
17.10.2022

1

Intelligent Autonomous Agents and 

Cognitive Robotics

Rainer Marrone, Ralf Möller,

Hamburg University of Technology

• Lecture: Tuesday, 8:00 – 9:30, D-1.025

• pdf files of the lecture will be available on 

StudIP.

Lecture

2



17.10.2022

1

Intelligent Autonomous Agents and 

Cognitive Robotics

Rainer Marrone, Ralf Möller,

Hamburg University of Technology

• Lecture: Tuesday, 8:00 – 9:30, D-1.025

• pdf files of the lecture will be available on 

StudIP.

Lecture

2



17.10.2022

2

Exercise

• Thursday, 15:00-16:30, H-0.08

First exercise: 27.10

• I will upload exercise sheets every week, 

after the lecture.

• After the exercise, I will upload the solution 

as pdf.

3

Literature

Chapters 2-5, 13 - 17

http://aima.cs.berkeley.edu

- with code repository 

- further readings

4
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Literature

5

• Solving Problems by Searching

• Adversarial Agents

• Constraint Satisfaction Problems

• Bayesian Networks

• Probabilistic Reasoning Over Time

• Decision Making

• Game Theory

• Mechanism Design

Main Topics

6
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What is an Agent? (Wooldridge)

• Trivial (non-interesting) agents:

 thermostat

 UNIX daemon (e.g., xbiff)

• An intelligent agent is capable of flexible 

autonomous action in some environment

• By flexible, we mean:

 reactive

 pro-active

 social

8

Reactivity

• A reactive system is one that maintains an ongoing 

interaction with its environment, and responds to changes 

that occur in it (in time for the response to be useful)

• The real world is more complicated: things change, 

information is incomplete. Many (most?) interesting 

environments are dynamic
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Proactiveness

• Reacting to an environment is easy (e.g., 

stimulus  response rules)

• But we generally want agents to do things for us

• Hence goal directed behavior

• Pro-activeness = generating and attempting to 

achieve goals

 Not driven solely by events

 Taking the initiative

10

Balancing Reactive and Goal-

Oriented Behavior

• We want our agents to be reactive, responding 

to changing conditions in an appropriate (timely) 

fashion

• We want our agents to systematically work 

towards long-term goals

• These two considerations can be at odds with 

one another

• Designing an agent that can balance the two 

remains an open research problem
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Social Ability

• The real world is a multi-agent environment: 

we cannot go around attempting to achieve 

goals without taking others into account

• Some goals can only be achieved with the 

cooperation of others

• Social ability in agents is the ability to interact 

with other agents (and possibly humans) via 

some kind of agent-communication language. 

Goal is to fulfill the design objectives 

commitments/cooperation.

Agents (Norvig, Russell)

• An agent is anything that can be viewed as 
perceiving its environment through sensors and 
acting upon that environment through actuators

• Human agent: eyes, ears, and other organs for 
sensors; hands, legs, mouth, and other body 
parts for actuators

• Robotic agent: cameras and infrared range 
finders for sensors; various motors for actuators

12
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Agents and environments

• The agent function maps from percept histories to actions .

f : P* A

• The agent program runs on the physical architecture to produce f

• agent = architecture + program

13

Vacuum-Cleaner World

• Percepts: location and contents, e.g., 

[A,Dirty]

• Actions: Left, Right, Suck, NoOp

14
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A Vacuum-Cleaner Agent

15

Performance measure

• An agent should strive to "do the right thing", based on 
what it can perceive and the actions it can perform. 

• Success to be measured w.r.t. an agent-local 
perspective of environment states.

• Performance measure: An objective criterion for success 
of an agent's behavior.
 Performance measure of a vacuum-cleaner agent could be 

amount of dirt cleaned up, amount of time taken, amount of 
electricity consumed, amount of noise generated, etc.

16
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Rational Agents

• Rational Agent: For each possible percept 

sequence, a rational agent

 should select an action that is expected to maximize 

its performance measure, 

 given the evidence provided by the percept sequence 

and whatever built-in knowledge the agent has.

• Rational = Intelligent

• Rationality is distinct from omniscience (all-

knowing with infinite knowledge)

17

Autonoumous Agents

• Agents can perform actions in order to obtain 
useful information (information gathering, 
exploration)

• An agent is autonomous if its behavior is 
determined by its own experience (with ability to 
learn and adapt)

18
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Applications

• Robotics: Drone, Explorer, Rescue BOT

• Web Agents: Personalized Search Egines

• Logistics: Tour planning 

• Medicine: Diagnosis, Surgery, … 

• …

19

First task in agent design: PEAS

Must first specify the setting/task environment for  
intelligent agent design. 

• Performance measure 

• Environment 

• Actuators 

• Sensors

20
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PEAS

• Consider, e.g., the task of designing an automated 
taxi driver:

 Performance measure: 
 Safe, fast, legal, comfortable trip, maximize profits, …

 Environment: 
 Roads, other traffic, pedestrians, customers, …

 Actuators:
 Steering wheel, accelerator, brake, signal horn, …

 Sensors: 
 Cameras, sonar, speedometer, GPS, odometer, engine sensors, 

…

21

• Agent: Part-picking and sorting robot
 Performance measure: 

 Percentage of parts in correct bins

 Environment: 

 Conveyor belt with parts, bins

 Actuators: 

 Jointed arm and hand, …

 Sensors: 

 Camera, joint angle sensors. …

PEAS

22
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Environment Types

• Fully observable vs. partially observable: An agent's sensors give it 
access to the state of the environment at each point in time.

• Deterministic vs. stochastic: The next state of the environment is 
completely determined by the current state and the action executed 
by the agent. If the environment is deterministic except for the 
actions of other agents, then the environment is strategic.

• Episodic vs. sequential: The agent's experience is divided into 
atomic "episodes" (each episode consists of the agent perceiving 
and then performing a single action), and the choice of an action in 
each episode depends only on the episode itself.

23

Environment Types

• Static vs. dynamic: The environment is unchanged while 

an agent is deliberating. (The environment is 

semidynamic if the environment itself does not change 

with the passage of time but the agent's performance 

score does)

• Discrete vs. continuous: Discrete if there are a limited 

number of distinct, clearly defined percepts, states and 

actions.

• Single agent vs. multiagent: An agent operating by itself 

in an environment.
24
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Environment Types

Chess with Chess without Taxi driving 

a clock a clock

Fully observable Yes Yes No 

Deterministic Strategic Strategic No 

Episodic          No No No 

Static Semi Yes No 

Discrete Yes Yes No

Single agent No No No 

• The environment type largely determines the agent design

• The real world is (of course) partially observable, stochastic, 
sequential, dynamic, continuous, multi-agent
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Mechanisms for multi-agent 

environments

• Customer wishes to place long-distance call

• Carriers simultaneously bid, sending proposed prices

• Phone automatically chooses the carrier (dynamically)

AT&TMCI Sprint

$0.20

$0.18 $0.23
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33

Best Bid Wins

• Phone chooses carrier with lowest bid

• Carrier gets amount that it bid

AT&TMCI Sprint

$0.20

$0.18 $0.23

34

Attributes of the 

Mechanism

 Distributed

 Symmetric

 Stable

 Simple

AT&T
MCI Sprint

$0.20

$0.18 $0.23

Carriers have an 
incentive to 
invest effort in 
strategic 
behavior

“Maybe I can 
bid as high as 
$0.21...”
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• Phone chooses carrier with lowest bid

• Carrier gets amount of second-best price

Best Bid Wins, Gets Second Price

(Vickrey Auction)

35

AT&TMCI Sprint

$0.20

$0.18 $0.23

36

Attributes of the Vickrey Mechanism

 Distributed

 Symmetric

 Stable

 Simple

AT&T
MCI Sprint

$0.20

$0.18 $0.23

Carriers have no 
incentive to 
invest effort in 
strategic 
behavior

“I have no 
reason to 
overbid...”



17.10.2022

18

• Phone chooses carrier with lowest bid

• Carrier gets amount of second-best price

Best Bid Wins, Gets Second Price

(Vickrey Auction)

35

AT&TMCI Sprint

$0.20

$0.18 $0.23

36

Attributes of the Vickrey Mechanism

 Distributed

 Symmetric

 Stable

 Simple

AT&T
MCI Sprint

$0.20

$0.18 $0.23

Carriers have no 
incentive to 
invest effort in 
strategic 
behavior

“I have no 
reason to 
overbid...”



17.10.2022

19

Agent Types

• Five basic types in order of increasing 

generality:

 Simple reflex agents

 Model-based reflex agents

 Goal-based agents

 Utility-based agents

 Learning agents

see lecture Machine Learning

37

a
d
d
 fe

a
tu

re
s

Simple Reflex Agents
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Simple Reflex Agent

• Drawbacks:

 No autonomy

 Decision depends on current percepts.

 Sensitive to sensor fault

39

Model-Based Reflex Agents

40



17.10.2022

20

Simple Reflex Agent

• Drawbacks:

 No autonomy

 Decision depends on current percepts.

 Sensitive to sensor fault

39

Model-Based Reflex Agents

40



17.10.2022

21

41

Goals for Agents

• We build agents in order to reach a 

goal for us

• The goals must be specified by us…

• But we want to tell agents what to do 

without telling them how to do it

 Planning

Goal-Based Agents

42
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Utility-Based Agents

44

Learning Agents

45
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Utility-Based Agents

44

Learning Agents

45
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• How to represent the states of agents?

• Atomic

• State is a black box.

• Example:

Want to travel from city B to C. Cities are represented as 

names.

Representation of agent states

46

• Factored

• A state consists of a vector of attribute values

• Example: A car with GPS location, Fuel, radio station, …

Representation of agent states

47
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• Structured

• A state includes objects, each of which may have 

attributes of its own as well as relationships to other 

objects

• Example: natural language understanding

Representation of agent states

48

49

AI first approach:

Deductive Reasoning Agents

• How can an agent decide what to do using 
theorem proving?

• Basic idea is to use logic to encode a theory 
stating the best action to perform in any given 
situation

• Let:
  be this theory (e.g. a set of rules)

  be a logical database that describes the current 
state of the world

 Ac be the set of actions the agent can perform

  |--

 mean that  can be proven from  using 
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Deductive Reasoning Agents

/* try to find an action explicitly prescribed */
for each a  Ac do

if  |--


Do(a) then
return a

end-if
end-for
/* try to find an action not excluded */
for each a  Ac do

if  |--

Do(a) then

return a
end-if

end-for
return null /* no action found */

51

Deductive Reasoning Agents

• Problems:
 how to convert video camera input to logical description?

 decision making assumes a static environment

 decision making using first-order logic is undecidable!

