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Lecture

 Lecture: Tuesday, 8:00 — 9:30, D-1.025

 pdf files of the lecture will be available on
StudlIP.
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Exercise

« Thursday, 15:00-16:30, H-0.08
First exercise: 27.10

| will upload exercise sheets every week,
after the lecture.

 After the exercise, | will upload the solution
as pdf.




Literature

Chapters 2-5, 13- 17

http://aima.cs.berkeley.edu
- with code repository
- further readings

rtificial Intelligence
. o A Modern Approach
Norvig Third Edition

Stuart
Russell
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Literature

YOAV SHOHAM
KEVIN LEYTON-BROWN

Finally. we ask you not to link directly to the PDF or to distribute it electronically. Instead. we
invite you to link to http: //www.masfoundations.org. This Will allow us to gauge the level of
interest in the book and to update the PDF to keep 1t consistent with reprintings of the book.




Main Topics

Solving Problems by Searching
Adversarial Agents

Constraint Satisfaction Problems
Bayesian Networks

Probabilistic Reasoning Over Time
Decision Making

Game Theory

Mechanism Design




What is an Agent? (Wooldridge)

« Trivial (non-interesting) agents:
¢+ thermostat
+ UNIX daemon (e.qg., xbiff)

* An intelligent agent is capable of flexible
autonomous action in some environment

- By flexible, we mean:
* reactive
¢ pro-active
+ social
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Reactivity

« A reactive system is one that maintains an ongoing
interaction with its environment, and responds to changes
that occur in it (in time for the response to be useful)

« The real world is more complicated: things change,
information is incomplete. Many (most?) interesting
environments are dynamic




Proactiveness

« Reacting to an environment is easy (e.g.,
stimulus — response rules)

- But we generally want agents to do things for us
« Hence goal directed behavior

- Pro-activeness = generating and attempting to
achieve goals

+ Not driven solely by events
+ Taking the initiative
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Balancing Reactive and Goal-

___Oriented Behavior

We want our agents to be reactive, responding
to changing conditions in an appropriate (timely)
fashion

We want our agents to systematically work
towards long-term goals

These two considerations can be at odds with
one another

Designing an agent that can balance the two
remains an open research problem

10




Social Ability

« The real world is a multi-agent environment:
we cannot go around attempting to achieve
goals without taking others into account

- Some goals can only be achieved with the
cooperation of others

« Social ability in agents is the ability to interact
with other agents (and possibly humans) via

some kind of agent-communication language.

Goal is to fulfill the design objectives
commitments/cooperation.

11
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Agents (Norvig, Russell)

« An agent is anything that can be viewed as
perceiving its environment through sensors and
acting upon that environment through actuators

« Human agent. eyes, ears, and other organs for
sensors; hands, legs, mouth, and other body
parts for actuators

» Robotic agent. cameras and infrared range
finders for sensors; various motors for actuators

12




Agents and environments

percepts

actlons

actuators

«  The agent function maps from percept histories to actions .
f.:P*> A

«  The agent program runs on the physical architecture to produce f

« agent = architecture + program

13
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» Percepts: location and contents, e.g.,
[A,Dirty]

 Actions: Left, Right, Suck, NoOp

Vacuum-Cleaner World

14




A Vacuum-Cleaner Agent

Percept sequence Action
(A, Clean) Right
(A, Dirty] Suck

(B, Clean] Le ft

(B, Dirty| Suck
[
[

A, Clean), [A, Clean] Right
A, Clean), [A, Dirty] Suck

15
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Performance measure

* An agent should strive to "do the right thing", based on
what it can perceive and the actions it can perform.

* Success to be measured w.r.t. an agent-local
perspective of environment states.

« Performance measure: An objective criterion for success
of an agent's behavior.

+ Performance measure of a vacuum-cleaner agent could be
amount of dirt cleaned up, amount of time taken, amount of
electricity consumed, amount of noise generated, etc.

16




Rational Agents

- Rational Agent: For each possible percept
sequence, a rational agent

+ should select an action that is expected to maximize
its performance measure,

+ given the evidence provided by the percept sequence
and whatever built-in knowledge the agent has.

« Rational = Intelligent

 Rationality is distinct from omniscience (all-
knowing with infinite knowledge)

17
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Autonoumous Agents

- Agents can perform actions in order to obtain
useful information (information gathering,
exploration)

- An agent is autonomous if its behavior is
determined by its own experience (with ability to
learn and adapt)

18




Applications

Robotics: Drone, Explorer, Rescue BOT
Web Agents: Personalized Search Egines
Logistics: Tour planning

Medicine: Diagnosis, Surgery, ...

19
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First task in agent design: PEAS

Must first specify the setting/task environment for
intelligent agent design.

« Performance measure
* Environment

« Actuators

« Sensors

20
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- Consider, e.g., the task of designing an automated
taxi driver:

* Performance measure:
= Safe, fast, legal, comfortable trip, maximize profits, ...

+ Environment:
= Roads, other traffic, pedestrians, customers, ...

+ Actuators:
= Steering wheel, accelerator, brake, signal horn, ...

+ Sensors:
= Cameras, sonar, speedometer, GPS, odometer, engine sensors,

PEAS

21
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PEAS

« Agent: Part-picking and sorting robot
+ Performance measure:
= Percentage of parts in correct bins

¢ Environment.
= Conveyor belt with parts, bins

+ Actuators:
= Jointed arm and hand, ...

+ Sensors:
= Camera, joint angle sensors. ...

22
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Environment Types

Fully observable vs. partially observable: An agent's sensors give it
access to the state of the environment at each point in time.

Deterministic vs. stochastic: The next state of the environment is
completely determined by the current state and the action executed
by the agent. If the environment is deterministic except for the
actions of other agents, then the environment is strategic.

Episodic vs. sequential: The agent's experience is divided into
atomic "episodes" (each episode consists of the agent perceiving
and then performing a single action), and the choice of an action in
each episode depends only on the episode itself.

23
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Environment Types

« Static vs. dynamic: The environment is unchanged while
an agent is deliberating. (The environment is
semidynamic if the environment itself does not change
with the passage of time but the agent's performance
score does)

« Discrete vs. continuous: Discrete if there are a limited
number of distinct, clearly defined percepts, states and
actions.

« Single agent vs. multiagent: An agent operating by itself

in an environment.
24
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Environment Types

Chess with Chess without Taxi driving
a clock a clock
Fully observable i
Deterministic
Episodic
Static
Discrete
Single agent

The environment type largely determines the agent design

« The real world is (of course) partially observable, stochastic,
sequential, dynamic, continuous, multi-agent

25
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Environment Types

Chess with Chess without Taxi driving
a clock a clock

Fully observable Yes Yes No
Deterministic
Episodic
Static
Discrete
Single agent

« The environment type largely determines the agent design

The real world is (of course) partially observable, stochastic,
sequential, dynamic, continuous, multi-agent

26
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Environment Types

Chess with Chess without Taxi driving
a clock a clock
Fully observable Yes Yes No
Deterministic Strategic Strategic No
Episodic
Static
Discrete
Single agent

The environment type largely determines the agent design

« The real world is (of course) partially observable, stochastic,
sequential, dynamic, continuous, multi-agent

27
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Environment Types

Chess with Chess without Taxi driving
a clock a clock
Fully observable Yes Yes No
Deterministic Strategic Strategic No
Episodic No No No
Static
Discrete
Single agent

« The environment type largely determines the agent design

The real world is (of course) partially observable, stochastic,
sequential, dynamic, continuous, multi-agent

28
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Environment Types

Chess with Chess without Taxi driving
a clock a clock
Fully observable Yes Yes No
Deterministic Strategic Strategic No
Episodic No No No
Static Semi Yes No
Discrete
Single agent

The environment type largely determines the agent design

« The real world is (of course) partially observable, stochastic,
sequential, dynamic, continuous, multi-agent

29
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Fully observable
Deterministic
Episodic

Static

Discrete

Single agent

Environment Types

Chess with Chess without Taxi driving
a clock a clock

Yes Yes No
Strategic Strategic No

No No No

Semi Yes No

Yes Yes No

« The environment type largely determines the agent design

The real world is (of course) partially observable, stochastic,
sequential, dynamic, continuous, multi-agent

30
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Fully observable
Deterministic
Episodic

Static

Discrete

Single agent

Environment Types

Chess with Chess without Taxi driving
a clock a clock

Yes Yes No
Strategic Strategic No

No No No

Semi Yes No

Yes Yes No

No No No

The environment type largely determines the agent design

« The real world is (of course) partially observable, stochastic,
sequential, dynamic, continuous, multi-agent

31
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Mechanisms for multi-agent
_________environments

« Customer wishes to place long-distance call
 Carriers simultaneously bid, sending proposed prices
« Phone automatically chooses the carrier (dynamically)

MCI
50,15

AT&T Sprint

32
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Best Bid Wins

 Phone chooses carrier with lowest bid
 Carrier gets amount that it bid

33
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v" Distributed
v' Symmetric
x Stable
x Simple

0%
“Maybe I can
bid as high as
$0.21...”

Attributes of the

Carriers have an
incentive to
invest effort in
strategic
behavior

AT&T

Sprint

” $0.20

$0.23

34

17



Best Bid Wins, Gets Second Price

SSaRebpaa e

* Phone chooses carrier with lowest bid
« Carrier gets amount of second-best price

35
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Attributes of the Vickrey Mechanism

Carriers have no
incentive to
invest effort in

v Stable strategic

v Simple behavior

v" Distributed
v' Symmetric

AT&T

QOO Mmcl s0.20 Sprint

“I have no
reason to
overbid...”

$0.23

36

18



17.10.2022

Agent Types

* Five basic types in order of increasing
generality:
+ Simple reflex agents
+ Model-based reflex agents
+ Goal-based agents
+ Utility-based agents

¢ Learning agents
see lecture Machine Learning

salnjea} ppe

37




Simple Reflex Agents

What the waorkd
is lilke now
— - What action |
Condition—action rules

19



Simple Reflex Agent

 Drawbacks:

+ No autonomy
+ Decision depends on current percepts.
+ Sensitive to sensor fault

39

17.10.2022



Model-Based Reflex Agents

¥hat my actions do

— - What action |
Condition-action rules

State
What the workd
How the world evolves

20



Goals for Agents

- We build agents in order to reach a
goal for us

« The goals must be specified by us...

- But we want to tell agents what to do
without telling them how to do it
- Planning

41
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Goal-Based Agents

State

What the world
Henw the world evolves i like now
. What it will be like
What my actions do if | b tion A

What action |

21



Utility-Based Agents

What the world
Hiner the wiorld evalves i like now
: What it will be like
What my actions do i1 tion A

- How happy | will be
Litility in such a state

What action |
should do now

|
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Learning Agents

Performance standard

Critic
Learning Performance
element element

Problem
generator

4

22



* How to represent the states of agents?

« Atomic

- State is a black box.

« Example:
Want to travel from city B to C. Cities are represented as
names.

Representation of agent states

46
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- Factored

OHU..OO

m!noooo

- A state consists of a vector of attribute values

« Example: A car with GPS location, Fuel, radio station, ...

Representation of agent states

47

23



Representation of agent states

e Structured

» A state includes objects, each of which may have

attributes of its own as well as relationships to other
objects

« Example: natural language understanding

48
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Al first approach:

~__Deductive Reasoning Agents

« How can an agent decide what to do using
theorem proving?

- Basic idea is to use logic to encode a theory
stating the best action to perform in any given
situation

- Let:

+ p be this theory (e.g. a set of rules)

* A be alogical database that describes the current
state of the world

* Ac be the set of actions the agent can perform
* A |--,0 mean that ¢ can be proven from A using p

49
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Deductive Reasoning Agents

[* try to find an action explicitly prescribed */
foreach a € Ac do
if A |-, Do(a) then
return a
end-if
end-for
[* try to find an action not excluded */
foreach a € Ac do
if A |4, —Do(a) then
return a
end-if
end-for
return null I* no action found */

50

17.10.2022



* Problems:
* how to convert video camera input to logical description?
¢ decision making assumes a static environment
+ decision making using first-order logic is undecidable!

- Even when we use propositional logic, decision
making in the worst case means solving NP-complete
problems (= bad news!)

Deductive Reasoning Agents

51

25



 Practical reasoning consists of two
activities:
* deliberation

deciding what state of affairs we want to
achieve

* means-ends reasoning
deciding how to achieve these states of affairs

Practical Reasoning

52
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What is Means-End Reasoning?

- Basic idea is to give an agent:
+ representation of goal to achieve
+ representation of actions it can perform
+ representation of the environment
and have it generate a p/an to achieve the goal

- Essentially, this is
automatic programming

53

26



The Blocks World

A T 1
B

C

« We'll illustrate the techniques with the
blocks world

« Contains a robot arm, 3 blocks (A, B, and
C) of equal size, and a table

54
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The Blocks World Ontology

« To represent this environment, need an
ontology
On(x, y) obj x on top of obj y
OnTable(x) obj x is on the table
Clear(x) nothing is on top of obj x
Holding(x) arm is holding x

55




The Blocks World

* Here is a representation of the blocks
world described above: —
Clear(A4) A -
On(4, B) B
OnTable(B)
OnTable(C)

« Use the closed world assumption:
anything not stated is assumed to be false

56
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* Here is a goal:

The Blocks World

« A goalis represented as a set of formula

OnTable(A) A OnTable(B) A OnTable(C)

—

B A

T

C

57
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The Blocks World

» Actions are represented using a technique that was
developed in the STRIPS planner

- Each action has:

¢ a name
which may have arguments
¢ a pre-condition list
list of facts which must be true for action to be executed

* a delete list
list of facts that are no longer true after action is performed

¢ an add list
list of facts made true by executing the action

Each of these may contain variables
58
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The Blocks World Operators

B

« Example 1:

The stack action occurs when the robot arm places the
object x it is holding is placed on top of object y.
Stack(x, y)
pre  Clear(y) A Holding(x)
del  Clear(y) A Holding(x)
add  ArmEmpty A On(x, y)

59
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The Basic STRIPS Idea

- Place goal on goal stack:

Goall

- Considering top Goal1, place onto it its subgoals:

GoalS1-2
GoalS1-1
Goall

- Then try to solve subgoal GoalS1-2, and
continue...

61
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Stack Manipulation Rules, STRIPS

If on top of goal stack:

Then do:

Compound or single goal
matching the current state description

Remove it

Compound goal not matching
the current state description

1. Keep original compound goal on stack
2. List the unsatisfied component goals on
the stack in some new order

Single-literal goal not matching the
current state description

Find rule whose instantiated
add-list includes the goal, and

1. Replace the goal with the
instantiated rule;

2. Place the rule’s instantiated
precondition formula on top of stack

Rule 1. Remove rule from stack;

2. Update database using rule;

3. Keep track of rule (for solution)
Nothing Stop

62
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STRIPS in Action

SIATE DESCRIPTION

3"
5 m

CLEAR(B)
CLEAR(C)
ONCA)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

GOALSTACK

ON(C.B) & ON(AC)

goal decomposition

STATE DESCRIPTION
CLEAR(B)

CLEAR(C)
ON{C.A)

HANDEMPTY

GOALSTACK

ONAC)
ON(C,B)
ON(C.B) & ON(AC)

goal decomposition

ONTABLE(A}
A [H ONTABLE(B)
% 4
K

,’
not promising
(why is this?)

STATE DESCRIPTION

GOALSTACK

CLEAR(B) ON(C.B)
CLEAR(C) ONAC)
ON(C.A) ON(C,.B) & ONIAC)

ONTABLE(A)
[‘E’I [B  ONTABLE®B)

ARMEMPTY

63
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STRIPS in Action

T CLEAR(B)

O

CLEAR(C)
ON(C.A)
ONTABLE(A)
ONTABLE(B)
HANDEMPTY

GOALSTACK
ON(C.B)

ON{A.C)

ON(C.B) & ON(A.C)

production rule

STATE DESCRIPTION

2
< m

CLEAR(B)
CLEAR(C)
ON(C.A)
ONTABLE(A)
ONTABLE(B)
HANDEMPTY

GOALSTACK

CLEAR(B) & HOLDING(C)

@ stack(x,y)

i P&D: HOLDING(x),
CLEAR(Y)

2 A: HANDEMPTY,
ON(x,y), CLEAR(x)

stack((',B) *
ON(ALC)
ON(C.B) & ON(A.C)

Solution = {}

|

F-rule

64
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STATE DESCRIPTION GOAL STACK
CLEAR(B) CLEAR(B) & HOLDING{C)
CLEAR(C) stack(C.B)

ON(C A ONCAL )

ONTABLE(A) ON(C,B) & ON(AC)
A | iﬂ ONTABLE(R)

HANDEMPTY

.’.0'
L
A

STATE DESCRIPTION GOALSTACK
CLEAR(B) HOLDINGIC)
CLEAR(C) CLEAR(B)
ON(C.A) CLEAR(B) & HOLDING{C)
ONTABLE(A) stack(C.B)

A m ONTABLE(B) OMNAC)

HANDEMPTY OMNC.B) & ON[ALL)

!

Solution = {}

STRIPS in Action

production rule

goal decomposition

65
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STATE DESCRIPTION

LOAL STACK

CLEAR(B)

CLEAR(C)

ON(C.A)
ONTABLE(A)
A [B] onTaBLE®)

HANDEMPTY

HOLDING(C)

CLEAR(B)

CLEAR(B) & HOLDING(C)
stack{C.B)

ON(AC,)

ON(C,B) & ON(A.C)

. production rule

STATE DESCRIPTION
CLEAR(B)
CLEAR(C)
ON(C.A)
d ONTABLE(A)
m ONTABLE(B)

HANDEMPTY

GOALSTACK
HANDEMPTY & CLEAR(C) &
ON(C, v)
unstack({C, )
CLEARIBE)
CLEAR(B) & HOLDING({C))
stack(C.B)
AL )
ON(C.B) & ON(A,O)

Solution = {} i

STRIPS in Action

@ unstack(x,y)
= P&D:
HANDEMPTY,
CLEAR(X), ON(x,y)
i A HOLDING(x),
CLEAR(Y)

66
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STRIPS in Action

STATE DESCRIPTION GOAL STACK
o HANDEMPTY & CLEAR(C) &
CLEAR(R) ON(C. vy
"LEAR(C) unstack(C. v) -
(] ON(C.A) CLEAR(B) = unstack(x,y)
m ONTABLL{A) CLEAR(B) & HOLDINGIC ) @ P&D: HANDEMPTY,
ONTABLE(B) stack(C.B) CLEAR(x), ON(x,y)
HANDEMFTY ONIAL) =A: HOLDING(K),
ON(C,B) & ON(AC) CLEAR(Y)

Substitute {A/v}, then apply
unstack(C,A) then stack(C,B) o stack(x,y)

STATE DESCRIPTION GOAL STACK = P&D: HOLDING(X),
|J'| CLEAR(y)
CLEAR(D) ON(AC) = A: HANDEMPTY
CLEAR(A) ON(C,B) & ON{A,C) '
ON(C.B) ON(x,y), CLEAR(X)
Al B ONTABLE(A)
/ ONTABLE(B)
HANDEMPTY

‘ Solution = {unstack(C,A). slack(C,B)}_ 67




STRIPS in Action

Al

al

STATE DESCRIMTION

GOALSTACK

CLEAR(C)
CLEAR{A)
ON(C B
ONTABLE(A)

ONTABLE(B)
HANDEMPTY

ONTABLE(A) & CLEAR(A) &
HANDEMFTY

pickup(A)

CLEAR(C) & HOLDING(A)

stack(ALC)

DNIC, By & ON(AC)

Apply pickup(A)
And then stack(A,C)

=

=

STATE DESCRIPTION

ON(A.C)
ON(C.B)
CLEAR(A)
ONTABLE(B)

HANDEMPTY

GOALSTACK
NIL

= pickup(x)
= P&D: ONTABLE(x),
CLEAR(Xx), HANDEMPTY
= A: HOLDING(x)

@ stack(x,y)

= P&D: HOLDING(x),
CLEAR(y)

i A: HANDEMPTY,
ON(x,y), CLEAR(X)

‘ Solution plan = {unstack(C,A), stack(C,B),
pickup(A), stack(A,C)}

68
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Problem types

Single-state problem: Deterministic, fully observable

+ Agent knows exactly which state it will be in; can calculate optimal
action sequence to reach the goal

Multiple state problem: Deterministic, partially/not observable

+ Agent must reason about sequences of actions and states
assumed while working towards goal state.

Contingency problem: Nondeterministic and partially observable
+ Percepts provide new information about current state
+ Solution is a contingent plan or policy
+ Ofteninterleave search and execution
Exploration problem: Unknown state space
+ Discover and learn about environment while taking actions

23.10.2022



Example: vacuum world

. Sj . - 1 2
Single-state, start in #5. :ﬂ - - f
Solution?
[Right, Suck] 3[4 4 =)
- - 3
« Multiple-state, start in
{1,2,3,4,5,6,7,81e.g., S| .| & |=4
Right goes to {2,4,6,8}
Solution? 7 | = 8 =)

[Right,Suck,Left, Suck]
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Example: vacuum world

1 =) 2 =)
off | 2R o | BB
L oFF
5 | =) 6 =)
FR o2F
- Contingency 7 | =) 8 =]

+ Nondeterministic: Suck may
dirty a clean carpet

+ Partially observable: location, dirt at current location.
+ Percept: [L, Clean], i.e., start in #5 or #7
Solution :




Example: vacuum world

1 | =) 2 =)
ogf | o8 R | 28
3 | =) 4 =)
L oFR
5 |=d) 6 =)
gE o
« Contingency 7 | =4 8 =)

+ Nondeterministic: Suck may
dirty a clean carpet

+ Partially observable: location, dirt at current location.
+ Percept: [L, Clean], i.e., start in #5 or #7
Solution? [Right, if dirt then Suck]




Solving problems by searching
I ————

 We will discuss solutions for all the
different settings.

« We start with simple searches and modify
them for more complex settings

23.10.2022



Tree search algorithms
e —

- Basic idea:

+ offline, simulated exploration of state space by
generating successors of already-explored states
(a.k.a. expanding states)

Function Tree-Search(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state problem

loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end




Measuring search performance

e —

» A search strategy is defined by picking the order of node
expansion

- Strategies are evaluated along the following dimensions:
+ completeness: does it always find a solution if one exists?
+ time complexity: number of nodes generated
+ space complexity: maximum number of nodes in memory
+ optimality: does it always find a least-cost solution?
« Time and space complexity are measured in terms of

+ b: maximum branching factor of the search tree
+ d: depth of the least-cost solution

+ m: maximum depth of the state space (may be «)

23.10.2022



Uninformed search strategies
e —————————————————

Uninformed search strategies use only the
information available in the problem definition

- Breadth-first search

« Depth-first search

* Depth-limited search

- |terative deepening search

10




Breadth-first search

» Expand shallowest unexpanded node

* Implementation:

¢+ fringe is a FIFO queue, i.e., new successors

go at end

>®

11
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Time complexity of breadth-first
search

o [fa goal node is found on depth d of the tree, all nodes up till that
depth are created.

o Thus: O(t7)

12




Space complexity of breadth-
first

o Largest number of nodes in QUEUE is reached on the level d of
the goal node.

-d

\éz > >m
(35) J

» QUEUE contains all @ and (G) nodes. (Thus: 4).
e In General: b

AN\

18
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Properties of breadth-first search

Complete? Yes (if b is finite)
Time? 1+b+b?+b3+... +b? = O(b9)

Space? O(b*7) (keeps every node in memory)
O(b?) (only fringe)

Optimal?  Yes (if cost = 1 per step)

14




Complexity example

Depth Nodes Time Memory
2 110 11 milliseconds 107 kilobytes
4 11,110 11 milliseconds 10.6 megabytes
6 10° 1.1 seconds 1 gigabyte
8 10% 2 minutes 103 gigabytes
10 10%0 3 hours 10 terabytes
12 1012 13 days 1 petabyte
14 101 3.5 years 99 petabytes
16 1016 350 years 10 exabytes

Figure 3.13  Time and memory requirements for breadth-first search. The numbers shown
assume branching factor b = 10; 1 million nodes/second; 1000 bytes/node.

15
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Depth-first search

« Expand deepest unexpanded node

16




Properties of depth-first search

Complete? No: fails in infinite-depth spaces
- complete in finite spaces

Time? O(b™): terrible if m is much larger than d

+ but if solutions are dense, may be much faster than
breadth-first

Space? O(bm), i.e., linear space!
Optimal? No

14
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Depth-limited search

depth-first search with depth limit /, i.e., nodes at depth /
have no successors

Solves infinite path problem
Incomplete if /I<d (shallowest goal node)
Nonoptimal if />d

Limit=2

18




Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth+ 0 to oo do
result+— DEPTH-LIMITED-SEARCH( problem, depth)
if result # cutoff then return result

19
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Iterative deepening search

imit=0 *® e

imit = 1 @

L N O N

20
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Iterative deepening search
B ———

Number of nodes generated in a depth-limited search to
depth d with branching factor b:

— 1 1 2 d-2 a-1 d
Np sgrs = b0+ b + b2+ ...+ b2 + pd1 + b

* Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

Nips = (d+1)b% + d b? + (d-1)b? + ... + 3bd2 +2bd1 + 1bd

« Forb=10, d =5,
¢ Nps=1+10+100 + 1,000 + 10,000 + 100,000 = 111,111
¢+ Nps=6+50+400 + 3,000 + 20,000 + 100,000 = 123,456

« Overhead = (123,456 - 111,111)/111,111 = 11%

21
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Properties of iterative deepening
search

« Complete? Yes
« Time? (d+1)b% + d b’ + (d-1)b2 + ... + b = O(b)

« Space? O(bd)
« Optimal? Yes, if step cost = 1

22
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Summary of algorithms

Gl Breadth- Uniform- Depth- Depth- Iterative Bidirectional
First Cost First Limited Deepening  (if applicable)
Complete? Yes® Yeso:® No No Yes® Yes®d
Time o(b?) opH+LE /<y O(™) ot o) O(b3/2)
Space o(b?) OB /ey O(bm) O(bf) O(bd) O(b4/2)
Optimal? Yes® Yes No No Yes® Yes®?

Figure 3.21  Evaluation of tree-search strategies. b is the branching factor; d is the depth
of the shallowest solution; m is the maximum depth of the search tree; [ is the depth limit.
Superscript caveats are as follows:  complete if b is finite; b complete if step costs > ¢ for
positive €; ¢ optimal if step costs are all identical; ¥ if both directions use breadth-first search.

23
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Repeated states

A

 Failure to detect repeated states can turn
a linear problem into an exponential one!

