
1

Exercise 9

2

1. Sometimes MDPs are formulated with a reward function R(s, a) that

depends on the action taken or with a reward function R(s, a, s’) that also

depends on the outcome state.

a. Write the Bellman equations for these formulations.

b. Show how an MDP with reward function R(s, a, s’) can be transformed

into a different MDP with reward function R(s, a), such that optimal

policies in the new MDP correspond exactly to optimal policies in the

original MDP.

c. Now do the same to convert MDPs with R(s, a) into MDPs with R(s)

2

3

a. Write the Bellman equations for these formulations.

The key here is to get the max and summation in the right place

For R(s, a) ?

� � = ����(� �, � + �� �� �, � �(�′))

��

� � = � � + ���� �� �� �, � �(�′)
��

� � = ���� �� �� �, � [� �, �, �� + � ��]

��

For R(s, a, s’) ?

4

b. Show how an MDP with reward function R(s, a, s’) can be transformed into

a different MDP with reward function R(s, a), such that optimal policies in the

new MDP correspond exactly to optimal policies in the original MDP.

Many solutions are possible.

P’(pre(s,a,s’)| a, s) = P(s’| s, a)

P’(s’| pre(s,a,s’), b) = 1

R’(s, a) = 0

R’(pre(s,a,s’), b) = R(s,a,s’)

s

pre(s,a,s’)

S’

S’’

b,1
P(s’| s, a)

pre(s,a,s’’)P(s’’| s, a) b,1

R(s, a, s’)

R(s, a, s’’)

R(s, a)

R(s, a)

3

7

c. Now do the same to convert MDPs with R(s, a) into MDPs with R(s).

Follow the pattern of b.

P’(s’| post(s,a), b) = P(s’| s, a)

s S’

P(s’| s, a)

post(s,a)

R’(post(s,a)) = R(s,a)

R’(s) = 0
P’(post(s,a) | a, s) = 1

R(s,a)

P’(post(s,a) | a, s) = 1

P’(s’| post(s,a), b) = P(s’| s, a)

R’(s) = 0

R’(post(s,a)) = R(s,a)

S’’

2. In this exercise we will consider two-player MDPs that correspond

to zero-sum, turn taking games. Let the players be A and B, and let

R(s) be the reward for player A in s. The reward for B is always

equal and opposite.

a. Let UA(s) be the utility of state s when it is A’s turn to move in s, and

let UB(s) be the utility of state s when it is B’s turn to move in s. All

rewards and utilities are calculated from A’s point of view (just as in

a minimax game tree). Write down Bellman equations (equations

used for value iteration) defining UA(s) and UB(s).

�� � = � � + ���� �
 �� �, � ��(��)
�

�� � = � � + ���� �
 �� �, � ��(��)
�

8

4

b. Explain how to do two-player value iteration with these equations,

and define a suitable stopping criterion.

Take the equations from a. and add t+1 and t respectively

��:��� � = � � + ���� �� �� �, � ��:�(��)
�

Stop if the utility vector of one player does not change for the player

9

��:��� � = � � + �	
� �� �� �, � ��:�(��)
�

c. Consider the game described in the following figure. Draw the state

space (rather than the game tree), showing the moves by A as solid

lines and moves by B as dashed lines. Mark each state with R(s). You

will End it helpful to arrange the states (s
A
, s

B
) on a two dimensional

grid, using s
A

and s
B

as "coordinates.“ Assume A moves first.

(3,4)

(1,3)

(1,2)

(2,1)

(2,4)

(2,3)

(1,4)

(3,1)

(4,3)

(4,2)(3,2)

+1

+1

-1 -1

10

5

d. Now apply two-player value iteration to solve this game, and derive the optimal

policy.

Is the same

The optimal policy

��:��� � = � � + ���� �
 �� �, � ��:�(��)
�

��:��� � = � � + ���� �
 �� �, � ��:�(��)
�

11

12

3. Give the pseudo code for policy iteration.

Explain how the major steps can be implemented

Initialize the policy vector π0. An action for each state.

Set the initial utilities of non final states to 0.

repeat

Policy evaluation: given a policy π
i
, calculate U

i
=U

πi
,

the utility of each state if π
i
were to be executed.