• Even when we use propositional logic, decision 
making in the worst case means solving NP-complete 
problems (= bad news!) 
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Practical Reasoning

• Practical reasoning consists of two 

activities:

 deliberation

deciding what state of affairs we want to 

achieve

 means-ends reasoning

deciding how to achieve these states of affairs

52

53

What is Means-End Reasoning?

• Basic idea is to give an agent:

 representation of goal to achieve

 representation of actions it can perform

 representation of the environment

and have it generate a plan to achieve the goal

• Essentially, this is

automatic programming
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54

The Blocks World

• We’ll illustrate the techniques with the 

blocks world

• Contains a robot arm, 3 blocks (A, B, and 

C) of equal size, and a table

A

B C

55

The Blocks World Ontology

• To represent this environment, need an 

ontology

On(x, y) obj x on top of obj y

OnTable(x) obj x is on the table

Clear(x) nothing is on top of obj x

Holding(x) arm is holding x
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The Blocks World

• Here is a representation of the blocks 

world described above:

Clear(A)

On(A, B)

OnTable(B)

OnTable(C)

• Use the closed world assumption: 

anything not stated is assumed to be false

A

B C

57

The Blocks World

• A goal is represented as a set of formula

• Here is a goal:

OnTable(A)  OnTable(B)  OnTable(C)

AB C
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The Blocks World

• Actions are represented using a technique that was 

developed in the STRIPS planner

• Each action has:

 a name

which may have arguments

 a pre-condition list

list of facts which must be true for action to be executed

 a delete list

list of facts that are no longer true after action is performed

 an add list

list of facts made true by executing the action

Each of these may contain variables

59

The Blocks World Operators

• Example 1:

The stack action occurs when the robot arm places the 

object x it is holding is placed on top of object y.

Stack(x, y)

pre Clear(y)  Holding(x)

del Clear(y)  Holding(x)

add ArmEmpty  On(x, y)

A

B
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The Basic STRIPS Idea

• Place goal on goal stack:

• Considering top Goal1, place onto it its subgoals:

• Then try to solve subgoal GoalS1-2, and 

continue…

Goal1

Goal1

GoalS1-2

GoalS1-1

62

Stack Manipulation Rules, STRIPS
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STRIPS in Action



17.10.2022

31

63

STRIPS in Action

64

STRIPS in Action



17.10.2022

32

65

STRIPS in Action

66

STRIPS in Action



17.10.2022

32

65

STRIPS in Action

66

STRIPS in Action



17.10.2022

33

67

STRIPS in Action

68

STRIPS in Action



17.10.2022

33

67

STRIPS in Action

68

STRIPS in Action



23.10.2022

1

Intelligent Autonomous Agents
and Cognitive Robotics

Solving problems by searching 

Rainer Marrone

Hamburg University of Technology

Slides based on Hwee Tou Ng's 

Literature

• Chapter 3

2



23.10.2022

1

Intelligent Autonomous Agents
and Cognitive Robotics

Solving problems by searching 

Rainer Marrone

Hamburg University of Technology

Slides based on Hwee Tou Ng's 

Literature

• Chapter 3

2



23.10.2022

2

Problem types 

• Single-state problem: Deterministic, fully observable

 Agent knows exactly which state it will be in; can calculate optimal 
action sequence to reach the goal

• Multiple state problem: Deterministic, partially/not observable

 Agent must reason about sequences of actions and states 
assumed while working towards goal state.

• Contingency problem: Nondeterministic and partially observable

 Percepts provide new information about current state

 Solution is a contingent plan or policy

 Often interleave search and execution

• Exploration problem: Unknown state space

 Discover and learn about environment while taking actions

3

4

Example: vacuum world

• Single-state, start in #5. 

Solution?

• Multiple-state, start in 

{1,2,3,4,5,6,7,8} e.g., 

Right goes to {2,4,6,8} 

Solution?

[Right, Suck]

[Right,Suck,Left,Suck]
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Example: vacuum world

• Contingency

 Nondeterministic: Suck may 

dirty a clean carpet

 Partially observable: location, dirt at current location.

 Percept: [L, Clean], i.e., start in #5 or #7

Solution

6

Example: vacuum world

• Contingency

 Nondeterministic: Suck may 

dirty a clean carpet

 Partially observable: location, dirt at current location.

 Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]
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Solving problems by searching

• We will discuss solutions for all the 

different settings.

• We start with simple searches and modify 

them for more complex settings

7

8

Tree search algorithms

• Basic idea:
 offline, simulated exploration of state space by 

generating successors of already-explored states 

(a.k.a. expanding states)

Function Tree-Search(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state problem

loop do

if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution

else expand the node and add resulting nodes to the search tree

end
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Measuring search performance

• A search strategy is defined by picking the order of node 
expansion

• Strategies are evaluated along the following dimensions:
 completeness: does it always find a solution if one exists?

 time complexity: number of nodes generated

 space complexity: maximum number of nodes in memory

 optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of 
 b: maximum branching factor of the search tree

 d: depth of the least-cost solution

 m: maximum depth of the state space (may be ∞)

10

Uninformed search strategies

Uninformed search strategies use only the 

information available in the problem definition

• Breadth-first search

• Depth-first search

• Depth-limited search

• Iterative deepening search
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Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

 fringe is a FIFO queue, i.e., new successors 

go at end

12

Time complexity of breadth-first 

search

• If a goal node is found on depth d of the tree, all nodes up till that 
depth are created. 

m
Gb

d

• Thus:  O(bd) 
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• QUEUE contains all         and        nodes.  (Thus: 4) .

• In General: bd

Space complexity of breadth-

first

• Largest number of nodes in QUEUE is reached on the level d of 
the goal node.

G
m

b

d

G

• Complete? Yes (if b is finite)

• Time? 1+b+b2+b3+… +bd = O(bd)

• Space? O(bd+1) (keeps every node in memory)
O(bd)  (only fringe)

• Optimal?

14

Properties of breadth-first search

Yes (if cost = 1 per step)
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Complexity example

15

16

Depth-first search

• Expand deepest unexpanded node
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Properties of depth-first search

• Complete? No: fails in infinite-depth spaces

 complete in finite spaces

• Time? O(bm): terrible if m is much larger than d

 but if solutions are dense, may be much faster than 

breadth-first

• Space? O(bm), i.e., linear space!

• Optimal? No

Depth-limited search

• depth-first search with depth limit l, i.e., nodes at depth l

have no successors

• Solves infinite path problem

• Incomplete if l<d (shallowest goal node)

• Nonoptimal if l>d

18



23.10.2022

9

17

Properties of depth-first search

• Complete? No: fails in infinite-depth spaces

 complete in finite spaces

• Time? O(bm): terrible if m is much larger than d

 but if solutions are dense, may be much faster than 

breadth-first

• Space? O(bm), i.e., linear space!

• Optimal? No

Depth-limited search

• depth-first search with depth limit l, i.e., nodes at depth l

have no successors

• Solves infinite path problem

• Incomplete if l<d (shallowest goal node)

• Nonoptimal if l>d

18



23.10.2022

10

19

Iterative deepening search
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Iterative deepening search

• Number of nodes generated in a depth-limited search to 
depth d with branching factor b: 

NDLS/BFS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• Number of nodes generated in an iterative deepening 
search to depth d with branching factor b: 

NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd

• For b = 10, d = 5,
 NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

 NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

• Overhead = (123,456 - 111,111)/111,111 = 11%

22

Properties of iterative deepening 

search

• Complete? Yes

• Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

• Space? O(bd)

• Optimal? Yes, if step cost = 1
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Summary of algorithms

24

Repeated states

• Failure to detect repeated states can turn 

a linear problem into an exponential one!

•
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Graph search

Remember nodes visited

Beyond classical search

• Informed search
 Greedy best-first search

 A* search 

• Admissible heuristics, creating heuristics

• Local search algorithms
 Hill-climbing search

 Simulated annealing search

 Local beam search

 Genetic algorithms

• Searching with nondeterministic actions

26
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Best-first search

• Idea: use a heuristic evaluation function f(n) for each 
node
 estimate of "desirability"

Expand most desirable unexpanded node

• Implementation:

Order the nodes in fringe in decreasing order of 
desirability

• Special cases:
 greedy best-first search

 A* search

27

Greedy best-first search

• Evaluation function 

f(n) = h(n) (heuristic)= estimate of cost from n to goal

e.g., hSLD(n) = straight-line distance from n to goal node

• Greedy best-first search expands the node that appears

to be closest to the goal

• Stop if the goal node appears on the fringe

28
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Greedy best-first search example: 

Go from A to B

29

A
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S

F

P
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80
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211

101
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ZS
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A 366
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S 253

R 193

P 100

F 176

B 0

RA F

BS

140
99
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450
Z

Properties of greedy best-first 

search

• Complete? No – can get stuck in loops, 

but can use graph search

• Time? O(bm), but a good heuristic can give 

dramatic improvement

• Space? O(bm) -- keeps all nodes in memory

• Optimal? No

30
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A* search

• Idea: avoid expanding nodes that are already 

expensive

• Evaluation function f(n) = g(n) + h(n)
g(n) = cost so far to reach n

h(n) = estimated cost from n to goal

• Goal node must also be expanded

32

A* search example: Go from A to B

33
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A* search example: Go from A to B

36

A

Z

R

S

F

P

B

140

75

140

80

99

211

101

97

A

ZS

B

A 366

Z 374

S 253

R 193

P 100

F 176

B 0

RA F Z

553

S P

220

646

140

654

449

S B

239

338+253=591
450+0=450 417

317

A* search example: Go from A to B

37

A

Z

R

S

F

P

B

140

75

140

80

99

211

101

97

A

ZS

B

A 366

Z 374

S 253

R 193

P 100

F 176

B 0

RA F Z

553

S P

220

646

140

654

449

S B

239

591 450

R B

317

418+0=418414+193=607



23.10.2022

18

A* search example: Go from A to B

36

A

Z

R

S

F

P

B

140

75

140

80

99

211

101

97

A

ZS

B

A 366

Z 374

S 253

R 193

P 100

F 176

B 0

RA F Z

553

S P

220

646

140

654

449

S B

239

338+253=591
450+0=450 417

317

A* search example: Go from A to B

37

A

Z

R

S

F

P

B

140

75

140

80

99

211

101

97

A

ZS

B

A 366

Z 374

S 253

R 193

P 100

F 176

B 0

RA F Z

553

S P

220

646

140

654

449

S B

239

591 450

R B

317

418+0=418414+193=607



23.10.2022

19

A* search example: Go from A to B
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compared to greedy

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.

