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Temporal Probabilistic Agent

environment
agent

?

sensors

actuators

t1, t2, t3, …

So far we only have taken care about

one moment in time !!!!!!
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Time and Uncertainty

• The world changes over time, we need to track and predict it 

• Examples:
diabetes management, localization, speech recognition, …

• Basic idea: copy state and evidence variables for each time step

• Xt – set of unobservable state variables at time t
 e.g., BloodSugart, StomachContentst, …

• Et – set of evidence variables at time t
 e.g., MeasuredBloodSugart, PulseRatet, FoodEatent ,…

• Assumes discrete time steps

3

Dynamic Bayesian Networks

• How can we model dynamic situations with a 
Bayesian network?

• Example: Is it raining today?
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next step: specify dependencies among the variables.

The term “dynamic” means we are modeling a dynamic system, not that

the network structure changes over time. 4
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• Problem:

1. Necessity to specify an unbounded number of conditional 

probability tables, one for each variable in each slice,

2. Each one might involve an unbounded number of parents.

DBN - Representation

5

• Problem:

1. Necessity to specify an unbounded number of conditional 

probability tables, one for each variable in each slice,

2. Each one might involve an unbounded number of parents.

• Solution:

1. Assume that changes in the world state are caused by a 

stationary process (the laws for a state change do not change 

over time).

))(/( tt UParentUP is the same for all t

DBN - Representation

6
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• Problem:

1. Necessity to specify an unbounded number of conditional 

probability tables, one for each variable in each slice solved

2. Each one might involve an unbounded number of parents.

DBN - Representation
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• Solution cont.:

)/()/( 11:0   tttt XXPXXP

2.  Use Markov assumption - The current state depends on 

only a finite history of previous states. 

Using the first-order Markov process:

Transition Model

DBN - Representation

8
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• Solution cont.:

)/()/( 11:0   tttt XXPXXP

2.  Use Markov assumption - The current state depends on 

only a finite history of previous states. 

Using the first-order Markov process:

Transition Model

In addition to restricting the parents of the state variable  Xt, we must 

restrict the parents of the evidence variable Et

)/(),/( 1:0:0 ttttt XEPEXEP  Sensor Model

DBN - Representation
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• Solution cont.:

)/()/( 11:0   tttt XXPXXP

2.  Use Markov assumption - The current state depends on 

only in a finite history of previous states. 

Using the first-order Markov process:

Transition Model

In addition to restricting the parents of the state variable  Xt, we must 

restrict the parents of the evidence variable Et

)/(),/( 1:0:0 ttttt XEPEXEP 

Sensor Model

DBN - Representation
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Dynamic Bayesian Networks

• There are two possible fixes if the approximation 

is too inaccurate:

 Increasing the order of the Markov process model. For example, 

adding Raint-2 as a parent of Raint , which might give slightly 

more accurate predictions.

11

2tX 1tX 2tX1tXtX

Dynamic Bayesian Networks

• There are two possible fixes if the approximation 

is too inaccurate:

 Increasing the set of state variables. For example, adding

Seasont to allow to incorporate historical records of rainy 

seasons, or adding Tempraturet , Humidityt and Presssuret to 

allow to use a physical model of rainy conditions.

12

State1

State2

State1

State2
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Complete Joint Distribution

• Given:

 Transition model: P(Xt|Xt-1)

 Sensor model: P(Et|Xt)

 Prior probability: P(X0)

• Then we can specify complete joint distribution:

),...,,,...,,( 110 tt EEXXXP
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Simple Example

Rain0

Umbrellat-1

Raint

Umbrellat

Raint+1

Umbrellat+1

Rt-1 P(Rt|Rt-1)

T

F

0.7

0.3

Rt P(Ut|Rt)

T

F

0.9

0.2

14

….. Raint-1

P(R0=t)

0.5

Rt P(Rt+1|Rt)

T

F

0.7

0.3
=

Rt+1 P(Ut+1|Rt+1)

T

F

0.9

0.2
=
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Inference Tasks: Examples

• Filtering/State estimation:
What is the probability that it is raining today, given all the umbrella 
observations up through today?

• Prediction:
What is the probability that it will rain the day after tomorrow, given 
all the umbrella observations up through today?

• Smoothing:
What is the probability that it rained yesterday, given all the umbrella 
observations through today?

• Most likely explanation:
If the umbrella appeared the first three days but not on the fourth, 
what is the most likely weather sequence to produce these umbrella 
sightings?

