
04.11.2022

1

Intelligent Autonomous Agents
and Cognitive Robotics

Topic 3: Constraint Satisfaction

Problems

Slides partly from Hwee Tou Ng's

Chapter 5 of AIMA

Outline

• Constraint Satisfaction Problems (CSP)

• Backtracking search for CSPs

• Multi-Agents  distributed backtracking

2

04.11.2022

2

Constraint satisfaction problems (CSPs)

• Standard search problem:
 state is a "black box“ – any data structure that supports

successor function, heuristic function, and goal test

• CSP:
 state is defined by variables Xi (i=1..n) with

 values from domain Di

 goal test is a set of constraints Cm (m=1..z) specifying allowable
combinations of values for subsets of variables

• Simple example of a formal representation language

• Allows useful general-purpose algorithms with more
power than standard search algorithms

3

Visual example: Map-Coloring

• Variables: WA, NT, Q, NSW, V, SA, T

• Domains: Di = {red, green, blue}

• Constraints: adjacent regions must have different colors
 e.g., WA ≠ NT

 or (WA,NT)  {(red,green),(red,blue),(green,red), (green,blue), (blue,red),
(blue,green)}

4

∀�,

04.11.2022

3

Example: Map-Coloring

• Solutions are complete and consistent

assignments, e.g.,

 WA = red, NT = green, Q = red, NSW = green, V = red,

SA = blue, T = green 5

Constraint graph

• Binary CSP: each constraint relates two variables

• Constraint graph: nodes are variables, arcs are

constraints

6

General-purpose CSP algorithms use the graph structure

to speed up search. E.g., Tasmania is an independent sub

problem!

04.11.2022

4

Varieties of CSPs

• Discrete variables
 finite domains:

 n variables, domain size d  O(dn) complete assignments

 e.g., n-queens problem

 infinite domains:

 integers, strings, etc.

 e.g., job scheduling, variables are start/end days for each job

 need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

• Continuous variables
 e.g., start/end times for Hubble Space Telescope observations

 linear constraints solvable in polynomial time by linear
programming

7

Varieties of constraints

• Unary constraints involve a single variable,

 e.g., SA ≠ green

• Binary constraints involve pairs of variables,

 e.g., SA ≠ WA

• Higher-order constraints involve 3 or more

variables

8

04.11.2022

5

Real-world CSPs

• Assignment problems
 e.g., who teaches what class

• Timetabling problems
 e.g., which class is offered when and where; preferences

• Hardware configuration

• Transportation scheduling

• Factory scheduling

10

Constraint propagation

• In CSP an algorithm can do

 Constraint propagation = inference

 Search

 Intertwined or as preprocessing

• The key idea is to create local consistency

11

04.11.2022

6

Node consistency

• A variable is node-consistent if all the values

satisfy the unary constraints

• Infer the values that are legal for a variable,

 e.g. if South Australia does not like green,

eliminate it {red, blue}

 e.g. don’t want to teach at 8 pm

12

Global Constraints

• Alldiff (many algorithms)

 Idea: If m variables have n values and m>n  can not be

satisfied

 Remove any variable with singleton domain and propagate

this into other domains. Repeat as long as there are singleton

domains.

 If an empty domain is produced or m>n, then an

inconsistency has been detected

13

04.11.2022

7

Global Constraints

• Alldiff (many algorithms)

 Idea: If m variables have n values and m>n  can not be

satisfied

14

{red}

{red}

{green, blue}
{green, blue}

{green, blue}
 3 variables, two values

{green, blue}

Alldiff

Resource Constraints

• Resource constraints: Atmost

We can detect an inconsistency simply by checking the

sum of the minimum values of the current domains:
Atmost(10, P1, P2, P3, P4) persons for tasks.

 Each variable has domain {3, 4, 5, 6}

 Each variable has domain {2, 3, 4, 5, 6}

15

 can not be satisfied

 delete 5 and 6

04.11.2022

8

Resource Constraints

• Bounds propagation/bounds consistent

 In complex problems often not possible to enumerate domain

values

 Constraints:

 Plane capacities for F1=[0, 165] , F2[0, 385]

 Constraint: F1+F2 = 420

16

165] [255 ,385][35,

Resource Constraints

• Bounds propagation/bounds consistent

 In complex problems often not possible to enumerate domain

values

 Constraints:

 Plane capacities for F1=[0, 165] , F2[0, 385]

 Constraint: F1+F2 = 420

 We say that a CSP is bounds consistent if for every variable X,

and for both the lower-bound and upper-bound values of X, there

exists some value of Y that satisfies the constraint between X

and Y for every variable Y . (Often used in praxis)

17

 F1[35, 165] and F2[255, 385]

04.11.2022

9

Standard search formulation

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

• Initial state: the empty assignment { }

• Successor function: assign a value to an unassigned variable that
does not conflict with current assignment
 fail if no legal assignments

• Goal test: the current assignment is complete

1. Every solution appears at depth n with n variables
 use depth-first search

2. Path is irrelevant

3. At the root we have n variables and d values b= nd
4. At depth l we have b = (n - l)d

5. All combinations n! · dn leaves

18

Backtracking search

• Variable assignments are commutative
[WA = red then NT = green] same as [NT = green then WA = red]

• Only need to consider assignments to a single variable at each node
 b = d branching factor, n variables  dn leaves

• Depth-first search for CSPs with single-variable assignments is
called backtracking search

• Backtracking search is the basic uninformed algorithm for CSPs

19

04.11.2022

10

Backtracking example

20

backtrack

Backtracking search

21

04.11.2022

11

Improving backtracking efficiency

• General-purpose methods can give huge gains in speed:

 Which variable should be assigned next

SELECT-UNASSIGNED-VARIABLE?