An admissible heuristic never overestimates the cost to reach the goal, 

i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual road distance)

• Theorem: If h(n) is admissible, 
A* using TREE-SEARCH is optimal

• For graph searches we nee a stronger criteria

39
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• For graph searches we nee a stronger criteria

39
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Consistent heuristics

• “each side of a triangle cannot be longer than the sum of the other 

two sides”

• A heuristic is consistent if for every node n, every successor n' of n

generated by any action a,   

h(n) ≤ c(n,a,n') + h(n')

• If h is consistent, we have

f(n') = g(n') + h(n') 

= g(n) + c(n,a,n') + h(n') 

≥ g(n) + h(n) 

= f(n)

• i.e., f(n) is non-decreasing along any path.
• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

40

Optimality of A*

• A* expands nodes in order of increasing f value

• A* will search all path with f(n)<C* (completeness)

• A* never expands nodes with f>C* (the true cost)

41
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Properties of A*

• Complete? Yes 

• Time? The number of states in the goal contour 

can still be exponential.

• Space?

Keeps all generated nodes in memory, 

as do all graph search algorithms.

• Optimal? Yes

Not practical for very large scale problems

42

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ?

• h2(S) = ? 43

8

3+1+2+2+2+3+3+2 = 18 
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Empirical Evaluation

44

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible) then h2 dominates h1

• Is h2 always better than h1?

• f(n) < C*   (true cost)

• Every node h(n) < C* -g(n) will surely get expanded

• Because h2(n) ≥ h1(n) every node of h2 will also be expanded 
from h1, and h1 will cause other nodes to be expanded

45
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Relaxed problems

• A problem with fewer restrictions on the actions is called 
a relaxed problem

• The cost of an optimal solution to a relaxed problem is 
an admissible heuristic for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile can 
move anywhere, then h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any 
adjacent square, then h2(n) gives the shortest solution

46

Local search algorithms

• In many optimization problems, the path to the goal is 
irrelevant; the goal state itself is the solution

• State space = set of "complete" configurations

• Find configuration satisfying constraints, e.g., n-queens; 
integrated-circuit design; factory-floor layout, 

• In such cases, we can use local search algorithms. Keep 
a single "current" state, try to improve it

47
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State space and objective 

Funtion

49

Hill-climbing search

• "Like climbing Everest in thick fog with 

amnesia“ (Russell, Norvig)

50
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Hill-climbing search: 8-queens problem

• The successors of a state are all possible states generated by moving a 

single queen to another square in the same column (so each state has 

8×7=56 successors)

• Cost function: h = number of pairs of queens that are attacking each other, 

either directly or indirectly 

• h = 17 for the above state, best moves are marked. 51

Hill-climbing search: 8-queens problem

52
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Observations

• Get stuck 86% vs 14% success

• Taking 4 steps only if successful

3 steps if getting stuck (17 Million states)

• If sideways are allowed (100), success in 94%. Increase

of cost 21 steps.

• Variants

– Stochastic hill climbing

– First-choice hill climbing

– Random restart

53

Simulated annealing search

54

Stopping criteria
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Simulated Annealing

55

Properties of simulated 

annealing search

• One can prove:
If T decreases slowly enough, then simulated annealing 

search will find a global optimum/minimum with 

probability approaching 1

• Widely used in VLSI layout, airline scheduling, 

etc.

56



23.10.2022

27

Simulated Annealing

55

Properties of simulated 

annealing search

• One can prove:
If T decreases slowly enough, then simulated annealing 

search will find a global optimum/minimum with 

probability approaching 1

• Widely used in VLSI layout, airline scheduling, 

etc.

56



23.10.2022

28

Local beam search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k
states are generated

• If any one is a goal state, stop; else select the k
best successors from the complete list and 
repeat.

57

Genetic algorithms

• A variant of stochastic beam search. But a successor 
state is generated by different operations.

• Start with k randomly generated states (population)

• A state is represented as a string over a finite alphabet 
(often a string of 0s and 1s)

• Evaluation function (fitness function). Higher values for 
better states.

• Produce the next generation of states by selection, 
crossover, and mutation

58
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Genetic algorithms

• Fitness function: number of non-attacking pairs of queens 

(min = 0, max = 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28)

• 24/(24+23+20+11) = 31%

• 23/(24+23+20+11) = 29% etc
59

Genetic algorithms

• How many crossover, mutations

• How to encode the problem, fitness function

• One (more popular) vs. two child's 60
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Nondeterministic/Uncertain 

actions

• What if the outcome of actions is non 

deterministic

• Erratic vacuum cleaner

 When applied to a dirty square the square is cleaned

and adjacent square sometimes also.

 When applied to a clean square, sometimes dirt is 

deposited on that square

 need to have contingency plan/strategy

61

Possible states

62
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Multiple States 

• The result of an action is a set of states

• Suck in state 1 returns the set {5,7}

• We also need to generalize the concept of solution, 

since for example, if we start in state 1 there is no single 

sequence of actions to solve the problem instead we 

need a contingency plan like:

[Suck, if State=5 then [Right, Suck] else []]

63

AND-OR Search trees

• Branching is also introduced by the environment choice

of the outcome of actions.

• This leads to

AND-OR trees

• The bold path is

the current plan

64

OR-node

AND-node



23.10.2022

31

Multiple States 

• The result of an action is a set of states

• Suck in state 1 returns the set {5,7}

• We also need to generalize the concept of solution, 

since for example, if we start in state 1 there is no single 

sequence of actions to solve the problem instead we 

need a contingency plan like:

[Suck, if State=5 then [Right, Suck] else []]

63

AND-OR Search trees

• Branching is also introduced by the environment choice

of the outcome of actions.

• This leads to

AND-OR trees

• The bold path is

the current plan

64

OR-node

AND-node



23.10.2022

32

AND-OR Search trees

• A solution is a subtree

 has a goal node at every leaf

 specifies one action at OR-nodes

 Includes every outcome branch at AND-nodes

• Leads to if then else or case if more then two 

outcomes

65

AND-OR Search trees

• Can also be explored by BFS and best-first 

methods

• Heuristic functions must be modified to estimate 

cost of a contingent solution rather than a 

sequence

• The notion of admissibility carries over. 

66



23.10.2022

32

AND-OR Search trees

• A solution is a subtree

 has a goal node at every leaf

 specifies one action at OR-nodes

 Includes every outcome branch at AND-nodes

• Leads to if then else or case if more then two 

outcomes

65

AND-OR Search trees

• Can also be explored by BFS and best-first 

methods

• Heuristic functions must be modified to estimate 

cost of a contingent solution rather than a 

sequence

• The notion of admissibility carries over. 

66



23.10.2022

33

Partial Observable Env.

• The vacuum cleaner has only partial information, e.g., if 

he is in the left square he does not see the state of the 

right square.

If the initial state is left and dirt, we have a belief state

rather than a physical state 

• But we also have uncertain actions: Move action may fail

67

Uncertain actions &

partial observable

• Prediction:

b’=Predict(b, a)

• Possible observations in b’

Percepts(b’)={o: o=PERCEPT(b’)}

• Update of belief state:

bo= UPDATE(b’,o)= {s:o = PERCEPT(s) and sb’}

• Putting all together:

68

b

b’
a
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Structure

• Can use different search structures

• E.g. And-Or-Graphs

69
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Intelligent Autonomous Agents 
and Cognitive Robotics: 

Adversarial Agents

Ralf Möller, Rainer Marrone

Hamburg University of Technology

Adversarial Agents

• In this chapter we cover competitive environments, in 

which the agents goals are in conflict, giving rise to 

adversarial search problems often known as games.

• Mathematical game theory, a branch of economics, 

views any multi-agent environment as a game, 

regardless of whether the agents are cooperative or 

competitive.

2



30.10.2022

1

Intelligent Autonomous Agents 
and Cognitive Robotics: 

Adversarial Agents

Ralf Möller, Rainer Marrone

Hamburg University of Technology

Adversarial Agents

• In this chapter we cover competitive environments, in 

which the agents goals are in conflict, giving rise to 

adversarial search problems often known as games.

• Mathematical game theory, a branch of economics, 

views any multi-agent environment as a game, 

regardless of whether the agents are cooperative or 

competitive.

2



30.10.2022

2

Multi-Agent Games

• Agents must anticipate what other agents do

• Criteria:

 Abstraction: To describe a game we must capture every 

relevant aspect of the game.  

 Accessible environments: Such games are characterized by 

perfect information

 Search: game-playing then consists of a search through 

possible game positions with actions of other agents

 Unpredictable opponent: introduces uncertainty thus 

game-playing must deal with contingency problems

3

Two-player games

• A game formulated as a search problem:

 Initial state: board position and turn

 Actions/Transition model: definition of legal moves

 Terminal state: conditions for when game is over

 Utility function: 

a numeric value that describes the outcome of the

game.  E.g., -1, 0, 1 for loss, draw, win (AKA payoff 

function)

4
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Type of games

5

Battleship

What is a good move?
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The minimax algorithm

• Perfect play for deterministic environments with perfect information

• Basic idea: choose move with highest minimax value
= best achievable payoff against best play

• Algorithm:

1. Generate game tree completely

2. Determine utility of each terminal state

3. Propagate the utility values upward in the tree by applying MIN and 
MAX operators on the nodes in the current level

4. At the root node use minimax decision to select the move with the max 
(of the min) utility value

7

Minimax algorithm

3

3

2

3

2

812 4 6 14 252

•Minimize opponent’s chance
•Maximize your chance

8

MAX

MIN
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Minimax

3

3

2

3

2

812 4 6 14 252

•Minimize opponent’s chance
•Maximize your chance

MAX

MIN

9

Minimax: Recursive implementation

Complete: Yes, for finite state-space
Optimal: Yes, if winning is the goal

Time complexity: O(bm)
Space complexity: O(bm) or O(m)

10
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Game vs. search problem

• Unpredictable opponent 

contingency plan (MINIMAX assumes best playing 

opponent)

• Time limits 

cannot explore complete state space, approximate

• Pruning (McCarthy, 1956)

• Finite horizon, approximate

(Zuse, 1945; Shannon 1950,…)

11

Searching for the next move

• Complexity: many games have a huge search space

 Chess: b = 35, m=100  nodes = 35 100

means more than 10154 in a search tree and more than 1040 

nodes in a search graph. Take several millennia to compute

moves. 

• Resource (e.g., time, memory) limit: optimal solution not 

feasible/possible, thus must approximate

1. Pruning: makes the search more efficient by discarding portions of 

the search tree that cannot improve quality.

2. Evaluation functions: heuristics to evaluate utility of a state 

without exhaustive search.

35100 = 10 log(35100) = 10 100*log(35) = 10 100*1,54= 10154

12
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1. - pruning

• - pruning: the basic idea is to prune portions of the 
search tree that cannot improve the utility value of the 
max or min node, by just considering the values of nodes 
seen so far.

