Computer Graphics

Dr. rer. nat. Martin Moddel
April 6, 2021

Institut fiir Biomedizinische Bildgebung

Meshes in Computer Graphics

Polygon Mesh
In computer graphics a polygon mesh is a collection of vertices,

edges and faces (polygons) defining the surfaces of an object. Most
often triangle meshes are considered

Figure 1: “An example of a polygon mesh” by en:User:Chrschn realeased

into the public domain

https://en.wikipedia.org/wiki/User:Chrschn

e Mesh creation refers to the process of finding a suitable
polygonal mesh for a given surface
e Common strategies are
e Triangularization of parametric surfaces
e Cutting cube triangularization of implicit surfaces
e Marching triangularization of implicit surfaces

e Refining known meshes, such as the Platonic solids

Figure 2: “Platonic-solids set of five dice, (from left) tetrahedron
(d4), cube (d6), octahedron (d8), dodecahedron (d12), and
icosahedron (d20).” by unknown author licensed under

https://creativecommons.org/licenses/by-sa/3.0/deed.en

CC BY-SA 3.0

Triangularization of parametric surfaces

Figure 3: “Triangulierung einer parametrisierten Fliche (Affensattel)” by
Ag2gaeh realeased under the CC BY-SA 4.0 license

https://commons.wikimedia.org/wiki/User:Ag2gaeh
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Triangularization of parametric surfaces

e Triangularization of an explicitly defined parametric surface is
quite straight forward

e At first a triangularization of the parameter space is required

e The vertices of the parameter space triangularization can then
directly be mapped by the parametric mapping to define
corresponding triangles in 3D space

Remark

e The mapping will usually change the size of the triangles

e Take care at parameter space boundaries, e.g. pole or
Greenwich meridian arc for sphere

Cutting Cube Triangularization
=T e
O e N
. \. “

2527
.’x"ﬁ N7
"’ﬁ!ﬂ!&‘! Ny

C
K <
"\.\.¢.‘«f".".’~’o" O /
GavarwivAS Sl
I

Figure 4: “Polygonisierung eines Torus mit der cutting cube Methode”

by Ag2gaeh realeased under the CC BY-SA 4.0 license

https://commons.wikimedia.org/wiki/User:Ag2gaeh
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Cutting Cube Triangularization

e Divide the 3D space into cubes

e Intersecting edges of the cubes with the implicit surface
creates polygons on the surface

e The polygons can then further be subdivided into triangles

Remark
e Intersection problem might be difficult to solve

e Great overhead for managing the data

Marching Triangularization

\\
M\
X
\VAVA!
\VAY

W
7
U
A
/N
-
N\

s\
/\
Y
)
%

AR
WY
A7
vl
22
747

/]

()
(’
7

7

%

1§7‘A§'§ ‘QA }‘
L
\

e
I

s

%

AN

\\
N
A g\x\‘\
SVASRAN
5 aia N\
Za NN
NWAZ= S

)
?
I\,
N
NS
i
22

8
[
A
]
Moz
NS

Y

Z
<
R

¢
\\‘

>
™~
>
<
KR
N
\\
i

N
N
‘ﬂﬂ
5
K/
’
(AL

\‘E'vVAVAVAVA"A' %""‘éﬁ%xeéAvAVAv 5
N\ YA AVA A eV,
AR R

N\ NS N Y
NSRS SRR,

</
CREKIIANKIT .
REREREOOSZ

Figure 5: “Triangulation eines Torus" by Ag2gaeh realeased under the
CC BY-SA 4.0 license

https://commons.wikimedia.org/wiki/User:Ag2gaeh
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Marching Triangularization

Idea
A marching method for the triangulation of surfaces by Erich

Hartmann (1998)

1. Choose a starting point on the surface and build a hexagon in
tangent space and project it onto the surface
e The triangles of the hexagon are the starting triangles
e The six outer vertices create the first “primary outer front
polygon” Mg
2. Determine the angle of the area still to be triangulated at each
vertex of gy
3. Check if any vertex of Ny is near a non-neighbouring point of
Mg or a point of another front polygon My, kK >0

e In the first case divide the primary front polygon Iy into
smaller parts
e Else unite Mg and My 8

