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• Chapter 17
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Sequential Decision Making

• Finite Horizon

 Fixed time N after that nothing happens

• Infinite Horizon

 N not fixed

3

Simple Robot Navigation Problem

• In each state, the possible actions are U, D, R, L
Uncertainty in action

4
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Sequence of Actions

• Planned sequence of actions:  (U, R)
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4321

[3,2]
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Sequence of Actions

• Planned sequence of actions:  (U, R)
• U is executed
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[3,2]

[4,2][3,3][3,2]
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Histories

• Planned sequence of actions:  (U, R)
• U has been executed
• R is executed

• There are 9 possible sequences of states 
– called histories – and 6 possible final states 
for the robot!

4321
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[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]
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Probability of Reaching the Goal

P([4,3] | (U,R).[3,2]) = 
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Note importance of Markov property 
in this derivation

= 0.65

8

+ P([4,2] | U.[3,2]) x P([4,3] | R.[4,2])
P([3,3] | U.[3,2]) x P([4,3] | R.[3,3])

= 0.8 x 0.8 + 0.1 x 0.1
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Utility of a History

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] or [4,2] are terminal states
• The utility of a history is defined by the utility of the last 

state (+1 or –1) minus n/25, where n is the number of moves
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Utility of an Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some

probability
• The utility of the sequence is the expected utility of the histories:

U = ShUh P(h)
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[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]
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Optimal Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some

probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
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[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]
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Optimal Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some

probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
• But is the optimal action sequence what we want to 
compute?
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[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

only if the sequence is executed blindly! 

12
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Policy (Reactive/Closed-Loop Strategy)

• A policy P is a complete mapping from states to actions
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Repeat:

 s  sensed state

 If s is terminal then exit

 a  P(s)

 Perform a

Reactive Agent Algorithm

14
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Optimal Policy

-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a 

history (ending at a terminal state) with maximal 
expected utility
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Optimal Policy

-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a 

history with maximal expected utility
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This problem is called a
Markov Decision Problem 

(MDP)How to compute P*? 16
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Additive Utility: Stationarity

• History H = (s0,s1,…,sn)

• The utility of H is additive iff: 

U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = S R(i)

Reward

17

Additive Utility

• History H = (s0,s1,…,sn)

• The utility of H is additive iff: 

U(s0,s1,…,sn) = R(0) + U(s1,…,sn)  = S R(i)

• Robot navigation example:

 R(n) = +1 if sn = [4,3]

 R(n) = -1 if sn = [4,2]

 R(i) = -1/25 if i = 0, …, n-1

18
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Principle of Max Expected Utility

• History H = (s0,s1,…,sn)

• Utility of H: U(s0,s1,…,sn) = S R(i)

First-step analysis 

• U(i) = R(i) + maxa SjP(j | a.i) U(j)

• P*(i) = arg maxa SjP(k | a.i) U(j)

-1

+1

19
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Value Iteration

• Initialize the utility of each non-terminal state si to U0(i) = 0

• For t = 0, 1, 2, …, do:

Ut+1(i)  R(i) + maxa SkP(k | a.i) Ut(k)
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(Bellmann equation)

20
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After a Full Iteration

24

• Only the state  one step away from a positive reward 

(3,3) has gained value, all the others are losing value 

because of the cost of moving
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Iteration 1

Value Iteration: from state 

utilities to policy

• Now the agent can  chose the action that implements the MEU 

principle: maximize the expected utility of the subsequent state

25

states reachable 
from s by doing a

expected value 
of following 
policy л* in s’

Probability of getting to s’ from s via a


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Example

 To find the best action in (1,1)

 We have to do this for all fields!!!!
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Example

 To find the best action in (1,1)

 give Up as best action
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Value Iteration: the result

• Initialize the utility of each non-terminal state si to

U0(i) = 0

• For t = 0, 1, 2, …, do:

Ut+1(i)  R(i) + maxa SkP(k | a.i) Ut(k)

Ut([3,1])

t0 302010

0.611

0.5

0
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0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660
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The Reward is important

- --
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Infinite Horizon

30
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In many problems, e.g., the robot 
navigation example, histories are 
potentially unbounded and the same 
state can be reached many times

One trick:
Use discounting to make infinite
Horizon problem mathematically
tractable

U(i) = R(i) + g maxa SjP(j | a.i) U(j)

Value Iteration (finite and non-finite)

31
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Bellmann eq. is a contraction

• two important properties of contractions:
 A contraction has only one fixed point; if there were 

two fixed points they would not get closer together 

when the function was applied, so it would not be a 

contraction.