24
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Graph search

function GRAPH-SEARCH( problem, fringe) returns a solution, or failure

. Closed < an empty set
fringe +— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE- FRONT( fringe)
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
if STATE[node] is not in closed then
add STATE[node] to closed
fringe < INSERT ALL(EXPAND(node, problem), fringe)

Remember nodes visited

25

23.10.2022



Beyond classical search
e ———————————————

 Informed search
+ Greedy best-first search
* A" search
« Admissible heuristics, creating heuristics

» Local search algorithms
+ Hill-climbing search
+ Simulated annealing search
¢ Local beam search
+ Genetic algorithms

« Searching with nondeterministic actions

26
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Best-first search

 |dea: use a heuristic evaluation function f(n) for each
node
+ estimate of "desirability"
- Expand most desirable unexpanded node

 |Implementation:

Order the nodes in fringe in decreasing order of
desirability

« Special cases:
* greedy best-first search
+ A’ search

27
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Greedy best-first search

« Evaluation function
f(n) = h(n) (heuristic)= estimate of cost from n to goal
e.g., hg p(n) = straight-line distance from n to goal node

« Greedy best-first search expands the node that appears
to be closest to the goal

- Stop if the goal node appears on the fringe

e ————

28
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Greedy best-first search example:
Go from Ato B

140
99
211

450

W M T XX O N >

366
374
253
193
100
176

29
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Properties of greedy best-first

search
[ —————

Complete? No — can get stuck in loops,
but can use graph search

Time? O(b™), but a good heuristic can give
dramatic improvement

Space? O(b™) -- keeps all nodes in memory
Optimal? No

30
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A’ search

 |ldea: avoid expanding nodes that are already
expensive

- Evaluation function f(n) = g(n) + h(n)
g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

« (Goal node must also be expanded

e ——

32
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A* search example: Go from A to B

> (&) f(n) = g(n) + h(n)

> 2

140+253=393 75+374=449

W T UV XU »Ww N >

366
374
253
193
100
176

33
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A* search example: Go from A to B

280+366=646 280+374=654
239+176=415 520+193=413

366
374
253
193
100
176

W M T XX O N >

34




A* search example: Go from A to B

300+253=553 317+100=417
366

374
253
193
100
176

W T UV XU »Ww N >




A* search example: Go from A to B

W M T XX O N >

366
374
253
193
100
176

36
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A* search example: Go from A to B

591 450 553

414+193=607  418+0=418

W T UV XU »Ww N >

366
374
253
193
100
176

34
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A* search example: Go from A to B

366
374

253
193
100
176

W M T XX O N >

38
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Admissible heuristics

A heuristic h(n) is admissible if for every node n,

h(n) < h'(n), where h’(n) is the true cost to reach the goal state from n.
An admissible heuristic never overestimates the cost to reach the goal,
i.e., it is optimistic

Example: hg, p(n) (never overestimates the actual road distance)
Theorem: If h(n) is admissible,

A’ using TREE-SEARCH is optimal
For graph searches we nee a stronger criteria

39
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Consistent heuristics
e

- “each side of a triangle cannot be longer than the sum of the other
two sides”

« A heuristic is consistent if for every node n, every successor n'of n
generated by any action a,

h(n) < c(n,a,n’) + h(n’)

- If his consistent, we have

f(n)  =g(n’) + h(n’)
=g(n) + ¢(n,a,n') + h(n')
2g(n) + h(n)
=f(n)

* i.e., f(n) is non-decreasing along any path. a

« Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

23.10.2022



Optimality of A"

- A’ expands nodes in order of increasing f value
«  A* will search all path with f(n)<C* (completeness)
« A’ never expands nodes with f>C* (the true cost)

Map, showing contours
at =380, =400, and =420.

41
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Properties of A*
e ———————————

Complete? Yes
Time? The number of states in the goal contour
can still be exponential.

Space?
Keeps all generated nodes in memory,

as do all graph search algorithms.
Optimal? Yes

Not practical for very large scale problems

42
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Admissible heuristics

E.qg., for the 8-puzzle:

* hy(n) = number of misplaced tiles
* h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1
5 6 4
8 3 1 7

Start State

« h,(S)="78

* hy(S) =7 3+1+2+2+2+3+3+2 = 18

Goal State

43
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Empirical Evaluation

d = distance from goal
Average over 100 instances

IDS: Iterative Deepening Search (the best you can do without

any heuristic)

# nodes expanded

N Search Cost
|\ DS A*(hy) A*(hy)
2 b 10 6 6
4 112 13 12
6 680 20 12
8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
16 - 1301 211
18 - 3056 363
20 - 7276 676
22 - 18094 1219
24 - 39135 1641

44
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Dominance
[ —————

If h,(n) = h,(n) for all n (both admissible) then h, dominates h,

- Is h, always better than h,?
« f(n) < C* (true cost)
- Every node h(n) < C* -g(n) will surely get expanded

« Because hy( (n) every node of h, will also be expanded
from h;, and h1 WI|] cause other nodes to be expanded

45
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Relaxed problems
e ———————————————

« A problem with fewer restrictions on the actions is called
a relaxed problem

« The cost of an optimal solution to a relaxed problem is
an admissible heuristic for the original problem

* If the rules of the 8-puzzle are relaxed so that a tile can
move anywhere, then h,(n) gives the shortest solution

 If the rules are relaxed so that a tile can move to any
adjacent square, then h,(n) gives the shortest solution

46
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Local search algorithms
I ——————————————

* In many optimization problems, the path to the goal is
irrelevant; the goal state itself is the solution

- State space = set of "complete" configurations

* Find configuration satisfying constraints, e.g., n-queens;
integrated-circuit design; factory-floor layout,

* In such cases, we can use local search algorithms. Keep
a single "current" state, try to improve it

47
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State space and objective

Funtion

Useful to consider state space landscape

objectiy

e function lobal maximum

shoulder

local maximum

"flat" local maximum

state space
current

state

49
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Hill-climbing search

- "Like climbing Everest in thick fog with
amnesia“ (Russell, Norvig)

function HILL-CLIMBING( problem) returns a state that is a local maximum|
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current «— MAKE-NODE(INITIAL-STATE|[problem])

loop do
neighbor— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current < netighbor

end

24



Hill-climbing search: 8-queens problem

18 . 14 13 . 14
16 15 |2 | 14 (42| 16
14 |[ig| 18 15 |[i8]| 14

14 w 16 16

W16 1= 51 W IS W
18 w 15 w
14 17 . 14 . 18

« The successors of a state are all possible states generated by moving a
single queen to another square in the same column (so each state has

8 X 7=56 successors)
« Cost function: h = number of pairs of queens that are attacking each other,

either directly or indirectly
« h =17 for the above state, best moves are marked. 51
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Hill-climbing search: 8-queens problem

18 (12|14 13 |12 | 14 .
16 15 |18 14 |18 | 16
14 |8 18 15 | 18| 14

14 (14 W3 | 16 16
W1 17 (18 W 16

s i
18 14 W S 15 || W

14 17 |B| 14 |8

H H Byl
H B B B

18

(a) (b)

Figure4.3  (a) An 8-queens state with heuristic cost estimate i =17, showing the value of
h for each possible successor obtained by moving a queen within its column. The best moves

are marked. (b) A local minimum in the 8-queens state space; the state has k=1 but every

successor has a higher cost. 52

25
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Observations
e ————————

« Get stuck 86% vs 14% success

« Taking 4 steps only if successful
3 steps if getting stuck (17 Million states)

 |f sideways are allowed (100), success in 94%. Increase
of cost 21 steps.

* Variants
— Stochastic hill climbing
— First-choice hill climbing
— Random restart

53




Simulated annealing search

|dea: escape local maxima by allowing some “bad” moves

but gradually decrease their size and frequency 5 B

function SIMULATED-ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”
local variables: current, a node

next, a node
T, a “temperature” controlling prob. of downward steps

current — MAKE-NODE(INITIAL-STATE[problem])
for t< 1to oc do

T — schedule[t]

if T'= 0 then return current | Stopping criteria

next — a randomly selected successor of current

AE«— VALUE|next] — VALUE[current]

if AE > 0 then current— next

else current — next only with probability 2 £/

54
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Simulated Annealing

VA
~

I 1
x0 x*

55
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Properties of simulated
annealing search

* One can prove:
If T decreases slowly enough, then simulated annealing
search will find a global optimum/minimum with
probability approaching 1

- Widely used in VLSI layout, airline scheduling,
etc.

e ————

56
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Local beam search
e ————

« Keep track of k states rather than just one

« Start with kK randomly generated states

« At each iteration, all the successors of all k
states are generated

 If any one is a goal state, stop; else select the k
best successors from the complete list and
repeat.

57
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Genetic algorithms

e

« A variant of stochastic beam search. But a successor
state is generated by different operations.

- Start with k randomly generated states (population)

« A state is represented as a string over a finite alphabet
(often a string of Os and 1s)

« Evaluation function (fitness function). Higher values for
better states.

* Produce the next generation of states by selection,
crossover, and mutation

58
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Genetic algorithms

= stochastic local beam search + generate successors from pairs of states

24748552 | 24 31% .| 32752411 32748552 { 3274¢f12
32752411 [ 23 29% | 24748552 24752411 24752411

47
24415124 | 20 26% | 32752411 32752124 - 322124
124

32543213 | 11 14% | 24415 24415411 { 2441541

Fithess Selection Pairs Cross—Over

 Fitness function: number of non-attacking pairs of queens
(mMn=0,max=7+6+5+4+3+2+1=28)

. 24/(24+23+20+11) = 31%
. 23/(24+23+20+11) = 29% etc

59
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Genetic algorithms

Crossover helps iff substrings are meaningful components

GAs # evolution: e.g., real genes encode replication machinery!

* How many crossover, mutations
* How to encode the problem, fitness function
* One (more popular) vs. two child's

60
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Nondeterministic/Uncertain

actions
e —————

« What if the outcome of actions is non
deterministic

- Erratic vacuum cleaner

+* When applied to a dirty square the square is cleaned
and adjacent square sometimes also.

¢+ When applied to a clean square, sometimes dirt is
deposited on that square

=> need to have contingency plan/strategy

61
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Possible states

* The eight possible states of the erratic vacuum

world — states 7 and 8 are goal states

1

d@ 2 d@

08R | 98R ER |08k

‘% 4 ‘4

09%R %R

d@ 6 ,éQ
o8R S

d@ “ 3 d@

62
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Multiple States

« The result of an action is a set of states
« Suck in state 1 returns the set {5,7}

need a contingency plan like:
[Suck, if State=5 then [Right, Suck] else []]

« We also need to generalize the concept of solution,
since for example, if we start in state 1 there is no single
sequence of actions to solve the problem instead we

1

=3

e —

2
2R

3

2SR

1] [ F]

| [

63
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AND-OR Search trees

- Branching is also introduced by the environment choice
of the outcome of actions. 112

When applied to a dirty square the square is cleaned Suck OR-node Right
and adjacent square sometimes also.

When applied to a clean square, sometimes dirt is
deposited on that square

« This leads to
AND-OR trees

* The bold path is

the current plan

31



AND-OR Search trees

* A solution is a subtree
* has a goal node at every leaf
+ specifies one action at OR-nodes
* Includes every outcome branch at AND-nodes

« Leads to if then else or case if more then two
outcomes

e ——

65
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AND-OR Search trees

» Can also be explored by BFS and best-first
methods

« Heuristic functions must be modified to estimate
cost of a contingent solution rather than a
sequence

« The notion of admissibility carries over.

e

66
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Partial Observable Env.

« The vacuum cleaner has only partial information, e.g., if
he is in the left square he does not see the state of the
right square.

If the initial state is left and dirt, we have a belief state
rather than a physical state

« But we also have uncertain actions: Move action may fail

67
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Uncertain actions &
partial observable

Prediction:

b’=Predict(b, a) "
Possible observations in b’ /j.f

[B.Dirn]

/iR

Percepts(b’)={0: 0=PERCEPT(b")} .= ;_
[8, Clean] ‘
Update of belief state: S
b,= UPDATE(b’,0)= {s:0 = PERCEPT(s) and seb’}
Putting all together:
RESULTS (b,a) = {b, : b, = UPDATE(PREDICT(b,a),0) and
0 e PDSH.III]_E—PI?RCEPTS[PREDICT{ELu:l}}
68
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Structure

« Can use different search structures
* E.g. And-Or-Graphs

Right

[B.Dirty] £ N _[B Clean]

69
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and Cognitive Robotics:
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Adversarial Agents
I ——————————————

* In this chapter we cover competitive environments, in
which the agents goals are in conflict, giving rise to
adversarial search problems often known as games.

« Mathematical game theory, a branch of economics,
views any multi-agent environment as a game,
regardless of whether the agents are cooperative or
competitive.




Multi-Agent Games
I ———————

« Agents must anticipate what other agents do

 Criteria:
+ Abstraction: To describe a game we must capture every
relevant aspect of the game.

+ Accessible environments: Such games are characterized by
perfect information

+ Search: game-playing then consists of a search through
possible game positions with actions of other agents

+ Unpredictable opponent: introduces uncertainty thus
game-playing must deal with contingency problems

30.10.2022



Two-player games

e

- A game formulated as a search problem:

* Initial state:  board position and turn
+ Actions/Transition model.  definition of legal moves
¢ Terminal state: conditions for when game is over

+ Utility function:
a numeric value that describes the outcome of the

game. E.g., -1, 0, 1 for loss, draw, win (AKA payoff
function)
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Type of games

The board set for play

25 24 23 22 21 20 18 18 17 16 15 14 13

chance /

Red to play

determini
S N\ 7
perfect information chess, checkers, backgammon
go, othello monopoly
imperfect information bridge, poker, scrabble
Battleship
Z




What is a good move?

o
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The minimax algorithm

e —

« Perfect play for deterministic environments with perfect information
- Basic idea: choose move with highest minimax value
= best achievable payoff against best play
« Algorithm:
1. Generate game tree completely
2. Determine utility of each terminal state

3. Propagate the utility values upward in the tree by applying MIN and
MAX operators on the nodes in the current level

4. At the root node use minimax decision to select the move with the max
(of the min) utility value




Minimax algorithm

MAX

T

CAUIN AN

eMinimize opponent’s chance
eMaximize your chance

Mi




Minimax

/\ MAX
\/ MN

/T\

// /N /\\

12 8246

eMinimize opponent’s chance
eMaximize your chance

MINIMAX-VALUE(n) =
UTILITY(n) if 72 1s a terminal state
MAX e Sucrossors(n) MINIMAX-VALUE(s) if n is a MAX node
N §ypeessors(n) MINIMAX-VALUE(s) if 72 is a MIN node.
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Minimax: Recursive implementation

function MINIMAX-DECISION(state) returns an action
return arg max, . Actrons(s) MIN-VALUE(RESULT(state, a))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY( state)
=
for each a in ACTIONS(state) do
v +— MAX(v. MIN-VALUE(RESULT(s. a)))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY( state)
1 +— o0
for each o in ACTIONS(state) do
v +— MIN(v. MAX-VALUE(RESULT(s. a)))
return v

Complete: Yes, for finite state-space Time complexity: O(b™)
Optimal: Yes, if winning is the goal = Space complexity: O(bm) or O(m)

10




Game vs. search problem
I ———————————————

« Unpredictable opponent >
contingency plan (MINIMAX assumes best playing
opponent)

* Time limits -
cannot explore complete state space, approximate

* Pruning (McCarthy, 1956)

 Finite horizon, approximate
(Zuse, 1945; Shannon 1950,...)

11
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Searching for the next move

e

Complexity: many games have a huge search space

+ Chess: b =35 m=100 = nodes = 35 100
means more than 10'%4 in a search tree and more than 1040
nodes in a search graph. Take several millenniato compute
moves. 35100 = 1() log(35700) = 1() 100%I0g(35) = 1() 100*1,54= 1()154

Resource (e.g., time, memory) limit: optimal solution not
feasible/possible, thus must approximate

. Pruning: makes the search more efficient by discarding portions of
the search tree that cannot improve quality.

. Evaluation functions: heuristics to evaluate utility of a state
without exhaustive search.

12




1. a-f pruning
S

* a-fpruning: the basic idea is to prune portions of the
search tree that cannot improve the utility value of the
max or min node, by just considering the values of nodes

seen so far.

* Does it work? Yes, it roughly cuts the branching factor
from b to Vb resulting in double as far look-ahead than

pure minimax.

18
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a-f pruning: example

MAX

MIN

14




a-f pruning: example

MAX

MIN

15
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a-f pruning: example

MAX

MIN

6 12 8 2 5

MINIMAX(root) = max(min(6,12,8),min(2,a,b),min(5,b,d))
=max(6,z,y) where z=min(2,a,b)<2 and y=min(5,b,d)<5
=6




a-f pruning: general principle

Player

Opponent
If mis better than n for Player
we will never get to n

Player

Opponent

14
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More on the o-f algorithm
S

« Because minimax is depth-first, let’'s consider nodes
along a given path in the tree. Then, as we go along this
path, we keep track of:

+ o the value of the best (i.e., highest-value) choice we have
found so far at any choice point along the path for MAX

+ f:the value of the best (i.e., lowest-value) choice we have found
so far at any choice point along the path for MIN

18




The o-f algorithm:

function ALPHA-BETA-SEARCH(state) returns an action
v +— MAX-VALUE(state. —oc. +00)
return the action in ACTIONS(state) with value v

function MAaX-VALUE(state. o 3) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
YV——0C
for each a in ACTIONS(state) do
v+— MAX(v, MIN-VALUE(RESULT(s.a). cx. [3))
if v > [ then retuwrn v
a+— MAX(av. v)
return v

function MIN-VALUE(state. a. 3) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v +— o0
for each a in AcTIONS(stale) do
2 +— MIN(v. MAX-VALUE(RESULT(s.a) . a. 3))
if v < o then return v
B+— MIN(3, v)

return v

19
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More on the o-f

algorithm
V=-00
MAX Q=-o
v=5
MIN| Min-Value loops | a=-x
B=5

MAX

In Min-Value:

U +— +0C

for each a in AcTIONS(state) do
v +— MIN(v, MAX-VALUE(RESULT(s.a) . cx. 3))
if v < « then return v
B +— MiN(3. v)

return v

20
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More on the a-f

algorithm
e —
V=-00
MAX Q= -o0
v=5
MIN| Min-Value loops | @ =-x
p=35

MAX

In Min-Value:

U +— +0C

for each a in ACTIONS(state) do
v+ MIN(v, MAX-VALUE(RESULT(s.a) . c. 3))
if v < e then return v
B+— MIN(3. v)

refurn v

21
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More on the o-f

algorithm
e —
V=-00
MAX Q=-o
v=5
MIN| Min-Value loops | a=-x
B=5

MAX

In Min-Value:

U +— +0C

for each a in AcTIONS(state) do
v +— MIN(v, MAX-VALUE(RESULT(s.a) . cx. 3))
if v < « then return v
B +— MiN(3. v)

return v

22
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More on the a-f
algorithm

MAX
Max-Value loops

MIN

MAX

In Max-Value:

T— —]
for each a in ACTIONS(state) do
v— MAX(v. MIN-VALUE(RESULT(s.a). a. [3))
if v > [ thenreturn v
a+— MAX(a. v)
return v

23
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More on the o-f
algorithm

MAX
Max-Value loops

MIN

MAX

In Max-Value:

T+——0Q

for each a in ACTIONS(state) do
v +— MAX(v. MIN-VALUE(RESULT(s.a). a. 3))
if v > [ thenreturn v
a+— MAX(a. v)

return v

24
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More on the a-f
algorithm

MAX

MIN

Min-Value loops

MAX

In Min-Value:

U +— +0C

for each a in ACTIONS(state) do
v+ MIN(v, MAX-VALUE(RESULT(s.a) . c. 3))
if v < e then return v
B+— MIN(3. v)

refurn v

25

|
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More on the o-f
algorithm

L

5
5
+

MAX

™™ KR <

MIN| Min-Value loops

nm nn
CJIéU'I

™R <

MAX

In Min-Value:

U +— +0C
for each a in AcTIONS(state) do

v +— MIN(v, MAX-VALUE(RESULT(s.a) . cx. 3))

if v < « then return v
B +— MiN(3. v)
return v

26
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More on the a-f
algorithm

MAX

MIN

Min-Value loops

MAX

In Min-Value:

U +— +0C

for each a in ACTIONS(state) do
v+ MIN(v, MAX-VALUE(RESULT(s.a) . c. 3))
if v < e then return v
B+— MIN(3. v)

refurn v

27
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More on the o-f
algorithm

MAX

MIN

MAX

Max-Value loops

In Max-Value:

T+——0Q

for each a in ACTIONS(state) do
v +— MAX(v. MIN-VALUE(RESULT(s.a). a. 3))
if v > [ thenreturn v
a+— MAX(a. v)

return v

28
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Properties of o-f
e ———————

* Pruning does not affect the final result!!!
« Good move ordering improves effectiveness of pruning
- With perfect ordering, time complexity = O(b™?2)

+ doubles depth of search

* need a heuristic how to order

¢ can easily reach depth 8 => good chess

« A simple example of the value of reasoning about which
computations are relevant (a form of metareasoning)

29

30.10.2022



2. Move evaluation without complete search

e

« The minimax algorithm generates the entire game
search space, whereas the alpha-beta algorithm allows
us to prune large parts of it.

« Complete search is often too complex and impractical.
alpha-beta is still DFS.

- Evaluation function: evaluates value of state using
neuristics and cuts off search

* New MINIMAX:
¢+ CUTOFF-TEST: cutoff test to replace the termination condition
(e.g., deadline, depth-limit, etc.)

+ EVAL: evaluation function to replace utility function (e.g., number

of chess pieces taken) 30

15



Evaluation function

» The evaluation function should order the
terminal states in the same way as the true utility
function (a<b<c...).

« The computation must not take to long!
Significant compared to minimax?

« For nonterminal states, the evaluation function
should be strongly correlated with the actual
chances of winning.

31
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Evaluation functions
e ————

* Most calculate features — e.g., number of pawns
- From that we can form categories, equivalence classes.

* Any category represent states that win, lose or result in
draws.

* If we know 72% lead to win (+1), 20% to loss (0), 8%
drawn (1/2).
Expected value:

- (0,72* +1) + (0,20* 0) + (0,08 * 1/2)= 0,76

32
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Evaluation functions

E.g,

Lo

n
§
L
[
7 %
(&
)
=

{a) White to move (b} White 10 move

Figure*§ FILES: fizures/chess-evaluation3.eps (Tue Nov 3 16:12:33 2009}, Two chess posrhons
that differ only mn the position of the rock at lower nghi. In (a), Black has an advantage of a kmght and

rwo pawns, which should be enough to win the game. In (b)), White wall capture the queen siving it an
advantage that should be strong enough to win

Weighted linear evaluation function: to combine n heuristics

f= w1f1 +w2f2+... +wnfn

w’s could be the values of pieces (1 for pawn, 3 for bishop etc.)
f’s could be the number of type of pieces on the board

38
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Note: exact values do not matter

MAX
MIN ‘x 1& 20
1 4 1 0 2 400

Behaviour is preserved under any monotonic transformation of EvVAL

Only the order matters:
payoff in deterministic games acts as an ordinal utility function

34
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With cutoff and eval

function MAX-VALUE(state, o, (7) returns o uflily value
inputs: sfafe, current state in game
¢v, the value of the best alternative for MAX along the path o stale
4, the value of the best alternative for MIN along the path to state

if CUTOFF-TEST(state, depth) then return EvaL{siate)
W= =
for o, s in SUCCESSORS{state) do
e MAX(v, MIN-VALUE(s, cx, 7))
if v > /4 then return v
e — MAX (o, v)
return v

38
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Minimax with cutoff: viable algorithm?

MINIMAXCUTOFF is identical to MINIMAXVALUE except
1. TERMINAL? is replaced by CUTOFF?
2. UTILITY is replaced by EVAL

Does it work in practice?
b =10, b=35 = m=4
4-ply lookahead is a hopeless chess player!

4-ply ~ human novice
8-ply =~ typical PC, human master
12-ply = Deep Blue, Kasparov

36
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Other Cutoff methods
e

* Quiescent search
apply eval only to positions that are quiescent, have no
big change of value in the near future.
» Forward pruning
considers not all moves in a concrete position.
Beam search is one approach to forward pruning.
* ProbCut
probabilistic alpha-beta with statistical prior knowledge

37
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Games of chance

* Backgammon is a two-player
. - 0 1 2 7 8 g 10 11 12
game with uncertainty. r ,, wr —p  — = ﬂ

*Players roll dices to “" “' o s 4‘*
detirmine what moves to .‘.‘.’ ‘.‘.
make. 'lll.l.ll.l'l'.l.'l

*White/red arrow has just
rolled 5 and 6 and has four
legal moves:

* 5-10, 5-11

*5-11, 19-24

+5-10, 10-16

*5-11, 11-16
*Such games are good for
exploring decision making in
adversarial problems involving
Skill and luck.

HH HVJ

41

| J1L A.L _JL.
25 24 23 22 21 20 19 18 17 16 15 14 13 38
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Game Trees with Chance

Nodes

» Use minimax to compute values
for MAX and MIN nodes

*Use expected values for chance
nodes

* For chance nodes over a max
node, as in C:

expectimax(C) = Sum,(P(d,) *
maxvalue(i))

* For chance nodes over a min
node:

expectimin(N) = Sum,(P(d;) *
minvalue(1))

Max
MAX A\
—~
- Min
CHANCE () O Rois O
136 118
1.1 z
MIN \/ V
Max
CHANCE Rolls (¢)
1/ 1/18 1/18
1.1 1,2 6.5

MAX A A

TERMINAL 2 =t 13

i

selects a move

39
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Algorithm for nondeterministic games

EXPECTIMINIMAX gives perfect play.

EXPECTIMINIMAX (s) =

UTILITY(S) if TERMINAL-TEST(s)
max, EXPECTIMINIMAX(RESULT(s,a))  if PLAYER(s) = MAX
min, EXPECTIMINIMAX (RESULT(s.a)) if PLAYER(s) = MIN

5, P(r)EXPECTIMINIMAX(RESULT (s, 7)) if PLAYER(5) = CHANCE

A version of a-f is possible but only if leaf values
are bounded. WHY??

