context

� The current context is a thread-local variable

� A single process can have several threads, each of which has

its own current context

� A single context cannot be current in multiple threads at the

same time

� Each context can represent a separate viewable surface

10

OpenGL - Example Context Creation

Context Creation with GLFW using Julia
1 using GLFW
2
3 # Create a window and its OpenGL context
4 window = GLFW.CreateWindow(640, 480, "GLFW.jl")
5
6 # Make the window's context current
7 GLFW.MakeContextCurrent(window)
8
9 # Loop until the user closes the window

10 while !GLFW.WindowShouldClose(window)
11
12 # After initialization all the rendering takes place in the main loop
13 # as long as the window hasn't been closed
14
15 end
16
17 GLFW.DestroyWindow(window)

� GLFW is written in C and supports Windows, macOS, the X

Window System and the Wayland protocol

� handles windows and user input

� Support for multiple windows, multiple monitors

� Support for keyboard, mouse, gamepad, time and window

event input, via polling or callbacks 11

OpenGL - Double Bu�ering

� It is di�cult to draw a display so that pixels do not change

more than once

� If we draw directly onto the screen this results in stutter,

tearing, and other artifacts

� Therefore, a double bu�er is used

� The front bu�er contains the �nal output image that is shown

at the screen

� The back bu�er is drawn on by the OpenGL state machine

� As soon as all rendering commands are �nished the bu�ers can

be swapped to display the most recent image on screen

� The swap does not happen automatically, but must be issued

by the application

12

OpenGL - The OpenGL Pipeline

Application

{vertices}

Vertex Processing

Rasterization

Fragment Processing

Blending

Display

Figure 1: OpenGL pipeline Taken from the

OpenGL 4.6 API reference guide

13

OpenGL - The OpenGL Pipeline

� The OpenGL pipeline transforms vertex data to 2D pixels

� First transforms your 3D coordinates into 2D coordinates

� The second part transforms the 2D coordinates into actual

colored pixels

� Because of their parallel nature, graphics cards of today have

thousands of small processing cores to quickly process your

data in parallel

� The processing cores run small programs on the GPU for each

step of the pipeline

� These statges are either �xed functions that can not be

modi�ed or programmable so called shaders

� Shaders are written in the OpenGL Shading Language (GLSL)

14

OpenGL - Shaders

� Modern OpenGL requires that we at least set up a vertex and

fragment shader

� Each shader stage has a separate set of inputs and outputs, as

well as built-in variables

� These shaders need to be written in the shader language GLSL

(OpenGL Shading Language) and then compiled at run time

� Once compiled the shaders are linked to a shader program

object

� Multiple such shader program objects can be created, hwoever

only one can be active

� The active shader program's shaders will be used when

issueing a rendering call

15

OpenGL - Vertex Input

� To start drawing OpenGL needs some input vertex data

� Submitting vertex data for rendering requires creating a stream

of vertices, and then telling OpenGL how to interpret that

stream (primitives)

� Internally, OpenGL is a 3D graphics library so all coordinates

that we specify in OpenGL are in 3D

� OpenGL only processes 3D coordinates when they're in a

speci�c range between -1.0 and 1.0 on all 3 axes (canonical

viewing volume)

� Input data is not limited to the vertex position, but also covers

vertex attributes such as normal vector, color and texture

coordinate

16

OpenGL - Vertex Input

� The order of vertices in the stream de�nes how OpenGL will

process and render the primitives the stream generates

� There are two ways of rendering with arrays of vertices

1. Directly, generating a stream in the array's order, e.g.

1 vertices = [[0, 0, 1], [0, 0, 0], [1, 1, 1], [0, 0, 1], [0, 0, 0], [0, 0, 1]]

2. Using a list of indices to de�ne the order, which is useful in

most tight meshes, were vertices are used multiple times

1 vertices = [[1, 1, 1], [0, 0, 0], [0, 0, 1]]
2 indices = [2, 1, 0, 2, 1, 2]

� Additional attributes such as texture coordinates
1 textureCoordinates = [[0, 0], [0.5, 0], [0, 1]]

will modify the stream
1 vertexStream = [[[0, 0, 1], [0, 1]], [[0, 0, 0], [0.5, 0]], [[1, 1, 1], [0,

0]], [[0, 0, 1], [0, 1]], [[0, 0, 0], [0.5, 0]], [[0, 0, 1], [0, 1]]]

17

OpenGL - Vertex Array Object

� A Vertex Array Object (VAO) is an OpenGL object that stores

all of the state needed to supply vertex data

VAO

attribute pointer 0

attribute pointer 1

attribute pointer 2

...