15

DBN – Basic Inference 

• Filtering or Monitoring:

Compute the belief state - the posterior distribution over the current state, 

given all evidence to date.

)/( :1 tt eXP

Filtering is what a rational agent needs to do in order to keep track 

of the current state so that the rational decisions can be made.

17
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DBN – Basic Inference 

• Filtering cont.

))/(()/(
:1,11:11 ttttt
eXPefeXP  

)/()/( :11:1,11 ttttt eXPeXeP 

Given the results of filtering up to time t, one can easily compute the 

result for t+1 from the new evidence        1te

(dividing up the evidence)

(seeking for some 

recursive function f ?)

(using Bayes’ Theorem)

(by the Markov property

of evidence)

18

P(B|A,C) =    P(A|B,C) P(B|C)

)/( 1,:11  ttt eeXP

)/()/( :1111 tttt eXPXeP 

updates this with the new evidence

DBN – Basic Inference 

• Filtering cont.

)/()/()/( :1111 tt

X

tttt exPxXPXeP
t

 

)/( :11 tt eXP 

  
tX

ttttttttt exPexXPXePeXP )/(),/()/()/( :1:11111:11 

(using the Markov property)

Sensor model Transition model recursion
19

)/()/( :1111 tttt eXPXeP )/( 1:11  tt eXP

represents a one-step prediction

������|����	
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DBN – Basic Inference 


0

)()/()( 0011

r

rPrRPRP

)()/()/( 11111 RPRuPuRP 

For two steps in

the Umbrella example:  

• On day 1, the umbrella appears so U1=true. The prediction from t=0 to t=1 is

and updating it with the evidence for t=1 gives


1

)/()/()/(
111212

r

urPrRPuRP

)/()/(),/( 1222212 uRPRuPuuRP 

• On day 2, the umbrella appears so U2=true. The prediction from t=1 to t=2 is

and updating it with the evidence for t=2 gives

20

)/()/()/( :1111 tt

X

tttt exPxXPXeP
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Example: Day 1

predictionevidence

21
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P(R0)=<0.5,0.5>

� 
� � ∑ ��
�|�	��� � � =<0.7,0.3>0.5+<0.3,0.7>0.5=<0.5,0.5>

��
�|��	 �  �� �� 
� � 
� � � � 0.9,0.2 �� 0.5,0.5 �
                 �  � � 0.45,01 � � � 0.818,0.182 �
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Example: Day 2

predictionevidence

22

� 
!|�� � ∑ ��
!|�	��" � �|�� =

<0.7,0.3>0.818+<0.3,0.7>0.182 � <0.627,0.373>

��
!|��, �!	 �  �� �! 
! � 
!|�� � � � 0.9,0.2 �� 0.627,0.373 �
                 �  � � 0.565,0075 � � � 0.883,0.117 �

� 
! ��, �! � ����!|
!	 & � 
! � ���|��	
�

�" ��
�|��	 � � 0.818,0.182 �

Example
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)/( 22 RuP

)/( 11 uRP
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DBN – Basic Inference 

• Prediction:

Compute the posterior distribution over the future state, 
given all evidence to date.




 
ktx

tktktkttkt exPxXPeXP )|()|()/( :11:11

for some k>0

The task of prediction can be seen simply as filtering 

without the addition of new evidence.

24

DBN – Basic Inference 

• Smoothing or hindsight:

Compute the posterior distribution over the past state, 
given all evidence up to the present.

)/( :1 tk eXP for some k such that 0 ≤ k < t.

Hindsight provides a better estimate of the state than 

was available at the time, because it incorporates 

more evidence.
25
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Smoothing

• Can I use future information to increase the accuracy of 

filtering for past states?

26

Rain0

Umbrella1

Rain2

Umbrella2

Rain1

Umbrella1=t Umbrella2=t

Smoothing

Markov

27

Bayes rule
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Smoothing

28

Smoothing

29
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Smoothing

Sensor model Transition modelrecursion
30

Example

• Smoothed estimate for rain at k=1, given u1, u2.

P(R1|u1,u2) =  P(R1|u1)P(u2|R1)

• The first term is taken from the forward example

<0.818, 0.182>

• P(u2|R1) = r2 
P(u2|r2)P(|r2) P(r2|R1)

= (0.9 x 1 x <0.7,0.3>)+(0.2 x 1 x <0.3,0.7>)

= <0.69, 0.41>

• P(R1|u1,u2) =  <0.818, 0.182> x <0.69. 0.41>

 <0.883, 0.117>

• If we do it for each time slice O(t2)!!!
31
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Example contd.

