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Exercise 5

2

1. Compare and explain the different sampling methods by giving an example: 
a. Prior sampling

b. Rejection sampling

c. Weighted sampling

and their differences.

Prior Sampling: 

sampling an empty network. Generate examples (topological order) based on the known 

local distribution (CPTs). Used to compute prior probabilities, e.g., P(C)

A

B C

For i=1 to N

- Sample a value a from CPTA

- Sample a value b from CPTB  given a

- Sample a value c from CPTC given a
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1. Compare and explain the different sampling methods by giving an example: 
a. Prior sampling

b. Rejection sampling

c. Weighted sampling

and their differences.

Rejection Sampling: 

Create samples with Prior sampling. Throw away samples that do not agree with the 

evidences.

For i=1 to N

- Sample a value a from CPTA

- Sample a value b from CPTB  given a

- Sample a value c from CPTC given a

Used to compute probabilities given some evidences , e.g., P(C|A=true)

Throw away samples where A=false.

A

B C
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1. Compare and explain the different sampling methods by giving an example: 
a. Prior sampling

b. Rejection sampling

c. Weighted sampling

and their differences.

Weighted sampling :

Include knowledge of known evidences in the generation process. Use this knowledge 

for generating the values of the childs. Unknown variables are randomly generated by 

including knowledge of the parents. Known variables are fixed but a weight is 

computed that reflects how well the evidence value of the known variable fit to the 

rest of the values generated so far. Only includes influence of parents.

A

B C

Suppose B=true, an observation

For i=1 to N

- Sample a value a from CPTA , suppose A=false

- Weight the example by: w = w*P(B=true| A=false)

- Sample a value c from CPTC given a=false
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2. Given the following network. Generate a possible example for P(A|C,D). Also compute all possible 

weights for examples generated with this observations. Are there any irrelevant attributes that would 

be pruned before evaluating the query with variable elimination?

The possible weights are generated by the 

variables of the evidences, C and D.

The weight formula is w = wc * wD

For wc: if A=true the weight is 0.001. If A is false the weight is 0.002

For wD : If B=true the weight is 0.5. If B is false the weight is 0.2

There are four combinations for w given the possible values for parents of C and D.

There is one variable that can be pruned: E.

6

3. Consider the query P(Rain| Sprinkler=true, WetGrass=true) (see figure below) and how Gibbs can 

answer it.

a. How many states does the Markov chain have?

b. Compute the sampling distribution for each variable, conditioned on its Markov 

blanket. Calculate the transition matrix Q containing q(y → y’) for all y, y’.

Hint: The probability that one of the two sampling variable is chosen is 0.5.

c. What does Q2 , the square of the transition matrix, represent?

a. 2*2=4



11/30/2022

4

P(Rain| Sprinkler=true, WetGrass=true) 

Have to sample Cloudy and Rain 

P(C|r,s) = 

P(C|¬r,s) = 

αP(C)P(s|C)P(r|C)= α <0.5,0.5> <0.1,0.5> <0.8,0.2>= α <0.04,0.05>= <4/9,5/9>

αP(C)P(s|C)P(¬r|C)=α <0.5,0.5> <0.1,0.5> <0.2,0.8>= α <0.04,0.05>= <1/21,20/21>

P(R|c,s,w) = αP(R|c)P(w|s,R)=α <0.8,0.2> <0.99,0.9>= α <0.792,0.18>= <22/27,5/27>

P(R|¬c,s,w) = αP(R|¬c)P(w|s,R)=α <0.2,0.8> <0.99,0.9>= α <0.198,0.72>= <11/51,40/51>
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Transition matrix?
P(C|r,s) = <4/9,5/9>

<1/21,20/21>

P(R|c,s,w) = <22/27,5/27>

P(R|¬c,s,w) = <11/51,40/51>

P(C|¬r,s) = 

Entries where 2 variables are sampled do not exist=0

0

0

0

0
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P(Rain| Sprinkler=true, WetGrass=true) 
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Transition matrix?

P(C|r,s) = <4/9,5/9>

<1/21,20/21>

P(R|c,s,w) = <22/27,5/27>

P(R|¬c,s,w) = <11/51,40/51>

P(C|¬r,s) = 

Entries on the diagonal are self loops. Transitions can occur by sampling

either variable.

0

0

0

0

Do it for (c,r)(c,r)= 1/2 P(c|r,s)+1/2 P(r|(c,s,w)=

17/27

1/2 (4/9+ 22/27) = 1/2 (12/27+22/27) = 17/27

9

P(Rain| Sprinkler=true, WetGrass=true) 

Transition matrix?
P(C|r,s) = <4/9,5/9>

<1/21,20/21>

P(R|c,s,w) = <22/27,5/27>

P(R|¬c,s,w) = <11/51,40/51>

P(C|¬r,s) = 

Entries where one variable is changed must sample that variable. 

0

0

0

0

Do it for (c,r)(c,¬r)=1/2 P(¬r|c,s,w)=1/2 * 5/27 = 5/54

17/27 5/54
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P(Rain| Sprinkler=true, WetGrass=true) 
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Entries where one variable is changed must sample that variable. 