40
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Nondeterministic games:
the element of chance

expectimax and expectimin, expected values over all possible outcomes

CHANCE ) 2
0.5 0.5
MAX /\ 3 [\ ?
CHANCE ‘@ (O -1 T @ O-1
0.5 0.5 05 0.5 0.5 0.5 0.5 0.5

MIN 2\/ 4\ / o/ -2/ 2/ 8 Y/ o/ -2V

- 4 17 8 ©6 O -—

41
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Nondeterministic games:
the element of chance

Expectimax . 4 = 0.5*3 + 0.5*5
0.5 0.5
MAX A 3 A 5
Expectimin 30 @ - 5 @ @ -
0.5 0.5 0.5 0.5 0.5 0.5 0.5 05

MIN 2y ANy oy -2y 2y 8y oy -2V

4 4 ©6 O - 4 17 8 ©6 D —

42
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Evaluation functions

Order-preserving transformation do not necessarily behave
the same!

MAX

CHANCE

MIN

20 20 30 30 1 1 400 400

43




Games of imperfect information
I ——————————————

* E.g., card games, where opponent's initial cards are unknown
« Typically we can calculate a probability for each possible deal
- Seems just like having one big dice roll at the beginning of the game

- ldea: compute the minimax value of each action in each deal, then
choose the action with highest expected value over all deals

» Special case: if an action is optimal for all deals, it's optimal.

« GIB, current best bridge program, approximates this idea by
¢ generating 100 deals consistent with bidding information
¢ picking the action that wins most tricks on average

44
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Example

* Four card brldge MAX to play flrst
z:m mmmmm mm m m
max [ofoiJealra] 58 [oofc o4 o ol
i [sefoefoalss mmmmm ml E:: m
-
»g lmmmu ll m -
-0,5

45
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Proper analysis
I ——————————————

« Intuition that the value of an action is the average of its
values in all actual states is WRONG

- With partial observability, value of an action depends on
the information state or belief state the agent is in

« Can generate and search a tree of information states
» Leads to rational behaviors such as
+ Acting to obtain information

+ Signalling to one's partner
+ Acting randomly to minimize information disclosure

46
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Summary

«  Games are fun to work on!
« They illustrate several important points about Al
¢ perfection is unattainable = must approximate
good idea to think about what to think about
uncertainty constrains the assignment of values to states
optimal decisions depend on information state, not real state

L 2

L 2

4

47
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Intelligent Autonomous Agents
and Cognitive Robotics
Topic 3: Constraint Satisfaction
Problems

Slides partly from Hwee Tou Ng's
Chapter 5 of AIMA
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Outline

e ————

 Constraint Satisfaction Problems (CSP)
- Backtracking search for CSPs
- Multi-Agents - distributed backtracking




Constraint satisfaction problems (CSPs)

e ——

Standard search problem:

+ state is a "black box" — any data structure that supports
successor function, heuristic function, and goal test

- CSP:

+ state is defined by variables X; (i=1..n) with
¢ values from domain D;

+ goal test is a set of constraints C,, (m=1..z) specifying allowable
combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more
power than standard search algorithms

04.11.2022



Visual example: Map-Coloring

Northern
Territory

Western

Queensland
Australia

South
Australia

New South Wales

Victoria

Variables: WA, NT, Q, NSW, V, SA, T Te=m"s
Domains: Vi, D; = {red, green, blue}

Constraints: adjacent regions must have different colors
¢+ e.g., WA#NT
¢+ or (WANT) e {éred,green),gred,blue),(green,red), (green,blue), (blue,red),
blue,green)




Example: Map-Coloring

Tasm"a

« Solutions are complete and consistent
assignments, e.g.,

* WA =red, NT = green, Q = red, NSW = green, V = red,
SA = blue, T = green

g
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Constraint graph

« Binary CSP: each constraint relates two variables
« Constraint graph: nodes are variables, arcs are

constraints
()
e[ %

()
O e
O

@,

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent sub
problem!




Varieties of CSPs

e —

Discrete variables

+ finite domains:
= nvariables, domain size d - O(d") complete assignments
= e.g., n-queens problem

+ infinite domains:
= integers, strings, etc.
= e.g., job scheduling, variables are start/end days for each job
= need a constraint language, e.g., StartJob, + 5 < StartJob,

Continuous variables
+ e.g., start/end times for Hubble Space Telescope observations

+ linear constraints solvable in polynomial time by linear
programming

04.11.2022



Varieties of constraints

« Unary constraints involve a single variable,
* e.g., SA # green

« Binary constraints involve pairs of variables,
¢ e.g., SA#WA

« Higher-order constraints involve 3 or more
variables




Real-world CSPs
e

Assignment problems
¢ e.g., who teaches what class

Timetabling problems
* e.g., which class is offered when and where; preferences

Hardware configuration

Transportation scheduling

Factory scheduling

10
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Constraint propagation
I ——————

 In CSP an algorithm can do
¢ Constraint propagation = inference
+ Search
¢+ Intertwined or as preprocessing

* The key idea is to create /local consistency

11




Node consistency

- A variable is node-consistent if all the values
satisfy the unary constraints

* Infer the values that are legal for a variable,

¢ e.g. if South Australia does not like green,
eliminate it {red, blue}

¢ e.g. don’t want to teach at 8 pm

e —

12
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Global Constraints
e

* Alldiff (many algorithms)
+ |dea: If m variables have n values and m>n - can not be
satisfied

= Remove any variable with singleton domain and propagate
this into other domains. Repeat as long as there are singleton
domains.

= |f an empty domain is produced or m>n, then an
inconsistency has been detected

13




Global Constraints

 Alldiff (many algorithms)

+ |dea: If m variables have n values and m>n - can not be
satisfied

\ v‘

- 3 variables, two values

14
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Resource Constraints
e

« Resource constraints: Atmost
We can detect an inconsistency simply by checking the

sum of the minimum values of the current domains:
Atmost(10, P1, P2, P3, P4) persons for tasks.

+ Each variable has domain {3, 4, 5, 6}
—> can not be satisfied

+ Each variable has domain {2, 3, 4, 5, 6}
- delete 5and 6

15




Resource Constraints

* Bounds propagation/bounds consistent

+ In complex problems often not possible to enumerate domain
values

+ Constraints:
= Plane capacities for F1=[0, 165] , F2[0, 385]

= Constraint: F1+F2 =420
l \
[35, 165] [255 ,385]

16
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Resource Constraints
e

» Bounds propagation/bounds consistent

+ In complex problems often not possible to enumerate domain
values

+ Constraints:
= Plane capacities for F1=[0, 165] , F2[0, 385]
= Constraint: F1+F2 =420

> F1[35, 165] and F2[255, 385]

+ We say that a CSP is bounds consistent if for every variable X
and for both the lower-bound and upper-bound values of X, there
exists some value of Y that satisfies the constraint between X
and Y for every variable Y . (Often used in praxis)

14




Standard search formulation
e

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far
« Initial state: the empty assignment { }

+ Successor function: assign a value to an unassigned variable that
does not conflict with current assignment

- fail if no legal assignments
« Goal test: the current assignment is complete

1. Every solution appears at depth n with n variables
- use depth-first search

Path is irrelevant

At the root we have n variables and d values b= nd
At depth fwe haveb=(n-/)d

All combinations n! - d" leaves

akRwN

18
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Backtracking search

Variable assignments are commutative
[ WA =red then NT = green ] same as [ NT = green then WA =red ]

Only need to consider assignments to a single variable at each node
- b = d branching factor, n variables - d" leaves

Depth-first search for CSPs with single-variable assignments is
called backiracking search

Backtracking search is the basic uninformed algorithm for CSPs

19




Backtracking example

/ © backtrack *

"

20
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Backtracking search

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return BACKTRACK({ }, csp)

function BACKTRACK(assignment, csp) returns a solution, or failure
if assignment is complete then return assignment
var +— SELECT-UNASSIGNED-VARIABLE(csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment then
add {var = value} to assignment
inferences «— INFERENCE(csp, var, value)
if inferences # failure them
add inferences to assignment
result «— BACKTRACK(assignment, csp)
if result # failure then
return result
remove { var = value} and inferences from assignment
return failure

2

10



Improving backtracking efficiency
e ———

« General-purpose methods can give huge gains in speed:

+ Which variable should be assigned next
SELECT-UNASSIGNED-VARIABLE?

+ |In what order should its values be tried
ORDER-DOMAIN-VALUES?

+ What inferences should be performed at each step in
the search INFERENCE?

+ Can we detect inevitable failure early?

22
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Most constrained variable

 Most constrained variable:

choose the variable with the fewest legal values

SShe SShS SSIR S

* a.k.a. minimum remalnlng values (MRV)
heuristic

7 ,’ &
- / [ S
/ T 5 | \
/ l ~ \
/- £ |
. \
- | Queensland
‘estern
Australi | ]
| outh |
‘ _sl.mlr ’ New
\ = N o I South
\ Wales
S \ ' \-%
A\ Victoria
nania |

23
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Most constrained variable

« Most constrained variable:
choose the variable with the fewest legal values

\_L‘:_.

 a.k.a. minimum remaining values (MRV)
heuristic

What about the first state

MRV does not help in the first state

24
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Degree heuristic

» Tie-breaker among most constrained variables:
Degree heuristic

* Most constraining variable:

+ choose the variable with the most constraints
on remaining variables

+ used together with MRV

S

25

12



Least constraining value

- Given a variable, choose the least constraining
value:

+ the one that rules out the fewest values in the
remaining variables  Queensland is selected

Fﬁ:—"%—"\%:/

« Combining these heuristics makes 1000 queens
feasible

e ——

26
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Inference: Forward checking

* |dea:

+ Keep track of remaining legal values for unassigned neighbors
+ Terminate search when any variable has no legal values

S

WA NT Q NSW v SA T

| WA =red

28
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Inference: Forward checking

ldea:

+ Keep track of remaining legal values for unassigned neighbors
+ Terminate search when any variable has no legal values

SR S~

WA NT Q NSW v SA T

29
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Inference: Forward checking

* |dea:

+ Keep track of remaining legal values for unassigned neighbors
+ Terminate search when any variable has no legal values

SSEN SSha o

WA NT Q NSW v SA T

“ Northern l
Territory — Y  (
| Queensland Q -\ ‘ { ,
[Western | =
Australia | South L
| Australia | _7;1;“,_ |
| Victoria = bl
L ictoria = blue
|Viclnﬁ?\

30
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Inference: Forward checking

ldea:

+ Keep track of remaining legal values for unassigned neighbors
+ Terminate search when any variable has no legal values

e

WA NT Q NSW v SA T
SN 1 I e I ey e )
(mew] "EESENSEESE] SE[ESN]
[(EEm] ®poos mEGE]  E[E-E]

i W[ n ] [Ern]
\] arory J—
| RA‘,'c\mm ‘I *Smm;- L ;_,,_ N . .
ustralia New | =
- Victoria = blue
VA [
[ Victoria |

31
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Forward checking

» Forward checking propagates information from assigned

to unassigned variables, but doesn't provide early
detection for all failures:

ESEN SSEa S

WA NT Q NSW v SA T
(ErEErEENEENEENE(ENE(EOE]|
FEENEENEENE

« NT and SA cannot both be blue!

- Constraint propagation repeatedly enforces constraints

locally, to neighbors

32
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Arc consistency

e ———

- Simplest form of propagation makes each arc consistent
X 2Y is consistent iff

for every value x of X there is some allowed y of Y

« Constraint Y=X?and domain {0,1,..9}. Can write the constraint as
[(X, Y),{(0, 0), (1, 1), (2, 4), (3, 9}
Can reduce the domains
X =4{0,1, 2, 3} | s |
Y={0,1, 4,9} S

«  What about (SA # WA) and domain {red, green, blue}

[(SA, WA),

{(red, green), (red, blue), (green, red ), (green, blue), (blue, red
), (blue, green)}]

38
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Arc consistency algorithm AC-3

function AC-3( esp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X, X5, ..., X, }
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;)— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X)) then
for each X in NEIGHBORS[X]] do
add (X}, X)) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff succeeds
removed — false
for each z in DoMAIN[X|] do
if no value y in DoMAIN[X]] allows (z,7) to satisfy the constraint X; — X;
then delete = from DoMAIN[X]; removed — true
return removed

Time complexity: O(cd?)

34
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Arc consistency

« Assume we begin in state

N\

SoSEN S S

WA NT Q NSW v SA T
[ — | 1IN 11 HEDE|

\é/

38
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Arc consistency

S SSEA &~

WA NT Q NSW v sA T
[ — | 1 d 11 EjErE|

\9_/

If X loses a value, neighbors of
X need to be rechecked

36
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Arc consistency

Tt

L N | [ Queenstand N WA NT Q NSW v SA T
“ ustralia South L—f_, \
| e e [ — | I o a1 ]
South f
y| vaam?&
asmania | J“

- If X loses a value, neighbors of X need to be rechecked

37
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Arc consistency

ESEN S S~

WA NT Q NSW \' SA T

[ — | I o_dal p (I 1
—_ < I

« |f X'loses a value, neighbors of X need to be rechecked
* |Is run as a preprocessor

« Can also be modified to work with backtracking
+ On assignment put only (X;, X)) in the queue

38
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Path consistency

- {Xi, X} is path consistent with respect to X, if for
every consistent assignment
there is an for X, that is consistent.
{Xi, Xpt and {X,, X}.
See the CSP graph for detecting paths

« Could also be extended to K-Consistency

e —

39
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Multi-Agents CSP

e —
« Also called distributed CSP

+ Variable and domain definition as before

+ Each agent owns a variable (many can be mapped to one)

+ Agents decides on value with relative autonomy

+ Has no global view on all dependencies

+ BUT! Can communicate with his neighbors in the constraint graph

« Many algorithms!! We only sketch one important algorithm

40
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Multi-Agents CSP:
Asynchronous Backtracking

The algorithm makes an ordering on agents and assigns them
priority numbers. All agents set their initial value concurrently

a higher-priority agent j informs all lower-priority agents k; of its
assignment if connected in constraint graph

lower-priority agent k evaluates the shared C;, constraint with its
own assignment
+ if constraints are satisfied with the current assignment - no action
+ otherwise, agent k looks for a different value consistent with choice of agent |
+ if such a consistent value exists - agent j adopts this value and informs other
low-priority agents
+ if such a consistent value does not exist, agent | updates NoGood list and sends
the message to agent j and seek for a value that is consistent with all connected
higher priority agents
+ jreceives a NoGood mentioning i it is not connected with j. j asks i to set up a
link

e —

41
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Adding edges

(@)
(new val, (X, 1)\

(mew_valL(X,,2))

ocal view

ocal view

{(X1,1)}
(Nogood,{(X,.1). (X5, 2))

N

(Nagood.{(X,, D)

43
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Example: 4-Queens

A1 knows no position
A2 knows A1
A3 knows A2 and A1

A4 knows all positions

Based on local information each queen
checks where to move or to resolve conflicts

or “NoGood” messages.

NoGood: A1=1 and A2=1 > A3 # 1

with upper queen. Afterwards do nothing, send “OK?”

44
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Example: 4-Queens

NoGood: A1=1 > A2 # 3

45
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Example: 4-Queens

A4 sends a NoGood message:
A1=1and A2=4 2> A3 # 4 (no
longer valid)

and moves.

46
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Example: 4-Queens

A4 sends a NoGood message:
A1=1and A2=4 2> A3 # 2
and does not move, no conflict.

47
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Example: 4-Queens

A3 has no option >NoGood: A1=1 2> A2 # 4,

A2 had a former NoGood message from A3 not to stay in 3
—->send NoGood: A1 # 1

48
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Example: 4-Queens

No conflict for any queen - solved

49
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Intelligent Autonomous Agents
and Cognitive Robotics
Topic 5: Bayesian Networks

Ralf Méller, Rainer Marrone
Hamburg University of Technology
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Uncertainty in prior knowledge

« Diagnosis:
+ Toothache => Cavity v GumProblem \ Abscess v ...

RootInfectionv ... v Cavity => Toothache

« The connection between toothaches and cavity is just
not a logical consequence. For medical diagnosis logic
does not seem to be appropriate.




Probability

Probabilistic assertions summarize effects of

* laziness:
It is too much work to list the complete set of antecedents or
consequents needed to ensure an exceptionless rule and too
hard to use such rules

« theoretical ignorance:
no complete theory, e.g., medical science has no complete
theory for the domain.

« practical ignorance:
lack of relevant facts, initial conditions, tests, etc.

12.11.2022



Making decisions under uncertainty

Suppose | believe the following:
P(A,5 gets me thereontime|...) =0.04
P(Aq, gets me thereontime|...) =0.70
P(A 5, gets me thereontime|...) =0.95
P(A1440=245 9€ts me there on time | ...) = 0.9999

« Which action to choose?

Depends on my preferences for missing flight vs. time
spent waiting, etc.

¢ Utility theory is used to represent and use preferences

¢ Decision theory = probability theory + utility theory

Later in this lecture




Example world

Example: Dentist problem with four variables:
Toothache (I have a toothache)
Cavity (I have a cavity)
Catch (steel probe catches in my tooth)
Weather (sunny,rainy,cloudy,snow )

12.11.2022



Prior probability

« Prior or unconditional probabilities of propositions

e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

» Probability distribution
gives values for all possible assignments
(sunny, rainy,cloudy,snow )-

P(Weather) = <0.72,0.1,0.08,0.1>
(normalized, i.e., sums to 1 because one must be the case)




12.11.2022

Full joint probability distribution

« Joint probability distribution for a set of random variables gives the
probability of every atomic event on those random variables

P(Weather,Cavity) = a 4 X 2 matrix of values:

Weather = | sunny rainy cloudy snow

Cavity = true 0.144 0.02 0.016 0.02 =02

Cavity = false 0.576 0.08 0.064 0.08 =0.8
=1.0

» Full joint probability distribution: all random variables involved
+ P(Toothache, Catch, Cavity, Weather)

« Every question about a domain can be answered by the full joint distribution




Conditional probability

- Conditional or posterior probabilities (after having received some
information)

e.g., P(cavity | toothache) = 0.8

 Definition of conditional probability (in terms of uncond. prob.):
P(@|b)=P(aAb)/P(b)if P(b)>0

Product rule gives an alternative formulation (A is commutative):
P(@aAb)=P(a]|b)P(b)=P(b|a)P(a)

Chain rule is derived by successive application of product rule:

P(X,, ... X)) =P, X)) POX, | Xqpee, X )
= P(X4,....%) POXq | Xqhe X)) POX | XX q)
=.14h=1

POXi | Xy, ... W Xiy)




Productrule:  P(x,y) = P(x|y)P(y) = P(y|x)P(x)

—

P(ef fect|cause) = P(cause likelihood * prior
P(causelef fect) = (ef fect] )« P( ) = P

Bayes rule

P(ef fect) evidence

P(X|Y) = o P(Y|X)P(X)

12.11.2022



Inference by enumeration

 Start with the joint probability distribution:

toorthache =1 toothache

carch | - carch) carch | - carch
caviry | .108| .012 072 | .008
- caviry | 016 | .064 JA44 | 576

* For any proposition ¢, sum the atomic events where it is
true: P(¢) = 2., P(w)

10




Start with the joint probability distribution:

toothache

- toathache

cearch

= carch

carch

— carch

cavity

108

012

072

008

- cavity

018

.084

JA44

576

P(cavity v toothache) =

0.108 + 0.012 + 0.072 + 0.008+ 0.016 + 0.064 = 0.28

Inference by enumeration

11
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Inference by enumeration

- Start with the joint probability distribution:

foathache =1 foothache

carch | - ecarch) carch | - carch
caviry | 108 | .012 072 | .008
S caviry || .016| .064 144 | 576

« Can also compute conditional probabilities:
P(—cavity | toothache) = P(—cavity A toothache)
Product rule P(toothache)
= 0.016+0.064
0.108 + 0.012 + 0.016 + 0.064
=04

12




Normalization

roothache - toothache

carch | 0 carch) carch| — carch

cavity .1ua|| 012| | .o72| .o08

— caviry [|.016] 084 | .144 | .576

normalization constant a

P(Cavity | toothache) = P(Cavity,toothache)/P(toothache)
= a P(Cavity,toothache)
= a [P(Cavity,toothache,catch) + P(Cavity,toothache,— catch)]
= [<0.108,0.016> + <0.012,0.064>]
=0<0.12,0.08> =<0.6,0.4>

(Catch)

« Denominator P(z) (or P(toothache) in the example before) can be viewed as a

a*(0,12+0,08)=1
a=1/0,2=5
5"0,12=0,6
5"0,08=0,4

General idea: compute distribution on query variable by fixing
evidence variables (toothache) and summing over hidden variables

13
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Typically, we are interested in
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E
X are all variables of the modeled world

Let the hidden variables be H= X - Y — E then the required summation of joint entries is
done by summing out the hidden variables:

P(Y|E=e)=aP(Y,E=e)=aX,P(Y,E= e, H=h)

» The terms in the summation are joint entries because Y, E and H together exhaust
the set of random variables (X)

+  Obvious problems:

1. Space complexity O(d") to store the joint distribution where d is the largest arity
and n denotes the number of random variables

2. Worst-case time complexity O(d")
3. How to find the numbers for O(d") entries?

General inference procedure

14




Independence

- A and B are independent iff
P(A|B)=P(A) orP(BJA)=P(B) orP(A, B)=P(A) P(B)

Cawty

Cavity decomposes into ‘1-’._'\I'00thache Catch ‘

Toothache Catch

Weather

Weathe r )
P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

- 32 entries table can be constructed from 8 and 4 entries;

« Absolute independence powerful but rare

«  How can we check whether we have independent variables in the
full joint?
15
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Example #1

Bagels

Butter

p(ra,u)

0.24

0.06

0.12 Bread

p(r)

0.08 0

0.12 ) 1t

0.18

0.04

== OO0l |[O

R o~ |ollr|o|~

0.16 )

P(a,u)=P(a)P(u)?

P(ra)=P(P(a)?

16
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Example #1 auter | o0
0 0.52
Bagels' | p(@) |
0 0 0 0.24) o
0 0 1 0.06 T 1 o4
0 1 0 0.12
0 1 /1/ 0.08 Bread p(r)
1 0 0 0.12 0 | 03
1 0 1 | 0.8 =1 9°
1 1 0| 0.04
1 Y 1 0.16
Bagels Butter p(a,y/
0 0 i
0 1
1 0
1 1

17

P(a,u)=P(a)P(u)? P(r.a)=P(r)P(a)?




Example #1 autr | o0
0 0.52
0 0 0 0.24 Bagels P&
0 0 1 0.06 0y oo
1 0.4
0 1 0 0.12
0 1 1 0.08 Bread | p(r)
1 0 0 0 /ﬁ 0 0.5
1 0 1 0.18 1 | 0>
1 1 0o /] 004
1 1 v 0.6
Bagels Butter p(a,u) / / Bread Bagels p(r,a)
0 0 036 |#0.520.6=0.312 0 0 03
0 1 0.24 0 1 0.2
1 0 0.16 ) 0 0.3
1 1 0.24 1 1 0.2

P(a,u)=P(a)P(u)?

NO

P(r.a)=P(P(a)? YES

18




Conditional independence

- P(Toothache, Cavity, Catch) has 23 — 1 = 7 independent entries

« If I have a cavity, the probability that the probe catches in doesn't depend on
whether | have a toothache:

(1) P(catch | toothache, cavity) = P(catch | cavity)
(2) P(catch | toothache,—cavity) = P(catch | —cavity)

« Catch is conditionally independent of Toothache given Cavity:
P(Catch | Toothache,Cavity) = P(Catch | Cavity)

« Equivalent statements:
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

19
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Conditional independence contd.

Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)
= P(Toothache | Catch, Cavity) P(Catch, Cavity)
= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)
conditional independence
= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

l.e., 2+ 2+ 1=5Iindependent numbers

In most cases, the use of conditional independence reduces the size
of the representation of the joint distribution from exponential in n to
linear in n.

Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

20
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Car Example

Three variables:
+ Gas, Battery, Starts

P(Battery|Gas) = P(Battery)
Gas and Battery are independent

P(Battery|Gas,Starts)77’P(Battery|Starts)

Gas and Battery are not

independent given Starts
Independence does not imply conditional
independence.

Conditional independence does not imply

independence
21
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 How can we make use of
* iIndependence
+ and conditional independence

Need a model that can express this

Question

22
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Bayesian networks

« A simple, graphical notation for conditional
independence assertions and hence for compact
specification of the full joint distributions

« Syntax:
+ a set of nodes, one per variable
+ adirected, acyclic graph (link = "directly influences")
+ a conditional distribution for each node given its parents:
P (X,| Parents (X))

« In the simplest case, conditional distribution represented
as a conditional probability table (CPT) giving the
distribution over X; for each combination of parent values

23




Simplest Bayesian Network

-

F v N\
| e o @

P(Cause|Effect,, Effect,,...) = aP(Cause) [I; P(Ef fect;|Cause)

- also called Naive Bayesian networks
« conditional independence of all effect variables

24
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More complex example

I'm at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary calls but not as often as John. Sometimes it's set off
by minor earthquakes but also on burglary. Is there a burglar?

Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:
+ A burglar can set the alarm off
+ An earthquake can set the alarm off
+ The alarm can cause Mary to call
¢ The alarm can cause John to call

25
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Example contd.

13



« A CPT for Boolean X; with k Boolean parents has 2* rows for the
combinations of parent values E)

« Each row requires one number p for X; = frue Ej\
(the number for X; = false is just 71-p) @ @

- If each of n Boolean variables has no more than k parents, the complete
network requires O(n - 2¥) numbers
i.e., grows linearly with n, vs. O(27) for the full joint distribution

- Forburglarynet? 1+ 1+4+2+2=10 numbers (vs. 25-1 = 31)

Number of indepenent values = nk-(m-1)

Compactness

k parents with n values each and m values for the child node of the parents?

27
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Semantics

The full joint distribution can be rewritten using the chain rule:

mmAH|=
mAm A=

n

P(X,, ... X,) = ﬂp(xip(l, o X))
i=1
n

A |P(MIA)

P(Xy, ..., X,) = l—[ P(X;| parent(X;))
i=1

.70
.01

Assumption: Independence and Conditional independence
assertions are correctly modeled

28
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Semantics

The full joint distribution is defined as the product of the local

conditional distributions:

P(B)
001

Burglary

PE)
Earthquake 002

n
P(y, o Xn) = | | POl parent(x) 1%
i:l F F 001
eg.,Pjrmaan—bns—e) E %

P(MIA)

=P(|a)P(m|a)P(a| -b, —e) P (=b) P (-e)
= 0.90x0.7x0.001x0.999x0.998
~ 0.00063

.70

.01

29
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Encoding conditional independence via
EsSERBTinp==

« We can determine if conditional independence holds by
a graph separation criterion called d-separation
(direction dependent separation)

« XandY are d-separated if there is no active path
between them.