32

Forward-Backward Algorithm

33
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DBN – Basic Inference 

• Most likely explanation:

Compute the sequence of states that is most likely to have 

generated a given sequence of observation.

)/(maxarg :1:1:1 ttx eXP
t

Algorithms for this task are useful in many applications, 

including, e.g., speech recognition. Can also be used to 

compare different temporal models that might have produced 

as sequence of events.
35

Most-likely explanation

36
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The occasionally 

dishonest casino

• A casino uses a fair die most of the time, but occasionally switches to 

a loaded one

 Fair die: Prob(1) =. . . = Prob(6) = 1/6

 Loaded die: Prob(1) =. . . = Prob(5) = 1/10, Prob(6) = ½

 These are the emission probabilities

• Transition probabilities

 Prob(Fair  Loaded) = 0.01

 Prob(Loaded  Fair) = 0.2

 Transitions between states modeled by

a Markov process 

Slides following by Changui Yan 37

The occasionally dishonest casino

• Known:

 The structure of the model

 The transition probabilities

• Hidden:  What the casino did
 FFFFFLLLLLLLFFFF...

• Observable:  The series of die tosses

 3415256664666153...

• What we must infer:

 When was a fair/loaded  die used?

 The answer is a sequence
FFFFFFFLLLLLLFFF...

39
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Making the inference

• Model assigns a probability to each explanation of the observation:

P(326|FFL) 

= P(3|F)·P(FF)·P(2|F)·P(FL)·P(6|L)

= 1/6 · 0.99 · 1/6 · 0.01 · ½

• Maximum Likelihood: Determine which explanation is most likely 

 Find the path most likely to have produced the observed 

sequence

• Total probability: Determine the probability that the observed 

sequence was produced by the model

 Consider all paths that could have produced the observed 

sequence

40

Notation

• x is the sequence of symbols/observations emitted by 

the model

 xi is the symbol emitted at time i

• A path, , is a  sequence of states

 The i-th state in  is i

• tkr is the probability of making a transition from state k

to state r:

• ek(b) is the probability that symbol b is emitted when in 

state k

)|Pr( 1 krt iikr  

)|Pr()( kbxbe iik  
41
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A “parse” of a sequence
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The occasionally 

dishonest casino

00227.0

6

1
99.0

6

1
99.0

6

1
5.0

)6()2()6(),Pr( 0

)1(





 FFFFFFFF etetetx 

008.0

5.08.01.08.05.05.0

)6()2()6(),Pr( 0

)2(





 LLLLLLLL etetetx 

0000417.0

5.001.0
6

1
2.05.05.0

)6()2()6(),Pr( 0

)3(





 LFLFLFLL etetetx 

FFF)1(

LLL)2(

LFL)3(

6,2,6,, 321  xxxx
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The most likely path

The most likely path * satisfies

),Pr(maxarg* 


x

To find *, consider all possible ways the last symbol 
of x could have been emitted

 rkr
r

ikk tipxeip )1(max)()( 

Let

Then
kxx

ip

ii

ik









such that  ,,emit  to

likely  most  ,,path  of Prob.)(

1

1

K

L
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The Viterbi Algorithm

• Initialization (i = 0)

• Recursion (i = 1, . . . , L): For each state k

• Termination:

 rkr
r

ikk tipxeip )1(max)()( 

 kkk
k

tLengthpx ,1

*
)(max),Pr( 

0for  0)0(p   ,1)0(0  kp k

To find *, use trace-back, as in dynamic programming
45



27.11.2022

22

Viterbi: Example



x

0

0

6 2 6

(1/6)(1/2)
= 1/12

(1/2)(1/2)
= 1/4

(1/6)max{(1/12)0.99,
(1/4)0.2}

= 0.01375

(1/10)max{(1/12)0.01,
(1/4)0.8}

= 0.02

F

L

(1/6)max{0.013750.99,
0.020.2}

= 0.00226875

(1/2)max{0.013750.01,
0.020.8}

= 0.08

 rkr
r

ikk tipxeip )1(max)()( 
46

Viterbi gets it right 

more often than not

47
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• In addition to the discussed tasks, methods are 
needed for learning the transition and sensor 
models from observation.

• Learning can be done by inference, where 
inference provides an estimate of what transitions 
actually occurred and of what states generated the 
sensor readings. These estimates can be used to 
update the models. 

• The updated models provide new estimates, and 
the process iterates to convergence.

