
30.10.2022

1

Intelligent Autonomous Agents
and Cognitive Robotics:

Adversarial Agents

Ralf Möller, Rainer Marrone

Hamburg University of Technology

Adversarial Agents

• In this chapter we cover competitive environments, in

which the agents goals are in conflict, giving rise to

adversarial search problems often known as games.

• Mathematical game theory, a branch of economics,

views any multi-agent environment as a game,

regardless of whether the agents are cooperative or

competitive.

2

30.10.2022

2

Multi-Agent Games

• Agents must anticipate what other agents do

• Criteria:

 Abstraction: To describe a game we must capture every

relevant aspect of the game.

 Accessible environments: Such games are characterized by

perfect information

 Search: game-playing then consists of a search through

possible game positions with actions of other agents

 Unpredictable opponent: introduces uncertainty thus

game-playing must deal with contingency problems

3

Two-player games

• A game formulated as a search problem:

 Initial state: board position and turn

 Actions/Transition model: definition of legal moves

 Terminal state: conditions for when game is over

 Utility function:

a numeric value that describes the outcome of the

game. E.g., -1, 0, 1 for loss, draw, win (AKA payoff

function)

4

30.10.2022

3

Type of games

5

Battleship

What is a good move?

win

lose

draw

xx

o

o

o

x

xx

o

o

o

x

xx

o

o

o

xx

xx

o

o

o

x

x x

xx

o

o

o

xx

xx

o

o

o

xx

xx

o

o

o

x

x

xx

o

o

o

x

x

xx

o

o

o

x

x

xx

o

o

o

x

x

o

oo o

o

o

xx

o

o

o

xx

o x xx

xx

o

o

o

x

x

o

xx

o

o

o

x

x

o x

xx

o

o

o

x

xo
6

30.10.2022

4

The minimax algorithm

• Perfect play for deterministic environments with perfect information

• Basic idea: choose move with highest minimax value
= best achievable payoff against best play

• Algorithm:

1. Generate game tree completely

2. Determine utility of each terminal state

3. Propagate the utility values upward in the tree by applying MIN and
MAX operators on the nodes in the current level

4. At the root node use minimax decision to select the move with the max
(of the min) utility value

7

Minimax algorithm

3

3

2

3

2

812 4 6 14 252

•Minimize opponent’s chance
•Maximize your chance

8

MAX

MIN

30.10.2022

5

Minimax

3

3

2

3

2

812 4 6 14 252

•Minimize opponent’s chance
•Maximize your chance

MAX

MIN

9

Minimax: Recursive implementation

Complete: Yes, for finite state-space
Optimal: Yes, if winning is the goal

Time complexity: O(bm)
Space complexity: O(bm) or O(m)

10

30.10.2022

6

Game vs. search problem

• Unpredictable opponent 

contingency plan (MINIMAX assumes best playing

opponent)

• Time limits 

cannot explore complete state space, approximate

• Pruning (McCarthy, 1956)

• Finite horizon, approximate

(Zuse, 1945; Shannon 1950,…)

11

Searching for the next move

• Complexity: many games have a huge search space

 Chess: b = 35, m=100  nodes = 35 100

means more than 10154 in a search tree and more than 1040

nodes in a search graph. Take several millennia to compute

moves.

• Resource (e.g., time, memory) limit: optimal solution not

feasible/possible, thus must approximate

1. Pruning: makes the search more efficient by discarding portions of

the search tree that cannot improve quality.

2. Evaluation functions: heuristics to evaluate utility of a state

without exhaustive search.

35100 = 10 log(35100) = 10 100*log(35) = 10 100*1,54= 10154

12

30.10.2022

7

1. - pruning

• - pruning: the basic idea is to prune portions of the
search tree that cannot improve the utility value of the
max or min node, by just considering the values of nodes
seen so far.

• Does it work? Yes, it roughly cuts the branching factor
from b to b resulting in double as far look-ahead than
pure minimax.