Do it for (c,r)(c,¬r)=0.5P(¬r|c,s,w)=1/2 5/27 = 5/54

Q2 represents the probability of going from each state to each state in two steps. 

c. What is Q2
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Transition matrix?
P(C|r,s) = <4/9,5/9>

<1/21,20/21>

P(R|c,s,w) = <22/27,5/27>

P(R|¬c,s,w) = <11/51,40/51>

P(C|¬r,s) = 

P(Rain| Sprinkler=true, WetGrass=true) 
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4. Dynamic Bayesian Networks (DBN) can be used to model temporal aspects of the real 

world. Name and explain assumptions that can be made to reduce the potential 

complexity of arbitrary DBNs

Stationary Process

The CPTs have the same values in all time slices. 

Markov assumption, Transition Model

The current state depends only on a finite history of previous states. First order:

is the same for all t and U�(��|����	
 �� )

� �� �
:��� = � �� ����

Markov assumption, Sensor Model

The current observation depends only on the current state.

� �� �
:�, �
:��� = � �� ��



11/30/2022

7

13

5. A professor wants to know if students are getting enough sleep. Each day, the professor observes 
whether the students sleep in class, and whether they have red eyes. The professor has the 
following domain theory:

• The prior probability of getting enough sleep, with no observations, is 0.7.

• The probability of getting enough sleep on night t is 0.8 given that the student got enough sleep 
the previous night, and 0.3 if not.

• The probability of having red eyes is 0.2 if the student got enough sleep, and 0.7 if not.

• The probability of sleeping in class is 0.1 if the student got enough sleep, and 0.3 if not.

Formulate this information as a dynamic Bayesian network that the professor could use to filter or 
predict from a sequence of observations 

Variables:

S0, St – enough sleep;  Rt – red eyes; Ct – sleep in class.

S0 St

CtRt

P(S0)

0.7 0.3

St-1 P(St|St-1)

T

F

0.8

0.3

0.2

0.7

St P(Ct|St)

T

F

0.1

0.3

0.9

0.7

St P(Rt|St)

T

F

0.2

0.7

0.8

0.3
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6. For the DBN of exercise 5 and for the evidence values

e1 = not red eyes, not sleeping in class

e2 = red eyes, not sleeping in class

e3 = red eyes, sleeping in class

perform the following computation:

a. State estimation: Compute P(EnoughSleept | e1:t) for each of t = 1, 2, 3. 

b. Reformulate the DB with only one evidence variable. Give the complete probability 
tables for the model.
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a. State estimation: Compute P(EnoughSleept | e1:t) for t = 1, 2, 3. 

  

t
X

tttttttt
exPxXPXePeXP )/()/()/()/( :11111:11 

P(Xt+1| e1:t)

15

=< 0.8,0.2 > + < 0.3,0.7 >0.7 0.3
=  � < 0.8 × 0.9, 0.3 × 0.7 > < 0.65 × 0.35 >

�(#�|��)
� #0 =< 0.7,0.3 >

� #1 = % � #1 &0 �(&0)
'

(
�(#1|�1) = α Pe1 S1 P(S1)
= � < 0.72,0.21 >< 0.65,0.3 > =< 0.864,0.1357>

=< 0.65,0.35 >

a. State estimation: Compute P(EnoughSleept | e1:t) for t = 1, 2, 3. 

  

t
X

tttttttt
exPxXPXePeXP )/()/()/()/( :11111:11 

P(Xt+1| e1:t)

16

= (< 0.8,0.2 >× 0.8643 +< 0.3,0.7 >× 0.1357 >)

=  � < 0.2 × 0.9, 0.7 × 0.7 >< 0.7321, 0.2679 >
=  � < 0.18, 0.49 >< 0.7321, 0.2679 >

�(#1|�1) =< 0.864,0.1357>

�(S2|e1)= ∑ � #2 &1 �(&1|�1)'(�

=< 0.7321,0.2679 >
�(#2|�1: 2) = α Pe2 S2 P(S1|e1)

= < 0.510, 0.499 >
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a. State estimation: Compute P(EnoughSleept | e1:t) for t = 1, 2, 3. 

  

t
X

tttttttt
exPxXPXePeXP )/()/()/()/( :11111:11 

P(Xt+1| e1:t)

17

= (< 0.8,0.2 >× 0.5010 +< 0.3,0.7 >× 0.4990 >)

=  � < 0.2 × 0.1, 0.7 × 0.3 >< 0.5505, 0.4495 >
=  � < 0.02, 0.21 >< 0.5505, 0.4495 >

�(#1|�1) =< 0.864,0.1357>

�(#2|�1: 2) = < 0.510, 0.499 >

�(S3|e1:2)= ∑ � #3 &2 �(&2|�1: 2)'(/

= < 0.5505, 0.4495 >

= < 0.1045, 0.8955 >

�(#3|�1: 3) = αP(e3|S3)P(S3|e1: 2)

a. State estimation: Compute P(EnoughSleept | e1:t) for t = 1, 2, 3. 

  

t
X

tttttttt
exPxXPXePeXP )/()/()/()/( :11111:11 

P(Xt+1| e1:t)

18

�(#1|�1) =< 0.864,0.1357>

�(#2|�1: 2) = < 0.510, 0.499 >

� #3 ��:0 =< 0.1045,0.8955 >
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d. Reformulate the DBN as a Hidden Markov Model. Give the complete probability 

tables for the model.