EBO pointer

VBO1

VBO2

EBO with index data

18

OpenGL - Vertex Array Object

� VAO stores the format of the vertex data as well as the Vertex

Bu�er Objects (VBO) providing the vertex data arrays

� VAOs do not copy, freeze or store the contents of the

referenced bu�ers!

� Element Bu�er Objects (EBO) store indices that de�ne the

order in which vertices are send to the if bound to the VAO

VAO

attribute pointer 0

attribute pointer 1

attribute pointer 2

...

EBO pointer

VBO1

VBO2

EBO with index data

19

OpenGL - Vertex Shader

� As input to the graphics pipeline we pass vertex data, which is

a collection of vertices

� Each vertex is a collection of data per 3D coordinate (e.g. 3D

position and some color value)

� The vertex shader that takes as input a single vertex,

transforms 3D coordinates, and allows us to do some basic

processing on the vertex attributes

20

OpenGL - Early Primitive Assembly

� Happens if geometry shader or tessellation is active

� The primitive assembly stage convert a vertex stream into a

sequence of base primitives

� OpenGL requires you to hint what kind of primitive you want

to form with the data

� Some of these hints are GL_POINTS, GL_TRIANGLES, and

GL_LINE_STRIP

� The output of the primitive assembly stage is passed to the

tesselation stage

21

OpenGL - Tesselation Stage

� Stage at which primitives are further subdivided into smaller

Primitives

� Optional

� Governed by two shader stages and a �xed-function stage

� The tessellation control shader determines how much

tessellation to do

� The tessellation primitive generator takes the input patch and

subdivides it based on values computed by the TCS

� The tessellation evaluation shader takes the tessellated patch

and computes the vertex values for each generated vertex

22

OpenGL - Geometry Shader

� A geometry shader is able to transform a single input primitive

to completely di�erent primitives possibly generating much

more vertices than were initially given

� Optional

� Geometry shader invocations take a single Primitive as input

and may output zero or more primitives

� The maximum number of vertices that can be output is limited

� The total maximum number of output components that can

be output is limited

23

OpenGL - Vertex Post-Processing

� Transform feedback: Values output from the last vertex

processing stage can be recorded into Bu�er Objects

� Clipping: Primitives generated by previous stages are collected

and then clipped to the view volume

� Perspective divide: Clip-space positions are transformed into

normalized device coordinates

� Viewport transform: Normalized device coordinates are

transformed to window space

� Primitive Assembly: Vertex stream is converted into a

sequence of base primitives, which can be discarded based on

their apparent facing (face culling)

24

OpenGL - Rasterization

� Rasterization is the process whereby each individual primitive

is broken down into discrete elements called fragments

� A fragment in OpenGL is all the data required for OpenGL to

render a single pixel

� Clipping discards all fragments that are outside your view

� The remaining fragments are send to the fragment shader

25

OpenGL - Fragment Shader

� Process a Fragment into a depth value, a possible stencil

value, and zero or more color values

� The stage where all the advanced OpenGL e�ects occur

� Take a single fragment as input and produce a single fragment

as output

� Each fragment has a window space position, a few other

values, and it contains all of the interpolated per-vertex output

values like lights, shadows, color of the light and so on

26

OpenGL - Per-Fragment Processing

� Fragments output from a Fragment Shader are processed, and

their resulting data are written to various bu�ers

� This stage contains a number of tests that can be performed

to determine visibility

� Pixel ownership test: Fragments aimed at pixels not owned by

the current OpenGL context (if the window one is rendering is

partially obscured by another window) are discarded

� Depth test: Fragments are discarded based on a conditional

test between the fragment's depth value and the depth value

stored in the current depth bu�er (allows for occlusion)

� Stencil test: Additional test using a bu�er very similar to the

depth bu�er that may be used to limit the area of rendering

(stenciling) in the simples case

27

OpenGL - Per-Fragment Processing

� Multisample Antialiasing (MSAA): Samples each pixel at the

edge of a polygon multiple times with a slight o�set to all

screen coordinates. The fragment shader is only run once per

pixel and the color is then stored inside each subsample, which

is coverd by the primitive. Finally, all these colors are then

averaged per pixel resulting in a single color per pixel

� Blending: Each of the colors in the fragment can be combined

with the corresponding pixel color in the bu�er that the

fragment will be written to

� More

28

OpenGL - Example

julia susuzanne_lambert_shading.jl

29

	OpenGL