« The formals definition of active is somewhat involved.
The Bayes Ball Algorithm gives a nice graphical
definition.

30
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The six rules of Bayes Ball

An undirected path is active if a Bayes ball travelling along it never encounters
the “stop” symbol: —

- ¥ N
O I () ‘
bt )

O

If there are no active paths from X to Y when {Z;....,Z; | are shaded, then
| I 8 O P

— |

O—@_—0

|-—

31
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A double-header: two games of Bayes Ball

S N \
O—C0—0 5N
f "\
O—@—0 O

no active paths
X1Y|Z

32
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A double-header: two games of Bayes Ball

Y
a
N YA i ¥ N ‘
@ l(f ."/ O—:_Q—’O O i
U‘ N f\\ V
W O—@—0 O

one active path

X LY |{W,Z)

33
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Markov Blanket

Markov blanket: Parents + children + children’s parents

Node is conditionally independent of all other nodes in network,
given its Markov Blanket -> simplifies computation -> gather
information on the nodes of the Markov Blanket?

34
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Constructing Bayesian networks

« 1. Choose an ordering of variables X,, ... . X, .
Cause should precede effects.

- 2. Fori=1ton
¢ add X; to the network

+ select parents from X, ..., X, such that
P (X; | Parents(X)) = P (X;| X3, ... Xi4)

This choice of parents guarantees:

PX;, ....X) =m PX|X, ..., Xi4)
(chain rule) n
=m;_,P (X;| Parents(X))
(by construction)
33
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Example

« Suppose we choose the ordering M, J, A, B, E

P(J|M)=PU)? No

36
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« Suppose we choose the ordering M, J, A, B, E

P(A | J, M) = P(A)? No
P(A|J, M) = P(A|J)? No

37
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Example

« Suppose we choose the ordering M, J, A, B, E

P(B| A, J, M) = P(B)? No
PB|A, J M) =PB|A)?Yes

38
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+ Suppose we choose the ordering M, J, A, B, E

PE|B A,J, M)=PE|A)? No
P(E|B A J M) =P(E|A B)? Yes

Earthquake

39
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Example contd.

Burgla

ry

Earthquake

« Deciding conditional independence is hard in noncausal directions

« (Causal models and conditional independence seem hardwired for
humans!)

*  Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

instead of 10.
40

20



Efficient implementation of
CPT

« The number of independent entries grow exponentially
with the number of parents.

« Two ways to overcome this
+ Restrict the number of parents if possible

+ Instead of free distributions, often canonical (parameterized)
distributions are suggested. One popular example
of such a pattern is the noisy OR for discrete cases.

41
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Example

NS

The noisy OR is a generalization of the logical OR. Three assumptions:

1. All possible causes U; for a event X are listed (you can add a /eak node)
2. Negated causes —U; do not have any influence on X
3. Independent failure probability q; for each cause alone.

Geold = P(—fever | cold, —flu, ~malaria) = 0.6 ,
gau = P(—fever | —eold, flu,—malaria) = 0.2 ,

Gmalaria = P(—fever | —eold, —flu, malaria) = 0.1 .
42
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Example

deold = P(—fever | cold, —flu, —malaria) = 0.6 ,
gau = P(—fever | —cold, flu, —malaria) = 0.2 , \ l /
Gmalaria = P(—fever | —eold, —flu, malaria) = 0.1 . .ﬁ

P(—|X|01'02’ very Op, _I0r+1’ LLD] _|0n)= H;=1 ql

Cold Flu  Malaria| Pi{ Fever)| P(—Fever)

F F F

F F T 0.1

F T F 0.2
—_— F T T

T F F .6

T F F

T T F

T T 4

43
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Example

Geold = P(—fever | cold, —flu, —malaria) = 0.6 , . . .
gau = P(—fever | —cold, flu, —malaria) = 0.2 ,
Gmalaria = P(—fever | —eold, —flu, malaria) = 0.1 . .ﬁ

P(X|01'02’ very Oy, _IOT+1’ ,_Ion) 1 Hr 19i

Cold Flu  Malaria| P{ Fever) | P{—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.958 0.02 =10.2 x 0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 = 0.1

T T F 0.88 012 =0.6x%02

T T T 0.08% 0.012 =06x02 =«0.1

44




« Structure and semantic of BN
+ Modelling of independence and conditional

independence @

+ Causal and non-causal networks /@\1
¢ d-separation, Markov blanket g ®
+ Efficient CPTs, e.g., noisy OR, trees, Min, Max, ...

Last Time

45
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Hybrid (discrete+contionous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Subsidy? | (Harves)
N
CoostD

Buys?

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)

46
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Continous variables:

1 . F
Mean ”=szi 2

n

1
Variance % = — 1Z(xi — w)?
n

Standard deviation o = /o2

47

12.11.2022



Continuous child variables

Need one conditional density function for child variable given

+ continuous parents

+ for each discrete value of parents

1 _1(0—[,ﬂ¢h+'5't1)2

€ oL
aiV 2T

12|

P(c| h, subsidy) = N(a;h + by, CT?}{C') =

‘ . 1 _%( r:—fn_rh—!—!:lfj):’
P(c| h, —subsidy) = N(ash+b o2 -) = € °f
(c| y) (agh+bs,o%)(c e

Mean Cost varies linearly with Harvest, variance fixed

Linear variation is unreasonable over the full range but works
if the likely range of Harvest is narrow

48
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Continuous child variables

« Determine a Gaussian for subsidy and —subsidy

- What happens if subsidy is not given P(c|h)?

P(cTh, subsidy) g P(c | h, ~subsidy) P(c1h)
0.4 0.4 0.4
0.3 03 0.3
0.2 0.2 0.2
0.1 0.1 0.1
102 '
0 8 > 0
02 46 = 40 00 24 P e 0
Cost ¢ 10 Harvest h Cost ¢ 810 O Harvest Cost ¢

All-continuous network with LG distributions
= full joint distribution is a multivariate Gaussian

Discrete--continuous LG network is a conditional Gaussian network i.e., a
multivariate Gaussian over all continuous variables for each combination of
discrete variable values 49
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Discrete variabel cont. parents

« Probability of Buys given Cost should be a soft threshold

1 1

08 058 1

06 S 06

" 2 o4
a

0.4 /\

02 / A 0.2

0 = 0
0 2 B 6 8 10 12 0 2 4 6 8 10 12
Cost ¢ Cost ¢

(a) (b)

Figure 14.7 FILES: . (a) A normal (Gaussian) distribution for the cost threshold, centered on
4t =106.0 with standard deviation o = 1.0. (b) Logit and probit distributions for the probability of buys
given cost, for the parameters 1 = 6.0 and o = 1.0.

Useintegral ~ ®(x)= | N(0,1)(x)da
Leads to P(buys | Cost=c) = ®((~c+u)/o) Probit

1 1 -
lternativ \ .
Alternat P(buys | Cost =c) = 11 eap(—2—=8) . Logit 50
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Inference tasks

- Simple queries: P(X,,..., X,|e,, €4, €5)

« Optimal decisions: decision networks include utility
information; inference must handle utility nodes.

« Value of information: which evidence to seek next?

« Sensitivity analysis: which probability values are more
critical?

« Explanation: why do | need a new engine?
51
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Inference by enumeration

P(b|j,m) = a P(b,j,m)
= o 2.2 P(bajamaane) [marginalization]
= o 2,.2.P(b)P(e)P(alb,e)P(jla)P(m]|a) [BN]

0]

(A)

E)

)

= o P(b)Z,.P(e)zP(alb,e)P(jla)P(m|a) [re-ordering]

52
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Evaluation Tree

Pralb,e) P=alb,e) P(alb—e) PrAalbme)
.95 .05 94 .06

4 Y4

P(la) P(g|=a) P(la) Pl=a)

90 .05 .90 .05

P(m|a) Pm|=a) P(m|a) P(m|=a)

70 .01 .70 01

- AN AN / \. J

Enumeration is inefficient: repeated computation
e.g., computes °(j|a)P(m|a) for each value of ¢

53




Irrelevant variables

Consider the query P(.JohnC'alls|Burglary = true)

@_©o

P(J|b) = aP(b)X P(e)X Plalb,e)P(J|a) X P(m|a) ;él

What about M? @ @
We sum over all possible values of m

For each row it means that the value is 1

62
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Irrelevant variables

Consider the query P(JohnC'alls|Burglary = true)

@_©o

P(J|b) = aP(b)X P(e)X Plalb,e)P(J|a) X P(m|a) E

For each row it means that the value is 1 / @ /

63
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« The moral graph is an undirected graph that is obtained
as follows:
+ connect all parents of all nodes
+ make all directed links undirected

 Note:

+ the moral graph connects each node to all nodes of its Markov
blanket

= it is already connected to parents and children
* now it is also connected to the parents of its children

Q_E Q@
3’@ B%o
O B ol

Moral Graph: Markov Blanket

64
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Irrelevant variables continued:

* m-separation:
+ Ais m-separated from B by C iff it is separated by C in the moral
graph

« Example:

+ Jis m-separated from E by A

Theorem 2: Yis irrelevant if it is m-separated from X by E

« Example:

For P(JohnCalls| Alarm=true),
Burglary, Earthquake and MarryCalls are irrelevant.

65
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Approximate Inference
__In Bayesian Network

Singly connected networks (or polytrees):
+ any two nodes are connected by at most one (undirected) path

+ time and space cost of variable elimination linear in the size of
the network (number of CPT entries; number of parents O(dn)).

Multiply connected networks: NP-hard
We need approximate inference techniques!!!!!!!

Monte Carlo algorithm

+ Widely used to estimate quantities that are difficult to calculate
exactly

¢+ Randomized sampling algorithm ’/@j\
+ Accuracy depends on the number of samples e }m
+ Two families = -
= Direct sampling (Grets)
= Markov chain sampling 66
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Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution S

2) Compute an approximate posterior probability

3) Show this converges to the true probability I°
Outline: @

— Sampling from an empty network

— Rejection sampling: reject samples disagreeing with evidence

— Likelihood weighting: use evidence to weight samples

— Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior

67
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Sampling from empty network

« Generating samples from a network that has no
evidence associated with it (empty network)
- Basicidea

+ sample a value for each variable in topological order
+ using the specified conditional probabilities

function PRIOR-SAMPLE(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution P(.Xy... ... X,)

X < an event with n elements
fori = 1 tondo
x; < a random sample from P(.X; | parents(X;))
given the values of Parents(X;) in x
return x

68
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Example in simple case

Sampling

[Cloudy, Sprinkler, Rain, WetGrass]
D) [true, , ;]

[true, false, , ]

[true, false, true, Ji

[true, false, true, true]

Estimating

N = 1000
N(Rain=true) = N([_, _, true, _]) = 511
P(Rain=true) = 0.511

>
o




Properties

Probability that PRIORSAMPLE generates a particular event
Ses(@1 . ..25) = 11T P(z;|parents(X;)) = P(zy . . . 2,)
i.e., the true prior probability

Eg. Seelt, [t 0y =05»00 % 0.8 x0.9=0.824 = P, ;1,1
Let Npg(y...x,) be the number of samples generated for event ;.. .. .. iy
Then we have

)\lim P(zy,.. . ,: Ee) = \lgnx | Nps(zi,...,2,)/N

= Spg(®1y« st In)
= Pl#y... &)

That is, estimates| derived from PRIORSAMPLE are consistent

Shorthand: ]5(.1'1 ...... ty) 2o -Plzj . .Zy)

70
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Rejection Sampling

« Used to compute conditional probabilities

 Procedure

+ Generating sample from prior distribution
specified by the Bayesian Network

* Rejecting all that do not match the evidence
+ Estimating probability

71
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Rejection Sampling

P(X|e) estimated from samples agreeing with e

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of ’( X |e)
local variables: N, a vector of counts over X, initially zero

for j=1to Ndo
X «— PRIOR-SAMPLE(bn)
if x is consistent with e then
N{[1] — NJ[1]+1 where = is the value of X in x
return NORMALIZE(N[.])

72
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Rejection Sampling
__Example

+ Let us assume we want to estimate P(Rain|Sprinkler = true) with 100
samples

« 100 samples
¢ 73 samples => Sprinkler = false
¢ 27 samples => Sprinkler = true
* 8 samples => Rain = true
= 19 samples => Rain = false

« P(Rain|Sprinkler = true) = NORMALIZE({8,19}) = {0.296,0.704}
* The true answer ist <0.3,0.7>

*  Problem
+ It rejects too many samples

73
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Analysis of rejection sampling

P(Xl|e) = aNps(X,e) (algorithm defn.)
= Nps(X.e)/Nps(e) (normalized by Nps(e))
~ P(X,e)/P(e) (property of PRIORSAMPLE)
= P(X|e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if F’(e) is small

P(e) drops off exponentially with number of evidence variables!

75
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- Goal
+ Avoiding inefficiency of rejection sampling

+ |dea
+ Generating only events consistent with evidence

+ Each event is weighted by likelihood that the event
accords to the evidence

Likelihood Weighting

76
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Likelihood weighting

|dea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function LIKELIHOOD-WEIGHTING( X, e, bn, N) returns an estimate of ’(.X|e)
local variables: W, a vector of weighted counts over .\, initially zero

for j=1to Ndo

X, w+— WEIGHTED-SAMPLE(hn ,€)

W/z] < W[z] + w where r is the value of \'in x
return NORMALIZE(W/[X])

function WEIGHTED-SAMPLE(hn, e) returns an event and a weight

X — an event with n elements; w—1
for i=1to n do
if X, has a value 7, in e
then w— w x P(X,= z; | parents(X;))
else 1; < a random sample from P(X, | parents(X,))
return x, w

77
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Likelihood Weighting
Example = = T

[ .50

. P(Rain|Sprinkler=true, WetGrass = true)?
. Sampling, start with weight=1
+  Sample from P(Cloudy) = {0.5,0.5} => true
Sprinkler is an evidence variable with value true
w € w * P(Sprinkler=true | Cloudy = true) = 0.1
Sample from P(Rain|Cloudy=true)={0.8,0.2} => frue
WetGrass is an evidence variable with value frue
w €w * P(WetGrass=true |Sprinkler=true, Rain = true) = 0.099
¢ [true, true, true, true] with weight 0.099

78




Likelihood Weighting
Example (5

£l .50

S R PW)
- P(Rain|Sprinkler=true, WetGrass = true)? L 7| o
- Sampling, start with weight=1 | 0o
L 4

Sample from P(Cloudy) = {0.5,0.5} => false

Sprinkler is an evidence variable with value frue

w € w * P(Sprinkler=true | Cloudy = false) = 0.5
¢+ Sample from P(Rain|Cloudy= false)={0.2,0.8} => false
¢+ WetGrass is an evidence variable with value frue

w €w * P(WetGrass=true |Sprinkler=true, Rain = false) = 0.45
¢ [true, true, true, true] with weight 0.45

. Estimating
Accumulating weights to either Rain=true or Rain=false
¢+ Normalize




Likelihood analysis

Sampling probability for WEIGHTEDSAMPLE 1s
Sws(z,e) = H{;:lP(:i parents(Z;))
Note: pays attention to evidence in ancestors only
= somewhere “in between” prior and
posterior distribution

Weight for a given sample z. e is

w(z,e) = I P(e;|parents(E;))

Weighted sampling probability is
Sws(z, e)w(z,e)
= Hi _1P(zi|parents(Z;)) 1I/_, P(e;|parents(E;))
= P’(z. e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables

because a few samples have nearly all the total weight o
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Markov Chain Monte Carlo

« Let’s think of the network as being in a particular current state
specifying a value for every variable

«  MCMC generates each event by making a random change to the
preceding event

« The next state is generated by randomly sampling a value for one of
the non evidence variables X;, conditioned on the current values
of the variables in the MarkovBlanket of X;

 Likelihood Weighting only takes into account the evidences of the
parents.

82
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Gibbs sampling

« Gibbs sampling is a MCMC method
+ State of the network => current assignment

+ Generate next state by sampling one non-evidence variable
given Markov blanket

+ Sample each variable in turn ( can choose it random)

function GIBBS-ASK(X, e, bn, N) returns an estimate of P(X|e)
local variables: N. a vector of counts for each value of X | initially zero
Z. the nonevidence variables in hn
X. the current state of the network, initially copied from e

initialize x with random values for the variables in Z
forj=1to N do
for each Z; in Z do
set the value of Z; in x by sampling from P(Z;|mb(Z;))
N[z] < N[z] + 1 where z is the value of X inx
return NORMALIZE(N)

Figure 14.16  The Gibbs sampling algorithm for approximate inference in Bayesian net-
works; this version cycles through the variables, but choosing variables at random also works.

83
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Example

With Sprinkler =true, WetGrass =true, there are four states:

Wander about for a while, average what you see

84
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£ 30

Gibbs Example e

* Query P(Rain| Sprinkler = true, WetGrass = true)
- Initial state is [true, true, false, true] [Cloudy,Sprinkler,Rain,WetGra

- The following steps are executed repeatedly:
¢ Cloudy is sampled, given the current values of its Markov Blanket variables
So, we sample from P(Cloudy|Sprinkler= true, Rain=false)

+ Now current state is [false, true, false, true] and counts are updated

* Rain is sampled, given the current values of its Markov Blanket variables
Sample from P(Rain|Cloudy=false, Sprinkler=true, WetGrass=true)

First create the distribution we want to sample from.
->Rain = true.

+ Current state is [false, true, true, true]

- After all the iterations, let’s say the process visited 20 states where rain is true
and 60 states where rain is false then the answer of the query is
NORMALIZE({20,60})={0.25,0.75} 85
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Sample distribution s o
Want to sample Cloudy. frj‘ 00

The current state is [Cloudy?, true, false, true]
What is the Markov blanket, the sampling distribution?

evidence sampled
P(Cloudy | Sprinkler= true, Rain=false) =

a P(Cloudy) * P(Sprinkler= true | Cloudy ) P(Rain=false | Cloudy)=
a (<0.5, 0.5> *<0.1, 0.5> *<0.2, 0.8>)

a (<0.5, 0.5> *<0.1 0.2, 0.5"0.8>) =

a (<0.5, 0.5> *<0.02, 0.4>) =

a <0.01, 0.2> ~<0.05, 0,95>

[false, true, false, true] with probability 0,95
[true, true, false, true] with probability 0,05 o8
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Summary

- Bayesian networks provide a natural representation for (causally
induced) conditional independence

« Topology + CPTs = compact representation of joint distribution
« Generally easy for domain experts to construct (if not to big)

- Exact inference by variable elimination
+ polytime on polytrees, NP-hard on general graphs
¢ space can be exponential as well

- Approximate inference based on sampling and counting help to
overcome complexity of exact inference

87
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Temporal Probabilistic Agent

SENSOrs

. &S

actuators

ty, t, ta, ...

So far we only have taken care about




Time and Uncertainty
e ———————————————

« The world changes over time, we need to track and predict it

- Examples:
diabetes management, localization, speech recognition, ...

- Basic idea: copy state and evidence variables for each time step

- X, — set of unobservable state variables at time t
* e.g., BloodSugar,, StomachContents,, ...

- E, — set of evidence variables at time t
+ e.g., MeasuredBloodSugar;, PulseRate,, FoodEaten;,...

« Assumes discrete time steps

27.11.2022



Dynamic Bayesian Networks

How can we model dynamic situations with a
Bayesian network?

Example: Is it raining today?
Xt = {Rt}
Et = {Ut}

m) next step: specify dependencies among the variables.

The term “dynamic” means we are modeling a dynamic system, not that
the network structure changes over time.




DBN - Representation

Problem:

1. Necessity to specify an unbounded number of conditional
probability tables, one for each variable in each slice,

2. Each one might involve an unbounded number of parents.

27.11.2022



DBN - Representation
e ————————————————

«  Problem:

1. Necessity to specify an unbounded number of conditional
probability tables, one for each variable in each slice,

2. Each one might involve an unbounded number of parents.

e Solution:

1. Assume that changes in the world state are caused by a
stationary process (the laws for a state change do not change
over time).

P(U,/ Parent(U,)) isthe sameforall t
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DBN - Representation

e Problem:

1. Necessity to specify an unbounded number of conditional
probability tables, one for each variable in each slice >solved

2. Each one might involve an unbounded number of parents.




DBN - Representation

Solution cont.:

2. Use Markov assumption - The current state depends on
only a finite history of previous states.

Using the first-order Markov process:

P(X, /XO:t—l) = P(X, /Xt—l) Transition Model

N&‘

CPT CPT




DBN - Representation

Solution cont.:

2. Use Markov assumption - The current state depends on
only a finite history of previous states.

Using the first-order Markov process:
P(Xt /XOZH) = P(Xt /Xr—l) Transition Model

In addition to restricting the parents of the state variable X;, we must
restrict the parents of the evidence variable E;

P(Et /Xo EO:t—l) = P(Et /Xt) Sensor Model

it
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DBN - Representation

e  Solution cont.:

2. Use Markov assumption - The current state depends on
only in a finite history of previous states.

Using the first-order Markov process:
P(Xt /XO:t—l) - P(Xt /Xt—l) Transition Model

t
In addition to restricting the parents of the state variable X;, we must
restrict the parents of the evidence variable E;

Sensor Model
PE/X,,E, )=PEX) J

.@ .@ 10

it




Dynamic Bayesian Networks

There are two possible fixes if the approximation
is too inaccurate:

+ Increasing the order of the Markov process model. For example,
adding Rain,, as a parent of Rain,, which might give slightly
more accurate predictions.

11
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Dynamic Bayesian Networks

There are two possible fixes if the approximation

IS too inaccurate:

+ Increasing the set of state variables. For example, adding
Season, to allow to incorporate historical records of rainy
seasons, or adding Temprature,, Humidity, and Presssure, to
allow to use a physical model of rainy conditions.

12




Complete Joint Distribution
e ———————————

« Given:
* Transition model: P(X{|X,4)
+ Sensor model: P(E| X))
* Prior probability: P(X,)
- Then we can specify complete joint distribution:

t
P(Xy, Xy, X, E s E)) = P(XO)H P(X, | X, ))P(E; | X))

i=1

18
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Simple Example

P(Ro=t)

0.5

Ru | P(RIRw)
T 0.7
F 0.3

Ry P(R1|Ry)
T 0.7
F 0.3
"( Rain,

R [ P(UIRY) Rt | P(Ui1lRu1)
T 0.9 = |7 0.9
F 0.2 F 0.2




Inference Tasks: Examples

Filtering/State estimation:
What is the probability that it is raining today, given all the umbrella
observations up through today?

Prediction:
What is the probability that it will rain the day after tomorrow, given
all the umbrella observations up through today?

Smoothing:
What is the probability that it rained yesterday, given all the umbrella
observations through today?

Most likely explanation:

If the umbrella appeared the first three days but not on the fourth,
what is the most likely weather sequence to produce these umbrella
sightings?

15
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DBN - Basic Inference

Filtering or Monitoring:

Compute the belief state - the posterior distribution over the current state,
given all evidence to date.

P(X,/e,)

Filtering is what a rational agent needs to do in order to keep track
of the current state so that the rational decisions can be made.

14




DBN - Basic Inference

Filtering cont. P(BIA,C) = aP(AIB,C) P(BIC)

Given the results of filtering up to time ¢, one can easily compute the
result for t+71 from the new evidence €,

P(X,. /e,,)=f(e, P(X, /e,)) (seeking for some

recursive function f ?)

=P(X,, /e,e.) (dividing up the evidence)

=aP(e, /X

141 t+1,el:t)P(Xt /e.) (usingBayes’ Theorem)

+1

=aP(e, | X, )P(X

t+1 t+1

/e ) (by the Markov property
1 of evidence)

18
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DBN - Basic Inference

* Filtering cont.

P(X, /e,) represents a one-step prediction

P(e;+11Xt+1) updates this with the new evidence

P(X

t+1

P(X

t+1

/e,.)=aP(e, /X, )P(X

141 w1l ey)

/e,.)=aP(e, /Xt+l)zP(Xt+l /x,,e,)P(x,/e,)
Xt

(using the Markov property)

=0[P(€t+1 /Xt+1)ZP(Xt+1 /xt)P(xt /elzt)
2 X, 2 i)

Sensor model Transition model || recursion

19




DBN - Basic Inference

the Umbrella example:

For two steps in =aP(e,,, /XHI)Z P(X,, /x)P(x,/e,)
Xt

* On day 1, the umbrella appears so U1=true. The prediction from t=0 to t=1 is
P(R1):ZP(R1 /1) P(1;y)
0

and updating it with the evidence for t=1 gives

P(R, /u) = aP(u,/ R,)P(R,)
» On day 2, the umbrella appears so U2=true. The prediction from t=1 to t=2 is
P(R, /u)) =y P(R,/ n)P(r, | )

and updating it with the evidence for t=2 gives

PR, /u,,u,)=aP(u,/R,)P(R, /u,)

e ——

20
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e —

evidence prediction

P(R, |”1):P(ul/Rl)ZP(Rl/ro)P(ro)

o

P(R,)=<0.5,0.5>

Example: Day 1

P(R{R1)

0.7
03

P
o
Umbrella;
R P(UIR)
T 09

02

= a < 0.45,01 >~=<0.818,0.182 >

P(Ry) = Xy, P(R1|10) P(19)=<0.7,0.3>0.5+<0.3,0.7>0.5=<0.5,0.5>

2




Example: Day 2

P(Ry=t)

S ——

evidence prediction

P(Ryluq,uz) = aP(uz|R;) Z P(Ry|r)P(ry|uy)

&1

P(Rz|u1) = Xy, P(Ry|1y) P(ri|uq)=

= a < 0.565,0075 > =~ < 0.883,0.117 >

Ry

P(R{R1)

T
F

0.7
03

—cS
P

P

—
Umbrella;

R —

-

P(U{Ry)

T
F

09
02

P(Ry|uy) ~ < 0.818,0.182 >

<0.7,0.3>0.818+<0.3,0.7>0.182 ~ <0.627,0.373>

P(R,|uy,uy) = aP(u,|R)P(R,|uy) = a < 0.9,0.2 >< 0.627,0.373 >

22
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Example

0.500

0.500
True 0.500 0.6!1 8

0.182 P(R, /u,)

False 0.500

Umbrella 1)

( Umbrella, )

P(R, /) P(r, /u,)
0.627
0.373

E! * P(u,/R,)
0.883

0.117 P(Ry|uq,uy)

23
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DBN - Basic Inference
e ——

* Prediction:

Compute the posterior distribution over the future state,
given all evidence to date.

P(X,pn/e€,) =D P(Xivt+1|xist)P(xi+k|e1:0)

for some k>0 Xt+k

The task of prediction can be seen simply as filtering
without the addition of new evidence.

