
Computer Graphics

Dr. rer. nat. Martin Möddel

April 6, 2021

Institut für Biomedizinische Bildgebung



Object Ordered Rendering



Object Ordered Rendering

� In object ordered rendering each object is considered, one at a

time

� Very e�cient due to specialized hardware speeding up

rendering

� Real time rendering possible

� Goals of graphic pipelines are di�erent (performance, quality)

and depend on the speci�c task

� Graphic APIs for real time rendering are e.g. Vulkan, OpenGL

and Direct3D

� Graphic API for �lm production is e.g. RenderMan

� Despite di�erent goals these pipelines share common

fundamentals

1



The stages of a graphics pipeline

Application

Command Stream

Vertex Processing

Transformed Geometry

Rasterization

Fragments

Fragment Processing

Blending

Framebu�er Image

Display

Application

� Executed on main processor

� Handles user input

� Sends data and commands to

graphics hardware

� Tasks such as

� collision detection

� animation

� acceleration of pipeline

� loading and removing of textures

� As technology advances more tasks

are moved to specialized hardware

2



The stages of a graphics pipeline

Application

Command Stream

Vertex Processing

Transformed Geometry

Rasterization

Fragments

Fragment Processing

Blending

Framebu�er Image

Display

Vertex Processor

� Processes vertices

� Creates new geometry from the

vertices received and re�nes meshes

at runtime

� Model and camera transformations

� Clipping

� Manipulates vertex lighting and

color

� Viewport transformation to

transform primitives to pixel space

3



The stages of a graphics pipeline

Application

Command Stream

Vertex Processing

Transformed Geometry

Rasterization

Fragments

Fragment Processing

Blending

Framebu�er Image

Display

Rasterization

� Processes each primitive

� Enumerates pixels covered by

primitive and interpolates vertex

attributes such as color and depth

across primitive

� Outputs fragments, one for each

pixel covered by the primitive

� Fragments are assigned to the

corresponding pixels and hold

certain attributes

4



The stages of a graphics pipeline

Application

Command Stream

Vertex Processing

Transformed Geometry

Rasterization

Fragments

Fragment Processing

Blending

Framebu�er Image

Display

Blending

� Processes the fragments

� Colors each pixel according to the

attributes of the fragments

� Saves the �nal image in framebu�er

5



Rasterization - Line Drawing

� Task is to colorize a set of pixels to approximate a

line/linesegment

� line given by its two endpoints (x0, y0) and (x1, y1), where

x0, y0, x1, y1 ∈ R

� Basic algorithms use only one color, which often create aliasing

artifacts

� Multiple shades of a color can be used to draw anti-aliased

lines

� Convention for connectedness required

� 8-connected (diagonal points count as connected)

� 4-connected (only left, right bottom and top pixels count as

connected)

6



Rasterization - Line Drawing

� Familiar form of a line is given by

y = mx + b (1)

� Equivalently, it can be written in its implicit form

y −mx − b = 0 (2)

� Or the more general form

Ax + By + C = 0 (3)

which can represent lines such as x = 0, where m would have

to be in�nite

7



Rasterization - Line Drawing

� Given the two points (x0, y0) and (x1, y1) A, B , and C must

satisfy

Ax0 + By0 + C = 0 (4)

Ax1 + By1 + C = 0 (5)

� However, these two equations are not enough to obtain a

unique solution for A, B , and C

� This ambiguity can be solved by setting the gradient of the

implicit equation

(A,B) = (y0 − y1, x1 − x0) (6)

which is orthogonal to the vector (x1 − x0, y1 − y0) pointing

from (x0, y0) to (x1, y1)

� In this case C = x0y1 − x1y0

8



Rasterization - Line Drawing

� The implicit line equation is

f (x , y) = (y0 − y1)x + (x1 − x0)y + x0y1 − x1y0 = 0 (7)

� Assuming x0 < x1 (otherwise swap points) the slope

m = y1−y0
x1−x0

9



Rasterization - Line Drawing

Direct Drawing

� Assume m ∈ [−1, 1] (more run than rise) otherwise adapt

algorithm

� Draw by direct evaluation of y = m(x − x0) + y0

m = y1−y0
x1−x0

for all integer x in [x0, x1] do

y = m(x − x0) + y0

round y to nearest integer

colorize pixel (x , y)

end for

� Lousy performance: y needs to be evaluated and rounded

within each step

� How can other slopes m 6∈ [−1, 1] be handled?
10



Rasterization - Line Drawing

Direct Drawing

� Increase performance by breaking up the main calculation

y = y0

m = y1−y0
x1−x0

for all integer x in [x0, x1] do

yI = round(y)

colorize pixel (x , yI )

y = y +m

end for

� Avoids any multiplications inside hot loop

11



Rasterization - Line Drawing

Midpoint/Bresenham Algorithm

� Assume m ∈ [0, 1] (more run than rise)

