
Computer Graphics

Dr. rer. nat. Martin Möddel

April 6, 2021

Institut für Biomedizinische Bildgebung



Meshes in Computer Graphics



Meshes

Polygon Mesh
In computer graphics a polygon mesh is a collection of vertices,

edges and faces (polygons) de�ning the surfaces of an object. Most

often triangle meshes are considered

Figure 1: �An example of a polygon mesh� by en:User:Chrschn realeased

into the public domain
1

https://en.wikipedia.org/wiki/User:Chrschn


Mesh Creation

� Mesh creation refers to the process of �nding a suitable

polygonal mesh for a given surface

� Common strategies are

� Triangularization of parametric surfaces

� Cutting cube triangularization of implicit surfaces

� Marching triangularization of implicit surfaces

� Re�ning known meshes, such as the Platonic solids

Figure 2: �Platonic-solids set of �ve dice, (from left) tetrahedron

(d4), cube (d6), octahedron (d8), dodecahedron (d12), and

icosahedron (d20).� by unknown author licensed under

https://creativecommons.org/licenses/by-sa/3.0/deed.en

2

CC BY-SA 3.0


Triangularization of parametric surfaces

Figure 3: �Triangulierung einer parametrisierten Fläche (A�ensattel)� by

Ag2gaeh realeased under the CC BY-SA 4.0 license

3

https://commons.wikimedia.org/wiki/User:Ag2gaeh
https://creativecommons.org/licenses/by-sa/4.0/deed.en


Triangularization of parametric surfaces

� Triangularization of an explicitly de�ned parametric surface is

quite straight forward

� At �rst a triangularization of the parameter space is required

� The vertices of the parameter space triangularization can then

directly be mapped by the parametric mapping to de�ne

corresponding triangles in 3D space

Remark

� The mapping will usually change the size of the triangles

� Take care at parameter space boundaries, e.g. pole or

Greenwich meridian arc for sphere

4



Cutting Cube Triangularization

Figure 4: �Polygonisierung eines Torus mit der cutting cube Methode�

by Ag2gaeh realeased under the CC BY-SA 4.0 license

5

https://commons.wikimedia.org/wiki/User:Ag2gaeh
https://creativecommons.org/licenses/by-sa/4.0/deed.en


Cutting Cube Triangularization

� Divide the 3D space into cubes

� Intersecting edges of the cubes with the implicit surface

creates polygons on the surface

� The polygons can then further be subdivided into triangles

Remark

� Intersection problem might be di�cult to solve

� Great overhead for managing the data

6



Marching Triangularization

Figure 5: �Triangulation eines Torus� by Ag2gaeh realeased under the

CC BY-SA 4.0 license

7

https://commons.wikimedia.org/wiki/User:Ag2gaeh
https://creativecommons.org/licenses/by-sa/4.0/deed.en


Marching Triangularization

Idea
A marching method for the triangulation of surfaces by Erich

Hartmann (1998)