24
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DBN - Basic Inference
e ——

« Smoothing or hindsight:

Compute the posterior distribution over the past state,
given all evidence up to the present.

P(Xk /el:t) for some k such that 0 < k < t.

Hindsight provides a better estimate of the state than
was available at the time, because it incorporates

more evidence.
25
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Smoothing

« Can | use future information to increase the accuracy of
filtering for past states?

-
ffff
0d ~,

Umbrella,=t Umbrella,=t

26
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Smoothing

Divide evidence e into e, €14
P(Xk|el:t) = P(XA-|91:L--9A~+1:1_)
Q'P(,Xk|el:k)P(e}.‘+1:t‘Xk- err) Bayes rule

aP(Xi|err)P(ers1:¢ Xx) Markov
= Q) fl:kbkﬂ—l:r

2
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Smoothing

Divide evidence e into ez, €14

P(Xj|ei+)

= P(X,& |E‘—1:k: ek-l—l:t)

aP(Xylerr)Plegir. | Xy, err)
aP(Xylerr)Plepir. | Xy)
(‘f‘t‘f];,z;bk+1:t

Backward message computed by a backwards recursion:

Pleji1:+/Xy)

= 2, Plerrre X, xpp1) P (x| X)

Xk+1

28
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Smoothing

Divide evidence e into ez, €14
P(_XR‘|el:t) - P(Xﬁ‘|el:k; ek-l—l:t)
= aP(Xylenr)Plers1:¢| Xk, erx)
= aP(Xlepr)Plegi14Xy)
= afiibgiis

Backward message computed by a backwards recursion:

Pler1dXn) = 2x,. Plerirs X, xpp1)P(xp1X5)

XE+1

= Yixpp Pleritexii ) P(xii1]| Xe)

29
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Smoothing

Divide evidence e into ez, €14

P(Xiler:) = P(Xilerr, ert1:e)

= aP (X |e1r)Plepi| Xy, err)
= aP(Xy|err)Plepi14/X%)

= afiibriie

Backward message computed by a backwards recursion:
Pepy1:4/ X, Xpp1) P41 X5)

= Yy Plersrexir1) P(xp | Xs)
= ExmP(eA~+1¢|XA.~+1)P(E‘»A~+%:f|xk+1)P(Xk+l|XF~‘J

P(ek+1:r‘xkj = 2

XE+1

Sensor model

recursion

i

Transition model

30
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Example

—

- Smoothed estimate for rain at k=1, given u,, u..
P(R,|uy,up) = a P(R|uq)P(uy[Ry)
* The first term is taken from the forward example
<0.818, 0.182>

© P(uyRy) =2, P(uy|ry)P(ry) P(ry|Ry)

= <0.69, 0.41>

« P(R,|uy,u,) = o <0.818, 0.182> x <0.69. 0.41>
~ <0.883,0.117>

- If we do it for each time slice O(t?)!!!

Rai

RM

T 0.

F 03
%’

=©P =

=(0.9x1x<0.7,0.3>)+(0.2 x 1 x <0.3,0.7>)

31
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Example contd.

0.500 0.627
0.500 0.373
True 0500 0_!13 o_e'aa orward
False 0.500 0.1'82 0.117 onwar
0.883 0.:!53
0.117 0117 smoothed
0.690 1.000
e ———
0.410 1.000 backward

Umbrella | ) Umbrella ,

Forward—backward algorithm: cache forward messages along the way
Time linear in t (polytree inference), space O(f|f])

32
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Forward-Backward Algorithm

function FORWARD-BACKWARD(ev, prior) returns a v‘euor of probability distributions
inputs: ev, a vector of evidence values for steps 1.
prior, the prior distribution on the inital state, P{XU}
local variables: fv, a vector of forward messages for steps 0, . .
b, a representation of the backward message, initially all Is
sv, a vector of smoothed estimates for steps 1, ...,

fv[0] — prior
fori= 1totdo
fvii] — FORWARD(fv[i — 1], ev[i])
for i = f downto 1 do
sv[i| « NORMALIZE(fv|i ] b)
b — BaCKWARD(b, ev[i])
return sy

33
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DBN - Basic Inference
e ——

« Most likely explanation:

Compute the sequence of states that is most likely to have
generated a given sequence of observation.

argmax, P(X,, /e,)

Algorithms for this task are useful in many applications,
including, e.g., speech recognition. Can also be used to
compare different temporal models that might have produced

as sequence of events.
35
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Most-likely explanation

Most likely path to each x;
= most likely path to some x; plus one more step

Jnax P(x1, ..., x¢ Xitilert+1)
= Ples1|X41) max (P(Xrﬂle)xlu}gg_l P(xi, . o s Xr_l-Xn\el;t))

Identical to filtering, except f}; replaced by

mys =  max Pl®1, .. X¢—1, Xt|er:t).

l.e., my,(7) gives the probability of the most likely path to state i.
Update has sum replaced by max, giving the Viterbi algorithm:

my = Pey |Xf+1) llgg}X(P(Xa‘+l‘xt]llll;r)

36
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The occasionally

dishonest casino
e

« A casino uses a fair die most of the time, but occasionally switches to

a loaded one
+ Fair die: Prob(1) =... = Prob(6) = 1/6
+ Loaded die: Prob(1) =. . . = Prob(5) = 1/10, Prob(6) = V%

¢+ These are the emission probabilities

» Transition probabilities
¢+ Prob(Fair - Loaded) = 0.01
* Prob(Loaded — Fair) = 0.2

+ Transitions between states modeled by
a Markov process

Slides following by Changui Yan 37
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The occasionally dishonest casino

Known:

| L. . L
¢ | nhe Ssiru | T the MO
" - B §
* || nsition probabilitie

Hidden: What the casino did
¢ FFFFFLLLLLLLFFFF...

Observable: The series of die tosses
+ 3415256664666153...

What we must infer:;
L 2 Nel ‘\‘\i‘m Ors (0[] \‘ ‘

= The answer is a sequence
FFFFFFFLLLLLLFFF. ..

39
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Making the inference
e ———————

» Model assigns a probability to each explanation of the observation:

P(326|FFL) “'ﬁ’?"\; - s
= P(3|F)-P(FF)-P(2|F)-P(F>L)-P(BIL) L 0 A
=1/6-0.99 - 1/6 - 0.01 - % G

«  Maximum Likelihood: Determine which explanation is most likely

L 4

« Total probability: Determine the probability that the observed
sequence was produced by the model

4

40

27.11.2022



Notation
e ————

« x is the sequence of symbols/observations emitted by
the model
¢ X;is the symbol emitted at time i

- A path, =, is a sequence of states
¢ The j-th state in 7is 7

- t,,1s the probability of making a transition from state k

to state r: t, =Pr(z, =r|x_ =k)

- e,(b) is the probability that symbol b is emitted when in
tate k
S e, (b)=Pr(x, =b |z, =k)

41
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A “parse” of a sequence

L
Pr(x,7) =1, H e, (X)), .
i=1

42
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The occasionally
dishonest casino

X = (X}, X;,X;) = (6,2,6)

7 = FFF
7@ =LLL
7% = LFL

Pr(x, 77(1)) =typep (0)tpep (2)tpze,(6)
L 0.5%%0.99% L% 0.99x
6 6 6
~ 0.00227
Pr(x, z? )=ty (0)t,,¢,(2)t,,e,(6)

=0.5%x0.5x0.8x0.1x0.8x0.5

=/0.008
Pr(x, 77(3)) =ty,e,(6)t e (2)t e (6)
= 0.5><0.5><0.2><é><0.01><0.5

~0.0000417 43
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The most likely path

The most likely path =" satisfies
7" =argmax Pr(x,r)

T

To find 7”, consider all possible ways the last symbol
of x could have been emitted

Let
p, (i) = Prob. of path (7,,---, z,) most likely
to emit <x1,...,xl.> such that 7, =k

Then
P, (i) =, (x)max(p, (i -1y,

44
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The Viterbi Algorithm

e Initialization (i =0)
p,(0)=1, p,(0)=0fork >0

* Recursion (i=1,...,L): For each state k
P (i) = e, (x)max(p, (i~ 1),

* Termination:

Pr(x, 72'*) = m]flx(pk (Leng th)tk—l,k)

To find 7", use trace-back, as in dynamic programming

45
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Viterbi: Example
X
6 2 6
(1/6)xmax{(1/12)x0.99, (1/6)xmax{0.01375x0.99,
Fl O (1161);(112/2) (1/4)x0.2} 0.02x0.2}
7T =0.01375 = 0.00226875
(1/21/2) | (1/10)xmax{(1/12)-0.01, (1/2)xmax{0.01375x0.01,
1/4)x0.8} 0.02x0.8}
O Te—tea™
0.99 0.8
. . 0.01
| =a()max(p.(-D) |
46
02




Viterbi gets it right
more often than not

Rolls
Die
Viterbi

315116246446644245321131631164152133625144543631656626566666
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls
Die
Viterbi

651166453132651245636664631636663162326455235266666625151631
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
LLLLLLFFFFFFFFFFFFLLLLLLILLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

Rolls
Die

Viterbi

2225554416665665635643243641315134651463534111264146256253356
FFFFFFFFLLLLLLLLILLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

Rolls
Die
Viterbi

366163666466232534413661661163252562462255265252266435353336
LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFF
LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFEFFF

Rolls
Die
Viterbi

233121625364414432335163243633665562466662632666612355245242
FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLILLFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
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Dynamic Bayesian Networks

* In addition to the discussed tasks, methods are
needed for /earning the transition and sensor
models from observation.

« Learning can be done by inference, where
inference provides an estimate of what transitions
actually occurred and of what states generated the
sensor readings. These estimates can be used to
update the models.

« The updated models provide new estimates, and
the process iterates to convergence.

48
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DBN — Special Cases

Hidden Markov Model (HMMs):

Temporal probabilistic model in which the state of the process

is described by a single discrete random variable. (The simplest
kind of DBN )

Kalman Filter Models (KFMs):

Estimate the state (continuous) of a physical system from noisy

observations over time. Also known as linear dynamical systems
(LDSs).

49
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Rut | P(RIR.1)
T 07
i

Hidden Markov Models

X is a single, discrete variable (usually E; is too) Gmbreli (Umbra)
Domain of X, is {1.....5}

PURy)
09
02

n—|D

Transition matrix T;; = P(X, = j|X; 1 =1i), eg, (U,f 0.3]

0.3 0.7

Sensor matrix O; for each time step, diagonal elements (| X; =)

0.9 0]

e.g., with Uy =true, O = ( 0 09

50




Hidden Markov Models

R

PRIR.1)

T
E

0.7

03

=A®DW%

X is a single, discrete variable (usually E; is too) Groneta)

Domain of X, is {1.....5}

P(UIR)

T
E

09
02

Transition matrix T, = P(X,=j| X, | =1), e.g, (U,f 0,3]

0.3 0.7

e.g., with Uy =true, Oy = (00 : ]

0 0.2
Forward and backward messages as column vectors:

| T
frep1 = a0 T 14

Forward-backward algorithm needs time ()(5°¢) and space ()(S7)

Sensor matrix O; for each time step, diagonal elements (| X; =)

Umbrella,..

51
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

. Tg
fl:f—i—l = “OxHT j%1:1*.

Algorithm: forward pass computes f;, backward pass does f;, b,

NNV

52
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

. Typ
f1:f+1 = “‘OrHT jEl:r

Algorithm: forward pass computes f;, backward pass does f;, b,

AR N

53
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

. Tge
fl:f—l—l = “”OI+IT f1.4

Algorithm: forward pass computes f;, backward pass does f;, b;

AN AR N N

- = -

54
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

| Te
f1000 = a0 T 14

Algorithm: forward pass computes i;, backward pass does f;, b;

CN N N N

55
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

. Tg
f1441 = a0 T £,
-1 i T
A Ty—=1—y—1 >
Ck [T ) Ot+1f1:f+1 — tllt

Algorithm: forward pass computes f;, backward pass does {;, b;

N N

56
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

: Te
fl:f+l - “”OH.]T fl:t‘
-1 T
O ifiep = aT 1y
pTy—1y—1 .
o {T \‘I Ot—l-lfl:f—l-l - 1-1:1‘.

Algorithm: forward pass computes f;, backward pass does f;, b;

N N £

5/
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Applications

» Speech recognition
» Robot localization

58
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S R I One non-deterministic operation MOVE.

(o] (o]

PiXis1=3 ‘ Xp=t) = TU = (_1’/;\"-(5) if j € NEIGHBORS(7) else 0)

o o o

o o o

E; has 16 possible values, each a four-bit sequence giving the presence or
absence of an obstacle: NSWE.
¢ is the error rate. All four bits right (1- €)*. All wrong &*

d;; is the number of bits that are different between the true values for square i
and the actual reading e,, then the probability that a robot in square i would
receive a sensor reading e, is:

P(Ei=e; | Xi=1) = Oy, = (1 - g) e

28



ofeofe]e Cell numbers: start in top row, left to right

Matrix for NSW

N ENENEE

(1-e)3¢

(1-g)? &2

(1-g)? €2

27.11.2022



Example AIMA

(b) Posterior distribution over robot location after E1 = NSW,E> = NS

29



Performance

Localization error

o
tn Lnoon
A

~
in

)
in — o Lnus bn s
N

(]

e

1 -

e=020 ——
£=010 - a9 3
R 08 ;
=02 e ]
£=000 ---- o
06 1

os{°/ £=002 -

Path accuracy

oad ;i .7 =00 ===
g . s g=0.10 =
E 0341 / £=0.20 ====n
. 024/
0 5 10 15 200 25 30 35 40 0 5 10 15 20 25 30 35 40
Number of observations Number of observations
(a) (b)

Figure 15.8

Performance of HMM localization as a function of the length of the observa-

tion sequence for various different values of the sensor error probability €; data averaged over
400 runs. (a) The localization error, defined as the Manhattan distance from the true location.
(b) The Viterbi path accuracy, defined as the fraction of correct states on the Viterbi path.
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Last time

Filtering
Prediction
Smoothing

Viterbi for most likely path/state sequence for given
observation

HMM

— Only one state variable
— Efficient computation because of matrix operations

fl:l‘*l = (lO;+|rl‘Tf]__f
O fiesr = oT i,
o/ (T 'O f1e1 = Fuue

63
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Speech recognition

decoder
It was seven o'cl ety
guess at source: 1 call our werld oy 2

Dorothy lived in the... \porothy lived in the : s "

Dan Jurafsky, Stanford

Dephne Keoller




Segmentation of Acoustic signals

Dan Jurafsky, Stanford

Bephne Keller
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AA
AE
AH
AQ
AW
AY

CH

+ EH
« ER

odd

at

hut
ought
cow
hide
be
cheese
dee
thee
Ed
hurt
ate
fee

Phonetic alphabet

AAD
AET
HHAHT
AOT
KAW
HHAY D
BIY
CHIYZ
D1IY
DHIY
EHD
HHERT
EYT
FIY

me
knee
ping
oat
toy
pee

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

GRIYN
HH IY
IHT

YT
JHIY
KIY
LIV
M IY
N LY
P IH NG
owT
TOY
PIY

L

+ R read
« 5 sea

« SH she

e T tea

+ TH theta
* UH hoeod
« UW two

e V vee

s W we
Y yield
e Z Zee

ZH seizure

RIYD
SIY
SHTIY
TIY
THEY T AH
HH UH D
TUWwW
VIY

W Iy
YIYLD
ZIYy
SIYZHER

The CMU Pronouncing Dictionary
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HMM ah

58-89

Dan Jurafsky, Stanford

Py P

32



Word HMM: nine

Dan Jurafsky, Stanford

Dephne Kaller
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Recognition HMM

Lexieon-’
Phone HMM
™ b M
w

Dan Jurafsky, Stanford

Dephne Keller
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Kalman Filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, = XY . Z. X VY. Z.

Airplanes, robots, ecosystems, economies, chemical plants, planets, . ..

Gaussian prior, linear Gaussian transition model and sensor model

70
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Updating Gaussian Distributions

Prediction step: if P(X:|e;.:) is Gaussian, then prediction
P(Xiyilew) = fxrP(Xrﬂ\xtjp(xﬂel:ﬂ dx;

is Gaussian. If P(X; {|e;;) is Gaussian, then the updated distribution
P(Xit1lertr1) = aP (e Xep1)P(Xir1ler)

is Gaussian

Hence P(X;|ey) is multivariate Gaussian N(p,. 35;) for all ¢

71
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Simple 1-D Example

. _1 (L’a: 14 )E)
Prior P(zg) =ae *\ 7 .
e 1 (g1 -2p)?
Transition model Plaeslay) = ae p(e )
_ 1 iz }2
Sensor model P(z|a) = ae (o)

Prediction P = | Pepan=a [~ HEF)AEH) 4

12t .2
G | o2ty —wg)? +02tug—imq)
2 T
= ¥ [
-0

ST ) dxg .
1 (5_12—_;%&) (by using completing the square.
e Not discussed here)

= &e

72
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Simple 1-D Example

Gaussian random walk on X-axis, s.d. o,, sensor s.d. 7.

((Tf + (T;r)‘%—i-l + g [t 2 ((Tt + (T-.r)(r:

\‘ g2 A
; ; ; el ; ; ;
o} + 02+ o2 o2 402 4 o2

He4l =

045 T S

04 I
035 |- -
03 i
025 - P(0) /- ! 1

| P(x1121=2.5)

P(X)

02 / :“ |
0.15 + ’f‘ == ‘ \\ \ |
0.1 F P(x1) ‘\ |
L A :
I 1

X position

75
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2-D Tracking: Filtering

12

11

10

20 filtering
—8—  firue
* observed
L S filtered
r_\‘
] l“.
1N > ox® i
™y
A
“\
L
1 1 1
8 16 18 22 24

27.11.2022



2-D Tracking: Smoothing

20 smoothing
12
—a—  true
* observad
sl oo smoothed
i a '\" _*
1
| x| EE B
| ® F -
1 407 Y, o R
S S *
-\_J’ k] \
{xl b
N %
P *
> 9F % \dﬂ'J
NP
<
By
SN
-
8f %
ot
a
\
oo A
_*_'\ Fi \
7L \ { !
IR
"\._4'"
6 1 1 1 1 1 1 1 1 J
8 10 12 i4 16 18 20 22 24 26
w~
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Where it breaks

(@) ®

Figure 15.12  FILES: figures/kKalman-birdl.eps (Tue Nov 3 16:23:06 2009) figures/kalman-
bird2.eps (Tue Nov 3 16:23:06 2009). A bird flying toward a tree (top views). (a) A Kalman filter will
predict the location of the bird using a single Gaussian centered on the obstacle. (b) A more realistic
model allows for the bird’s evasive action. predicting that it will fly to one side or the other.

One solution 2 switching kalman filters

79
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Creating DBNs with failures

« X =( X, Y,) for velocity X, =(X,, Y,) for position
- Battery powered robot

81
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Failure of sensors

* Sensor measurements are noisy
 Real sensors can fail

* May use a Gaussian error %

model for discrete variables @@
Go—>(%)

« Transient failure C

« Persistent failure @

82
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Transient failure model

@ E(Battery, |...5555005555...)
4 4
i -
£ 39

0 9 P WM MM M M

R
E(Battery, |...3535000000...)

E(Battery,)

15 20 25 30
Tume step ¢

P(BMeter,=0|Battery,) P(Battery.)
P(Battery,|BMeter,=0) = o <0.99, 0.006, 0.004><0.05, 0.05, 0.9

=<0,92178771,0,01117318 , 0,06703911 >
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Transient failure model

E(Battery,)

E(Battery, |...5555005555...)

E(Battery, |...5555005555...)

5 5
4 s 4 s '~1‘
" 3 X
3 g 3 |
2 S 21 !
e5]
L 3 L
0 9 D B M M N - MM B K 0 9 x‘wm—%-x—-x—*—»«
E{Battery, |...5555000000...) E(Battery, |...5555000000...)
-1 v v v Y -1 v " v Y
15 20 25 30 15 20 25 30
Ti tep ¢ — i t
s P(BMeter,=0|Battefy;)'*

(@)
P(Battery,|BMeter,=0) = a <0.8, 0.1, 0.1><0.05, 0.05, 0.9>

~<0.44, 0.06,0.5 >

84
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Persistent failure model

| E(Battery, |...5555005555...)
B, | P(By) 5 ":r!'r:::'.:

¢ | 1000 R

f | 0001 el E(Battery, |...5555000000...)
34

BMBroken BMBroken | %
q 2
51 P(BMBroken, |...5555000000...)
1 9 - R=R=Rof=R = aRaBalefal
BMeter v

0 ~m--m--n--n--n--n-'m-'n"n/ F R —_—
T P(BMBroken,|...5555005555...)

-1 - - r
15 20 25 30

Time step

(a) (b)

Figure 15.15 FILES: figures/battery-persistence.eps (Tue Nov 3 16:22:26 2009). (a) A DBN
fragment showing the sensor status variable required for modeling persistent failure of the battery sen-
sor. (b) Upper curves: trajectories of the expected value of Battery, for the “transient failure” and
“permanent failure™ observations sequences. Lower curves: probability trajectories for BM Broken
given the two observation sequences.
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Example

BMBroken2

1= _BMBrokan? [

BMBrokend »

BMetart
Observed Valua: 2 |

BMeater?
| Obsenved Value 0

Bafteryd
Obsarvad Value: 2

=

\J
£

BMBrokan3

86
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DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

/

rd

kY

s

i

N

99

(2)—&

Consider the transition model

Sparse dependencies = exponentially fewer parameters;

e.g., 20 state variables, three parents each
DBN has 20 x 23 =160 parameters, HMM has

22[] % 22[] ~ 1019

87
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DBNs vs. Kalman Filters

Every Kalman filter model is a DBN, but few DBNs are KFs;

real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What's the battery charge?

BIMBroker.'.o BMBroken,
<D

ST+ o+ o+ o+ o+

E(Batteryl...5555005555...)
+_+-|.-T+++++++-

E(Batteryl...5555000000._) T

E(Battery)
[&=]

P(BMBrokenl...5555000000..
0000000004

u

o

(p BB BB EEEE

R S TSP
P(BMBrokenl. 5555005555..))

15 20 25 30
Time step

88
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Exact Inference in DBNs

PRy | P(()R;) Pl oo P(()R;) 5 P(()R;) = P:)j?)
Na|Ve £l 03 :‘ fl 03 Fl 03 fl 03
Raing r
et
R, | P(UY) Ry | PWL)| | Ry | PU)| | B3| P(WA)
Fl 83 L& p 8] 83
Rollup filtering:
O(d"*) largest factor d = possible values for variables

n = number of states

20 state variables (4 values) k = number of parents

mean 420*1=4.398.046.511.104

90
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Approximate inference:
Likelihood Weighting

Set of weighted samples approximates the belief state

91
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Likelihood Weighting

Set of weighted samples approximates the belief state

LW samples pay no attention to the evidence!
— fraction “agreeing” falls exponentially with ¢
= number of samples required grows exponentially with 7

92
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Likelihood Weighting

| -| T T -—-l T T .. L bl
| T
s & T T
LWy +
og | .* oot LW(I800) o
: 27 Lw(ie0o) ~
"
| T m "
?ﬂ I * L1
: L.
= -
=R 4 r
L] vt ] g
l!--i- =t - '_ﬂ He
0.2 J ot e .
& l.-“ 1“ =] ?" o
[,¢ #* nan®?
ﬂm;.fnl P i i i i 1 i

10 15 20 25 30 35 40 45 30
Time sep
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Solution

* |Instead of running one example at a time
run N.

* The N samples also represent an
approximate representation of the current

state distribution.
* Instead of using initial examples throw low
weighted ones away.
¢ Must add new examples else lose to much.

94
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Idea: Particle filtering

—

A population of N initial-state samples is
created sampling from P(X,)

1. Based on the transition matrix propagate
examples forward. P(X.,4|X,)

2. Each sample is weighted by the likelihood it
assigns to the new evidence P(e,|X.1)-

3. Resample examples based on it‘s weight.

95
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Particle Filtering

Riy | P(RIRwy)
T 07
F 03
—( Rain, 4"@
Our current CD
particles,10 Propagate forward
Rain, Rain, Rain, Rain, AR
[efadals] oee - o) -IE gg
true 2000 I cos e
. o0 o000
Jalse 5Y0) eooe
NO umbrella resam pllng
is observed

at t+1

96
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Example
e —
N(ri1le) = T P(xuilx) N(xJe)
F o loa Forrain =0.7*8+0.3*2=6.2=>6

Fornotrain=0.3*8 +0.7*2=3.8 =>4

Umbrel Suppose no umbrella for t+1
R_PUR) total weight(rain particles) = 0.1 * 6= 0.6
P02 total weight(not rain) = 0.8 * 4= 3.2

Normalized =<0.17, 0.83>

97
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Particle Filtering: Performance

Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult

1

LWQS) + et T B
2 - N
LW(100) + g ; e
LW{000) = ¢ o @ .
08 - rweooooy - - & . ]
ER/SOF(25) - ’ ¥ m <
E : +++ 8"
; 06 r F pom T
% +h- faal
2 F .
= L * o o _
5 04 S _ |
E 2 + m A
02 b P AL - I i
- .”++++E‘f"3'. ) K
[ ++ @@a® "
0 ru;ggﬂ?ﬂuuel & a8 ;‘- T T
0 5 10 15 20 25 30 35 40 45 50
Time step
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Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP (X;|X;_1)
— sensor model P (E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow 7. state variables, linear Gaussian, O(n*) update
Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs

100
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Intelligent Autonomous Agents

and Cognitive Robotics

Topic 7: Decision-Making under Uncertainty
Simple Decisions

Ralf Moller, Rainer Marrone
Hamburg University of Technology
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Non-Deterministic
vs. Probabilistic Uncertainty

{a,b,c} {a(pa),b(pb),c(pc)}
- decision that is - decision that maximizes
best for worst case expected utility value
Non-deterministic model Probabilistic model

~ Adversarial search 2




12/13/2022

Expected Utility
e ——

- Random variable X with n values x,...,X, and

distribution (p4,...,p,)
X is the state reached after doing an action A

under uncertainty
* Function U of X : U is the utility of a state

* The expected utility of A is
EU[A] = Zi.4 o P(X|A)U(X)
MEU = argrpax EU[A]




One State/One Action Example

SO0

U(S0) =100 x 0.2 + 50 x 0.7 + 70 x 0.1

=20+35+7
A1 = 62
$1 S2 S3
0.2 0.7 0.1

100 50 70




One State/Two Actions Example

- U1(S0) = 62
- U2(S0) = 0.2x50+0.8*80 = 74
- U(S0) = max{U1(S0),U2(S0)}
=74

SO0

S1
0.2 0.7 0.2 0.1 0.8

100 50 70 80

12/13/2022



Introducing Action Costs

- U1(S0) = 62 — 5 = 57
. U2(S0) = 74 — 25 = 49

- U(S0) = max{U1(S0),U2(S0)}
= 57

SO0

S1
0.2 0.7 0.2 0.1 0.8

100 50 70 80




MEU Principle

theory

e —

A rational agent should choose the action
that maximizes agent’s expected utility

* This is the basis of the field of decision

« The MEU principle provides a normative
criterion for rational choice of action

12/13/2022



But ...

