
12/16/2022

1

Intelligent Autonomous Agents

and Cognitive Robotics

Topic 8: Decision-Making under Uncertainty

Complex Decisions

Ralf Möller, Rainer Marrone

Hamburg University of Technology

Literature

• Chapter 17

Material from Lise Getoor, Jean-Claude

Latombe, Daphne Koller, and

Stuart Russell

2

12/16/2022

2

Sequential Decision Making

• Finite Horizon

 Fixed time N after that nothing happens

• Infinite Horizon

 N not fixed

3

Simple Robot Navigation Problem

• In each state, the possible actions are U, D, R, L
Uncertainty in action

4

12/16/2022

3

Sequence of Actions

• Planned sequence of actions: (U, R)

2

3

1

4321

[3,2]

5

Sequence of Actions

• Planned sequence of actions: (U, R)
• U is executed

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

6

12/16/2022

4

Histories

• Planned sequence of actions: (U, R)
• U has been executed
• R is executed

• There are 9 possible sequences of states
– called histories – and 6 possible final states
for the robot!

4321

2

3

1

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

7

Probability of Reaching the Goal

P([4,3] | (U,R).[3,2]) =

2

3

1

4321

Note importance of Markov property
in this derivation

= 0.65

8

+ P([4,2] | U.[3,2]) x P([4,3] | R.[4,2])
P([3,3] | U.[3,2]) x P([4,3] | R.[3,3])

= 0.8 x 0.8 + 0.1 x 0.1

12/16/2022

5

Utility of a History

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] or [4,2] are terminal states
• The utility of a history is defined by the utility of the last

state (+1 or –1) minus n/25, where n is the number of moves

-1

+1

2

3

1

4321

9

Utility of an Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some

probability
• The utility of the sequence is the expected utility of the histories:

U = ShUh P(h)

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

10

12/16/2022

6

Optimal Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some

probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

11

Optimal Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some

probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
• But is the optimal action sequence what we want to
compute?

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

only if the sequence is executed blindly!

12

12/16/2022

7

Policy (Reactive/Closed-Loop Strategy)

• A policy P is a complete mapping from states to actions

-1

+1

2

3

1

4321

13

Repeat:

 s  sensed state

 If s is terminal then exit

 a  P(s)

 Perform a

Reactive Agent Algorithm

14

12/16/2022

8

Optimal Policy

-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a

history (ending at a terminal state) with maximal
expected utility

2

3

1

4321

15

Optimal Policy

-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a

history with maximal expected utility

2

3

1

4321

This problem is called a
Markov Decision Problem

(MDP)How to compute P*? 16

12/16/2022

9

Additive Utility: Stationarity

• History H = (s0,s1,…,sn)

• The utility of H is additive iff:

U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = S R(i)

Reward

17

Additive Utility

• History H = (s0,s1,…,sn)

• The utility of H is additive iff:

U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = S R(i)

• Robot navigation example:

 R(n) = +1 if sn = [4,3]

 R(n) = -1 if sn = [4,2]

 R(i) = -1/25 if i = 0, …, n-1

18

12/16/2022

10

Principle of Max Expected Utility

• History H = (s0,s1,…,sn)

• Utility of H: U(s0,s1,…,sn) = S R(i)

First-step analysis 

• U(i) = R(i) + maxa SjP(j | a.i) U(j)

• P*(i) = arg maxa SjP(k | a.i) U(j)

-1

+1

19

-1

+1

2

3

1

4321

Value Iteration

• Initialize the utility of each non-terminal state si to U0(i) = 0

• For t = 0, 1, 2, …, do:

Ut+1(i)  R(i) + maxa SkP(k | a.i) Ut(k)

-1

+1

2

3

1

4321

(Bellmann equation)

20

12/16/2022

11

21

0 0 0

0 0

0 0 0 0

3

2

1

1 2 3 4

+1

-1

Initialization Iteration 1





















RIGHT

DOWN

LEFT

UP

U

 0

 0

 0

 0

max04.0)1,1(
)1(































RIGHTUUU

DOWNUU

LEFTUU

UPUUU

U

)1,1(1.0)2,1(1.0)1,2(8.0

)1,2(1.0)1,1(9.0

)2,1(1.0)1,1(9.0

)1,1(1.0)1,2(1.0)2,1(8.0

max*104.0)1,1(

)0()0()0(

)0()0(

)0()0(

)0()0()0(

)1(

?-0.04

22

0 0 0

0 0

0 0 0 0

3

2

1

1 2 3 4

+1

-1

Initialization Iteration 1

-0.4-0.04































RIGHTUUU

DOWNUUU

LEFTUUU

UPUUU

U

)2,3(1.0)3,3(1.0)3,4(8.0

)3,4(1.0)3,2(1.0)2,3(8.0

)2,3(1.0)3,3(1.0)3,2(8.0

)3,4(1.0)3,2(1.0)3,3(8.0

max*104.0)3,3(

)0()0()0(

)0()0()0(

)0()0()0(

)0()0()0(

)1(





















RIGHT

DOWN

LEFT

UP

U

 8.0

 1.0

 0

 1.0

max04.0)3,3(
)1(

?0.76

12/16/2022

12

After a Full Iteration

24

• Only the state one step away from a positive reward

(3,3) has gained value, all the others are losing value

because of the cost of moving

-.04 -.04 0.76

-.04 -.04

-.04 -.04 -.04 -.04

3

2

1

1 2 3 4

+1

-1

Iteration 1

Value Iteration: from state

utilities to policy

• Now the agent can chose the action that implements the MEU

principle: maximize the expected utility of the subsequent state

25

states reachable
from s by doing a

expected value
of following
policy л* in s’

Probability of getting to s’ from s via a


'

)'(),|'(maxarg)(*
sa

sUassP s 

12/16/2022

13

26

Example

 To find the best action in (1,1)

 We have to do this for all fields!!!!
