1. Choose a starting point on the surface and build a hexagon in

tangent space and project it onto the surface

� The triangles of the hexagon are the starting triangles

� The six outer vertices create the �rst �primary outer front

polygon� Π0

2. Determine the angle of the area still to be triangulated at each

vertex of Π0

3. Check if any vertex of Π0 is near a non-neighbouring point of

Π0 or a point of another front polygon Πk , k > 0

� In the �rst case divide the primary front polygon Π0 into

smaller parts

� Else unite Π0 and Πk 8



Marching Triangularization

4. Surround the point pm ∈ Π0 with minimal angle by isosceles

triangles with approximately 60◦ angles and leg length δt ,

delete pm from Π0 and add the new points into Π0

5. Repeat the steps 2-4 until there are only three points left in

Π0, which generate the �nal triangle

� If there is still a front polygon left then take it as new front

polygon Π0 and proceed with steps 2-4

� If there is no front polygons left then the triangularization is

�nished

Remark
For the algorithm to converge the surface should have �nite size

9



Marching Triangularization

Figure 6: Pictures (in the following) taken

fromwww.mathematik.tu-darmstadt.de/ ehartmann/cdgen0104.pdf 10

http://www.mathematik.tu-darmstadt.de/~ehartmann/cdgen0104.pdf


Marching Triangularization - Gradient Projection

� As the triangles are created in tangent space, we need a

method to project the triangle vertices ql from tangent space

onto a surface points pl

� Assume the surface is implicitly given by f (x) = 0 with

non-zero gradient ∇f at any point q

� p, the corresponding surface normal and the two tangent

vectors at p can be calculated by the following three steps

11



Marching Triangularization - Gradient Projection

1. Decent onto the surface along the gradient

a u0 = q

b repeat uk+1 = uk − f (uk )
‖∇f (uk )‖2

2

∇f (uk) until ‖uk+1 − uk‖2 < ε

for some preset ε > 0 and set p = uk+1

2. The surface normal at p is n = (nx , ny , nz) = ∇f (p)
‖∇f (p)‖2

3. The tangent vectors are

a t1 =
(ny ,−nx ,0)
‖(ny ,−nx ,0)‖2 if nx > 0.5 or ny > 0.5 else t1 = (−nz ,0,nx )

‖(−nz ,0,nx )‖2
b t2 = n× t1

12



Marching Triangularization - Gradient Projection

13



Marching Triangularization - Gradient Projection

14



Marching Triangularization - Gradient Projection

15



Marching Triangularization - Hexagon Initialization

� Start at any point in the vicinity of the surface and determine

the closest surface point p0, the corresponding normal vector

n0 and tangential vectors t01 and t02

� Calculate the vertices q1, . . . , q6 of the initial hexagon in

tangent space by

qi = p0 + δt cos((i − 1)π/3)t01 + δt sin((i − 1)π/3)t02 (1)

� Project q1, . . . , q6 onto the surface using the gradient

projection to obtain the surface points p1, . . . , p6

� Each point pi has normal vector ni and tangential vectors ti1

and ti2 assigned

� The initial six triangles have vertices (p0, p1, p2), (p0, p2, p3),

(p0, p3, p4), (p0, p4, p5), (p0, p5, p6), and (p0, p6, p1)

� The outer vertices de�ne the primary front polygon

Π0 = {p1, . . . , p6} 16



Marching Triangularization - Angle Determination

For each point pi ∈ Π0 = {p1, . . . , pN} new or neighbouring a new

point recalculate the front angle ωi

� Set v1 = pi−1 if i > 1 or v1 = pN if i = 1

� Set v2 = pi+1 if i < N or v2 = p1 if i = N

� Express both vertices in the local coordinate system of the i-th

vertex

v1 = pi + η1ni + τ1ti1 + ϑ1ti2 (2)

v2 = pi + η2ni + τ2ti1 + ϑ2ti2 (3)

� Calculate the polar angle of the two vertices in tangent space

ϕ1 = atan2(τ1, ϑ1) and ϕ2 = atan2(τ2, ϑ2)

� The front angle is then given by

ωi =

ϕ2 − ϕ1 ϕ2 ≥ ϕ1

2π + ϕ2 − ϕ1 else
(4)

17



Marching Triangularization - Avoid Overlap

Splitting

� Check if there are any pi , pj ∈ Π0, i < j such that

‖pi − pj‖ < δt and the vertices are neither next nor nearest

next neighbours

� If so split Π0 into the new Π0 = {p1, . . . , pi , pj , . . . , pN} and a

new front polygon Πnew = {pi , . . . , pj}
� Exclude pi and pj from any later (not only the present

iteration) distance checks

� Repeat this check until no more pair is found

� Recalculate the angles at pi and pj in Π0

18



Marching Triangularization - Avoid Overlap

Joining

� Check the distance of Π0 to all further front polygons Πk ,

k > 0

� If there are pi ∈ Π0 and rj ∈ Πk = {r1, . . . , rM} with
‖pi − rj‖2 < δt then the union of Π0 and Πk de�nes the new

primary front polygon

Π0 = {p1, . . . , pi , rj , . . . , rM , r1, . . . , rj , pi , . . . pN} (5)

� Calculate the front angles at pi and rj at their �rst appearance

� Surround the vertex with smallest angle with triangles �rst

� Surround the remaining vertex next

19



Marching Triangularization

Figure 7: Dividing (left) and uniting (right) the actual front polygon.