Marching Triangularization

4. Surround the point pp, € Ny with minimal angle by isosceles
triangles with approximately 60° angles and leg length &,
delete p,,, from MMy and add the new points into Mg

5. Repeat the steps 2-4 until there are only three points left in
My, which generate the final triangle

e If there is still a front polygon left then take it as new front
polygon My and proceed with steps 2-4

e If there is no front polygons left then the triangularization is
finished

Remark _
For the algorithm to converge the surface should have finite size

Marching Triangularization

starting hexagon

bounding polygons

/

-

front angles

/ minimal front angle

actual front polygonHO

Figure 6: Pictures (in the following) taken
fromwww.mathematik.tu-darmstadt.de/ ehartmann/cdgen0104.pdf 10

http://www.mathematik.tu-darmstadt.de/~ehartmann/cdgen0104.pdf

Marching Triangularization - Gradient Projection

e As the triangles are created in tangent space, we need a
method to project the triangle vertices q; from tangent space
onto a surface points p;

e Assume the surface is implicitly given by f(x) = 0 with
non-zero gradient V£ at any point g

e p, the corresponding surface normal and the two tangent
vectors at p can be calculated by the following three steps

11

Marching Triangularization - Gradient Projection

1. Decent onto the surface along the gradient

a U =(q
oy, fluy) ; _
b repeat up 1 = ug I\Vf(Uk)\I§Vf(uk) until [Jugrr —ukllz < e
for some preset ¢ > 0 and set p = uk.1
. f
2. The surface normal at p is n = (nx, ny, n;) = %

3. The tangent vectors are
(—nz,0,ny)

_ (ny,—nx,0) . _
a = ST if n, >050rn, >05elset; = T=ne0.m 0T

bth=nxt

12

Marching Triangularization - Gradient Projection

13

Marching Triangularization - Gradient Projection

b)

P; P,
actual front polygon

14

Marching Triangularization - Gradient Projection

15

Marching Triangularization - Hexagon Initialization

e Start at any point in the vicinity of the surface and determine
the closest surface point pg, the corresponding normal vector
no and tangential vectors tg; and tgo

e Calculate the vertices q1,...,qe of the initial hexagon in
tangent space by

qi = po + 0 cos((i — 1)m/3)tor + d¢sin((i — 1)7/3)to2 (1)

e Project q1,...,qe onto the surface using the gradient
projection to obtain the surface points p1,...,ps

e Each point p; has normal vector n; and tangential vectors t;;
and tj, assigned

e The initial six triangles have vertices (po, p1, p2), (Po, P2, P3).
(Po, P3,Pa), (Po,Pa,ps), (Po,Ps,pPs), and (po, s, P1)

e The outer vertices define the primary front polygon

Mo ={p1,.--,p6} 16

Marching Triangularization - Angle Determination

For each point p; € Mo = {p1,...,pn} new or neighbouring a new
point recalculate the front angle w;
e Setvy =pj_1ifi>lorvi=pyifi=1
e Setvp =pjp1ifi<Norvy=prifi=N
o Express both vertices in the local coordinate system of the i-th
vertex

vi = p;j +min; + 1itin + V1t (2)
Vo = pj + m2n; + Tatin + Uatiz (3)

e Calculate the polar angle of the two vertices in tangent space
1 = atan2(7y, 1) and pp = atan2(7m, ¥2)
e The front angle is then given by

Y2 — 1 2 2 Q1
2T 4 — 1 else 17

Marching Triangularization - Avoid Overlap

Splitting

Check if there are any p;,p; € Mo, i < j such that
lpi — pj|| < d¢ and the vertices are neither next nor nearest
next neighbours

If so split Mo into the new Mo = {p1,...,pi,Pj,--.,pn} and a
new front polygon Mnew = {pi,...,pj}
Exclude p; and p; from any later (not only the present

iteration) distance checks
Repeat this check until no more pair is found

Recalculate the angles at p; and p; in I

18

Marching Triangularization - Avoid Overlap

Joining

Check the distance of My to all further front polygons MMy,
k>0

If there are p; € Mg and rj € My = {r1,...,ry} with
lpi — rjll2 < 0; then the union of My and Iy defines the new
primary front polygon

I_IO:{plv'"’pfvrjv"'verrlv"'7rj7pi7"'pN} (5)

Calculate the front angles at p; and r; at their first appearance
Surround the vertex with smallest angle with triangles first

Surround the remaining vertex next

19

/

%%///////////////

Figure 7 ing (left) and uniting (right) the actual front polygon.