13

- pruning: example

 6

6

MAX

6 12 8

MIN

14

30.10.2022

8

- pruning: example

 6

6

MAX

6 12 8 2

 2MIN

15

- pruning: example

 6

6

MAX

6 12 8 2

 2

5

 5MIN

MINIMAX(root) = max(min(6,12,8),min(2,a,b),min(5,b,d))

= max(6,z,y) where z=min(2,a,b)≤ 2 and y=min(5,b,d) ≤ 5

= 6
16

30.10.2022

9

- pruning: general principle

Player

Player

Opponent

Opponent

m

n

If m is better than n for Player

we will never get to n

17

More on the - algorithm

• Because minimax is depth-first, let’s consider nodes

along a given path in the tree. Then, as we go along this

path, we keep track of:

  : the value of the best (i.e., highest-value) choice we have

found so far at any choice point along the path for MAX

  : the value of the best (i.e., lowest-value) choice we have found

so far at any choice point along the path for MIN

18

30.10.2022

10

The - algorithm:

19

More on the -
algorithm

…

MAX

MIN

MAX

v = -
 = -
 = +

5 10 6 2 8 7

Min-Value loops

In Min-Value:

v = 5

 = -
 = 5

20

30.10.2022

11

More on the -
algorithm

…

MAX

MIN

MAX

v = -
 = -
 = +

5 10 6 2 8 7

Min-Value loops

In Min-Value:

v = 5

 = -
 = 5

21

More on the -
algorithm

…

MAX

MIN

MAX

v = -
 = -
 = +

5 10 6 2 8 7

Min-Value loops

In Min-Value:

v = 5

 = -
 = 5

22

30.10.2022

12

More on the -
algorithm

…

MAX

MIN

MAX

5 10 6 2 8 7

In Max-Value:

Max-Value loops

v = 5

 = -
 = 5

v = 5

 = 5

 = +

23

More on the -
algorithm

…

MAX

MIN

MAX

5 10 6 2 8 7

In Max-Value:

Max-Value loops

v = 5

 = -
 = 5

v = 5

 = 5

 = +

v = -
 = 5

 = +

24

30.10.2022

13

More on the -
algorithm

…

MAX

MIN

MAX

5 10 6 2 8 7

In Min-Value:

v = 5

 = -
 = 5

v = 5

 = 5

 = +

v = -
 = 5

 = +

Min-Value loops

25

More on the -
algorithm

…

MAX

MIN

MAX

5 10 6 2 8 7

In Min-Value:

v = 5

 = -
 = 5

v = 5

 = 5

 = +

v = 2

 = 5

 = +

Min-Value loops

26

30.10.2022

14

More on the -
algorithm

…

MAX

MIN

MAX

5 10 6 2 8 7

In Min-Value:

v = 5

 = -
 = 5

v = 5

 = 5

 = +

v = 2

 = 5

 = +

Min-Value loops

27

More on the -
algorithm

…

MAX

MIN

MAX

5 10 6 2 8 7

In Max-Value:

v = 5

 = -
 = 5

v = 5

 = 5

 = +

v = 2

 = 5

 = +

Max-Value loops

28

30.10.2022

15

Properties of -

• Pruning does not affect the final result!!!

• Good move ordering improves effectiveness of pruning

• With perfect ordering, time complexity = O(bm/2)

 doubles depth of search

 need a heuristic how to order

 can easily reach depth 8 => good chess

• A simple example of the value of reasoning about which

computations are relevant (a form of metareasoning)

29

2. Move evaluation without complete search

• The minimax algorithm generates the entire game

search space, whereas the alpha-beta algorithm allows

us to prune large parts of it.

• Complete search is often too complex and impractical.
alpha-beta is still DFS.

• Evaluation function: evaluates value of state using
heuristics and cuts off search

• New MINIMAX:
 CUTOFF-TEST: cutoff test to replace the termination condition

(e.g., deadline, depth-limit, etc.)

 EVAL: evaluation function to replace utility function (e.g., number
of chess pieces taken)

30

30.10.2022

16

Evaluation function

• The evaluation function should order the

terminal states in the same way as the true utility

function (a<b<c…).