• Does it work?  Yes, it roughly cuts the branching factor 
from b to b resulting in double as far look-ahead than 
pure minimax.

13

- pruning: example

 6

6

MAX

6 12 8

MIN

14
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- pruning: example
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- pruning: example

 6

6

MAX

6 12 8 2

 2

5

 5MIN

MINIMAX(root) = max(min(6,12,8),min(2,a,b),min(5,b,d))

= max(6,z,y)      where    z=min(2,a,b)≤ 2   and  y=min(5,b,d) ≤ 5

= 6
16
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- pruning: general principle

Player

Player

Opponent

Opponent

m

n

If m is better than n for Player

we will never get to n 

17

More on the - algorithm

• Because minimax is depth-first, let’s consider nodes 

along a given path in the tree. Then, as we go along this 

path, we keep track of:

  : the value of the best (i.e., highest-value) choice we have 

found so far at any choice point along the path for MAX

  : the value of the best (i.e., lowest-value) choice we have found 

so far at any choice point along the path for MIN

18
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The - algorithm:

19

More on the -
algorithm

…

MAX

MIN

MAX

v = -
 = -
 = +

5           10            6                   2            8            7

Min-Value loops

In Min-Value:

v = 5

 = -
 = 5

20
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Properties of -

• Pruning does not affect the final result!!!

• Good move ordering improves effectiveness of pruning

• With perfect ordering, time complexity = O(bm/2)

 doubles depth of search

 need a heuristic how to order

 can easily reach depth 8 => good chess

• A simple example of the value of reasoning about which 

computations are relevant (a form of metareasoning)

29

2. Move evaluation without complete search

• The minimax algorithm generates the entire game 

search space, whereas the alpha-beta algorithm allows 

us to prune large parts of it. 

• Complete search is often too complex and impractical.
alpha-beta is still DFS.

• Evaluation function: evaluates value of state using 
heuristics and cuts off search

• New MINIMAX:
 CUTOFF-TEST: cutoff test to replace the termination condition 

(e.g., deadline, depth-limit, etc.)

 EVAL: evaluation function to replace utility function (e.g., number 
of chess pieces taken)

30
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Evaluation function

• The evaluation function should order the 

terminal states in the same way as the true utility 

function (a<b<c…).

• The computation must not take to long! 

Significant compared to minimax?

• For nonterminal states, the evaluation function 

should be strongly correlated with the actual 

chances of winning.  

31

Evaluation functions

• Most calculate features – e.g., number of pawns

• From that we can form categories, equivalence classes.

• Any category represent states that win, lose or result in 

draws.

• If we know 72% lead to win (+1), 20% to loss (0), 8% 

drawn (1/2).

Expected value:

• (0,72* +1) + (0,20* 0) + (0,08 * 1/2)= 0,76 

32
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Evaluation functions

• Weighted linear evaluation function: to combine n heuristics
f = w1f1 + w2f2 + … + wnfn

E.g, w’s could be the values of pieces (1 for pawn, 3 for bishop etc.)

f’s could be the number of type of pieces on the board
33

Note: exact values do not matter

34
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With cutoff and eval

35

Minimax with cutoff: viable algorithm?

Assume we have 
100 seconds, 
evaluate 104

nodes/s; can 
evaluate 106

nodes/move

36
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Other Cutoff methods

• Quiescent search

apply eval only to positions that are quiescent, have no 

big change of value in the near future.

• Forward pruning

considers not all moves in a concrete position.

Beam search is one approach to forward pruning.

• ProbCut

probabilistic alpha-beta with statistical prior knowledge

37

Games of chance

• Backgammon is a two-player 

game with uncertainty.

•Players roll dices to 

determine what moves to 

make.

•White/red arrow has just 

rolled 5 and 6 and has four 

legal moves:
• 5-10, 5-11
•5-11, 19-24
•5-10, 10-16
•5-11, 11-16

•Such games are good for 

exploring decision making in 

adversarial problems involving 

skill and luck.

38
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Game Trees with Chance 

Nodes

• Use minimax to compute values 

for MAX and MIN nodes

• Use  expected values for chance 

nodes

• For chance nodes over a max 

node, as in C:

expectimax(C) = Sumi(P(di) * 

maxvalue(i))

• For chance nodes over a min 

node:

expectimin(N) = Sumi(P(di) * 

minvalue(i))

Min

Rolls

Max

Rolls

39

Max

selects a move

Algorithm for nondeterministic games

40

A version of - is possible but only if leaf values

are bounded. WHY??

EXPECTIMINIMAX gives perfect play.
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Nondeterministic games: 

the element of chance

3 ?

0.50.5

817

8

?

CHANCE ?

expectimax and expectimin, expected values over all possible outcomes

41

Nondeterministic games: 

the element of chance

3 5

0.50.5
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8

5

CHANCE 4 = 0.5*3 + 0.5*5Expectimax

Expectimin
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Evaluation functions 

Order-preserving transformation do not necessarily behave 
the same!

43

Games of imperfect information

• E.g., card games, where opponent's initial cards are unknown

• Typically we can calculate a probability for each possible deal

• Seems just like having one big dice roll at the beginning of the game

• Idea: compute the minimax value of each action in each deal, then 

choose the action with highest expected value over all deals

• Special case: if an action is optimal for all deals, it's optimal.

• GIB, current best bridge program, approximates this idea by
 generating 100 deals consistent with bidding information

 picking the action that wins most tricks on average

44
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Example

• Four card bridge, MAX to play first

- 0,5

- 0,5

45

Proper analysis

• Intuition that the value of an action is the average of its 

values in all actual states is WRONG

• With partial observability, value of an action depends on 

the information state or belief state the agent is in

• Can generate and search a tree of information states

• Leads to rational behaviors such as

 Acting to obtain information

 Signalling to one's partner

 Acting randomly to minimize information disclosure

46
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Summary

• Games are fun to work on! 

• They illustrate several important points about AI

 perfection is unattainable  must approximate

 good idea to think about what to think about

 uncertainty constrains the assignment of values to states

 optimal decisions depend on information state, not real state

47
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Intelligent Autonomous Agents
and Cognitive Robotics

Topic 3: Constraint Satisfaction 

Problems

Slides partly from Hwee Tou Ng's 

Chapter 5 of AIMA

Outline

• Constraint Satisfaction Problems (CSP)

• Backtracking search for CSPs

• Multi-Agents  distributed backtracking
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Constraint satisfaction problems (CSPs)

• Standard search problem:
 state is a "black box“ – any data structure that supports 

successor function, heuristic function, and goal test

• CSP:
 state is defined by variables Xi (i=1..n) with 

 values from domain Di 

 goal test is a set of constraints Cm (m=1..z) specifying allowable 
combinations of values for subsets of variables

• Simple example of a formal representation language

• Allows useful general-purpose algorithms with more 
power than standard search algorithms

3

Visual example: Map-Coloring

• Variables: WA, NT, Q, NSW, V, SA, T

• Domains: Di = {red, green, blue}

• Constraints: adjacent regions must have different colors
 e.g., WA ≠ NT

 or (WA,NT)  {(red,green),(red,blue),(green,red), (green,blue), (blue,red),  
(blue,green)}

4

∀�,
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Example: Map-Coloring

• Solutions are complete and consistent

assignments, e.g., 

 WA = red, NT = green, Q = red, NSW = green, V = red,

SA = blue, T = green 5

Constraint graph

• Binary CSP: each constraint relates two variables

• Constraint graph: nodes are variables, arcs are 

constraints

6

General-purpose CSP algorithms use the graph structure

to speed up search. E.g., Tasmania is an independent sub 

problem!
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Varieties of CSPs

• Discrete variables
 finite domains:

 n variables, domain size d  O(dn) complete assignments

 e.g., n-queens problem

 infinite domains:

 integers, strings, etc.

 e.g., job scheduling, variables are start/end days for each job

 need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

• Continuous variables
 e.g., start/end times for Hubble Space Telescope observations

 linear constraints solvable in polynomial time by linear 
programming

7

Varieties of constraints

• Unary constraints involve a single variable, 

 e.g., SA ≠ green

• Binary constraints involve pairs of variables,

 e.g., SA ≠ WA

• Higher-order constraints involve 3 or more 

variables

8
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Real-world CSPs

• Assignment problems
 e.g., who teaches what class

• Timetabling problems
 e.g., which class is offered when and where; preferences

• Hardware configuration

• Transportation scheduling

• Factory scheduling

10

Constraint propagation

• In CSP an algorithm can do

 Constraint propagation = inference

 Search

 Intertwined or as preprocessing

• The key idea is to create local consistency

11
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Node consistency

• A variable is node-consistent if all the values 

satisfy the unary constraints

• Infer the values that are legal for a variable,

 e.g. if South Australia does not like green,

eliminate it {red, blue}

 e.g. don’t want to teach at 8 pm

12

Global Constraints

• Alldiff (many algorithms)

 Idea: If m variables have n values and m>n  can not be 

satisfied

 Remove any variable with singleton domain and propagate 

this into other domains. Repeat as long as there are singleton 

domains.

 If an empty domain is produced or m>n, then an 

inconsistency has been detected

13
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{red}

{red}

{green, blue}
{green, blue}

{green, blue}
 3 variables, two values

{green, blue}

Alldiff

Resource Constraints

• Resource constraints: Atmost

We can detect an inconsistency simply by checking the 

sum of the minimum values of the current domains:
Atmost(10, P1, P2, P3, P4) persons for tasks.

 Each variable has domain {3, 4, 5, 6}

 Each  variable has domain {2, 3, 4, 5, 6}

15

 can not be satisfied

 delete 5 and 6
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Resource Constraints

• Bounds propagation/bounds consistent

 In complex problems often not possible to enumerate domain 

values

 Constraints:

 Plane capacities for F1=[0, 165] , F2[0, 385]

 Constraint: F1+F2 = 420

16

165] [255 ,385][35,

Resource Constraints

• Bounds propagation/bounds consistent

 In complex problems often not possible to enumerate domain 

values

 Constraints:

 Plane capacities for F1=[0, 165] , F2[0, 385]

 Constraint: F1+F2 = 420

 We say that a CSP is bounds consistent if for every variable X, 

and for both the lower-bound and upper-bound values of X, there 

exists some value of Y that satisfies the constraint between X

and Y for every variable Y . (Often used in praxis)

17

 F1[35, 165] and F2[255, 385]
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Standard search formulation

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

• Initial state: the empty assignment { }

• Successor function: assign a value to an unassigned variable that 
does not conflict with current assignment
 fail if no legal assignments

• Goal test: the current assignment is complete

1. Every solution appears at depth n with n variables
 use depth-first search

2. Path is irrelevant

3. At the root we have n variables and d values b= nd
4. At depth  l  we have b = (n - l )d 

5. All combinations n! · dn leaves

18

Backtracking search

• Variable assignments are commutative
[ WA = red then NT = green ] same as [ NT = green then WA = red ]

• Only need to consider assignments to a single variable at each node
 b = d branching factor, n variables  dn leaves

• Depth-first search for CSPs with single-variable assignments is 
called backtracking search

• Backtracking search is the basic uninformed algorithm for CSPs

19
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Backtracking search
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Improving backtracking efficiency

• General-purpose methods can give huge gains in speed:

 Which variable should be assigned next 

SELECT-UNASSIGNED-VARIABLE?