� Algorithm progresses from left to right (x increasing)

� For each pixel (xi , yi ) drawn the next to draw to the right is

either the same height (xi + 1, yi ) or one higher (xi + 1, yi + 1)

� Check if line passes above or below midpoint (xi + 1, yi + 0.5)

� If f (xi + 1, yi + 0.5) < 0 line passes above midpoint, else below

Figure 1: �Choosing between two possible pixels in Bresenham's

line-drawing algorithm.�
12



Rasterization - Line Drawing

Midpoint/Bresenham Algorithm
y = y0

d = f (x0 + 1, y0 + 0.5)

for all integer x in [x0, x1] do

colorize pixel (x , y)

if d<0 then

y = y + 1

d = d + (x1 − x0) + (y0 − y1)

else

d = d + (y0 − y1)

end if

end for

13



Rasterization - Line Drawing

Symmetric Extension of Algorithms

� Most algorithms pose restrictions uppon the slope of the line

to be drawn

� Often symmetry can be used to extend algorithm to all slopes

Figure 2: �A scan-converted line and the use of symmetry to draw similar

lines in the other octants.� by Phrood licensed under CC BY-SA 3.0

14

https://de.wikipedia.org/wiki/Datei:Bresenham-Pitteway_pixel_choice.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en


Rasterization - Triangles

Triangle Rasterization

� A typical entity to rasterize is the triangle

� More general polygons can be broken down into triangles and

are therefore also covered

� When rendering adjecent triangles algorithm should leave no

holes between the triangles

� Pixels on the Edge of adjecent triangles should be rasterized

no more than once to such that the result does not depend on

the order in which the triangles are rasterized

15



Rasterization - Triangles

Barycentric Coordinate System

� Consider a triangle with its three vertices a, b, and c

� In general the two sides c− a and b− a span a non-orthogonal

basis

� Each point p can be written as

p = a+ β(b− a) + γ(c− a) (8)

⇔ p = (1− β − γ)︸ ︷︷ ︸
α

a+ βb+ γc, (9)

where α+ β + γ = 1

16



Rasterization - Triangles

Barycentric Coordinate System

a
b

c

b− ac
−
a

p

γ = 0

γ = 1

γ = 2

β
=

0

β
=

1

β
=

2

17



Rasterization - Triangles

Barycentric Coordinate System

� Even if only two parameters are independent all three are

usually used, e.g. for the interpolation of vertex colors across

the triangle

� Points inside the triangle satisfy

0 < α < 1 (10)

0 < β < 1 (11)

0 < γ < 1 (12)

� Points lie on an edge if one parameter (α, β or γ) is 0 and the

others are in (0, 1)

� Points lie on a vertex if two parameters are 0 and one is 1

18



Rasterization - Triangles

Computation of Barycentric Coordinates

� Given a point p its barycentric coordinates (α, β, γ) can be

computed by solving(
bx − ax cx − ax

by − ay cy − ay

)(
β

γ

)
=

(
px − ax

py − ay

)
(13)

and setting α = 1− β − γ
� Closed formulas exist for the solution of the linear system

19



Rasterization - Triangles

Gouraud Shading

� The inner of a 2D triangle with vertices a, b, and c can be

drawn by calculating the barycentric coordinates (α, β, γ) of

all screen coordinates and colorizing all points, which lie inside

the triangle

� If we have colors ca, cb and cc assigned to the vertices, we can

linearly interpolate these colors inside the triangle by

c = αca + βcb + γcc (14)

� This interpolation method is referred to as Gouraud shading

� This algorithm can be enhanced by restricting the main loop

over the screen pixels to a 2D bounding box containing the

triangle
20



Rasterization - Triangles

Gouraud Shading

Figure 3: �Comparison of �at shading and Gouraud shading.�

21



Rasterization - Triangles

Edge Drawing

� With Gouraud shading only the triangle inside can be drawn

� This might create holes in objects consisting of multiple

triangles, which share edges

� Drawing the edges for all triangles introduces a dependency,

where the results depend on the drawing order of the triangles

� Remove ambiguity and draw edge only once

� There are many strategies to do so

22



Rasterization - Triangles

Edge Drawing - Robust Strategy

� Choose o�-screen point

� Unless the line through common vertices runs through this

point only one triangle will be on the o�-screen point side

� Draw the edge for this triangle only

� Handle the exeption using a secondary o�-screen point

o�-screen point

a

d

23



Rasterization

Remarks

� In principle each shape can be rasterized

� Triangles and lines are most prominent because of their

simplicity/performance

� Specialized hardware excels at rasterizing triangles

� To make use of the hardware scenes and objects have to be

approximated by triangles (an interesting mathematical

problem, which will be discussed later)

24


	Object Ordered Rendering