 When the function is applied to any argument, the 

value must get closer to the fixed point, so 

repeated application of a contraction always reaches 

the fixed point in the limit.

32

Value iteration

• Let Ui denote the vector of utilities for all

the states at the ith iteration. Then the Bellman update 

equation can be written as

33

Ui+1 ⃪ ���
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Value iteration

• use the max norm, which measures the “length” of a vector 

by the absolute value of its biggest component:

• Let Ui and U’i be any two utility vectors. Then we have

34

||U|| = maxs |U(s)|

||BUi –BU‘i|| ≤ g||Ui –U‘i|| 17.7

Value iteration

36
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Value iteration

• From the contraction, it can be shown that if the update 

is small (i.e., no state's utility changes by much), then the 

error, compared with the true utility function, also is 

small. More precisely,

37

if ||Ui+1 – Ui|| < e(1g)/g then  ||Ui+1 – U|| ≤ e    (17.8)

This is the stopping criteria for value iteration

Value iteration

• But the crucial question is!!!! How well will I do using this 

utility function?

• policy loss

Uπi (s) is the utility obtained if πi is executed starting in s, 

policy loss ||Uπi – U|| is the most the agent can lose by 

executing πi instead of the optimal policy π*

38
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Value iteration

• The policy loss of πi is connected to the error in Ui by the 

following inequality:

39

if ||Ui – U|| < e then ||Uπi – U||< 2e  (17.9)

Policy Iteration

• Pick a policy P at random

40



12/16/2022

20

Policy Iteration

• Pick a policy P at random

• Repeat:

 Policy evaluation
Compute the utility of each state for P

Ut(i)  R(i) + SkP(k | P(i).i) Ut(k)

41

• Pick a policy P at random

• Repeat:

 Policy evaluation
Compute the utility of each state for P

Ut(i)  R(i) + SkP(k | P(i).i) Ut(k)

 Policy improvement: 
Compute the policy P’ given these utilities

P’(i) = arg maxa SkP(k | a.i) U(k)

Policy Iteration

42
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Policy Iteration

• Pick a policy P at random

• Repeat:

 Policy evaluation:
Compute the utility of each state for P:

Ut(i)  R(i) + SkP(k | P(i).i) Ut(k)

 Policy improvement:
Compute the policy P’ given these utilities

P’(i) = arg maxa SkP(k | a.i) U(k)

 If P’ = P then return P
43

Policy Iteration

44
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Linear equations

• By removing the max operator (Value Iteration)
we can also solve the set of linear equations: 

U(i) = R(i) + SkP(k | P(i).i) U(k)

(often a sparse system)

• Suppose we have P(1).1  Up  P(2).2=Up

U(1,1)= -0.04 + 0.8U(1,2)+0.1U(1,1)+0.1U(2,1)
U(1,2)= -0.04 + 0.8U(1,3)+0.2U(1,2)
…

• Can be solved in O(n3) by standard linear algebra 
methods

• For large state spaces we can mix value iteration and 
policy iteration

45

Further optimization

• All algorithms require updating the utility or policy for all 

states at once.

• At each step we can also select a subset for updating

asynchronous policy iteration/mod. value iter.

(can show it will  converge if some conditions for initial policy and 

utility function hold)

• Leads to heuristic algorithms that concentrate on states 

that are likely to be reached by a good policy.

 “if one has no intention of throwing oneself off a cliff, one should 

not spend time worrying about the exact value of the resulting 

state”

46
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Summary

• Decision making under uncertainty

• Sequential decision making

 Utility function

 Value iteration

 Policy iteration

47