Marching Triangularization - Avoid Overlap

Remarks

e Sometimes the line segment between p; and r; intersects an
already triangulated area (this must be detected and avoided)
e To determine this case we can compare the front angle w; at
vertex p; with @&;, which is calculated using v, = r; for the
angle determination
e p; and r; are connected through an already triangulated area, if
w;i < &
e No joining in this case
e Add and remove vertices during the triangle surrounding step
as discussed below

21

Marching Triangularization - Triangle Creation

1. Consider p; € Ny with minimal front angle w;
2. Determine its neighbours vi and v, as discussed above

3. Determine the number of triangles to be created

ng = fwiJ +1 and Aw = wj/n; (6)
T

a If Aw<0.8and n; >1then n, — n, — 1 and Aw = w;/n;

b If n, =1and Aw > 0.8 and |lvy — va|» > 1.256; then n; =2
and Aw — %

¢ If Aw < 3 and either ||vy — pj|l2 < 0.50; or ||va — p;|| < 0.56;
then n; = 1 and Aw = w;

22

Marching Triangularization - Triangle Creation

4. If n; = 1 generate the triangle with vertices vy, vo and p;, else

a Project v; and v, onto the tangent plane at p;, i.e. onto qq
and q,, respectively, where

q;j = pi + 7jtin + 19jt,'2 (7)

b The remaining qx, k = 1,...,n, — 1 are calculated by rotating

pi + 0¢ H(qq::p‘:"u)z by the angle kAw around the surface normal
at p;

¢ Gradient projection of q, onto the surface yields ppy.« for all
k=1,...,n.—1

d The n; new triangles have vertices
(Pis Vi, Pa+1)s (Pis PN+1s PA42)s - - -5 (Pis PN —1,V2)

5. Delete p; from Ny and insert the points py41,...,PN+n,—1 at
its position (no points added for n; = 1)

23

Marching Triangularization - Example Sphere

starting hexagon

24

Marching Triangularization - Example Sphere

still a hole

_ a;(f:"vf“";& ~,
e A B AN
AAHESSSISSSN
S5SNI

A

===

4 N
W X \
A Y W Wy AYAYANAVIT Y
s OO0

VAV,

7—=X

Z7

==
7

Z 7=

e,

77

LT 7
A
\/

Z

final triangulation

26

Remarks

e Apart from visualization mesh creation plays an important role
in the application of finite element methods

e The methods presented are conceptionally easy to understand

e There are much more elaborate methods available, e.g. those
which adapt the size of the triangles to the local curvature of
the surface

27

Triangle Meshes

Triangle Meshes

e As many models in computer graphic are composed of
triangular meshes efficient handling of these meshes is crucial

e Apart from transferring meshes in between graphics
application and graphics pipeline one might want to draw,
subdivide and edit the meshes

e For some applications not only the triangles are required, but

also adjacency information, i.e. information about shared
vertices and edges or neighbouring triangles

e Apart from the minimal information (triangles and vertices)
one often stores additional information assigned to the vertices
or triangle faces

28

Triangle Meshes - Topology

e In mesh topology one is concerned with the properties of the

mesh that are preserved under continuous deformations
e A common assumption is that meshes are manifolds
e Each edge is shared by exactly two triangles
e Each vertex has a single complete loop of triangles around it
e A relaxation of this topology is a manifold with boundary
where
e Each edge is used by either one or two triangles
e Each vertex connects to a single edge-connected set of
triangles
e Another topological property the orientation of the mesh
which allows to distinguish front and back side
e The front of a triangle is, where the vertices are arranged in
counter clockwise order (right hand rule)
e A mesh is consistently oriented if all pair of adjacent triangles

within the mesh agree on front side -

Triangle Meshes - Indexed Mesh Storage

e The simplest storage form of a triangle mesh is to store the
three vertex positions for each triangle
e However since most vertices are used multiple times by
multiple triangles we can do better by using an indexed mesh
e Store the vertices in a list
e Store three indices per triangle
e Assuming n; triangles, n, vertices and the same storage
requirements for floats and indices we need
e Three vertices per triangle (9n; in total)

e One vector per vertex and three indices per triangle (3n, + 3n;
in total)

e For large meshes n; & 2n, (each vertex connected to six
triangles) the storage requirements are reduced by about two