 In what order should its values be tried 

ORDER-DOMAIN-VALUES?

 What inferences should be performed at each step in 

the search INFERENCE?

 Can we detect inevitable failure early?

22

Most constrained variable

• Most constrained variable:

choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV)

heuristic

23
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Most constrained variable

• Most constrained variable:

choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV)

heuristic

24

MRV does not help in the first state

What about the first state

Degree heuristic

• Tie-breaker among most constrained variables: 

Degree heuristic

• Most constraining variable:

 choose the variable with the most constraints 

on remaining variables

 used together with MRV

25
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Least constraining value

• Given a variable, choose the least constraining 

value:

 the one that rules out the fewest values in the 

remaining variables



• Combining these heuristics makes 1000 queens 

feasible 26

Queensland is selected

Inference: Forward checking

• Idea: 

 Keep track of remaining legal values for unassigned neighbors

 Terminate search when any variable has no legal values

28

WA = red
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Inference: Forward checking

• Idea: 

 Keep track of remaining legal values for unassigned neighbors

 Terminate search when any variable has no legal values

29

Inference: Forward checking

• Idea: 

 Keep track of remaining legal values for unassigned neighbors

 Terminate search when any variable has no legal values

30

Q = green

Victoria = blue
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Inference: Forward checking

• Idea: 

 Keep track of remaining legal values for unassigned neighbors

 Terminate search when any variable has no legal values

31
Victoria = blue

Forward checking

• Forward checking propagates information from assigned 

to unassigned variables, but doesn't provide early 

detection for all failures:

• NT and SA cannot both be blue!

• Constraint propagation repeatedly enforces constraints 

locally, to neighbors
32



04.11.2022

15

Inference: Forward checking

• Idea: 

 Keep track of remaining legal values for unassigned neighbors

 Terminate search when any variable has no legal values

31
Victoria = blue

Forward checking

• Forward checking propagates information from assigned 

to unassigned variables, but doesn't provide early 

detection for all failures:

• NT and SA cannot both be blue!

• Constraint propagation repeatedly enforces constraints 

locally, to neighbors
32



04.11.2022

16

Arc consistency

33

• Simplest form of propagation makes each arc consistent

X Y is consistent iff

for every value x of X there is some allowed y of Y

• Constraint Y=X2 and domain {0,1,..9}. Can write the constraint as

[(X, Y ), {(0, 0), (1, 1), (2, 4), (3, 9))}]

Can reduce the domains

X = {0, 1, 2, 3}

Y = {0, 1, 4, 9}

• What about (SA ≠ WA)  and domain {red, green, blue} 

[(SA, WA),

{(red , green), (red , blue), (green, red ), (green, blue), (blue, red 

), (blue, green)}]

Arc consistency algorithm AC-3

• Time complexity: O(cd3)
34
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Arc consistency

• Assume we begin in state

35

Arc consistency

36

If X loses a value, neighbors of 

X need to be rechecked
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Arc consistency

• If X loses a value, neighbors of X need to be rechecked

37

Arc consistency

• If X loses a value, neighbors of X need to be rechecked

• Is run as a preprocessor

• Can also be modified to work with backtracking

 On assignment put only (Xi, Xj) in the queue

38
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Path consistency

• {Xi, Xj} is path consistent with respect to Xm if for 

every consistent assignment 

there is an for Xm that is consistent.

{Xi, Xm} and {Xm, Xj}.

See the CSP graph for detecting paths

• Could also be extended to K-Consistency

39

Multi-Agents CSP

• Also called distributed CSP

 Variable and domain definition as before

 Each agent owns a variable (many can be mapped to one)

 Agents decides on value with relative autonomy

 Has no global view on all dependencies

 BUT! Can communicate with his neighbors in the constraint graph

• Many algorithms!! We only sketch one important algorithm

40
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Multi-Agents CSP: 

Asynchronous Backtracking

• The algorithm makes an ordering on agents and assigns them 

priority numbers. All agents set their initial value concurrently

• a higher-priority agent j informs all lower-priority agents ki of its 

assignment if connected in constraint graph

• lower-priority agent k evaluates the shared Cjk constraint with its 

own assignment
 if constraints are satisfied with the current assignment  no action

 otherwise, agent k looks for a different value consistent with choice of agent j

 if such a consistent value exists  agent j adopts this value and informs other 

low-priority agents

 if such a consistent value does not exist, agent j updates NoGood list and sends 

the message to agent j and seek for a value that is consistent with all connected 

higher priority agents

 j receives a NoGood mentioning i it is not connected with j. j asks i to set up a 

link

41

Adding edges

43
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Example: 4-Queens

44

A1

A2

A3

A4

Based on local information each queen

checks where to move or to resolve conflicts

with upper queen. Afterwards do nothing, send “OK?” 

or “NoGood” messages.

A1 knows no position

A2 knows A1

A3 knows A2 and A1

A4 knows all positions

NoGood: A1=1 and A2=1  A3 ≠ 1

Example: 4-Queens

45

A1

A2

A3

A4

A1

A2

A3

A4

Only A3 is active

NoGood: A1=1  A2 ≠ 3
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Example: 4-Queens

46

A1

A2

A3

A4

A1

A2

A3

A4

A4 sends a NoGood message:

A1=1 and A2=4  A3 ≠ 4 (no

longer valid)

and moves. 

Example: 4-Queens

47

A1

A2

A3

A4

A1

A2

A3

A4

A4 sends a NoGood message:

A1=1 and A2=4  A3 ≠ 2

and does not move, no conflict. 
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Example: 4-Queens

48

A1

A2

A3

A4

A3 has no option NoGood: A1=1  A2 ≠ 4, 

A2 had a former NoGood message from A3 not to stay in 3

send NoGood: A1 ≠ 1

A1

A2

A3

A4

Example: 4-Queens

49

A1

A2

A3

A4

No conflict for any queen  solved
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Intelligent Autonomous Agents
and Cognitive Robotics

Topic 5: Bayesian Networks

Ralf Möller, Rainer Marrone

Hamburg University of Technology

Uncertainty in prior knowledge

• Diagnosis:

 Toothache => Cavity  GumProblem  Abscess  …

RootInfection … 

• The connection between toothaches and cavity is just 

not a logical consequence. For medical diagnosis logic 

does not seem to be appropriate.

Cavity => Toothache

2
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Probability

Probabilistic assertions summarize effects of

• laziness: 

It is too much work to list the complete set of antecedents or 

consequents needed to ensure an exceptionless rule and too 

hard to use such rules

• theoretical ignorance: 

no complete theory, e.g., medical science has no complete 

theory for the domain.

• practical ignorance:
lack of relevant facts, initial conditions, tests, etc.

3

Making decisions under uncertainty

Suppose I believe the following:
P(A

25
gets me there on time | …) = 0.04 

P(A
90

gets me there on time | …) = 0.70 

P(A
120 

gets me there on time | …) = 0.95 

P(A
1440=24h

gets me there on time | …) = 0.9999

• Which action to choose?

Depends on my preferences for missing flight vs. time 
spent waiting, etc.
 Utility theory is used to represent and use preferences

 Decision theory = probability theory + utility theory

4
Later in this lecture
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Example: Dentist problem with four variables: 

Toothache (I have a toothache)

Cavity (I have a cavity)

Catch (steel probe catches in my tooth)

Weather (sunny,rainy,cloudy,snow )

Example world

5

Prior probability

• Prior or unconditional probabilities of propositions

e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 

correspond to belief prior to arrival of any (new) evidence

• Probability distribution

gives values for all possible assignments 

(sunny,rainy,cloudy,snow ):

P(Weather) = <0.72,0.1,0.08,0.1> 

(normalized, i.e., sums to 1 because one must be the case)

6
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Full joint probability distribution

• Joint probability distribution for a set of random variables gives the 
probability of every atomic event on those random variables
P(Weather,Cavity) = a 4 × 2 matrix of values:

Weather = sunny rainy cloudy snow 

Cavity = true 0.144 0.02 0.016 0.02

Cavity = false 0.576 0.08 0.064 0.08

• Full joint probability distribution: all random variables involved
 P(Toothache, Catch, Cavity, Weather)

• Every question about a domain can be answered by the full joint distribution

= 0.2
= 0.8

= 1.0

7

Conditional probability

• Conditional or posterior probabilities (after having received some 
information)
e.g., P(cavity | toothache) = 0.8

• Definition of conditional probability (in terms of uncond. prob.):
P(a | b) = P(a  b) / P(b) if  P(b) > 0

• Product rule gives an alternative formulation ( is commutative):
P(a  b) = P(a | b) P(b) = P(b | a) P(a)

• Chain rule is derived by successive application of product rule:

P(X
1
, …,X

n
) = P(X

1
,...,X

n-1
) P(X

n
| X

1
,...,X

n-1
)

= P(X
1
,...,X

n-2
) P(X

n-1
| X

1
,...,X

n-2
) P(X

n
| X

1
,...,X

n-1
)

= …

= P(X
i
| X

1
, … ,X

i-1
)

8
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Bayes rule

� �,� = � � � � � = � � � � �

� �����|������ =
� ������ ����� ∗ �(�����)

�(������)
=

	
��	
ℎ� ∗ ��
�

��
�����

�����	
 ����:

9

� |� = � � �  �()

Inference by enumeration

• Start with the joint probability distribution:

• For any proposition φ, sum the atomic events where it is 
true: P(φ) = Σω�φ P(ω)

10
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Inference by enumeration

• Start with the joint probability distribution:

P(cavity  toothache) = 
0.108 + 0.012 + 0.072 + 0.008+ 0.016 + 0.064 = 0.28

11

Inference by enumeration

• Start with the joint probability distribution:

• Can also compute conditional probabilities:

P(cavity | toothache) = P(cavity  toothache)

P(toothache)

= 0.016+0.064

0.108 + 0.012 + 0.016 + 0.064

= 0.4

Product rule

12
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Normalization

• Denominator P(z) (or P(toothache) in the example before) can be viewed as a 
normalization constant α

P(Cavity | toothache) = P(Cavity,toothache)/P(toothache)
= α P(Cavity,toothache) 
= α [P(Cavity,toothache,catch) + P(Cavity,toothache, catch)]

= α [<0.108,0.016> + <0.012,0.064>] 

= α <0.12,0.08>

a*(0,12+0,08)=1

a=1/0,2=5

5*0,12=0,6

5*0,08=0,4

13

General idea: compute distribution on query variable by fixing 
evidence variables (toothache) and summing over hidden variables 
(Catch)

= <0.6,0.4>

General inference procedure

Typically, we are interested in 

the posterior joint distribution of the query variables Y 

given specific values e for the evidence variables E

X are all variables of the modeled world

Let the hidden variables be H = X - Y – E then the required summation of joint entries is 
done by summing out the hidden variables:

P(Y | E = e) = αP(Y,E = e) = αΣ
h
P(Y,E= e, H = h)

• The terms in the summation are joint entries because Y, E and H together exhaust 
the set of random variables (X)

• Obvious problems:

1. Space complexity O(dn) to store the joint distribution where d is the largest arity 
and n denotes the number of random variables

2. Worst-case time complexity O(dn) 

3. How to find the numbers for O(dn) entries?

14
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Independence

• A and B are independent iff

P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B) = P(A) P(B)

P(Toothache, Catch, Cavity, Weather)

= P(Toothache, Catch, Cavity) P(Weather)

• 32 entries table can be constructed from 8 and 4 entries; 

• Absolute independence powerful but rare

• How can we check whether we have independent variables in the 
full joint?