Dynamic Bayesian Networks

48

DBN – Special Cases

• Hidden Markov Model (HMMs):

Temporal probabilistic model in which the state of the process 

is described by a single discrete random variable. (The simplest 

kind of DBN )

• Kalman Filter Models (KFMs):

Estimate the state (continuous) of a physical system from noisy 

observations over time. Also known as linear dynamical systems 

(LDSs).

49
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Hidden Markov Models

50

Hidden Markov Models

51
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Country Dance Algorithm

52

Country Dance Algorithm

53
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Country Dance Algorithm

54

Country Dance Algorithm

55
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Country Dance Algorithm

56

Country Dance Algorithm

57
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Applications

• Speech recognition

• Robot localization

• …

58

One non-deterministic operation MOVE. 

Et has 16 possible values, each a four-bit sequence giving the presence or 

absence of an obstacle: NSWE.

 is the error rate. All four bits right (1- )4. All wrong 4.

dit is the number of bits that are different between the true values for square i

and the actual reading et, then the probability that a robot in square i would 
receive a sensor reading et is:
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1 2 3 ... 12

1 (1-)4

2 (1-)3 

3 (1-)2 2

... ….

12 (1-)2 2

Cell numbers: start in top row, left to right

Matrix for NSW 

E1=NSW E2=NS

Example AIMA
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Performance

Last time

• Filtering

• Prediction

• Smoothing

• Viterbi for most likely path/state sequence for given 

observation

• HMM 

– Only one state variable

– Efficient computation because of matrix operations

63
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Speech recognition

Segmentation of Acoustic signals
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Phonetic alphabet

HMM ah
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Word HMM: nine

Recognition HMM
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Kalman Filters

70

Updating Gaussian Distributions

71



27.11.2022

35

Simple 1-D Example

Prior

Transition model

Sensor model

Prediction

72

(by using completing the square.

Not discussed here)

Simple 1-D Example

75
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2-D Tracking: Filtering

77

2-D Tracking: Smoothing

78
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Where it breaks

79One solution  switching kalman filters

Creating DBNs with failures

• X’t =( Xt, Yt) for velocity Xt =(Xt, Yt) for position

• Battery powered robot

81

X’0

X0

X’1

X1

Z1

Battery0 Battery1

BMeter1
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Failure of sensors

• Sensor measurements are noisy

• Real sensors can fail

• May use a Gaussian error

model for discrete variables

• Transient failure

• Persistent failure

82

Transient failure model

83

P(Battery1|BMeter1=0) =  <0.99, 0.006, 0.004><0.05, 0.05, 0.9>

P(Battery1)P(BMeter1=0|Battery1)

=<0,92178771 , 0,01117318 , 0,06703911 >
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Transient failure model

84

P(Battery1|BMeter1=0) =  <0.8, 0.1, 0.1><0.05, 0.05, 0.9>

P(BMeter1=0|Battery1)

� <0.44,  0.06 , 0.5 >

Persistent failure model

85
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Example

86

DBNs vs. HMMs

Consider the transition model

87
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DBNs vs. Kalman Filters

88

Exact Inference in DBNs

d = possible values for variables

n = number of states

k = number of parents
20 state variables (4 values)

mean 420+1 =4.398.046.511.104 90

Naive:

Rollup filtering:

O(dn+k) largest factor
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Approximate inference: 

Likelihood Weighting

91

Likelihood Weighting

92
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Likelihood Weighting

93

Solution

• Instead of running one example at a time 

run N. 

 The N samples also represent an 

approximate representation of the current 

state distribution.

• Instead of using initial examples throw low 

weighted ones away. 

 Must add new examples else lose to much.

94
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Idea: Particle filtering

A population of N initial-state samples is 

created sampling from P(X0)

1. Based on the transition matrix propagate 

examples forward. P(Xt+1|xt)

2. Each sample is weighted by the likelihood it 

assigns to the  new evidence P(et+1|xt+1).

3. Resample examples based on it‘s weight.

95

Particle Filtering

96

No umbrella

is observed

at t+1

Our current

particles,10

resampling

Propagate forward
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Example

N(rt+1|e) =  xt 
P(xt+1|xt) N(xt|e)

For rain = 0.7*8+0.3*2= 6.2 => 6

For not rain = 0.3 *8 + 0.7*2= 3.8 => 4

Suppose no umbrella for t+1

total weight(rain particles) = 0.1 * 6= 0.6

total weight(not rain) = 0.8 * 4= 3.2

Normalized =<0.17, 0.83>

97

Particle Filtering: Performance

99
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Summary

100