30

Triangle Meshes - Indexed Mesh Storage

Separate Triangles

P2 P1 #t | Vertices

“'!!"7 Po; P1, P2

Po, P2, P3
P3 P6

()
()
(Po, P3, Pa)
/\ N
()
()

Po, P4, Ps5
Pa P5

Po, Ps5, P6
Po, P6, P1

g B~ W N =R O

31

Triangle Meshes - Indexed Mesh Storage

Shared Vertices

#v | of1]2]3]a]5]6
P2 P1 POS‘PO‘PI‘P2‘P3‘P4‘P5‘P6

#t | Vertices
0,1,2

p3 Pé6

/\

P4 Ps

g B W N R O

32

Triangle Meshes - Triangle Strips and Fans

If we want an even more compact representation of our mesh we
can use triangle strips and triangle fans
Triangle Fan

e In a triangle fan all triangles share a common vertex

e The other vertices generate triangles like the vanes of a fan

e A fan can be described by an ordered list of indices

Triangle Stripe
e In a triangle stripe we start with a single triangle

e New vertices are added alternating top and bottom to define
the next triangle

e Here too an ordered list of indices suffices

33

Triangle Meshes - Triangle Strips and Fans

Triangle Fans
#vlo1]2]3]4a]5]6
Pos | po | p1 | P2 | P3| pa | ps | ps
P2 P1 The sequence (0,1,2,3,4,5,6) specifies

the triangles
#t | Vertices

P4 Ps

B o NN PO
AN N N N N
(]

w
~
N’ N N N N

34

Triangle Meshes - Triangle Strips and Fans

Triangle Strips

ps #v|of1]2]3][4]5]6

POS‘PO‘Pl‘P2‘P3‘P4‘P5‘P6

The sequence (0,1,2,3,4,5,6) specifies
P4 the triangles

P3 #t | Vertices

p2

P1

Po

B o B O
AN N N N N
N
w
~
N’ N N N N

35

Triangle Meshes - Mesh Connectivity

e To modify or edit meshes it is often necessary to obtain
connectivity information
e Which triangles are adjacent to a given one
e Which triangles share a specific edge
e Which triangles share a certain vertex

Which edges share a given vertex

e Obtaining this information from the data structures discussed
so far is computationally demanding

e Storage of all these informations seem to costly in terms of
memory

e There are data structures which allow to obtain connectivity
information

e Triangle-neighbour structure
e Winged-edge structure

36

Triangle Meshes - Triangle-Neighbour Structure

e By modifying the indexed mesh storage structure we can
ensure that all of the queries are answered in constant time

e Add a pointer to one adjacent triangle for each vertex

e Add pointers to all three neighbouring triangles for each
triangle

e Store the pointers in such an order, that the k-th pointer
points to the neighbouring triangle, which shares vertices k
and k + 1 with the current triangle

e This structure allows to efficiently answer the questions above

by clever movement along the mesh

37

Triangle Meshes - Triangle-Neighbour Structure

Triangle neighbour structure

Part of a Large Triangle #v___ | o |1 | 2]3]4]5]|6
Position po | P1 | P2 | P3 | Pa | Ps | Pe
Mesh APointer 0 . . ‘ . ‘ . ‘ . ‘ .
F#t Vertices ‘ Neighbours
0 (0,1,2) (5,-,1)
1 | (0,2,3) (,,2)
P2 P1 2 (0,3,4) (1,-,3)
3 (0,4,5) (2,-,4)
4 (0,5,6) (3,-,5)
5 (0,6,1) (4,-,6)
Adjacency Query
p3 p6 Input: vertex index i
function FindAdjacentTriangles(i)
t; = APointer]i]
to = t;
repeat
Add tg to output list
p4 p5 Find i in tg's vertices

Assign the corresponding vertices-index to j
Assign the j-th neighbouring triangle of tg — tgo
until t not ¢t;
end function

38

	Meshes in Computer Graphics
	Triangle Meshes