15

Example #1

Bread Bagels Butter p(r,a,u)

0 0 0 0.24

0 0 1 0.06

0 1 0 0.12

0 1 1 0.08

1 0 0 0.12

1 0 1 0.18

1 1 0 0.04

1 1 1 0.16

Bread p(r)

0 0.5

1 0.5

P(a,u)=P(a)P(u)? P(r,a)=P(r)P(a)?
16
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P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B) = P(A) P(B)
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Conditional independence

• P(Toothache, Cavity, Catch) has 23 – 1 = 7 independent entries 

• If I have a cavity, the probability that the probe catches in doesn't depend on 
whether I have a toothache:
(1) P(catch | toothache, cavity) = P(catch | cavity)

(2) P(catch | toothache,cavity) = P(catch | cavity)

• Catch is conditionally independent of Toothache given Cavity:
P(Catch | Toothache,Cavity) = P(Catch | Cavity)

• Equivalent statements:
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

19

Conditional independence contd.

• Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)

conditional independence

= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

i.e., 2 + 2 + 1 = 5 independent numbers

• In most cases, the use of conditional independence reduces the size 
of the representation of the joint distribution from exponential in n to 
linear in n.

• Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.

20
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Car Example

• Three variables:
 Gas, Battery, Starts

• P(Battery|Gas) = P(Battery)
Gas and Battery are independent

• P(Battery|Gas,Starts) = P(Battery|Starts)

• Independence does not imply conditional 
independence.

• Conditional independence does not imply 
independence

Gas and Battery are not 
independent given Starts

?

21

Question

• How can we make use of 

 independence 

 and conditional independence

Need a model that can express this

22
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Bayesian networks

• A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of the full joint distributions

• Syntax:
 a set of nodes, one per variable

 a directed, acyclic graph (link ≈ "directly influences")

 a conditional distribution for each node given its parents:
P (X

i 
| Parents (X

i
))

• In the simplest case, conditional distribution represented 
as a conditional probability table (CPT) giving the 
distribution over Xi for each combination of parent values

23

• also called Naïve Bayesian networks

• conditional independence of all effect variables

Simplest Bayesian Network

24

� �����|������
1
,������

2
, … = ��(�����) ∏ � ������

�
�����)�

Cavity

Toothache Catch
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More complex example

• I'm at work, neighbor John calls to say my alarm is ringing, but 
neighbor Mary calls but not as often as John. Sometimes it's set off 
by minor earthquakes but also on burglary. Is there a burglar?

• Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

• Network topology reflects "causal" knowledge:

 A burglar can set the alarm off

 An earthquake can set the alarm off

 The alarm can cause Mary to call

 The alarm can cause John to call

25

Example contd.

26
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Compactness

• A CPT for Boolean X
i
with k Boolean parents has 2k rows for the 

combinations of parent values

• Each row requires one number p for Xi = true
(the number for  X

i
= false is just 1-p)

• If each of n Boolean variables has no more than k parents, the complete 
network requires O(n · 2k) numbers
i.e., grows linearly with n, vs. O(2n) for the full joint distribution

• For burglary net? 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)

k parents with n values each and m values for the child node of the parents?

Number of indepenent values = nk ∙(m-1)
27

Semantics

The full joint distribution can be rewritten using the chain rule:

28

Assumption: Independence and Conditional independence 

assertions are correctly modeled

� �, … ,� = ��(�|�, … ,���

�

���

) 

� �, … ,� = ��(�| ������(�)

�

���

) 
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Semantics

The full joint distribution is defined as the product of the local 

conditional distributions:

e.g., P(j  m  a  b  e)

= P (j | a) P (m | a) P (a | b, e) P (b) P (e)

= 0.90x0.7x0.001x0.999x0.998

 0.00063

29

� �, … ,� = ��(�| ������(�)

�

���

) 

• We can determine if  conditional independence holds by 

a graph separation criterion called d-separation

(direction dependent separation)

• X and Y are d-separated if there is no active path 

between them.

• The formals definition of active is somewhat involved.

The Bayes Ball Algorithm gives a nice graphical 

definition.

Encoding conditional independence via

d-separation

30
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The six rules of Bayes Ball

31

A double-header: two games of Bayes Ball

32
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A double-header: two games of Bayes Ball

33

Markov Blanket

• Markov blanket: Parents + children + children’s parents

• Node is conditionally independent of all other nodes in network, 

given its Markov Blanket -> simplifies computation -> gather 

information on the nodes of the Markov Blanket?

34
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Constructing Bayesian networks

• 1. Choose an ordering of variables X
1
, … ,X

n 
.

Cause should precede effects.

• 2. For i = 1 to n

 add Xi to the network

 select parents from X
1
, … ,X

i-1
such that

P (X
i
| Parents(X

i
)) = P (X

i
| X

1
, ... X

i-1
)

This choice of parents guarantees:

P (X
1
, … ,X

n
) = π

i =1
P (X

i
| X

1
, … , X

i-1
)

(chain rule)

= π
i =1

P (X
i 
| Parents(X

i
))

(by construction)

n

n

35

• Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?

Example

36

No
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• Suppose we choose the ordering M, J, A, B, E

P(A | J, M) = P(A)? 

P(A | J, M) = P(A | J)?

Example

37

No

No

• Suppose we choose the ordering M, J, A, B, E

P(B | A, J, M) = P(B)?

P(B | A, J, M) = P(B | A)? 

Example

38

Yes

No
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• Suppose we choose the ordering M, J, A, B, E

P(E | B, A ,J, M) = P(E | A)?

P(E | B, A, J, M) = P(E | A, B)?

Example

39

No
Yes

Example contd.

• Deciding conditional independence is hard in noncausal directions

• (Causal models and conditional independence seem hardwired for 

humans!)

• Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

instead of 10.
40
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Efficient implementation of

CPTs

41

• The number of independent entries grow exponentially 

with the number of parents.

• Two ways to overcome this

 Restrict the number of parents if possible

 Instead of free distributions, often canonical (parameterized) 

distributions are suggested. One popular example

of such a pattern is the noisy OR for discrete cases.

Example

42
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Example

43

� ¬� ��,��, … , �� , ¬����, … , ¬�� = ∏ ���
���

Example

44

� � ��,��, … , ��, ¬����, … , ¬�� = 1- ∏ ���
���
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• Structure and semantic of BN

 Modelling of independence and conditional 

independence

 Causal and non-causal networks

 d-separation, Markov blanket

 Efficient CPTs, e.g., noisy OR, trees, Min, Max, …

Last Time

45

Hybrid (discrete+contionous) networks

46
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Continous variables:

Gaussian density

47

����    � =
1

����
�

	
������ ����
��� � = ��

�������� �� =
1

� − 1
�(�� −  �)�

�

 

� � =
1
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�(	�
)�/2"�

• Need one conditional density function for child variable given

 continuous parents

 for each discrete value of parents

• Mean Cost varies linearly with Harvest, variance fixed

• Linear variation is unreasonable over the full range but works

if the likely range of Harvest is narrow

Continuous child variables

48
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Continuous child variables

• Determine a Gaussian for subsidy and ¬subsidy

• What happens if subsidy is not given P(c|h)?

49

Discrete variabel cont. parents

• Probability of Buys given Cost should be a soft threshold

Use integral

Leads to Probit

LogitAlternativ 50
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• Simple queries: P(X1,…, Xn|e2, e4, e5)

• Optimal decisions: decision networks include utility 

information; inference must handle utility nodes.

• Value of information: which evidence to seek next?

• Sensitivity analysis: which probability values are more 

critical?

• Explanation: why do I need a new engine?

Inference tasks

51

Inference by enumeration

52

= a S
a
S
e
P(bjmae) [marginalization]

= a S
a
S
e
P(b)P(e)P(a|b,e)P(j|a)P(m|a) [BN]

= a P(b)S
e
P(e)S

a
P(a|b,e)P(j|a)P(m|a) [re-ordering]

P(b|j,m) = a P(b,j,m)
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Evaluation Tree

53

Irrelevant variables

62

What  about M?

We sum over all possible values of m

For each row it means that the value is 1
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Irrelevant variables

63

For each row it means that the value is 1

Moral Graph: Markov Blanket

• The moral graph is an undirected graph that is obtained 

as follows:

 connect all parents of all nodes

 make all directed links undirected

• Note:

 the moral graph connects each node to all nodes of its Markov 

blanket

 it is already connected to parents and children

 now it is also connected to the parents of its children

64
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Irrelevant variables continued:

• m-separation:

 A is m-separated from B by C iff it is separated by C in the moral

graph

• Example:

 J is m-separated from E by A

• Example: 

Theorem 2: Y is irrelevant if it is m-separated from X by E

65

For P(JohnCalls| Alarm=true),

Burglary, Earthquake and MarryCalls are irrelevant. 

Approximate Inference 

In Bayesian Network

• Singly connected networks (or polytrees):
 any two nodes are connected by at most one (undirected) path

 time and space cost of variable elimination linear in the size of 
the network (number of CPT entries; number of parents O(dkn)).

• Multiply connected networks: NP-hard

• We need approximate inference techniques!!!!!!!