Must have complete model of:

+ Actions

+ Utilities

+ States
Even if you have a complete model, it might be
computationally intractable

In fact, a truly rational agent takes into account the utility
of reasoning as well---bounded rationality

Nevertheless, great progress has been made in this area
recently, and we are able to solve much more complex
decision-theoretic problems than ever before
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We’'ll look at

 Decision-Theoretic Planning
+ Simple decision making (ch. 16)
+ Sequential decision making (ch. 17)




Rational preferences

e

Idea: preferences of a rational agent must obey constraints.
Rational preferences -
behavior describable as maximization of expected utility

MEU is not the only possible solution:
minimize worst case
only preferences without numeric values

Why should a utility function with numerical values exist?
10




Basis of utility theory:

constrains on preferences

An agent chooses among prizes (A,B,...) and lotteries, i.e.,
situations with uncertain prizes.

Lottery L =[p, A ; (1-p), B] 2

A = B the agent prefers A over B.

A ~ B the agent is indifferent between A and B.

A and B can be lotteries again: Prizes are special lotteries: [1, X; 0, not X]

11
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Axioms of Utility Theory

* Orderability: Given any two states, the rational agent
prefers one of them, else the two as equally preferable.
(A B)v (B> A)v (A~ B)
» Transitivity: Given any three states, if an agent prefers 4 to
B and prefers B to C, agent must prefer 4 to C.
(A>B)YA(B>C)= (4> C)
» Continuity: If some state B 1s between 4 and C in
preference, then there is a p for which the rational agent will

be indifferent between state B and the lottery in which A
comes with probability p, C with probability (1-p).

(A=B>C)y=4dp[p:A;(1-p):C]~ B

12




Rational preferences contd.

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give

away all its money

If &2~ (', then an agent who has
would pay (say) 1 cent to get B

If A~ B, then an agent who has 5
would pay (say) 1 cent to get A

If C"~ A, then an agent who has A
would pay (say) 1 cent to get ('

> A

18
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Last time

Kalman filters
Failure models for DBN: transient, persistent
Approximate inference in DBNs: Particle filtering

Rain, Rain,,, Rain,,, Rain,,

]
]

| 0t | |
mp !
515) oe00
=1 2000

No umbrella resampling
is observed

att+1

true | soee

false :

Utility theory

+ Lotteries and axioms for preferences

14




Axioms of Utility Theory

« Substitutability: If an agent i1s indiftferent between two
lotteries, 4 and B, then there 1s a more complex lottery in
which A can be substituted with B. This also holds for >

(A~B)=[p:A:(I1-p):Cl~[p:B:(1-p):C]
» Monotonicity: If an agent prefers A to B, then the agent

must prefer the lottery in which A occurs with a higher
probability

(A= B)=(p>q=[p:Ai(l=p):Bl~[g:4:(1-q): B])
* Decomposability: Compound lotteries can be reduced to
simpler lotteries using the laws of probability.

A (1-p):[g:B;(1-¢q):C]]=
[p ( p) [6] ( q) I . No fun in gambling

[p:A:(1=p)g:B;(1-p)l-q):C] -

12/13/2022



Decomposabilty

A
P

B
q

(1-p)

(1I-q) C
is equivalent to A

/
e

(1-p)(1—q) ~C

16




And then there was utility

Theorem by Neumann and Morgenstern, 1944
Given preferences satisfying the constraints there exists a real-
valued function U such that

UA)>U(B) &« AXB
Ullpy 8y; oo § PrsBal)= 2 p;U(5;)

MEU principle:
Choose the action that maximizes expected utility

14
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Allais Paradox

e

A : 80% chance of $4000 C : 20% chance of $4000

B : 100% chance of $3000 D : 25% chance of $3000
When presented with a choice When presented with a choice
between A and B, most people between C and D, most people
would choose the sure thing B. would choose the C, with higher

expected utility (800 vs. 750).
These choices together are inconsistent

1*U(3000) > 0.8*U(4000) 0.25*U(3000) < 0.2*U(4000)
1*U(3000) < 0.8*U(4000)

18




Utilities

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities:
compare a given state A to a standard lottery L, that has
“best possible prize” uT with probability p
“worst possible catastrophe” u | with probability (1 — p)
adjust lottery probability p until A ~ L,

0.999999 - continue as before

pay $30 ~ L
-and-continue
-as-before

instant death

19
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Utility scales

Normalized utilities: ut = 1.0, v, = 0.0  U(pay $30...) = 0.999999

Micromorts: one-millionth chance of death
useful for Russian roulette, paying to reduce product risks, etc.

QALY's: quality-adjusted life years

useful for medical decisions involving substantial risk
Note: behavior is invariant w.r.t. +ve linear transformation
U'z) = kU(x) + ky where ky > 0

With deterministic prizes only (no lottery choices), only

ordinal utility can be determined, i.e., total order on prizes
20
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Value Functions
e —————

* Provides a ranking of alternatives, but not a meaningful
metric scale

« Also known as an “ordinal utility function”

* Remember the expectiminimax example:

+ Sometimes, only relative judgments (value functions) are
necessary

+ At other times, absolute judgments (utility functions) are required

21
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Money Versus Utility
e

* Money <> Utility

+ More money is better, but not always in a linear
relationship to the amount of money

+ Expected Monetary Value
- Risk-averse — U(L) < U(Sgwvw) v
- Risk-seeking — U(L) > U(Sgyv))
» Risk-neutral — U(L) = U(Sgyy )

23
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Two Concepts
e ———————————

« The certainty equivalent of a lottery: the sum of
money, X, which, if received with certainty will yield the
same utility as the gamble
Xis CE if u(X) = EU=pg X u(cg)+pg X u(cg)

* The risk premium associated with a lottery is the
maximum amount a person is prepared to pay to avoid
the gamble
RP = EMV - CE

24
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Risk averse

EU(500) Probability is 0.5 for 250 and 750

0 250 350 500 750
CE

CE is the utility one get for sure when not choosing the lottery.

In our case 350.

The RP is the money someone pays for not participating in the lottery
and getting the sure thing.

The risk premium is 150=500-350.
25

12
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Risk Neutral

u(750)

u(500)

u(250)

250 400 500 750 &

The certainty equivalent of the gamble is $500: the risk premium is $0 28




Risk Seeking

u(250)

w(750)

EU
u(500) »

250 500 600 750 e

The certainty equivalent of the gamble is $600: the risk premium is -$100

29
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Multiattribute Utility Theory
e ———————————————

A given state may have multiple utilities
¢+ ...because of multiple evaluation criteria

¢+ ...because of multiple agents (interested
parties) with different utility functions

30
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Strict dominance

Typically define attributes such that [/ is monotonic in each

Strict dominance: choice B strictly dominates choice A iff

Vi Xi(B) = X;(A) (and hence U(B) = U(A))

X5 This region
dominates A

-

Deterministic attributes

Uncertain attributes

-,

31
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Stochastic Dominance

= Introduced by Rothschild and Stiglitz (1970)

= When distribution F(.) yields unambiguously
higher returns than G(.)?

= When every expected utility maximizer (who values
more money over less) prefers F(.) to G(.)

=« When for every amount of money x the probability
of getting at least x is higher under F(.) than under

G(.)
= Fortunately, these two definitions are
equivalent

32
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Stochastic dominance

=1
=)}
[N

——

0.5 1
>, 04 -, 0.8
= 5 5,
03 5 5 06
o g2 S
* 02 =04
0.1 0.2
0 0
6 -55 -5 45 4 35 -3 25 2 6 -55 -5 45 4 35 3 25 2
Negative cost Negative cost
(a) (b)

Figure 16.5  Stochastic dominance. (a) S| stochastically dominates S; on cost. (b) Cu-
mulative distributions for the negative cost of Sy and Ss.

If two actions S1 and S2 lead to probability distributions p4(x) and p,(x)
on attribute X, then S1 stochastically dominates S2 on X if:

Vax /pl(;r') dz' < /})2(.!") dz’

For any monotonically non-decreasing utility function U(x), the expected utility
of S1 is at least as high as the expected utility of S2. Hence, S2 can
be discarded. 33
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Stochastic dominance contd.

Stochastic dominance can often be determined without
exact distributions using qualitative reasoning

E.g., construction cost increases with distance from city
51 is closer to the city than S5
— 5 stochastically dominates 5, on cost

E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information:
X =V (X positively influences ') means that
For every value z of }Y''s other parents Z
Yoy, o xp = xo = P(Y |z, z) stochastically dominates P (Y |z, z)

36
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Example

\

czoessive oud

consumpiion oul leak

low oil

level engine MNock

Qualitative influence of greasy engine block on worn piston rings:

Greasy engine block is evidence of oil leak.

Oil leak and excessive oil consumption can each cause low oil level.

Oil leak explains low oil level and so is evidence against excessive oil consumption.
Decreased likelihood of excessive oil consumption is evidence against worn piston rings.

Therefore, greasy engine block is evidence against worn piston rings. r

I e
rings

16



Preference structure: Deterministic

X1 and X, preferentially independent of X3 iff

preference between (ry, w0, 1) and (2], 2, 23)
does not depend on 3

E.g., (Noise, Cost, Safety):
(20,000 suffer, $4.6 billion, 0.06 deaths/mpm) vs.
(70,000 suffer, $4.2 billion, 0.06 deaths/mpm)

Theorem (Leontief, 1947): if every pair of attributes is P.l. of its com-
plement, then every subset of attributes is P.| of its complement: mutual

Pl.
Theorem (Debreu, 1960): mutual P.I. = = additive value function:
V() = S(X(S))

Hence assess 71 single-attribute functions; often a good approximation

38
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Multi-attribute utility functions
I —————————————————

» Multi-dimensional or multi-attribute utility theory deals with
expressing such utilities

« Example: you are made a set of job offers, how do you decide?
u(job-offer) = u(salary) + u(location) +
u(pension package) + u(career opportunities)

u(job-offer) = 0.4u(salary) + 0.1u(location) +
0.3u(pension package) + 0.2u(career opportunities)

But if there are interdependencies between attributes, then additive
utility functions do not suffice. Multiplicative utility function:

u(X,y)=w,u(x)+w u(y)+w,w, u(x)u(y)

39
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Decision Networks/
Influence diagrams

Extend BNs to handle actions and utilities
Also called influence diagrams

Use BN inference methods

Perform Value of Information calculations

40
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Decision Networks cont.
e ————

O « Chance nodes: random variables, as in
BNs: X={x1, ..., xn}

« Decision nodes: actions that decision
maker can take: A={a1, ..., an}

<> « Utility function nodes: the utility of the
outcome state: U(XA)

41
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Expected Utility in DN/ID

EU[D(a)] = Z P(x|a)U(x,a)

« Wantto choose action a that maximizes the expected

utility

a* = argmax,EU[D(a)]

42
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Simple example

m°

ml

m?2

0.5

0.3

0.2

poor mid great
Market) | Found

o f0 f1

EU(f°) = O me| O -7
1

EU(f') = 0.5%-7+0.3%5 +0.2%10 = 2 "5+-2—+—2

43
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A more complex network

44
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Information edges

Decision rule & at
action node A is a CPD:

P(A | Parents(A))

0.3

0.5

45
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Finding MEU Decision rules

S F

= 6p(F | S)u(F.S)

> Op(E|S)Y P(M)P(S | M)U(F, M)
M

S, F wo sx 52
m | m | m2 mo|osl03]| 01 mo
05| 03/l02] _m]0.3 04| 0.3 m!
m?|01 0.4 05  m?
\
0.5%0.6*-7 =-2.1 £ | f1
0.3*0.3*5=0.45 <] o
0.2*0.1*20=0.4 il o
sl 0

Summing leads to -1.25

46
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Finding MEU Decision rules

ST 18) S P(M)P(S | M)U(F, M)
M

S F
= Z 6p(F | S)u(F,S)

S, F
\SO gl | s2

m [ m [ m mojoslo3[o1l  mef o |-7
0.3

0510302 _m]o. -
m2|0.1 04\ 05 m?

MEU=0+1.15+2.1=3.25

47
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More Generally

Z-P
EUD[A]l = 3 Ps, (@, a)U(x, a) o

€I,

= ¥ ((HP |Pa\)U(Pau)5A(AZ))

X XA

=N oaA12)y ((H P(X, | pa,\-,)) U(Pa,,))
w t

Z,A
=3 6a(A] Z)u(A, Z
Z.A

1 a=argmax (A, 2z)
0 otherwise

54(a | z) = {

W={X,.. X)-Z

48
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MEU Summary

» To compute MEU & optimize decision at A:
— Treat A as random variable with arbitrary CPD
— Introduce utility factor with scope Pay

— Eliminate all variables except A, Z (A's
parents) to produce factor u(A, Z),
— For each z, seft:

" | 1 a=argmax,u(A,z)
| &)= { 0 otherwise

49
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Value of Perfect Information

me | m! | m? S
05103102 / T
Survey D~ m[o6l03] 01
— m|03/04| 0.3
MEU(D) = 2 m2[01(04| 05
MEU(D,) = 3.25 Found
fO fl
VPI(D,) = MEU(D,) - MEU(D) ol o0 | 7
=3.25-2=1.25 ——m| 0[5
m 0 120

50




Value of Perfect Information
e

Current evidence E, current best action a
Possible actions outcomes §;, potential new evidence E;

MEU(al|E) = maxaz_U(Si)P(Si|E, a)

Suppose we knew E;, we would choose Gy

MEU (ac,

E, E] - ejk) - maxaz' U(SL)P(SllE, a, E] - ejk)
l

E; is not known. Must compute expected gain.

VPI(E;) = P(E;|[E)MEU (a..,
» (e

E,E; = ejk)> — MEU(alE)

51
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Properties of VPI

Non negative
vj,EVPIg(E;) =0

Non additive

VPIg(E;, Ey ) # VPIg(E;) +VPIg (Ex)

Order-independent

VPIg(E;, Ey) = VPIE(E;) + VPIg g, (Ey) = VPIg(Ep) + VPIg g, (E;)

When is information useful?

52
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Example 1

poor  mid

f0

d«f_' sl 52 \ g3
01 ozlodﬂ @9 Gﬂ*ez Io4|05I01

great

fl

s'10.9
s210.6

0.1
0.4

s3|0.1

EU(D[c4]) =
EU(D[c,]) =

0.9

General funding stratew

/ C.,Cy

— ==

Fundin@

undi@

Company,

1 if company gets funded
0 otherwise

0.1*0.1+0.2*0.4+0.7*0.9=0.72
0.4*0.1+0.5*0.4+0.170.9=0.33

53
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Example 1

EU(D[c,]) = 0.72
EU(D[c,]) = 0.33

- @3 Q’a‘re
aTertar] o S

ol g1~
s'[o9]01 @”d'f‘g

s2|06|0.4
s3|10110.9

d:’jsl|52l$3

104105/ 01

1 if company gets funded
0 otherwise

If c2 is in state s1, the utility is 0.1
If c2 is in state s2, the ultility is 0.4
If c2 is in state s3, the utility is 0.9

54
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Example 1

folf "=

s2|106[/04
s3|01109

EU(D[c,]) = 0.72
EU(D[c,]) = 0.33

s @ @ Ga‘re
Slielerl AN

slo9lo1 NI

d:_-:51|52\53

104105101

unding;

Company,

1 if company gets funded

0 otherwise
MEU(Dgie,) = 0.4 *0.72 =0.288
0.5*0.72=0.36
0.1*0.9=0.09 E
Y 0.738

25



Last time

 Existence of a utility function

+ Additive vs multiplicative utility function

+ Stochastic dominance

 Risk profiles
+ Risk averse
+ Risk neutral
+ Risk seeking

56
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Last time: Decision networks

ml | m | m?
05103102

poor mid  great @ Found

o fo | ¢

= °l o b
EU(f) = 0 'r“nl - A
EU(f")= 0.5*-7+0.3*5+0.2*10=2 [mzl 0 20

5/

26



Example 1

d:’jsl|52l$3

104105/ 01

sl

01 odzlojt | Lg/*;@ (State,
poor  mi grea

1 e @;\dl_gg c ‘ undi@
s1109|0.1 : ompany ail

s2|06|0.4
s3|10110.9

1 if company gets funded

0 otherwise
Select ¢, if State, = s3, ¢, otherwise
EU(D[c,]) = 0.72 MEU(Dgyte,) = 0.738

EU(D[c,]) = 0.33
(Dlc]) VPI(Dgguep)= 0.738 — 0.72 = 0.018

58
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Example 2

EU(D[¢,]) = 0.35
EU(Dlc;]) = 0.33

05| 01

. _ 1 P(e?)=1 if S,= 8283
5*(C | S;) = ‘{ P(cl)=1 otherwise

MEU(Ds,_, ¢) = 0.43
VPI =0.43 - 0.35=0.08

59
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Example 3
st | s? s? | s3
05103 05_ 0.1
0
s']10.3
s2]10.2
s310.01

. 1 P(c?)=1 if 5,=5%53
EU(D[¢,]) = 0.788 *(C | S,) = { P(c!)=1 otherwise

EU(D[c,]) = 0.779
MEU(Ds, , ¢) = 0.8142

VPI =0.8142 - 0.788 = 0.0262

60
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Summary

* Influence diagrams provide clear and coherent
semantics for the value of making an observation

+ VPI = P(new observation) * MEU(new observation)
— MEU (with current observations)

 Information is valuable if and only if it induces a
change in action in at least one context, and with
(significant) higher MEU.

62
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Intelligent Autonomous Agents
and Cognitive Robotics

Topic 8: Decision-Making under Uncertainty
Complex Decisions

Ralf Moller, Rainer Marrone
Hamburg University of Technology
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« Chapter 17
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Sequential Decision Making

 Finite Horizon
+ Fixed time N after that nothing happens

 |Infinite Horizon
+ N not fixed




Simple Robot Navigation Problem

A

¢ In each state, the possible actionsare U, D, R, L

Uncertainty in action 08

0.1 0.1

]

10

g0




ﬁ Sequence of Actions

[3,2]

2 A

1 2 3 4
 Planned sequence of actions: (U, R)

12/16/2022



Sequence of Actions

3 A
2 A A
1

1 2 3 4

08
0.1@0.1

[3,2]

[3,2]

[3,3]

[4,2]

¢ Planned sequence of actions: (U, R)

e U is executed




Histories
AlA [3,1]1][3,2] [3,3]|[4,1]]|[4,2] [4,3]
2 3 4

 Planned sequence of actions: (U, R)
¢ U has been executed
e R is executed

e There are 9 possible sequences of states
— called histories — and 6 possible final states
for the robot!
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Probability of Reaching the Goal

Note importance of Markov property
in this derivation

—

3 A_

2 A | A

1 A A
1 2 3 4

P([4,3] | (U,R).[3,2]) = P([3,3] | U.[3,2]) x P([4,3] | R.[3,3])
+ P([4,2] | U.[3,2]) x P([4,3] | R.[4,2])

=0.8x0.8+ 0.1x0.1
= 0.65




12/16/2022

Utility of a History

3 +1
2 -1
1

1 2 3 4

e [4,3] provides power supply
¢ [4,2] is a sand area from which the robot cannot escape
» The robot needs to recharge its batteries
e [4,3] or [4,2] are terminal states
e The utility of a history is defined by the utility of the last
state (+1 or —1) minus n/25, where n is the number of moves




Utility of an Action Sequence

[3,2]

[3,2]

[3,3]

[4,2]

B Vi—

[3,2]

[3,3]

[4,1]

[4,2]

[4,3]

3 +1
2 -1
1
1 2 3 4 51]

e Consider the action sequence (U,R) from [3,2]
¢ A run produces one among 7 possible histories, each with some

probability

e The utility of the sequence is the expected utility of the histories:

U =2, P(h)

10




Optimal Action Sequence

[3,2]

[3,2]

[3,3]

[4,2]

B Vi——

3 +1
2 -1
1

1 2 3 4

[3,1]

[3,2]

[3,3]

[4,1]

[4,2]

[4,3]

e Consider the action sequence (U,R) from [3,2]
¢ A run produces one among 7 possible histories, each with some

probability

e The utility of the sequence is the expected utility of the histories
» The optimal sequence is the one with maximal utility

11
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Optimal Action Sequence

3 +1
2 -1
1

1 2 3 4

¢ Consider the action sequence (U,R) from [3,2]

e A run prod

probability

[3,2]
[3,21][3,3]][4,2]
[3,11][3,2] | [3,3]][4,1] | [4,2] [4,3]

me

only if the sequence is executed blindly!

e The utility of the sequence is the expected utility of the histories

e The optimal sequence is th

e But is the optim

compute?

E

with maximal utility

ion sequence what we want to

12




Policy (Reactive/Closed-Loop Strategy)

3 > +1
AR I -1
1| ] |— |— |—

1 2 3 4

e A policy IT is a complete mapping from states to actions

18
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Reactive Agent Algorithm

Repeat:

» s € sensed state

- If s is terminal then exit
»a € TII(s)

> Perform a

14




Optimal Policy

e A policy IT is a complete mapping from states to actions

e The optimal policy IT* is the one that always yields a
history (ending at a terminal state) with maximal
expected utility

15
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Optimal Policy

3—>—>—>+1
2| | !
1]

1 2 3 4

e A policy IT is a complete mapping from states to actions
e The optimal policy IT* is the one that always yields a

historSYith maximal expected utility

How to compute IT*?| __——

This problem is called a
Markov Decision Problem

(MDP)

16




Additive Utility: Stationarity

- History H = (s,,s,,...,S,)
- The utility of H is additive iff:
A(S0:S1s--.,8,) = R(0) + U(s,,...,8,) = 2 =)

N

Reward

14
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Additive Utility

History H = (s,,s,,...,S,)

The utility of H is additive iff:
A(S0,S,,....8,) = RA0) + U(s,,....,s,) =2 Ri)

Robot navigation example:

* R(n)=+1ifs, =[4,3]

* R(n)=-1ifs, = [4,2]

* R()=-1/25ifi=0, ..., n-1

18




Principle of Max Expected Utility

« History H = (s,,s,,...,S,)
« Utility of H: UU(s,.s,.....8,) = 2 R()

2 1 T B

1 14_4_._

1 2 3 4
Flrst-step awaLgs’Ls ->

() = RYi) + max, 2P| a.i) L)
IT*(i) = arg max, 22 P(k | a.i) LA()

19
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Value lteration

« Initialize the utility of each non-terminal state s,to L4,(i)=0
- Fort=0,1,2, ..., do:
Upas (i) € (i) + max, 2, P(k | ai) k)  (Bellmann equation)

3 +1
2 1
1

20
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Initialization Iteration 1
0 0 0 3
0 o [ 1] 2
0 0 0 0 1
1 2 3 4

0.8U“(1,2)+0.1UY2,1)+0.1U”(1,1)  UP
0.9U”(1,)+0.1U“(1,2) LEFT
0.9U(1,1)+0.1U”(2,1) DOWN
0.8UY2,H+0.1U”(1,2)+0.1U(1,1)  RIGHT

U®(1,1) =—0.04 +1* max

0 UP
a 0 LEFT
U (1,1) =-0.04 + max
0 DOWN

0 RIGHT 21
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Initialization Iteration 1

0 0 0 3| o o [0.76 | *]
0 o |[ ] 2 | o o |[4]
0 0 0 0 4 | -0.04f o 0 0
1 2 3 4 1 2 3 4
0.8U(3,3)+0.1U(2,3)+0.1U"(43)  UP
; 0.8U(2,3)+0.1U(3,3)+0.1U(3,2)  LEFT
U™ (3,3) = -0.04 + 1 *max . . .
0.8U(3,2)+0.1U0”(2,3)+0.1U"(4,3) DOWN
0.8U(4,3)+0.1U"(3,3)+0.1U"(3,2)  RIGHT
0.1 UP
o 0 LEFT
U"’(3,3) = -0.04 + max
0.1 DOWN
0.8  RIGHT

22
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After a Full Iteration
e ——

* Only the state one step away from a positive reward
(3,3) has gained value, all the others are losing value
because of the cost of moving

Iteration 1

3 -.04 -04 | 0.76 1

-.04 -.04 -.04 -.04

1 2 3 4

24
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Value lteration: from state
utilities to policy

* Now the agent can chose the action that implements the MEU
principle: maximize the expected utility of the subsequent state

expected value
7 *(s) = arg max Z P(s'|s,a)U(s') | of following

policy 1* in s’
states reachable /

from s by doing a Probability of getting to s’ from s via a

25
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Example

T*(s) = argmaxZP(s‘|s,a)U(s') 3

2

0.812

0.762

0.868

0.912

0.660

» To find the best action in (1,1)

7*(1,]) = argmax

» We have to do this for all fields!!!!

[0,7456 UP
0,7107 LEFT
0.9U(1,1)+0.1U(2,)) DOWN

10.8U(2,1)+0.1U(1,2)+0.1U(L,]) ~ RIGHT

26
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Example

7z *(s) = arg max ZP(S'|S,a)U(s') 3

2

» To find the best action in (1,1)

0,7456

0,7107
m*(1,]) = argmax

b

0.6707

» give Up as best action

0.812 | oses | 0812
0.762 0660 | [=1]
0705 | 0.655 | 0.611 | 0.388
1 2 3 4
LEFT
DOWN
RIGHT

27
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Value lteration: the result

* Initialize the utility of each non-terminal state s,to
U,(i)=0
- Fort=0,1,2, ..., do:
U (i) € (1) + max, 2, P (k| a.i) U(K)

>

UL[3,1])1
0.812( 0.868| 0.918
3| —| —| —| +1 0.611

0.5

0

1 2 3 4 0 10 20 30t




The Reward is important

- | = | = |7 - | =| = |[T]
OEElOSE
3 — — —
R(s) <-1.6284 - 04278 < R(s) < -0.0850
2 |t il =n - -
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Infinite Horizon

In many problems, e.g., the robot
navigation example, histories are
potentially unbounded and the same
state can be reached many times

3 | () = R() + ymax, 2P| a.) L)
p) -1
1 One trick:
Use discounting to make infinite
1 2 3 4 Horizon problem mathematically
tractable .