 In what order should its values be tried

ORDER-DOMAIN-VALUES?

 What inferences should be performed at each step in

the search INFERENCE?

 Can we detect inevitable failure early?

22

Most constrained variable

• Most constrained variable:

choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV)

heuristic

23

04.11.2022

12

Most constrained variable

• Most constrained variable:

choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV)

heuristic

24

MRV does not help in the first state

What about the first state

Degree heuristic

• Tie-breaker among most constrained variables:

Degree heuristic

• Most constraining variable:

 choose the variable with the most constraints

on remaining variables

 used together with MRV

25

04.11.2022

13

Least constraining value

• Given a variable, choose the least constraining

value:

 the one that rules out the fewest values in the

remaining variables



• Combining these heuristics makes 1000 queens

feasible 26

Queensland is selected

Inference: Forward checking

• Idea:

 Keep track of remaining legal values for unassigned neighbors

 Terminate search when any variable has no legal values

28

WA = red

04.11.2022

14

Inference: Forward checking

• Idea:

 Keep track of remaining legal values for unassigned neighbors

 Terminate search when any variable has no legal values

29

Inference: Forward checking

• Idea:

 Keep track of remaining legal values for unassigned neighbors

 Terminate search when any variable has no legal values

30

Q = green

Victoria = blue

04.11.2022

15

Inference: Forward checking

• Idea:

 Keep track of remaining legal values for unassigned neighbors

 Terminate search when any variable has no legal values

31
Victoria = blue

Forward checking

• Forward checking propagates information from assigned

to unassigned variables, but doesn't provide early

detection for all failures:

• NT and SA cannot both be blue!

• Constraint propagation repeatedly enforces constraints

locally, to neighbors
32

04.11.2022

16

Arc consistency

33

• Simplest form of propagation makes each arc consistent

X Y is consistent iff

for every value x of X there is some allowed y of Y

• Constraint Y=X2 and domain {0,1,..9}. Can write the constraint as

[(X, Y), {(0, 0), (1, 1), (2, 4), (3, 9))}]

Can reduce the domains

X = {0, 1, 2, 3}

Y = {0, 1, 4, 9}

• What about (SA ≠ WA) and domain {red, green, blue}

[(SA, WA),

{(red , green), (red , blue), (green, red), (green, blue), (blue, red

), (blue, green)}]

Arc consistency algorithm AC-3

• Time complexity: O(cd3)
34

04.11.2022

17

Arc consistency

• Assume we begin in state

35

Arc consistency

36

If X loses a value, neighbors of

X need to be rechecked

04.11.2022

18

Arc consistency

• If X loses a value, neighbors of X need to be rechecked

37

Arc consistency

• If X loses a value, neighbors of X need to be rechecked

• Is run as a preprocessor

• Can also be modified to work with backtracking

 On assignment put only (Xi, Xj) in the queue

38

04.11.2022

19

Path consistency

• {Xi, Xj} is path consistent with respect to Xm if for

every consistent assignment

there is an for Xm that is consistent.

{Xi, Xm} and {Xm, Xj}.

See the CSP graph for detecting paths

• Could also be extended to K-Consistency

39

Multi-Agents CSP

• Also called distributed CSP

 Variable and domain definition as before

 Each agent owns a variable (many can be mapped to one)

 Agents decides on value with relative autonomy

 Has no global view on all dependencies

 BUT! Can communicate with his neighbors in the constraint graph

• Many algorithms!! We only sketch one important algorithm

40

04.11.2022

20

Multi-Agents CSP:

Asynchronous Backtracking

• The algorithm makes an ordering on agents and assigns them

priority numbers. All agents set their initial value concurrently

• a higher-priority agent j informs all lower-priority agents ki of its

assignment if connected in constraint graph

• lower-priority agent k evaluates the shared Cjk constraint with its

own assignment
 if constraints are satisfied with the current assignment  no action

 otherwise, agent k looks for a different value consistent with choice of agent j

 if such a consistent value exists  agent j adopts this value and informs other

low-priority agents

 if such a consistent value does not exist, agent j updates NoGood list and sends

the message to agent j and seek for a value that is consistent with all connected

higher priority agents

 j receives a NoGood mentioning i it is not connected with j. j asks i to set up a

link

41

Adding edges

43

04.11.2022

21

Example: 4-Queens

44

A1

A2

A3

A4

Based on local information each queen

checks where to move or to resolve conflicts

with upper queen. Afterwards do nothing, send “OK?”

or “NoGood” messages.

A1 knows no position

A2 knows A1

A3 knows A2 and A1

A4 knows all positions

NoGood: A1=1 and A2=1  A3 ≠ 1

Example: 4-Queens

45

A1

A2

A3

A4

A1

A2

A3

A4

Only A3 is active

NoGood: A1=1  A2 ≠ 3

04.11.2022

22

Example: 4-Queens

46

A1

A2

A3

A4

A1

A2

A3

A4

A4 sends a NoGood message:

A1=1 and A2=4  A3 ≠ 4 (no

longer valid)

and moves.

Example: 4-Queens

47

A1

A2

A3

A4

A1

A2

A3

A4

A4 sends a NoGood message:

A1=1 and A2=4  A3 ≠ 2

and does not move, no conflict.

04.11.2022

23

Example: 4-Queens

48

A1

A2

A3

A4

A3 has no option NoGood: A1=1  A2 ≠ 4,

A2 had a former NoGood message from A3 not to stay in 3

send NoGood: A1 ≠ 1

A1

A2

A3

A4

Example: 4-Queens

49

A1

A2

A3

A4

No conflict for any queen  solved