Policy improvement: Calculate a new MEU policy π
i+1

until the policy does not change

Policy improvement: Compute the best action based on U
i
with one step

look ahead as in value iteration.
Policy evaluation:

Solve the linear equations for π
i
:

U
t+1

(i) R(i) + S
k
P(k | P(i).i) U

t
(k)

Do k steps of value iteration for π
i
:

6

4. Consider an undiscounted Markov Decision Process (MDP) having three

states (1,2,3), with rewards -1, -2, 0 respectively. State 3 is a terminal state.

In states 1 and 2 there are two possible actions: a and b. The transition model

is as follows:

• In state 1, action a moves the agent to state 2 with probability 0.8 and makes

the agent stay put with probability 0.2

• In state 2, action a moves the agent to state 1 with probability 0.8 and makes

the agent stay put with probability 0.2

• In either state 1 or state 2, action b move the agent to state 3 with probability

0.1 and makes the agent stay put with probability 0.9

Answer the following questions:

a. What can be determined qualitatively about the optimal policy in state 1 and

state 2?

b. Apply policy iteration, showing each step in full, to determine the optimal

policy and the values of state 1 and state 2. Assume that the initial policy has

action b in both states.

c. What happens to policy iteration if the initial policy has action a in both states?

d. Now, use value iteration.

13

a. What can be determined qualitatively about the optimal policy in

state 1 and state 2?

14

1 2

3

Reward = -2Reward = -1

Reward = 0

a, 0.8

a, 0.2

b, 0.1

b, 0.9

a, 0.8

a, 0.2

b, 0.9

b, 0.1

In state one choose b and in state 2 choose a. This is because

reaching state 3 has a small probability and the cost of state 2 is

higher than the cost of state 1.

Leads to the following state diagram.

7

b. Apply policy iteration, showing each step in full, to determine the optimal

policy and the values of state 1 and state 2. Assume that the initial policy has

action b in both states.

I choose solving linear equations.

15

(b, b)

1. Policy evaluation for U

u1 = -1 + 0.1* u3 + 0.9 *u1  u1=-1+0.9*u1  0.1u1=-1  u1=-10

u2 = -2 + 0.1*u3 + 0.9* u2 = -20

u3 =0

2. Policy improvement. Compute the EU for each state action pair:

u(1,a) = 0.8*-20 + 0.2 * -10 = -18

u(1,b) = 0.1*0 + 0.9 *-10 = -9  b

u(2,a) = 0.8*-10 + 0.2 * -20 = -12

u(2,b) = 0.1*0 + 0.9 *-20 = -18

 a, policy update (b, a)

U(s) R(s) + S
k
P(k | P(s)) U(k)

P’(s) = arg max
a
S

k
P(k | s,a) U(k)

b. Apply policy iteration, showing each step in full, to determine the optimal

policy and the values of state 1 and state 2. Assume that the initial policy has

action b in both states

16

(b, a)

1. Policy evaluation for U

u1 = -1 + 0.1 *u3 + 0.9 *u1 = -10

u2 = -2 + 0.8 *u1 + 0.2 *u2 = -12.5

u3 =0

2. Policy improvement. Compute the EU for each state action pair:

u(1,a) = 0.8 *-12.5 + 0.2 * -10 = -12

u(1,b) = 0.1*0 + 0.9 *-10 = -9  b

u(2,a) = 0.8 *-10 + 0.2 * -12.5 = -10.5

u(2,b) = 0.1 *0 + 0.9 *-12.5 = -11.25
 a

The policy was not changed, the process terminates with (b, a).

8

c. Now the initial policy us (a,a)

17

(a, a)

1. Value determination for U

u1 = -1 + 0.2 * u1 + 0.8 * u2

u2 = -2 + 0.8 * u1 + 0.2 * u2

u3 =0

The first two equations are inconsistent. There is no solution.

One can solve it iteratively with a small discount factor .

d. Now, use value iteration. Set  =1.

18

U
t+1

(s)  R(s) + max
a
S
k
P(k | s,a) U

t
(k)

if U
t+1

(i)- U
t
(k) < 

return P*(s) = arg max
a
S

k
P(k | s,a) U(k)

Round: 25

State 1= -9.28210201230815

State 2= -11.679545156923599

Policy: (b,a)

9

19