Value |terati0n (finite and non-finite)

function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp, an MDP with states S, actions A(s), transition model P(s’| s, a),
rewards R(s), discount
€. the maximum error allowed in the utility of any state
local variables: U, U’, vectors of utilities for states in .S, initially zero
0, the maximum change in the utility of any state in an iteration

repeat
U—U":6<0
for each state s in S do
U'ls| — R(s) + X P(s'|s,a) Uls’
[s]— R(s) ’Ya’élﬁﬁ)Z (s'|s,a) U[s

if (U'[s] — Uls]| > Sthend« |U’[s] — Uls]|

until 6 < e(1—1v)/7|
return U/

31
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Bellmann eq. is a contraction

 two important properties of contractions:

+ A contraction has only one fixed point; if there were
two fixed points they would not get closer together

when the function was applied, so it would not be a
contraction.

+* When the function is applied to any argument, the
value must get closer to the fixed point, so

repeated application of a contraction always reaches
the fixed point in the limit.

32




Value iteration

« Let U, denote the vector of utilities for all

the states at the ith iteration. Then the Bellman update
equation can be written as

Ui+1<_BUi

33
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Value iteration
e ————

« use the max norm, which measures the “length” of a vector
by the absolute value of its biggest component:

IU|l = max; |U(s)|

- Let U;and U’; be any two utility vectors. Then we have

1BU; =BU || = AlU;=Ull| 17.7

34
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Value iteration

Utility estimates

1le+07 1
c=0.0001
le+06 A
T 100000 1
=]
2 10000 1
£ 1000 4
B
8 100 +
10 £
0 5 10 15 20 2 30 0.50.550.60650.70.750.80.850.90.95 1
Number of iterations Discount factor vy
(a) (b)

Figure 17.5  FILES: . (a) Graph showing the evolution of the utilities of selected states using value
iteration. (b) The number of value iterations k required to guarantee an error of at most € =c - Rmax.
for different values of c. as a function of the discount factor ~.

-6
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Value iteration
e —————

* From the contraction, it can be shown that if the update
is small (i.e., no state's utility changes by much), then the
error, compared with the true utility function, also is
small. More precisely,

it ||Ujq — Uill < e(1-y)/y then [|[Ui; —U||<e (17.8)

This is the stopping criteria for value iteration

37
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Value iteration
e ————

« But the crucial question is!!!! How well will | do using this
utility function?

» policy loss
U™ (s) is the utility obtained if i is executed starting in s,

policy loss ||[U™ —U|| isthe most the agent can lose by
executing i instead of the optimal policy *

38
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Value iteration

The policy loss of i is connected to the error in U, by the
following inequality:

if ||U;— U|| <& then ||Um - U||< 2& (17.9)

j,
§ Max error
E}, 0.8 Policy loss ——=—-
£ 06
s
5 04
-
[*3
= 02
0

0 2 4 6 8 10 12 14
Number of iterations

The maximum error |[U; — U| of the utility estimates and the policy loss ||[U™ — U||, as a function of the
number of iterations of value iteration on the 4 x 3 world.

38
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Policy Iteration

* Pick a policy IT at random

40
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Policy Iteration

* Pick a policy IT at random
* Repeat:

* Policy evaluation
Compute the utility of each state for I'1

U i) € RA) + 2Pk [ T1(0).1) LK)

41
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Policy Iteration

e ————

* Pick a policy IT at random

* Repeat:

¢+ Policy evaluation
Compute the utility of each state for I

U (i) € R + 2P (k| T1(0).)) (k)

+ Policy improvement:
Compute the policy IT given these utilities

IT(i) = arg max, 22, P(k | a.i) L(k)

42
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Policy Iteration

e —

* Pick a policy IT at random
* Repeat:

* Policy evaluation:
Compute the utility of each state for IT:

U i) € RA) + 2Pk [ T1(0).1) LK)

* Policy improvement:
Compute the policy IT given these utilities

IT(i) = arg max, 2..P(k | a.i) LK)
¢ |[f IT = IT then return I1

43
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Policy Iteration

function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states S, actions A(s), transition model P(s’|s,a)
local variables: U. a vector of utilities for states in S, initially zero
m. a policy vector indexed by state. initially random

repeat
U — POLICY-EVALUATION(m, U, mdp)
unchanged? « true
for each state s in S do

if )y & Uls'] then d
i e, 2 s'|s,a) [s]>z s'| s,m[s]) U[s'] then do
w[s] + argmax P(s' | s,a) U[s’]
a€ A(s) ;

-]
unchanged? «— false

until unchanged?
return 7

44
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Linear equations

By removing the max operator (Value Iteration)
we can ag/so solve the set of linear equations:

u(i) = R + 2 P(k | TI(0).i) (k)
(often a sparse system)
Suppose we have I1(1).1=Up TI1(2).2=Up

U(1,1)= -0.04 + 0.8U(1,2)+0.1U(1,1)+0.1U(2,1)
U(1,2)= -0.04 + 0.8U(1,3)+0.2U(1,2)

Can be solved in O(n3) by standard linear algebra
methods

For large state spaces we can mix value iteration and
policy iteration

45

12/16/2022



Further optimization

 All algorithms require updating the utility or policy for all
states at once.

» At each step we can also select a subset for updating

asynchronous policy iteration/mod. value iter.

(can show it will converge if some conditions for initial policy and
utility function hold)

« Leads to heuristic algorithms that concentrate on states

that are

likely to be reached by a good policy.

+ “if one has no intention of throwing oneself off a cliff, one should
not spend time worrying about the exact value of the resulting

state”

46
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Summary

« Decision making under uncertainty

« Sequential decision making
+ Utility function
+ Value iteration
+ Policy iteration

47
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Last time
e ———

« Sequential decision making (uncertain actions)
* Need a policy -> best action for each possible state

* Finding the best policy
+ Value iteration

repeat
U—U'":6—0
for each state sin S do
U'[s]— R(s) + v max P(s'|s,a) Uls’
I ] ) a € A(s) Z [ ]

i |U'[s] — Us]| > dthend—|U'[s] — U[s]
unlil‘«i < e(1-7)/7]

mr*(s) = arg max ZP(S'|S,CI)U(S')

+ Bellman update is a contraction 2
Lead to the definition of when to stop value iteration. 3

1/16/2023



Policy Loss

« The policy loss of ; is connected to the error in U, by the
following inequality:

if ||U;— U|| <ethen ||Um - U||< 2& (17.9)

Max error
Policy loss --------

for the 4 X 3 environment with y =0.9. The policy i is optimal when
i=4, even though the maximum errorin Ui is still 0.46

Max error/Policy loss

o
(=]

0 2 4 6 8 10 12 14

Number of iterations

Figure 17.6  FILES: . The maximum error ||U; — U|| of the utility estimates and the policy loss
[[U™ — U|. as a function of the number of iterations of value iteration.




Last time: Policy iteration
B ———

« Create a random policy
Repeat.

+ Value determination

(i) € R+ 2Pk TI(0) Uyk)
+ Policy Update:

(i) = arg max, 2. P(k | a.i) L(k)
¢ If IT = IT then return I1

« We can combine Value- and Policy lteration to get the
best of both

1/16/2023



Further optimization

 All algorithms require updating the utility or policy for all
states at once.

» At each step we can also select a subset for updating

asynchronous policy iteration/mod. value iter.

(can show it will converge if some conditions for initial policy and
utility function hold)

« Leads to heuristic algorithms that concentrate on states

that are

likely to be reached by a good policy.

+ “if one has no intention of throwing oneself off a cliff, one should
not spend time worrying about the exact value of the resulting

state”
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Summary

« Decision making under uncertainty

« Sequential decision making
+ Utility of histories
+ Value iteration
+ Policy iteration




Jumping-off Point
I —————————

- Let us assume again that the agent lives in the
4x3 environment

- The agent knows the environment

- BUT
+ Agent has no or very unreliable sensors
+ |t does not make sense to determine the optimal policy
wrt. a single state
+ IT*(s) is not well defined




1/16/2023

POMDP: Uncertainty
I ———————————————

» Uncertainty about the action outcome

 Uncertainty about the world state due to
imperfect (partial) information




Example: Target Tracking

There is uncertainty

in the robot’s and target’s
positions; this uncertainty
grows with further motion

There is a risk that the target
may escape behind the corner,
requiring the robot to move
appropriately

But there is a positioning
landmark nearby. Should
the robot try to reduce its

position uncertainty?

10




Decision cycle of a POMDP agent

- ACtl on

Agent

Observation

«  Given the current belief state b, execute the action
a=r (b)
*  Receive observation o

«  Set the current belief state to FORWARD(b,a,0) and
repeat

11
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Example Scenario

The agent has no sensors!!!

0111 [ 0.111 | 0111 | [0.000 0.300 | 0.010 | 0.008 |[0.000 0622 | 0221 | 0.071 0.005 | 0.007 | 0.019 |[0.775
0.000 0.221 0.059 0.005 0.034 0.007
0111 | 011 | 0.111 | 0111 0.371 | 0.012 | 0.008 | 0.000 0.003 | 0.024 | 0.008 | 0.000 0.005 | 0.006 | 0.008 | 0.030
(@ (b) (e) )
Figure 17.8  (a) The initial probability distribution for the agent’s location. (b) After mov-

ing Left five times. (¢) After moving Up five times. (d) After moving Right five times.

12




Belief state

* b(s) is the probability
assigned to the actual

state s by belief state b.

if ais executed in b and

0.111

1 1 1 1 1

observation is e the |
%’999’999’9’9’9’9

beliefin s’ is?

b'(s'") = P(e|s’)ZP(S’|S, a)b(s) this is Filtering

b*= a FORWARD(b,a,e)

0,0)

18
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Outcome of actions
e

* Probability of an observation e given that a was performedin b
P(ela,b) = > ¢ P(e|a,s’,b) P(s’|a,b)
=Y P(e|s’) P(s’la,b) markov assumption
=2s P(els’) 25 P(s|s,a) b(s)

« Probability of reaching b’ from b, given action a not knowing e

P(b’la,b) = > P(b’|le,a,b) P(e|a,b)
=2 P(blle,a,b) > P(els’) > P(s's,a) b(s)

Where P(b’|e,a,b) = 1 if FORWARD(b, a, e) =b’ and P(b’|b, a,e)=0
otherwise

* A new reward function for belief states: p(b)=> ¢ b(s)R(s)

« P(b’|b,a) and p(b) define an observable MDP on the space of belief
states.

14




Belief MDP

A belief MDP is a tuple <B, A, p, E>:

0.8

B = infinite set of belief states o o
E = percepts

A = finite set of actions
p(b) = 35 b(s)R(s) (reward function)

P(b'lb, a) = 2. P(ble,a,b) 3 P(els) > P(s]s,a)b(s) (transition function)

Move left once, without observations
b = b

0.111

0.111

0.111 0.111 | 0.000 i-

0111 | 0411 | 0.000 202 |

o

0.111 | 0.111 | 0.1M

0.8*0.111+0.1*0.111 +0.1*0.111 +0.8*0.111 = 0.2

15
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Belief MDP

A belief MDP is a tuple <B, A, p, E>: 08

B = infinite set of belief states o o
E = percepts

A = finite set of actions
p(b) = > b(s)R(s) (reward function)

P(b'lb, a) = >, P(b’le,a,b) > P(e|s) >, P(s)s,a) b(s) (transition function)

Move left once, without observations

i £  =°
0.111 0.111 0.111 0.000 l 0.2
0.111 0.111 0.000 ?2 1 0.111
0.111 0.111 0.111 0.111 T

0.8*0.111 +0.1*0.111 +0.1*0.111 = 0.111




Solutions for POMDP

Methods based on value and policy iteration:

A policy z(b)can be represented as a set of regions of belief state
space, each of which is associated with a particular optimal action.
The value function associates a distinct linear function of b with

each region. Each value or policy iteration step refines the
boundaries of the regions and may introduce new regions.

N

sl

[=J
—

18
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Value lteration for POMDPS

« Consider an optimal policy Tm* and its application in belief
state b.
« For this b the policy is a “conditional plan”
+ Let the utility of executing a fixed conditional plan p ins
be uy(s).
Expected utility U,(b) = > s b(s) u,(s)
It varies linearly with b, a hyperplane in a belief space
+ At any b, the optimal policy will choose the conditional
plan with the highest expected utility
U(b) = U™ (b) = argmax, b x u, (summation of dot-
prod.)
« U(b) is the maximum of a collection of hyperplanes and will
be piecewise linear and convex

19




Example: Conditional Plans

Two state world 0,1

Two actions: stay(s), go(s)
+ Actions achieve intended effect with some probability p

One-step plan [go], [stay]

Two-step plans are conditional
+ [a1, IF percept =0 THEN a2 ELSE a3]
+ Shorthand notation: [a1, a2/a3]

n-step plan are trees with nodes attached with
actions and edges attached with percepts

20
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Example
I ——————————————

« Two state world 0,1. R(0)=0, R(1)=1
« Two actions: stay (0.9), go (0.9)
« The sensor reports the correct state with prob. 0.6
« Consider the one-step plans [stay] and [go]
* Urtay(0)=R(0) + 0.9R(0)+0.1R(1) = 0.1
* Ugtay (1)=R(1) + 0.9R(1)+0.1R(0) = 1.9
* Ugge (0)=R(0) + 0.9R(1)+0.1R(0) = 0.9
* Uggq (1)=R(1) + 0.9R(0)+0.1R(1) = 1.1

« This is just the direct reward function (taken into account
the probabilistic transitions)

2

10



Example

Utility

2.5
2
1.5 - [Stay]
| 16
0.5
0 r r r r
0.2 0.4 0.6 0.8

Probability of state 1

Utility of two one-step plans
as a function of b(1)

if(b(1)>0.5) stay else go

22
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General formula

e

We can compute the utilities for conditional plans of

depth-2 by considering each possible first action, each
possible subsequent percept and then each way of choosing
a depth-1 plan to execute for each percept

[Stay; if Percept =0 then Stay else Stay]
[Stay; if Percept =0 then Stay else Go] . . .

« Let p be a depth-d conditional plan whose initial action is a and
whose depth-(d-1) subplan for percept e is p.e, then

Up(s) = R(s) + 25 P(s] 5,a) 2. P(els’) upo(S))

23
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Example

i 0.z .4 LI 0.5
Probakality of atats

Up(s) = R(s) + 2.+ P(s 5,a) 26 P(elS)) Uy e(S)

Ulstay, stayistay(0)=R(0) + (0.9*50.6*0.1 + 0.4*0.1? + 0.1*\(0.4*1.9 +0.6*1 .9?)=0.28
f
use Uy, (0) use Usgy(1)

Ustay, staysstay)( 1)=R(1) + ( 0.1%(0.6*0.1 + 0.4*0.1)+ 0.9%(0.4*1.9 + 0.6*1.9))=2.72

{ J
\ Y ) T

Ustay(o) ustay(1)

——

* Usiay)(0)=R(0) + 0.9R(0)+0.1R(1) = 0.1
* Upgay (1)=R(1) + 0.9R(1)+0.1R(0) = 1.9
* Ugg) (0)=R(0) + 0.9R(1)+0.1R(0) = 0.9
* U (1)=R(1) + 0.9R(0)+0.1R(1) = 1.1

24

1/16/2023



Example

* Ugsiay(0)=R(0) + 0.9R(0)+0.1R(1) = 0.1
* Ustay) (1)=R(1) + 0.9R(1)+0.1R(0) = 1.9
* Uy (0)=R(0) + 0.9R(1)+0.1R(0) = 0.9
* Uge (1)=R(1) + 0.9R(0)+0.1R(1) = 1.1

i 0.z .4 LI 0.5
Probakality of atats

Up(s) = R(S) + 2.+ P(s 5,a) 26 P(els)) Up.e(S)

Ufgo, staysstay}(0)=R(0) + (0.1*(0.6"0.1 + 0.4*0.1) + 0.9%(0.4*1.9 + 0.6*1.9) )=1.72
Ulgo, staysstayj(1)=R(1) + (0.9%(0.6"0.1 + 0.4*0.1) + 0.1%(0.4*1.9 + 0.6*1.9))=1.28

\ J
\ ! J i

ustay(o) ustay(1)

25
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Example

L]

Upstay(0)=R(0) + 0.9R(0)+0.1R(1) = 0.1
Urstay) (1)=R(1) + 0.9R(1)+0.1R(0) = 1.9
Uigo) (0)=R(0) + 0.9R(1)+0.1R(0) = 0.9
Uige (1)=R(1) + 0.9R(0)+0.1R(1) = 1.1

L

*

L]

i 0.z .4 LI 0.5
Probakality of atats

Up(s) = R(s) + 2.+ P(s 5,a) 26 P(elS)) Uy e(S)

Ugstay, gorstay(0)= R(0) + (0.9%(0.6*0.9 + 0.4*0.1) + 0.1*(0.4*1.1 + 0.6"1.9))=0.68
ugo(o) Ustay(o) ugo(1) Ustay(1)

Ustay, gorstay(1)= R(1) + (0.1%(0.6*0.9 + 0.4*0.1) + 0.9%(0.4*1.1+ 0.6*1.9))=2.48

26
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Example

Utility

Ulility
Utilily
=

0 02 04 0.6 0.8

0 0:2 0.4 .6
Probability of state 1

Utility of four undominated

two-step plans

0.8

Probability of state |

Utility function for optimal
eight step plans

27
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Value lteration
e —————

up(S) = R(S) + Zs’ P(S’l 318) Ze P(GIS’) up.e(s’)
« This give us a value iteration algorithm

« The elimination of dominated plans is essential for reducing doubly
exponential growth:
the number of undominated plans with d=8 is just 144,
otherwise 2255 (|A| O(EI)
If you have n undominated plans you have to generate |A| *nEl new
plans.

« For large POMDPs this approach is highly inefficient

28




Model for POMDPs
e

« Dynamic Bayesian network
+ the transition and observation models
» Dynamic decision network (DDN)
+ decision and utility
A filtering algorithm
+ incorporate each new percept and action and update the belief
state representation.
« Decisions are made by projecting forward possible
action sequences and choosing the best action
sequence.

29
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The Generic Structure of a
Dynamic Decision Network

A:—-Z Arul Ar Asv1 Ar+2

B My e T

G X () \‘@
©
E @&

Figure 17.10  FILES: figures/generic-ddn.eps (Tue Nov 3 16:22:53 2009). The generic structure
of a dynamic decision network. Variables with known values are shaded. The current tume 1s £ and the
agent must decide what to do—that is. choose a value for A,. The network has been unrolled into the
future for three steps and represents future rewards, as well as the utility of the state at the look-ahead
horizon.

The decision problem involves calculating the value of 4, that
maximizes the agent’s expected utility over the remaining state
sequence.

30
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Search Tree of the Lookahead DDN

P(X, | Ey,)

A4 \

t+1

P(Xt+1 |E1't+1) ”””

AHI ( _____
E t+2

P(Xt+2 | El:t+2) """
Et+3

U(Xt+3) -----
10 4 6 3

t+2

31
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Search Tree of the Lookahead DDN

IS |
Wall NSWE e |
-

Down Left

1100 1100

0110

32
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Search Tree: Exhaustive Enumeration

« The search tree of DDN is very similar to the
EXPECTIMINIMAX algorithm for game trees
with chance nodes, except hat:

¢+ There can also be rewards at non-leaf states

¢+ The decision nodes correspond to belief states
rather than actual states.

 The time complexity: O( 4" |E[)
d is the depth, |A| is the number of available
actions, |E| is the number of possible

observations.

This is far less than value iteration.
33
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Discussion of DDNs

- DDNs provide a general, concise
representation for large POMDPs

« Agent systems moved from
+ static, accessible, and simple environments to

+ dynamic, inaccessible, and complex environments
that are closer to the real world

- However, exact algorithms are exponential

34
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Perspectives of DDNs to
Reduce Complexity

e

. Heuristic estimate for
the utility of the remaining steps

* Incremental pruning techniques
Many approximation techniques as in our search

lecture:
¢ Using less detailed state variables for states in the distant
future.
. Using a greedy heuristic search through the space of decision
sequences.

35
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Game Theory
I —————

« So far we looked at uncertainty of actions
and sensors

« Now, uncertainty due to the behavior of

- Game theory




Game Theory: The Basics
I —————————

* A game: Formal representation of a situation
of strategic interdependence (extension of
Adversarial search)

+ Set of agents, | (|I|=n)
= AKA players
+ Each agent, j, has a set of actions, Aj
= AKA moves
+ Actions define outcomes
= For each possible action there is an outcome - state.

+ Qutcomes define payoffs

= Agents’ derive utility from different outcomes. Utilities can
be the same or different. 4




Normal form game*

(matching pennies)

e ——

H Agent 2 T
Action
\ - Outcome
H 11 1 -1
Agent 1 ~—_Payoffs
T 1 -1 -1,1

*aka strategic form, matrix form

1/16/2023



Extensive form game

(matching pennies)

e ————

Can model sequential games

Agent 1
Action . H T
Can model uncertain states
Agent 2
H T

Terminal node
(outcome) —

1)  (@-1n @-n LD
Payoffs /




Extensive form game

(matching pennies)

e —

Can model sequential games

Agent 1
Action ~ o T
Can model uncertain states
Agent 2

Terminal node
(outcome) —>

(-1,1) (1-1) (@1.,-1)

Payoffs / Can also model partly sequential &
partly parallel situations 7

1/16/2023



Strategies (aka Policies)

e

« Strategy:

* A strategy, s;, is a complete contingency plan
(policy); defines actions agent j should take for all
possible states of the world

« Strategy profile:
* s = (sy,...,8,) (all agents)
* S, =(S4,---,Si.1,Si+15---»S,,) (all agents without i)
- Utility function: uy(s)
+ Note that the utility of an agent depends on the
strategy profile, not just its own strategy

+ We assume agents are expected utility
maximizers 8




(matching pennies)

Normal form game*

Strategy for
ngent 1: HH

Agent 1

Agent 2

-1,1

*aka strategic form, matrix form

Trategy Tor
agent 2: T

Strategy
profile
(H,T)

U1((H,T))=1
U2((H,T))=-1

9
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Extensive form game

(matching pennies)

Strategy for
Player 1 agent 1: T
Action . H T
Strategy for Strategy
agent 2: T Player 2 orofile: (T.T)
H T
Terminal node
(outcome) — > U1((T, T))=-1

-11) -1 @-1) 11 ve(T )yl
Payoffs /

10




Extensive form game

(matching pennies, seq moves)

Recall: A strategy is a contingency
plan for all states of the game

Strategy for agent 1. T

-
H Strategy for agent 2: H if 1
plays H, T if 1 plays T (H,T)

H T H T Strategy profile: (T,(H,T))

U1((T.(H,T)))=-1

-1 @y @-n L) U2((T (H.T))-1

11

1/16/2023



Dominant Strategies
I —————————————————

» Recall that
+ Agents’ utilities depend on what strategies other agents are playing
+ Agents’ are expected utility maximizers

« Agents’ will play best-response strategies for s

s is a best response if u(s*,s;)>us/,s.) forall s/

« A dominant strategy is a best-response for all s

+ They do not always exist
+ Inferior strategies are called dominated

12




Dominant Strategy Equilibrium

e —

« A dominant strategy equilibrium is a strategy
profile where the strategy for each player is
dominant

* 8*=(s4%,...,8,")
* u(s*,s)=ui(s;,s,) for all i, for all s/, for all s

- GOOD:
Agents do not need to counterspeculate!

18
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Example: Prisoner’s Dilemma

Dom.  Bifestify @ B
' A

Str. Eq

Two people are arrested for a crime. A prosecutor offers each a deal:
if you testify against your partner as the leader of a burglary ring,
you’ll go free for being the cooperative one, while your partner will
serve 10 years in prison. However, if both testify against each other,
they both get 5 years. If both refuse, each get 1 year.

A: testify A: refuse

0
-10

B:refuse

> m
non
o

10 @ Pareto
Optimal

Outcome

14




Example: Bach or Stravinsky

aka Battle of sexes

apart.
B S
B 2,1 0,0
0,0 1,2
S

e ——

« A couple likes going to two concerts. One loves Bach
but not Stravinsky. The other loves Stravinsky but not
Bach. However, they prefer being together than being

No dom.
str. equil.

15
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Nash Equilibrium

e

« Sometimes an agent’s best-response depends on the
strategies other agents are playing
+ No dominant strategy equilibria

« A strategy profile is a Nash equilibrium if no player has
incentive to deviate from his strategy given that others do
not deviate:

+ for every agent i, u(s;*,s;) 2 ui(s/,s;) = s;" is a best response to s

B S

00 ——C1.2>! .




How to find (Nash) Equilibria
S

- Can agents rule out strategies?
¢ Strategies an agent will not play

 Get rid of those strategies
+* Maybe there will exist a single solution

14
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Example

P | C
-3 7-7 al15
9.-9 8,-8 10}-10

18




Iterated Elimination of Dominated
Strategies

e ——

* Let RISSi be the set of removed strategies for agent i
+ Initially Ri=&
« Choose agent i, and strategy s; such that s;eS,\R; and there exists s/
€S)\R; such that
Ui(SiI,S_,')>Ui(Si,S_g) for all S eS_i\R_i

* Add s, to R, continue

«  Thm: If a unique strategy profile, s*, survivesthenitis a Nash Eq.

«  Thm: If a profile, s*, is a Nash Equilibrium then it must survive iterated
elimination.

19
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Nash Equilibrium
e —————————————————

* Criticisms
+ They may not be unique (Bach or Stravinsky)

= Ways of overcoming this
+ Refinements of equilibrium concept, Mediation, Learning

¢ Do not exist in all games (in form defined)
¢ They may be hard to find

+ People don’t always behave based on what equilibria
would predict (ultimatum games and notions of fairness,...)

20
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Example: Matching Pennies

H T
A1 1,1

H [ I

IR

There is NO (Nash) strategy in pure strategies

21
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Example: Bach Stravinsky

B S

B [ Q1 J— o0 |
s | |00 112!

If | do not know, what the other agent is doing, and
if communication is not possible, what should the agents do

So far we have talked only about pure strategy
equilibria.

Not all games have pure strategy equilibria. Some

equilibria are mixed strategy equilibria. 3

11



Example: Bach Stravinski

Husband
q B 1-q S
p B 2, 1 0,0
wie 1.p S 0,0 1,2

EUys = 0p+ 2 (1-p)

Mixed strategies can help if no communication is possible.
Want to play a strategy so that the other is indifferent
playing a pure strategy (B or S).

