



3.	What would happen if resampling is skipped?	
	If you just keep your old particles around forever without resampling then, what happens is that your particles drift around according to your motion model (transition probabilities for the next time step), but other than their weights, they are unaffected by your observations. Highly unlikely particles will be kept around and transitioned to more unlikely states, and you might only have say, one particle in the area of high probability of your posterior.	
	5	

wins \$ wins \$ wins \$			2	2	2	9
	1					
wing \$						
wins o	3	3	3	1	1	1
: Pr(B≥	x) 1	for	all	х,	and	d fo
	outcome me <i>x,</i> A	outcome <i>x</i> , me <i>x</i> , A giv	outcome <i>x</i> , A gives	outcome <i>x</i> , A give me <i>x</i> , A gives a hi	outcome <i>x</i> , A gives a me <i>x</i> , A gives a highe	ariable A has stochastic outcome x, A gives at lea me x, A gives a higher p : $Pr(B \ge x)$ for all x, and

Fair die, three gambles	and payoffs
State (die result) 1 2	$3 4 5 6$ $Pr(A \ge x) \ge Pr(B \ge x)$ for all x,
Gamble A wins \$ 1 1	2 2 2 2 and for some x Pr(A≥x) > Pr(B≥x)
$Gamble \ B \ wins \ \$ 1 1$	1 2 2 2 $and ror some x PI(A \ge x) > PI(B \ge x)$
Gamble C wins \$ 3 3	$3 \ 1 \ 1 \ 1$
A dominates B? YES	$Pr(A \ge 1) = Pr(B \ge 1) = 1$ $Pr(A \ge 2) = 4/6 > Pr(B \ge 2) = 3/6$ $Pr(A \ge 3) = Pr(B \ge 3) = 0$
C dominates B? YES	$Pr(C \ge 1) = Pr(B \ge 1) = 1$ $Pr(C \ge 2) = Pr(B \ge 2) = 3/6$ $Pr(C \ge 3) = 3/6 > Pr(B \ge 3) = 0$
A dominates C? NO	$Pr(A \ge 1) = Pr(C \ge 1) = 1$ $Pr(A \ge 2) = 4/6 > Pr(C \ge 2) = 3/6$ $Pr(A \ge 3) = 0 < Pr(C \ge 3) = 3/6$
	Gambles A and C cannot be ordered relative to each other on the basis of stochastic dominance ⁷

9. Show that the judgments B \succ A and C \succ D in the Allais paradox violate the axiom of substitutability.								
A : 80% chance of \$4000 B : 100% chance of \$3000	C : 20% chance of \$4000 D : 25% chance of \$3000							
Most people would choose the sure thing B.Most people would choose C.• Substitutability: If an agent is indifferent between two lotteries, A and B, then there is a more complex lottery in which A can be substituted with B. This also holds for > $(A \sim B) \Rightarrow [p:A;(1-p):C] \sim [p:B;(1-p):C]$								
EV[A]= 0.8*4000 = 3200 EV[B]= 1*3000 B ≻ A C ≻ D	EV[C]= 0.2*4000 = 800 EV[D]= 0.25*3000 = 750 C=[25% A; 75% \$0] → EV=800 D=[25% B; 75% \$0] → EV=750 $D \succ C$							
	8							