• Monte Carlo algorithm
 Widely used to estimate quantities that are difficult to calculate 

exactly

 Randomized sampling algorithm

 Accuracy depends on the number of samples

 Two families

 Direct sampling

 Markov chain sampling 66
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• Example: 

Theorem 2: Y is irrelevant if it is m-separated from X by E

65

For P(JohnCalls| Alarm=true),

Burglary, Earthquake and MarryCalls are irrelevant. 

Approximate Inference 

In Bayesian Network

• Singly connected networks (or polytrees):
 any two nodes are connected by at most one (undirected) path

 time and space cost of variable elimination linear in the size of 
the network (number of CPT entries; number of parents O(dkn)).

• Multiply connected networks: NP-hard

• We need approximate inference techniques!!!!!!!

• Monte Carlo algorithm
 Widely used to estimate quantities that are difficult to calculate 

exactly

 Randomized sampling algorithm

 Accuracy depends on the number of samples

 Two families

 Direct sampling

 Markov chain sampling 66



12.11.2022

30

Inference by stochastic simulation

67

Sampling from empty network

• Generating samples from a network that has no 

evidence associated with it (empty network)

• Basic idea

 sample a value for each variable in topological order

 using the specified conditional probabilities

68
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Example in simple case

Cloudy

WetGrass

Sprinkler Rain

S R P(W)

______________

t t .99

t f .90

f t .90

f f .00

P(C)=.5

C P(R)

________

t .80

f .20

C P(S)

_______

_

t .10

f .50

[Cloudy, Sprinkler, Rain, WetGrass]

[true,         ,       ,       ]

[true, false,       ,       ]

[true, false, true,       ]

[true, false, true, true]

Sampling

N = 1000

N(Rain=true) = N([ _ , _ , true, _ ]) = 511

P(Rain=true) = 0.511

Estimating

69

Properties

70
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Rejection Sampling

• Used to compute conditional probabilities

• Procedure

 Generating sample from prior distribution 

specified by the Bayesian Network

 Rejecting all that do not match the evidence

 Estimating probability

71

Rejection Sampling

72
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Rejection Sampling

Example

• Let us assume we want to estimate P(Rain|Sprinkler = true) with 100 
samples

• 100 samples
 73 samples => Sprinkler = false

 27 samples => Sprinkler = true
 8 samples => Rain = true

 19 samples =>  Rain = false

• P(Rain|Sprinkler = true) = NORMALIZE({8,19}) = {0.296,0.704}

• The true answer ist <0.3,0.7>

• Problem
 It rejects too many samples

73

Analysis of rejection sampling

75
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Likelihood Weighting

• Goal
 Avoiding inefficiency of rejection sampling

• Idea
 Generating only events consistent with evidence

 Each event is weighted by likelihood that the event 
accords to the evidence

76

Likelihood weighting

77

,e)
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Likelihood Weighting

Example

• P(Rain|Sprinkler=true, WetGrass = true)?

• Sampling, start with weight=1

 Sample from P(Cloudy) = {0.5,0.5} => true

 Sprinkler is an evidence variable with value true 

w  w * P(Sprinkler=true | Cloudy = true) = 0.1

 Sample from P(Rain|Cloudy=true)={0.8,0.2} => true

 WetGrass is an evidence variable with value true

w w * P(WetGrass=true |Sprinkler=true, Rain = true) = 0.099

 [true, true, true, true] with weight 0.099

78

Likelihood Weighting

Example

• P(Rain|Sprinkler=true, WetGrass = true)?

• Sampling, start with weight=1

 Sample from P(Cloudy) = {0.5,0.5} => false

 Sprinkler is an evidence variable with value true

w  w * P(Sprinkler=true | Cloudy = false) = 0.5

 Sample from P(Rain|Cloudy= false)={0.2,0.8} => false

 WetGrass is an evidence variable with value true

w w * P(WetGrass=true |Sprinkler=true, Rain = false) = 0.45

 [true, true, true, true] with weight 0.45

• Estimating

 Accumulating weights to either Rain=true or Rain=false

 Normalize

79
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Likelihood analysis

81

Markov Chain Monte Carlo

• Let’s think of the network as being in a particular current state 
specifying a value for every variable

• MCMC generates each event by making a random change to the 
preceding event

• The next state is generated by randomly sampling a value for one of 
the non evidence variables X

i
, conditioned on the current values 

of the variables in the MarkovBlanket of X
i

• Likelihood Weighting only takes into account the evidences of the 
parents.

82
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Gibbs sampling

• Gibbs sampling is a MCMC method
 State of the network => current assignment

 Generate next state by sampling one non-evidence variable 
given Markov blanket

 Sample each variable in turn ( can choose it random)

83

Example

84
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Gibbs Example

• Query P(Rain| Sprinkler = true, WetGrass = true)

• Initial state is [true, true, false, true] [Cloudy,Sprinkler,Rain,WetGrass]

• The following steps are executed repeatedly:

 Cloudy is sampled,  given the current values of its Markov Blanket variables

So, we sample from P(Cloudy|Sprinkler= true, Rain=false)

The result is Cloudy = false (???????)

 Now current state is [false, true, false, true] and counts are updated

 Rain is sampled, given the current values of its Markov Blanket variables

Sample from P(Rain|Cloudy=false,Sprinkler=true, WetGrass=true)

First create the distribution we want to sample from.
Rain = true.

 Current state is [false, true, true, true]

• After all the iterations, let’s say the process visited 20 states where rain is true 
and 60 states where rain is false then the answer of the query is 
NORMALIZE({20,60})={0.25,0.75} 85

Want to sample Cloudy. 

The current state is [Cloudy?, true, false, true]

What is the Markov blanket, the sampling distribution?

Sample distribution 

P(Cloudy | Sprinkler= true, Rain=false) =

 P(Cloudy) * P(Sprinkler= true | Cloudy ) P(Rain=false | Cloudy)=

 (<0.5, 0.5> * <0.1 , 0.5> * <0.2, 0.8>)

 (<0.5, 0.5> * <0.1 * 0.2, 0.5*0.8>) =

 (<0.5, 0.5> * <0.02 , 0.4>) =

 <0.01, 0.2>  <0.05, 0,95>

86

evidence sampled

[false, true, false, true] with probability 0,95

[true, true, false, true] with probability 0,05
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Summary

• Bayesian networks provide a natural representation for (causally 
induced) conditional independence

• Topology + CPTs = compact representation of joint distribution

• Generally easy for domain experts to construct (if not to big)

• Exact inference by variable elimination

 polytime on polytrees, NP-hard on general graphs

 space can be exponential as well

• Approximate inference based on sampling and counting help to 
overcome complexity of exact inference

87
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Intelligent Autonomous Agents

and Cognitive Robotics
Topic 6: Probabilistic Reasoning

over Time 

(Dynamic Bayesian Networks)

Ralf Möller, Rainer Marrone
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Temporal Probabilistic Agent

environment
agent

?

sensors

actuators

t1, t2, t3, …

So far we only have taken care about

one moment in time !!!!!!
2
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Time and Uncertainty

• The world changes over time, we need to track and predict it 

• Examples:
diabetes management, localization, speech recognition, …

• Basic idea: copy state and evidence variables for each time step

• Xt – set of unobservable state variables at time t
 e.g., BloodSugart, StomachContentst, …

• Et – set of evidence variables at time t
 e.g., MeasuredBloodSugart, PulseRatet, FoodEatent ,…

• Assumes discrete time steps

3

Dynamic Bayesian Networks

• How can we model dynamic situations with a 
Bayesian network?

• Example: Is it raining today?

}{

}{

tt

tt

UE

RX





next step: specify dependencies among the variables.

The term “dynamic” means we are modeling a dynamic system, not that

the network structure changes over time. 4
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• Problem:

1. Necessity to specify an unbounded number of conditional 

probability tables, one for each variable in each slice,

2. Each one might involve an unbounded number of parents.

DBN - Representation

5

• Problem:

1. Necessity to specify an unbounded number of conditional 

probability tables, one for each variable in each slice,

2. Each one might involve an unbounded number of parents.

• Solution:

1. Assume that changes in the world state are caused by a 

stationary process (the laws for a state change do not change 

over time).

))(/( tt UParentUP is the same for all t

DBN - Representation

6
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• Problem:

1. Necessity to specify an unbounded number of conditional 

probability tables, one for each variable in each slice solved

2. Each one might involve an unbounded number of parents.

DBN - Representation

7

• Solution cont.:

)/()/( 11:0   tttt XXPXXP

2.  Use Markov assumption - The current state depends on 

only a finite history of previous states. 

Using the first-order Markov process:

Transition Model

DBN - Representation

8
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Dynamic Bayesian Networks

• There are two possible fixes if the approximation 

is too inaccurate:

 Increasing the order of the Markov process model. For example, 

adding Raint-2 as a parent of Raint , which might give slightly 

more accurate predictions.

11

2tX 1tX 2tX1tXtX

Dynamic Bayesian Networks

• There are two possible fixes if the approximation 

is too inaccurate:

 Increasing the set of state variables. For example, adding

Seasont to allow to incorporate historical records of rainy 

seasons, or adding Tempraturet , Humidityt and Presssuret to 

allow to use a physical model of rainy conditions.

12

State1

State2

State1

State2
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Complete Joint Distribution

• Given:

 Transition model: P(Xt|Xt-1)

 Sensor model: P(Et|Xt)

 Prior probability: P(X0)

• Then we can specify complete joint distribution:

),...,,,...,,( 110 tt EEXXXP

13






t

i

iiii XEPXXPXP
1

10 )|()|()(

Simple Example

Rain0

Umbrellat-1

Raint

Umbrellat

Raint+1

Umbrellat+1

Rt-1 P(Rt|Rt-1)

T

F

0.7

0.3

Rt P(Ut|Rt)

T

F

0.9

0.2

14

….. Raint-1

P(R0=t)

0.5

Rt P(Rt+1|Rt)

T

F

0.7

0.3
=

Rt+1 P(Ut+1|Rt+1)

T

F

0.9

0.2
=
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Inference Tasks: Examples

• Filtering/State estimation:
What is the probability that it is raining today, given all the umbrella 
observations up through today?

• Prediction:
What is the probability that it will rain the day after tomorrow, given 
all the umbrella observations up through today?

• Smoothing:
What is the probability that it rained yesterday, given all the umbrella 
observations through today?

• Most likely explanation:
If the umbrella appeared the first three days but not on the fourth, 
what is the most likely weather sequence to produce these umbrella 
sightings?

15

DBN – Basic Inference 

• Filtering or Monitoring:

Compute the belief state - the posterior distribution over the current state, 

given all evidence to date.

)/( :1 tt eXP

Filtering is what a rational agent needs to do in order to keep track 

of the current state so that the rational decisions can be made.

17
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DBN – Basic Inference 

• Filtering cont.