• The computation must not take to long!

Significant compared to minimax?

• For nonterminal states, the evaluation function

should be strongly correlated with the actual

chances of winning.

31

Evaluation functions

• Most calculate features – e.g., number of pawns

• From that we can form categories, equivalence classes.

• Any category represent states that win, lose or result in

draws.

• If we know 72% lead to win (+1), 20% to loss (0), 8%

drawn (1/2).

Expected value:

• (0,72* +1) + (0,20* 0) + (0,08 * 1/2)= 0,76

32

30.10.2022

17

Evaluation functions

• Weighted linear evaluation function: to combine n heuristics
f = w1f1 + w2f2 + … + wnfn

E.g, w’s could be the values of pieces (1 for pawn, 3 for bishop etc.)

f’s could be the number of type of pieces on the board
33

Note: exact values do not matter

34

30.10.2022

18

With cutoff and eval

35

Minimax with cutoff: viable algorithm?

Assume we have
100 seconds,
evaluate 104

nodes/s; can
evaluate 106

nodes/move

36

30.10.2022

19

Other Cutoff methods

• Quiescent search

apply eval only to positions that are quiescent, have no

big change of value in the near future.

• Forward pruning

considers not all moves in a concrete position.

Beam search is one approach to forward pruning.

• ProbCut

probabilistic alpha-beta with statistical prior knowledge

37

Games of chance

• Backgammon is a two-player

game with uncertainty.

•Players roll dices to

determine what moves to

make.

•White/red arrow has just

rolled 5 and 6 and has four

legal moves:
• 5-10, 5-11
•5-11, 19-24
•5-10, 10-16
•5-11, 11-16

•Such games are good for

exploring decision making in

adversarial problems involving

skill and luck.

38

30.10.2022

20

Game Trees with Chance

Nodes

• Use minimax to compute values

for MAX and MIN nodes

• Use expected values for chance

nodes

• For chance nodes over a max

node, as in C:

expectimax(C) = Sumi(P(di) *

maxvalue(i))

• For chance nodes over a min

node:

expectimin(N) = Sumi(P(di) *

minvalue(i))

Min

Rolls

Max

Rolls

39

Max

selects a move

Algorithm for nondeterministic games

40

A version of - is possible but only if leaf values

are bounded. WHY??

EXPECTIMINIMAX gives perfect play.

30.10.2022

21

Nondeterministic games:

the element of chance

3 ?

0.50.5

817

8

?

CHANCE ?

expectimax and expectimin, expected values over all possible outcomes

41

Nondeterministic games:

the element of chance

3 5

0.50.5

817

8

5

CHANCE 4 = 0.5*3 + 0.5*5Expectimax

Expectimin

42

30.10.2022

22

Evaluation functions

Order-preserving transformation do not necessarily behave
the same!

43

Games of imperfect information

• E.g., card games, where opponent's initial cards are unknown

• Typically we can calculate a probability for each possible deal

• Seems just like having one big dice roll at the beginning of the game

• Idea: compute the minimax value of each action in each deal, then

choose the action with highest expected value over all deals

• Special case: if an action is optimal for all deals, it's optimal.

• GIB, current best bridge program, approximates this idea by
 generating 100 deals consistent with bidding information

 picking the action that wins most tricks on average

44

30.10.2022

23

Example

• Four card bridge, MAX to play first

- 0,5

- 0,5

45

Proper analysis

• Intuition that the value of an action is the average of its

values in all actual states is WRONG

• With partial observability, value of an action depends on

the information state or belief state the agent is in

• Can generate and search a tree of information states

• Leads to rational behaviors such as

 Acting to obtain information

 Signalling to one's partner

 Acting randomly to minimize information disclosure

46

30.10.2022

24

Summary

• Games are fun to work on!

• They illustrate several important points about AI

 perfection is unattainable  must approximate

 good idea to think about what to think about

 uncertainty constrains the assignment of values to states

 optimal decisions depend on information state, not real state

47