RIGHTUUU

DOWNUU

LEFT

UP

)1,1(1.0)2,1(1.0)1,2(8.0

)1,2(1.0)1,1(9.0

 0,7107

 0,7456

maxarg)1,1(*


'

)'(),|'(maxarg)(*
sa

sUassP s 

27

Example

 To find the best action in (1,1)

 give Up as best action


'

)'(),|'(maxarg)(*
sa

sUassP s 





















RIGHT

DOWN

LEFT

UP

 .67070

 0,7

 0,7107

 0,7456

maxarg)1,1(*

12/16/2022

14

Value Iteration: the result

• Initialize the utility of each non-terminal state si to

U0(i) = 0

• For t = 0, 1, 2, …, do:

Ut+1(i)  R(i) + maxa SkP(k | a.i) Ut(k)

Ut([3,1])

t0 302010

0.611

0.5

0
-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

28

The Reward is important

- --

29

12/16/2022

15

Infinite Horizon

30

-1

+1

2

3

1

4321

In many problems, e.g., the robot
navigation example, histories are
potentially unbounded and the same
state can be reached many times

One trick:
Use discounting to make infinite
Horizon problem mathematically
tractable

U(i) = R(i) + g maxa SjP(j | a.i) U(j)

Value Iteration (finite and non-finite)

31

12/16/2022

16

Bellmann eq. is a contraction

• two important properties of contractions:
 A contraction has only one fixed point; if there were

two fixed points they would not get closer together

when the function was applied, so it would not be a

contraction.

 When the function is applied to any argument, the

value must get closer to the fixed point, so

repeated application of a contraction always reaches

the fixed point in the limit.

32

Value iteration

• Let Ui denote the vector of utilities for all

the states at the ith iteration. Then the Bellman update

equation can be written as

33

Ui+1 ⃪ ���

12/16/2022

17

Value iteration

• use the max norm, which measures the “length” of a vector

by the absolute value of its biggest component:

• Let Ui and U’i be any two utility vectors. Then we have

34

||U|| = maxs |U(s)|

||BUi –BU‘i|| ≤ g||Ui –U‘i|| 17.7

Value iteration

36

12/16/2022

18

Value iteration

• From the contraction, it can be shown that if the update

is small (i.e., no state's utility changes by much), then the

error, compared with the true utility function, also is

small. More precisely,

37

if ||Ui+1 – Ui|| < e(1g)/g then ||Ui+1 – U|| ≤ e (17.8)

This is the stopping criteria for value iteration

Value iteration

• But the crucial question is!!!! How well will I do using this

utility function?

• policy loss

Uπi (s) is the utility obtained if πi is executed starting in s,

policy loss ||Uπi – U|| is the most the agent can lose by

executing πi instead of the optimal policy π*

38

12/16/2022

19

Value iteration

• The policy loss of πi is connected to the error in Ui by the

following inequality:

39

if ||Ui – U|| < e then ||Uπi – U||< 2e (17.9)

Policy Iteration

• Pick a policy P at random

40

12/16/2022

20

Policy Iteration

• Pick a policy P at random

• Repeat:

 Policy evaluation
Compute the utility of each state for P

Ut(i)  R(i) + SkP(k | P(i).i) Ut(k)

41

• Pick a policy P at random

• Repeat:

 Policy evaluation
Compute the utility of each state for P

Ut(i)  R(i) + SkP(k | P(i).i) Ut(k)

 Policy improvement:
Compute the policy P’ given these utilities

P’(i) = arg maxa SkP(k | a.i) U(k)

Policy Iteration

42

12/16/2022

21

Policy Iteration

• Pick a policy P at random

• Repeat:

 Policy evaluation:
Compute the utility of each state for P:

Ut(i)  R(i) + SkP(k | P(i).i) Ut(k)

 Policy improvement:
Compute the policy P’ given these utilities

P’(i) = arg maxa SkP(k | a.i) U(k)

 If P’ = P then return P
43

Policy Iteration

44

12/16/2022

22

Linear equations

• By removing the max operator (Value Iteration)
we can also solve the set of linear equations:

U(i) = R(i) + SkP(k | P(i).i) U(k)

(often a sparse system)

• Suppose we have P(1).1  Up P(2).2=Up

U(1,1)= -0.04 + 0.8U(1,2)+0.1U(1,1)+0.1U(2,1)
U(1,2)= -0.04 + 0.8U(1,3)+0.2U(1,2)
…

• Can be solved in O(n3) by standard linear algebra
methods

• For large state spaces we can mix value iteration and
policy iteration

45

Further optimization

• All algorithms require updating the utility or policy for all

states at once.

• At each step we can also select a subset for updating

asynchronous policy iteration/mod. value iter.

(can show it will converge if some conditions for initial policy and

utility function hold)

• Leads to heuristic algorithms that concentrate on states

that are likely to be reached by a good policy.

 “if one has no intention of throwing oneself off a cliff, one should

not spend time worrying about the exact value of the resulting

state”

46

12/16/2022

23

Summary

• Decision making under uncertainty

• Sequential decision making

 Utility function

 Value iteration

 Policy iteration

47