20



Marching Triangularization - Avoid Overlap

Remarks

� Sometimes the line segment between pi and rj intersects an

already triangulated area (this must be detected and avoided)

� To determine this case we can compare the front angle ωi at

vertex pi with ω̃i , which is calculated using v2 = rj for the

angle determination

� pi and rj are connected through an already triangulated area, if

ωi < ω̃i

� No joining in this case

� Add and remove vertices during the triangle surrounding step

as discussed below

21



Marching Triangularization - Triangle Creation

1. Consider pi ∈ Π0 with minimal front angle ωi

2. Determine its neighbours v1 and v2 as discussed above

3. Determine the number of triangles to be created

nt =

⌊
3ωi

π

⌋
+ 1 and ∆ω = ωi/nt (6)

a If ∆ω < 0.8 and nt > 1 then nt → nt − 1 and ∆ω = ωi/nt
b If nt = 1 and ∆ω > 0.8 and ‖v1 − v2‖2 > 1.25δt then nt = 2

and ∆ω → ∆ω
2

c If ∆ω < 3 and either ‖v1 − pi‖2 ≤ 0.5δt or ‖v2 − pi‖ ≤ 0.5δt
then nt = 1 and ∆ω = ωi

22



Marching Triangularization - Triangle Creation

4. If nt = 1 generate the triangle with vertices v1, v2 and pi , else

a Project v1 and v2 onto the tangent plane at pi , i.e. onto q0
and qnt respectively, where

qj = pi + τj ti1 + ϑj ti2 (7)

b The remaining qk , k = 1, . . . , nt − 1 are calculated by rotating

pi + δt
(q0−pi )
‖q0−pi‖2 by the angle k∆ω around the surface normal

at pi
c Gradient projection of qk onto the surface yields pN+k for all

k = 1, . . . , nt − 1

d The nt new triangles have vertices

(pi , v1, pN+1), (pi , pN+1, pN+2), . . . , (pi , pN+nt−1, v2)

5. Delete pi from Π0 and insert the points pN+1, . . . , pN+nt−1 at

its position (no points added for nt = 1)

23



Marching Triangularization - Example Sphere

24



Marching Triangularization - Example Sphere

25



Marching Triangularization - Example Sphere

26



Meshes

Remarks

� Apart from visualization mesh creation plays an important role

in the application of �nite element methods

� The methods presented are conceptionally easy to understand

� There are much more elaborate methods available, e.g. those

which adapt the size of the triangles to the local curvature of

the surface

27



Triangle Meshes



Triangle Meshes

� As many models in computer graphic are composed of

triangular meshes e�cient handling of these meshes is crucial

� Apart from transferring meshes in between graphics

application and graphics pipeline one might want to draw,

subdivide and edit the meshes

� For some applications not only the triangles are required, but

also adjacency information, i.e. information about shared

vertices and edges or neighbouring triangles

� Apart from the minimal information (triangles and vertices)

one often stores additional information assigned to the vertices

or triangle faces

28



Triangle Meshes - Topology

� In mesh topology one is concerned with the properties of the

mesh that are preserved under continuous deformations

� A common assumption is that meshes are manifolds

� Each edge is shared by exactly two triangles

� Each vertex has a single complete loop of triangles around it

� A relaxation of this topology is a manifold with boundary

where

� Each edge is used by either one or two triangles

� Each vertex connects to a single edge-connected set of

triangles

� Another topological property the orientation of the mesh

which allows to distinguish front and back side

� The front of a triangle is, where the vertices are arranged in

counter clockwise order (right hand rule)

� A mesh is consistently oriented if all pair of adjacent triangles

within the mesh agree on front side
29



Triangle Meshes - Indexed Mesh Storage

� The simplest storage form of a triangle mesh is to store the

three vertex positions for each triangle

� However since most vertices are used multiple times by

multiple triangles we can do better by using an indexed mesh

� Store the vertices in a list

� Store three indices per triangle

� Assuming nt triangles, nv vertices and the same storage

requirements for �oats and indices we need

� Three vertices per triangle (9nt in total)

� One vector per vertex and three indices per triangle (3nv + 3nt
in total)

� For large meshes nt ≈ 2nv (each vertex connected to six

triangles) the storage requirements are reduced by about two

30



Triangle Meshes - Indexed Mesh Storage

p0

p1p2

p3

p4 p5

p6

Separate Triangles

#t Vertices

0 (p0, p1, p2)