EUHB - 1P +0 (l-p) EUHB = EUHS

p=2-2p
p=2/3 (wife has mixed <2/3;1/3>)

e ——

23
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Example: Bach Stravinski

s

Husband

q B 1-q S
p B 2, 1 0,0
Wie 1-p S 0,0 1, 2

EUwe =29+ 0 (1-q)
EUys = Oq + 1(1-q)

Mixed strategies can help if no communication is possible.
Want to play a strategy so that the other is indifferent
playing a pure strategy (B or S).

EUWB - EUWS

2q=1-1q

q=1/3 (husband has mixed <1/3;2/3>)
24

12



Example: Bach Stravinski

1-p S

2/3*p + 2/3-2/3p =
2/3
any distribution leads to 2/3 in average

1/3 B 2/3 S

2,1 0,0

0,0 1,2

e —
 If Husband strictly plays B with q=1/3

+ Which distribution can his wife play
* EU,(p,1-p) = 1/3p*2 + 2/37p * 0 + 1/3%(1-p)*0 + 2/3*(1-p)*1 =

25
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Example: Bach Stravinski
e —————————————

Husband
q B 1-q S

p B 2, 1 0,0
Wie 1-p S 0,0 1, 2

EUWB - EUWS
2q=1-1q
q=1/3

husband has mixed strategy <1/3;2/3>
wife has mixed strategy <2/3;1/3>

EUyg =29+ 0 (1-q)
EUys = 0q + 1(1-q)

26




Example: Bach Stravinski

e —

If Husband strictly plays B with g=1/3
+ Which distribution should wife play

= = 2 Husband
* Euy(p,1-p) = 2/3 —
p B 2.1 0,0

If Husband deviates q<1/3  we 1, s 0.0 12
+ Wife deviates plays S

If Husband g>1/3

+ Wife plays B

Equilibrium: {(2/3,1/3);(1/3,2/3)}

27
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Mixed strategy equilibria

« Mixed strategy:

c,ex,; defines a probability distribution over S,
- Strategy profile: c=(oy,..., )
- Expected utility: u(c)=2_s(IT; o(s))ui(s)

* Nash Equilibrium:
+ o* is a mixed Nash equilibrium if

Lli(G*i, G*_i)ZUi(Gi, G*—i) for' Cl” Giezi, fOf‘ (1“ |

e

28
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Mixed Nash Equilibrium

« Thm (Nash 50):

+ Every game in which the strategy sets S,,...,S,
have a finite number of elements, has a mixed
strategy equilibrium.

* Finding Nash Equilibria is another problem

* “Together with prime factoring, the complexity
of finding a Nash Eq is the most important
concrete open question ...” (Papadimitriou)

29
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Bayesian-Nash Equil

(Harsanyi 68)

e

« So far we have assumed that agents have complete
information about each other (including payoffs)

* Very strong assumption!

- Assume agenti has type 0,€0,, defines the payoff uy(s, 0,
« Agents have common prior over distribution of types p(0)

+ Conditional probability p(6,| 6;)
(obtained by Bayes Rule when possible)

30
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Battle of the sexes
e ——

« Shopping or Basketball?

 Sally knows Kevins type
Kevin does not know Sally‘s type but possible types.

Kevin
Basketball Shopping
What should o, BaSketoal 3, 2 2,1 Sl
Sally play? ally : ally a
Shopping k Il f
0,0 1, 3 basketball fan
Her dominant strategy! Kevin
Basketball Shopping
Basketball 1, 2 0,1
Sally Sally a

Shopping 2,0 3, 3 shopping fan 31
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Battle of the sexes

 Sally should play her dominant strategy
O ={041, 015}, ©; ={0,} ,
P(011,02) =p  P(64,,6,) =(1-p)

2p +0(1-p) > 1p + 3 (1-p) basketball vs shopping
2p > _2p+3 BaskelbaIIK ) Shopping

p > 3/4 Sally ::sketlball 3, 2
@b | 0,0 | 1,3

If p>3/4 Basketball
If p<3/4 Shopplng cay  BESEAI 1,2 0,1
If p=3/4 ?7? sroepig | 2[0) | 33

e ——

32
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Battle of the sexes
e ——

 Sally‘s decision depends on her known type
» Kevin's decision depends on p

~ Basketball if p>3/4

S, (0,)==  (q, 1-9).,9€[0,1]  if p=3/4

_ Shopping if p<3/4

38




Bayesian-Nash Equil
I —————————————————

- Strategy: ¢,(0,) is the (mixed) strategy agent i plays if its type
is 0, .
- Strategy profile: 6=(c4,..., c,)
« Expected utility:
* Ui(ci(6;),0.(), 0;)=26_ P(0,0;)ui(ci(6;),5.(0.),0;)

- Bayesian Nash Eq: Strategy profile ¢* is a Bayesian-Nash
Equilibrium if for all i, for all 6,

Ui(c(01),6™.(),0:)= Ui(ci(6;),5*:(),06;)

(best responding w.r.t. its beliefs about the types of the other agents,
assuming they are also playing a best response)

34
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Last time

» Definition of games

- Strategies & Strategy profiles
+ Dominant strategy equilibrium

ui(s;*,8)2ui(s;,s,) vV S/, V s; Vi
+ Nash equilibrium

ui(si*,s,)2ui(s;,s) v Si, V
+ Mixed Nash strategy equilibrium

ua;%, 0.)2ui(oi, o) ¥ 0i, V|,

+ Bayesian Nash equilibrium
ui(c*(6), "), 8)= u(oi(8),5*,), 6)

36
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Extensive Form Games

2 Any finite game of
perfect information has a
. pure strategy Nash
<1> equilibrium.
2D 3) It can be found by
U 2

backward induction.

1 3 1 2
2 0 0) \2
How to find a Nash Equilibrium?

By backward induction!

Have to define an action for every choice point.
(MR, UD)

34
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Subgame perfect equilibrium & credible
threats

e —

* Proper subgame = subtree (of the game tree) whose
root is alone in its information set (agent knows his
state)

« Subgame perfect equilibrium

+ Strategy profile that is in Nash equilibrium in every
proper subgame (including the root), whether or not
that subgame is reached along the equilibrium path
of play

38

1/16/2023



Subgame perfect equilibrium

39

19



Subgame perfect NE equilibrium

Whatis the strategy now?

u D
L 1,2 3,0
R 1,0 2,2

If U bestisLorR
If D bestis L

If L bestis U
If R bestis D

(L,U) is the NE

(ML, U) and (NL, U) are the SPNE of the game
1 1
& G

40
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Non creditable threats
e ——

« Afirmis deciding whether to enter the market, which
another firm currently has a monopoly over.

 If the firm enters, the monopolist chooses whether to
accept it or declare a price war.

+ The firm only wants to enter if the monopolist won’t engage in a
price war

+ A price war is unprofitable for the monopolist

41
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Non creditable threats

_ Out
Firm1 —— 2,2 Accept War
n In 3,1 0,0
Firm 2 Out 2,2 2,2
Acce;V\War
3,1 0,0 Firm 2 announce to make a price war

if Firm 1 enters.
(out, war) is a Nash equilibria.

But, it is not subgame perfect >
This is a non creditable thread

42




Social choice theory
e —

« Study of decision problems in which a group has to make the decision
« The decision affects all members of the group

+ Their opinions! should count
» Applications:

+ Political elections

+ Note that outcomes can be vectors

= Allocation of money among agents, allocation of goods, tasks,
resources...

« CS applications:
+ Multiagent planning [Ephrati&Rosenschein]
+ Accepting a joint project, rating Web articles
[Avery,Resnick&Zeckhauser]

’ -

43
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Criteria for evaluating multiagent systems

e —

+ Social welfare: max,,icome 2. Ui(Outcome)
« Surplus: social welfare of outcome — social welfare of status quo
+ Zero sum games have 0 surplus. Markets are not zero sum

« Pareto efficiency: An outcome o is Pareto efficient if there exists no other
outcome 0’ s.t. some agent has higher utility in o’ than in o and no agent
has lower

+ Implied by social welfare maximization

* Individual rationality: Participating in the negotiation (or individual deal) is
no worse than not participating

« Stability: No agents can increase their utility by changing their strategies
+  Symmetry: No agent should be inherently preferred, e.g. dictator

44
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Assumptions

1. Agents have preferences over alternatives

- Agents can rank order the outcomes

= a>b>c=dis read as “a is preferred to b which is preferred to c
which is equivalentto d”

2. Voters are sincere
«  They truthfully tell the center their preferences

3. Outcome is enforced on all agents

%)

45
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Voting

» Majority decision:
+ If more agents prefer a to b, then a should
be chosen

- Two outcome setting is easy
+ Choose outcome with more votes!

- What happens if you have 3 or more
possible outcomes?

e —

46
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Case 1: Agents specify their top
preference

Ballot

X

47
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Election System

e —
* Plurality Voting

+ One name is ticked on a ballot
+ One round of voting
+ One candidate is chosen

Is this a "good"
system?

What do we mean by good? P
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Example: Plurality (Canada)

e

- 3 candidates
+ Lib, NDP, C
- 21 voters with the preferences
+ 10 Lib>NDP>C
+* 6 NDP>C>Lib
+ 5 C>NDP=>Lib
« Result: Lib 10, NDP 6, C 5

+ But a majority of voters (11) prefer all other
parties more than the Libs!

49
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What can we do?
e ——

« Majority system
+ Works well when there are 2 alternatives
* Not great when there are more than 2 choices

* Proposal:
+ Organize a series of votes between 2 alternatives at a
time
+ How this is organized is called an Agenda
= Or a cup (often in sports)

50
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Agendas

- 3 alternatives {a,b,c}
- Agenda a,b,c

Majority vote betweena and b
a /
b \

Chosen alternative

51
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Example: Agenda

» Binary protocol (majority rule) Three types of agents:

1. x>z>y (35%)
2. y>x>z (33%)
3. z>y>x (32%)

XY.Z X,Zy Y.Z,X

Chairman defines order

x| ly| |z x| |z| |y yl |z| |x

¢

z y X

- Power of agenda setter (e.g. chairman)

52
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Pareto dominated winner paradox

Agents:

1. x>y>b>a

2. a>x>y>b

3. b>a>x>y j}‘ b| |y
a

b BUT

Everyone prefers x toy!

53
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Case 2: Agents specify their complete

preferences
Maybe the Ballot
problem was with
the ballots! X>Y>Z

Now have
more
information

54
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Condorcet

Marie Jean Antoine Nicolas Caritat, Marquis de Condorcet

e

» Proposed the following
+ Compare each pair of alternatives

¢ Declare “a” is socially preferred to “b” if more
voters strictly preferato b

- Condorcet Principle: If one alternative is
preferred to all other candidates then it
should be selected

55
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Example: Condorcet
e —————————

« 3 candidates
+ Lib, NDP, C
- 21 voters with the preferences
+ 10 Lib>NDP>C
+* 6 NDP>C>Lib
+ 5 C>NDP>Lib
* Result:

+ NDP win! (11/21 prefer them to Lib, 16/21
prefer them to C)

56
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A Problem

« 3 candidates

+ Lib, NDP, C
3 voters with the preferences

+ Lib>NDP>C

*+ NDP>C>Lib

R: C>I}|[b>NDP / NDP
* REeSsult: : /

+* No Condorcet Winner

5/

28



Borda Count
e ————————

- Each ballot is a list of ordered
alternatives

« QOver all ballots compute the rank of
each alternative

« Rank order alternatives based on
decreasing sum of their ranks

o
A>C>B ‘ B: 8

C>A>B C. 6 58
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Borda Count

e ——
« Simple. Only counting ranks

- Always a Borda Winner, but have to define
a solution for ties.

- BUT does not always choose Condorcet

winner! Borda scores:
- 3 voters a:b, b:6, ¢:8, d:11
+ 2: b>a>c>d Therefore a wins

+ 1. a>c>d>b BUT b is the

Condorcet winner
59
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Another example

Borda rule with 4 alternatives

Agents:

x=13
a=18
b=19
c=20

NOOhwN

x>c>b>a
a>x>c>b
b>a>x>c
X>c>b>a
a>x>c>b
b>a>x>c
x>c>b>a

61
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The winner is dropped

X went out 2 Remove x;

1. x>c>b>a 1. c>b>a

2. a>x>c>b 2. a>c>b

3. bra>sx>c 3. bra>c

4 x>c>b>a - 4 c>b>a

B. a>x>c>b B. a>c>b

6. b>a>x>c 6. b>a>c

7. x>c>b>a 7. c>b>a

’éilg =18, b=19, c=20 Inverted order paradox
b=14

a=15

62
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Borda rule vulnerable to irrelevant
alternatives

« Three types of agents:

X

35

66

64

165
second

y
70

33
32
135
first

- Borda winnerisy

1. x>y (35%)
2. y > X (330/0)
3. y>X (320/0)

63
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Borda rule vulnerable to irrelevant
alternatives

e ————

« Three types of agents:

1. x>z>y (35%)

- E— 2. y>x>z (33%)
66 33 3. z>y>x (32%)
64 32
165 135
second first X y z
35 105 70
66 33 99
9% 64 32
_ _ 197 202 201
« Borda winnerisy first third  second

- Add z Borda winner is x

The social preferences between alternatives x and y depend 4

only on the individual preferences between x and y

31



Desirable properties for a voting
protocol

e ——

» No dictators
» Universality (unrestricted domain)

+ It should work with any set of preferences
« Independence of irrelevant alternatives

+ The comparison of two alternatives should depend only
on their standings among agents’ preferences, not on
the ranking of other alternatives

« Pareto efficient

+ If all agents prefer x to y then in the outcome x should
be preferredto y

65
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Arrow’s Theorem (1951)

« Thrm. If there are 3 or more alternatives
and a finite number of agents then there is
no protocol which satisfies the 4 desired
properties

« Thrm. Let|O | 2 3, any social welfare
function W that is Pareto efficient and
independent of irrelevant alternatives is
dictatorial.

66
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Take-home Message

Despair?
+ No ideal voting method
+ That would be boring!

A group is more complex than an individual

Weigh the pro’s and con’s of each system and
understand the setting they will be used in

Do not believe anyone who says they have the best
voting system out there!

67
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Introduction

So far we have looked at

« Game Theory - Social Choice Theory

+ Given a game we are + Given a set of agents’
able to analyze the preferences we can
strategies agents will choose some outcome
follow

Ballot

xX>Y>Z
TH T

(1,2) (2,1) (2,1) (4,0 '

28.01.2023



Introduction

* Now: Mechanism Design
¢+ Game Theory + Social Choice

» Goal of Mechanism Design is to

+ Obtain a dedicated outcome
(function of agents’ preferences)

+ But agents are rational
They may lie about their preferences
« Goal:
Define the rules of a game so that in equilibrium
the agents do what the social community in
general wants 4




Fundamentals

Set of possible outcomes, O

Agents i<l, |l|=n, each agent i has type 0icOi

+ Type captures all private information that is relevant to agent’s
decision making (its payoffs, which may be different)

Utility ui(o, 61), over outcome 0O

Recall: goal is to implement some system-wide solution
+ Captured by a social choice function (SCF)

f:0,x...x0_ 2> 0

f(0,,...0,)=0 is a collective choice

28.01.2023



Mechanisms

- Recall: We want to implement a social choice function
+ Need to know agents’ preferences
+ They may not reveal them to us truthfully

« Example:

+ 1 item to allocate, and want to give it to the agent who values it the
most

+ If we just ask agents to tell us their preferences, they may lie

I like the g No, I do!
bear the

most!




Mechanism Design Problem

» By having agents interact through an
institution (M) we might be able to solve
the problem

« Mechanism:
M=(84,...,5,, (.))

/

Strategy spaces of agents Outcome function

g:5.X...xS =2 O

28.01.2023



Implementation

« A mechanism M=(S,....,S,,2(.))
implements social choice function £(0)
If there is an equilibrium strategy profile

S*()=(8% (e 8% ()

of the game induced by M such that

for all

3(5,%(0,)y..-,5,*(0,))=f(0;,...,0.)

(045...,0,) € O X...xX0O,




Implementation

« We did not specify the type of
equilibrium in the definition
¢+ (Mixed) Nash
+ Bayes-Nash
¢+ Dominant

10
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« Recall that a mechanism specifies the
strategy sets of the agents
¢ These sets can contain complex strategies

* Direct mechanisms:
+ Mechanism in which S;=0, for all i, and g(6)=f(0)
forall 6 € ®,x...x0,
* Incentive-compatible:

+ A direct mechanism is incentive-compatible if it
has an equilibrium s™ where s7,(0,)=0; for all 6, € ®,
and all i

¢ (truth telling by all agents is an equilibrium)

+ Strategy-proof if dominant-strategy equilibrium

Direct Mechanisms

11




Dominant Strategy Implementation

* |Is a certain social choice function implementable
in dominant strategies? Did the mechanism
enforce dominant strategies?

+ In principle we would need to consider all possible
mechanisms

* Revelation Principle (for Dom Strategies)

+ Suppose there exists a (in)direct mechanism
M=(S,,...,S,,9(.)) that implements social choice
function f() in dominant strategies. Then there is a
direct strategy-proof mechanism, M’, which also
implements f().

12
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Revelation Principle: Intuition

strategy s (0 |
type 6,

(}l‘-i;g‘ 'mﬂi_ : 1 ouicome =

strategy 5 (8 |
B - Tl Tl
t}l i

(2) Revelation principle: original mechamism

(b) Revelation principle: new mechanism

13




« Literal interpretation: Need only study direct mechanisms
= This is a much smaller space of mechanisms
+ Negative results: If no direct mechanism can implement SCF f()

then no mechanism can do it => impossibility theorems, e.g.
Arrow in voting.

+ Analysis tool:

= Best direct mechanism gives us an upper bound on what we can
achieve with an indirect mechanism

= Analyze all direct mechanisms and choose the best one

Theoretical Implications

15
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 Incentive-compatibility is “free” from an
Implementation perspective
« BUT!!!
+ A lot of mechanisms used in practice are
not direct and incentive-compatible

* Maybe there are some issues that are
being ignored here

Practical Implications

16




Quasi-Linear Preferences

« Outcome o=(x,t4,...,t,)

+ x is a “project choice” and t,eR are transfers (money)
- Utility function of agent i

¢ Ui(0,0)=u((X, by, 15),0)=Vi(X,0)-

e Quasi-linear mechanism:
M=(S,,...,S,,9(.)) where g(.)=(x(.),t;(.),...,t.(.))

20

28.01.2023



Social choice functions and quasi-
__linear settings

- SCF is efficient if for all types 6=(6,,...,0n)
= 2"=qVvi(x(0),6;) 2 24 vi(X(0),6;) V X'(0)

= Aka social welfare maximizing, x is the selection
function

« SCF is budget-balanced (BB) if
= 2"=1t(0)=0

+ Weakly budget-balanced if
2"=11i(8)20

21




Groves Mechanisms

A Groves mechanism,
M=(S,,...,S,, (Xt4,...,t,)) is defined by

+ Choice rule x'(8))=argmax, ¥, v(x,0.)
+ Transfer rules
"(6)=h;(6.)-2;.; vi(X'(6),6))

where hy(.) is an (arbitrary) function that does not
depend on the reported type 6, of

agent i (quasi linear) 22
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VCG Mechanism

(aka Clarke tax mechanism aka Pivotal mechanism)

« Def: Implement efficient outcome,
x’=argmax. ; vi(x,0;)
Compute transfers
6(0)=2.; vi(x,0)) -2, vi(X, 6;)
Where x'=argmax, >, v,(x,6;)

VCGs are efficient and strategy-proof

Agent's equilibrium utility is:
ui(X*rTi/ei):vi(X*:ei)—[zjii vi(x7.0;) -2 vi(X7.0,)]
= ZJ VJ(X /eJ) - ZJ £ VJ(X-IIBJ)
= marginal contribution to the welfare of the system:




Example: Building a pool

« The cost of building the pool is $300

- If together all agents value the pool more than $300 then
it will be built

« VCG Mechanism:

+ Each agent announces their value, v,
¢ If X v; 2300 then it is built

+ Payments t(6,)=2,; vj(x',0)) -2, v,(x, 6;) if built, 0 otherwise

i, i, : 1,=(250+50)-(250+50)=0
v1=50, v2=50, v3=250 112(250+50)-(250+50)=0
Pool should be built t3=(0)-(50+50)=-100

Not budget balanced

25
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Example

« The government is deciding on number of street lights to
be installed.

« Three beneficiaries - A, B, C.

* Four alternatives: n =0, 1, 2, 3 where n is the number of
street lights. The cost of a street light is 120.

« The government’s objective to install the socially efficient
number of street lights.

26
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Net benefits with equal cost
_Share

If n = 2, the total cost is 240.
Hence, cost share for each is 80 (40 for each lamp).

No. of street lights

Resident
1 2 3

A 60 90 155

B
C

80 120 140

o | o | o | O

120 200 220

Cost 0 120 240 360

27
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Net benefits with equal cost
_share

« The private net benefit for A is then 90 - 80 = 10.
- Similarly for B and C and n = 1, 3. Figure show the benefits for each

agent
_ No. of street lights No. of street lights
Resident Resident
EENIO)E e K
A 0 60 90 155 A 0 20 10 35
B 0 80 120 140 B 0 40 40 20
@ 0 | 120 | 200 | 220 - 0 20 | 120 | 100
Cost 0 120 240 360 Social
b "t g 140 | 170 | 155
enefit 2

28




No. of street ﬁghts

Groves Clarke Taxes

 |Is Person A pivotal? Does he has to pay a tax?

Resident =
0 1 2 3 Besideri No. of street lights
A 0 20 10 35 0 1 2 3
B 0 40 40 20 B 0 40 40 20
C 0 80 | 120 | 100 C 0 80 | 120 | 100
Soeiakne | 140 | 170 | 155 s 120 | 160 | 120
benefit henefit

Zero.

Person A is not pivotal. Without him, the net benefit is maximum at
n = 2. With him the net benefit is maximum at n = 2. So his tax is

29
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Person B

No. of street light
Resident - (1) n 2ghs 3 No. of street light
Resident B OhsRee g
A 0 20 10 35 0 1 2 3
B 0 40 40 20 A 0 20 10 35
C 0 g0 | 120 | 100 C 0 80 | 120 | 100
il B 140 | 170 | 155 subialnegs) 100 | 130 | 135
benefit benefit

135-130 = 5.

n=3ton=2.

+ Person B however is pivotal. With him the net benefit is maximum at
n = 2. Without him the net benefit is maximum at n = 3.

+ B’s tax is the difference between the sum of net benefits of
others at n = 3 and the sum of net benefits of othersatn =2, i.e.

+ B is paying the tax because his report changes the decision from

30
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Person C

No. of street light
Resident - (1) . 2ghs 3 No. of street light
Resident B O steciigits
A 0 20 10 35 0 1 2 3
B 0 40 40 20 A 0 20 10 35
C 0 g | 120 | 100 B 0 40 40 20
il B 140 | 170 | 155 sukialnegs) 60 50 55
benefit benefit

+ Person C is pivotal as well. With him the net benefit is maximum
at n = 2. Without him the net benefit is maximumat n = 1

+ C’s tax is therefore the sum of others’ benefits at n = 1 and the
sum of others’ benefits atn =2, i.e. 60 - 50 = 10.
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No. of street lights
1 2 3
20 10 35 0
40 40 20 5
80 120 100 10

140 170 155

Reszident

A
B

C
Social net
henefit

s S e ) Y e B Y o ) Y e

+ Post tax net benefit from this scheme:
10 for A,
40 - 5 = 35 for B,
120 - 10 = 110 for C.

Net benefits with taxes

32
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Incentives for truthful revelation

No. nf street hghts

Resident

1

2

3

A

20

10

35 «+—— 70

B

40

40

20

2

a0

120

100

Social net
henefit

s S [ Y [ e B [ e ) [} ]

140

170

120

+ Notice that A’s net benefit is maximum at n = 3. Does he have an
incentive to lie and change the decision to n = 37

+ Suppose A states his net benefit from n = 3 to be 70 instead of
35. Then, sum of stated net benefits is maximum at n = 3.
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Incentives for truthful revelation

Resident - No. ;)f street;lghts - —
Resident B B TR gh 2
A 0 20 10 70 0 1 2 3
B 0 40 40 20 B 0 40 40 20
C 0 80 120 | 100 I 0 80 | 120 | 100
Socialner | 4 140 | 170 | 190 Bocialnet:| 4 120 | 160 | 120
henefit bhenefit

+ But then A becomes pivotal. Without him the sum of net benéefits is
maximum atn = 2.
His report changes the decision fromn =2 ton = 3.

+ So he has to pay a tax and his tax will be equal to 160 — 120 = 40.
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« A’s net benefit from lying will be
(Net benefit from n = 3) — Tax
=35-40
=-5
« A’s net benefit from truthfully reporting is 10.
» Hence A doesn’t have incentive to lie.

* You can repeat the same exercise for B and C to verify
that they do not have incentive to lie either.

Incentives for truthful revelation
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Clarke tax mechanism...

* Pros
* Social welfare maximizing outcome

¢+ Truth-telling is a dominant strategy

* Feasible in that it does not need a
benefactor (2. t < 0) (not discussed here)

36
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Participation Constraints

« Agents can not be forced to participate in a
mechanism

+ [t must be In their own best interest

* A mechanism is individually rational (IR) if
an agent’s (expected) utility from
participating is (weakly) better than what it
could get by not participating
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Participation Constraints

« Can classify mechanisms based on participation

constraints
+ Let u;(0;) be an agent’s utility if it does not participate and has type 6,
+ Ex ante IR: An agent must decide to participate before it knows its own
type and other types
" Egcolui(f(0),0)12 Eq, < o[u(0)]
+ Interim IR: An agent decides whether to participate once it knows its
own type, but no other agent’s type
" Eg, c o [Ui(f(6,6.),0)]2 u(6)
+ Ex post IR: An agent decides whether to participate after it knows
everyone’s types (after the mechanism has completed)
= u;(f(0),0)z u;'(9;)

38

16



Quick Review

Gibbard-Satterthwaite

+ Impossible to get non-dictatorial mechanisms if using dominant
strategy implementation and general preferences
Groves
+ Possible to get dominant strategy implementation with quasi-linear
utilities
= Efficient
Clarke (or VCG)

+ Possible to get dominant strategy implementation with quasi-linear
utilities
= Efficient, interim IR
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« Exam: 30.03, 9:00, Audimax |
« Remember comments in exercises

« There will be no questions about “Mechanism
Design” in the exam!!!.

The End
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