1 (p0, p2, p3)

2 (p0, p3, p4)

3 (p0, p4, p5)

4 (p0, p5, p6)

5 (p0, p6, p1)

31



Triangle Meshes - Indexed Mesh Storage

p0

p1p2

p3

p4 p5

p6

Shared Vertices

#v 0 1 2 3 4 5 6

Pos p0 p1 p2 p3 p4 p5 p6

#t Vertices

0 (0, 1, 2)

1 (0, 2, 3)

2 (0, 3, 4)

3 (0, 4, 5)

4 (0, 5, 6)

5 (0, 6, 1)

32



Triangle Meshes - Triangle Strips and Fans

If we want an even more compact representation of our mesh we

can use triangle strips and triangle fans

Triangle Fan

� In a triangle fan all triangles share a common vertex

� The other vertices generate triangles like the vanes of a fan

� A fan can be described by an ordered list of indices

Triangle Stripe

� In a triangle stripe we start with a single triangle

� New vertices are added alternating top and bottom to de�ne

the next triangle

� Here too an ordered list of indices su�ces

33



Triangle Meshes - Triangle Strips and Fans

p0

p1p2

p3

p4 p5

p6

Triangle Fans

#v 0 1 2 3 4 5 6

Pos p0 p1 p2 p3 p4 p5 p6

The sequence (0, 1, 2, 3, 4, 5, 6) speci�es

the triangles

#t Vertices

0 (0, 1, 2)

1 (0, 2, 3)

2 (0, 3, 4)

3 (0, 4, 5)

4 (0, 5, 6)

34



Triangle Meshes - Triangle Strips and Fans

p0

p1

p2

p3

p4

p5

p6

Triangle Strips

#v 0 1 2 3 4 5 6

Pos p0 p1 p2 p3 p4 p5 p6

The sequence (0, 1, 2, 3, 4, 5, 6) speci�es

the triangles

#t Vertices

0 (0, 1, 2)

1 (1, 3, 2)

2 (2, 3, 4)

3 (3, 5, 4)

4 (4, 5, 6)

35



Triangle Meshes - Mesh Connectivity

� To modify or edit meshes it is often necessary to obtain

connectivity information

� Which triangles are adjacent to a given one

� Which triangles share a speci�c edge

� Which triangles share a certain vertex

� Which edges share a given vertex

� Obtaining this information from the data structures discussed

so far is computationally demanding

� Storage of all these informations seem to costly in terms of

memory

� There are data structures which allow to obtain connectivity

information

� Triangle-neighbour structure

� Winged-edge structure

36



Triangle Meshes - Triangle-Neighbour Structure

� By modifying the indexed mesh storage structure we can

ensure that all of the queries are answered in constant time

� Add a pointer to one adjacent triangle for each vertex

� Add pointers to all three neighbouring triangles for each

triangle

� Store the pointers in such an order, that the k-th pointer

points to the neighbouring triangle, which shares vertices k

and k + 1 with the current triangle

� This structure allows to e�ciently answer the questions above

by clever movement along the mesh

37



Triangle Meshes - Triangle-Neighbour Structure

Part of a Large Triangle

Mesh

p0

p1p2

p3

p4 p5

p6

Triangle neighbour structure
#v 0 1 2 3 4 5 6

Position p0 p1 p2 p3 p4 p5 p6
∆Pointer 0 · · · · · ·

#t Vertices Neighbours

0 (0, 1, 2) (5, ·, 1)

1 (0, 2, 3) (0, ·, 2)

2 (0, 3, 4) (1, ·, 3)

3 (0, 4, 5) (2, ·, 4)

4 (0, 5, 6) (3, ·, 5)

5 (0, 6, 1) (4, ·, 6)

Adjacency Query
Input: vertex index i

function FindAdjacentTriangles(i)

ti = ∆Pointer[i ]

t0 = ti
repeat

Add t0 to output list

Find i in t0's vertices

Assign the corresponding vertices-index to j

Assign the j-th neighbouring triangle of t0 → t0

until t not ti
end function

38


	Meshes in Computer Graphics
	Triangle Meshes