))/(()/(
:1,11:11 ttttt
eXPefeXP  

)/()/( :11:1,11 ttttt eXPeXeP 

Given the results of filtering up to time t, one can easily compute the 

result for t+1 from the new evidence        1te

(dividing up the evidence)

(seeking for some 

recursive function f ?)

(using Bayes’ Theorem)

(by the Markov property

of evidence)

18

P(B|A,C) =    P(A|B,C) P(B|C)

)/( 1,:11  ttt eeXP

)/()/( :1111 tttt eXPXeP 

updates this with the new evidence

DBN – Basic Inference 

• Filtering cont.

)/()/()/( :1111 tt

X

tttt exPxXPXeP
t

 

)/( :11 tt eXP 

  
tX

ttttttttt exPexXPXePeXP )/(),/()/()/( :1:11111:11 

(using the Markov property)

Sensor model Transition model recursion
19

)/()/( :1111 tttt eXPXeP )/( 1:11  tt eXP

represents a one-step prediction

������|����	
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DBN – Basic Inference 


0

)()/()( 0011

r

rPrRPRP

)()/()/( 11111 RPRuPuRP 

For two steps in

the Umbrella example:  

• On day 1, the umbrella appears so U1=true. The prediction from t=0 to t=1 is

and updating it with the evidence for t=1 gives


1

)/()/()/(
111212

r

urPrRPuRP

)/()/(),/( 1222212 uRPRuPuuRP 

• On day 2, the umbrella appears so U2=true. The prediction from t=1 to t=2 is

and updating it with the evidence for t=2 gives

20
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X
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Example: Day 1

predictionevidence
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Example: Day 2

predictionevidence
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DBN – Basic Inference 

• Prediction:

Compute the posterior distribution over the future state, 
given all evidence to date.




 
ktx

tktktkttkt exPxXPeXP )|()|()/( :11:11

for some k>0

The task of prediction can be seen simply as filtering 

without the addition of new evidence.

24

DBN – Basic Inference 

• Smoothing or hindsight:

Compute the posterior distribution over the past state, 
given all evidence up to the present.

)/( :1 tk eXP for some k such that 0 ≤ k < t.

Hindsight provides a better estimate of the state than 

was available at the time, because it incorporates 

more evidence.
25
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Smoothing

• Can I use future information to increase the accuracy of 

filtering for past states?

26

Rain0

Umbrella1

Rain2

Umbrella2

Rain1

Umbrella1=t Umbrella2=t

Smoothing

Markov

27

Bayes rule
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Smoothing

Sensor model Transition modelrecursion
30

Example

• Smoothed estimate for rain at k=1, given u1, u2.

P(R1|u1,u2) =  P(R1|u1)P(u2|R1)

• The first term is taken from the forward example

<0.818, 0.182>

• P(u2|R1) = r2 
P(u2|r2)P(|r2) P(r2|R1)

= (0.9 x 1 x <0.7,0.3>)+(0.2 x 1 x <0.3,0.7>)

= <0.69, 0.41>

• P(R1|u1,u2) =  <0.818, 0.182> x <0.69. 0.41>

 <0.883, 0.117>

• If we do it for each time slice O(t2)!!!
31
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Example contd.

32

Forward-Backward Algorithm

33
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DBN – Basic Inference 

• Most likely explanation:

Compute the sequence of states that is most likely to have 

generated a given sequence of observation.

)/(maxarg :1:1:1 ttx eXP
t

Algorithms for this task are useful in many applications, 

including, e.g., speech recognition. Can also be used to 

compare different temporal models that might have produced 

as sequence of events.
35

Most-likely explanation

36
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The occasionally 

dishonest casino

• A casino uses a fair die most of the time, but occasionally switches to 

a loaded one

 Fair die: Prob(1) =. . . = Prob(6) = 1/6

 Loaded die: Prob(1) =. . . = Prob(5) = 1/10, Prob(6) = ½

 These are the emission probabilities

• Transition probabilities

 Prob(Fair  Loaded) = 0.01

 Prob(Loaded  Fair) = 0.2

 Transitions between states modeled by

a Markov process 

Slides following by Changui Yan 37

The occasionally dishonest casino

• Known:

 The structure of the model

 The transition probabilities

• Hidden:  What the casino did
 FFFFFLLLLLLLFFFF...

• Observable:  The series of die tosses

 3415256664666153...

• What we must infer:

 When was a fair/loaded  die used?

 The answer is a sequence
FFFFFFFLLLLLLFFF...

39
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Making the inference

• Model assigns a probability to each explanation of the observation:

P(326|FFL) 

= P(3|F)·P(FF)·P(2|F)·P(FL)·P(6|L)

= 1/6 · 0.99 · 1/6 · 0.01 · ½

• Maximum Likelihood: Determine which explanation is most likely 

 Find the path most likely to have produced the observed 

sequence

• Total probability: Determine the probability that the observed 

sequence was produced by the model

 Consider all paths that could have produced the observed 

sequence

40

Notation

• x is the sequence of symbols/observations emitted by 

the model

 xi is the symbol emitted at time i

• A path, , is a  sequence of states

 The i-th state in  is i

• tkr is the probability of making a transition from state k

to state r:

• ek(b) is the probability that symbol b is emitted when in 

state k

)|Pr( 1 krt iikr  

)|Pr()( kbxbe iik  
41
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A “parse” of a sequence
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The occasionally 

dishonest casino

00227.0

6

1
99.0

6

1
99.0

6

1
5.0

)6()2()6(),Pr( 0

)1(





 FFFFFFFF etetetx 

008.0

5.08.01.08.05.05.0

)6()2()6(),Pr( 0

)2(





 LLLLLLLL etetetx 

0000417.0

5.001.0
6

1
2.05.05.0

)6()2()6(),Pr( 0

)3(





 LFLFLFLL etetetx 
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LLL)2(
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6,2,6,, 321  xxxx
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The most likely path

The most likely path * satisfies

),Pr(maxarg* 


x

To find *, consider all possible ways the last symbol 
of x could have been emitted

 rkr
r

ikk tipxeip )1(max)()( 

Let

Then
kxx

ip

ii

ik









such that  ,,emit  to

likely  most  ,,path  of Prob.)(

1

1

K

L

44

The Viterbi Algorithm

• Initialization (i = 0)

• Recursion (i = 1, . . . , L): For each state k

• Termination:

 rkr
r

ikk tipxeip )1(max)()( 

 kkk
k

tLengthpx ,1

*
)(max),Pr( 

0for  0)0(p   ,1)0(0  kp k

To find *, use trace-back, as in dynamic programming
45
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Viterbi: Example



x

0

0

6 2 6

(1/6)(1/2)
= 1/12

(1/2)(1/2)
= 1/4

(1/6)max{(1/12)0.99,
(1/4)0.2}

= 0.01375

(1/10)max{(1/12)0.01,
(1/4)0.8}

= 0.02

F

L

(1/6)max{0.013750.99,
0.020.2}

= 0.00226875

(1/2)max{0.013750.01,
0.020.8}

= 0.08

 rkr
r

ikk tipxeip )1(max)()( 
46

Viterbi gets it right 

more often than not

47
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• In addition to the discussed tasks, methods are 
needed for learning the transition and sensor 
models from observation.

• Learning can be done by inference, where 
inference provides an estimate of what transitions 
actually occurred and of what states generated the 
sensor readings. These estimates can be used to 
update the models. 

• The updated models provide new estimates, and 
the process iterates to convergence.

Dynamic Bayesian Networks

48

DBN – Special Cases

• Hidden Markov Model (HMMs):

Temporal probabilistic model in which the state of the process 

is described by a single discrete random variable. (The simplest 

kind of DBN )

• Kalman Filter Models (KFMs):

Estimate the state (continuous) of a physical system from noisy 

observations over time. Also known as linear dynamical systems 

(LDSs).

49
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Hidden Markov Models

50

Hidden Markov Models

51
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Hidden Markov Models

50

Hidden Markov Models
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Country Dance Algorithm

52

Country Dance Algorithm

53
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Applications

• Speech recognition

• Robot localization

• …

58

One non-deterministic operation MOVE. 

Et has 16 possible values, each a four-bit sequence giving the presence or 

absence of an obstacle: NSWE.

 is the error rate. All four bits right (1- )4. All wrong 4.

dit is the number of bits that are different between the true values for square i

and the actual reading et, then the probability that a robot in square i would 
receive a sensor reading et is:
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1 2 3 ... 12

1 (1-)4

2 (1-)3 

3 (1-)2 2

... ….

12 (1-)2 2

Cell numbers: start in top row, left to right

Matrix for NSW 

E1=NSW E2=NS

Example AIMA
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Performance

Last time

• Filtering

• Prediction

• Smoothing

• Viterbi for most likely path/state sequence for given 

observation

• HMM 

– Only one state variable

– Efficient computation because of matrix operations

63
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Speech recognition

Segmentation of Acoustic signals
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Phonetic alphabet

HMM ah
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Word HMM: nine

Recognition HMM
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Kalman Filters

70

Updating Gaussian Distributions

71
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Simple 1-D Example

Prior

Transition model

Sensor model

Prediction

72

(by using completing the square.

Not discussed here)

Simple 1-D Example

75
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2-D Tracking: Filtering

77

2-D Tracking: Smoothing

78
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Where it breaks

79One solution  switching kalman filters

Creating DBNs with failures

• X’t =( Xt, Yt) for velocity Xt =(Xt, Yt) for position

• Battery powered robot

81

X’0

X0

X’1

X1

Z1

Battery0 Battery1

BMeter1
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Failure of sensors

• Sensor measurements are noisy

• Real sensors can fail

• May use a Gaussian error

model for discrete variables

• Transient failure

• Persistent failure

82

Transient failure model

83

P(Battery1|BMeter1=0) =  <0.99, 0.006, 0.004><0.05, 0.05, 0.9>

P(Battery1)P(BMeter1=0|Battery1)

=<0,92178771 , 0,01117318 , 0,06703911 >
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Transient failure model

84

P(Battery1|BMeter1=0) =  <0.8, 0.1, 0.1><0.05, 0.05, 0.9>

P(BMeter1=0|Battery1)

� <0.44,  0.06 , 0.5 >

Persistent failure model
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Example

86

DBNs vs. HMMs

Consider the transition model
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DBNs vs. Kalman Filters

88

Exact Inference in DBNs

d = possible values for variables

n = number of states

k = number of parents
20 state variables (4 values)

mean 420+1 =4.398.046.511.104 90

Naive:

Rollup filtering:

O(dn+k) largest factor
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Approximate inference: 

Likelihood Weighting

91

Likelihood Weighting
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Likelihood Weighting

93

Solution

• Instead of running one example at a time 

run N. 

 The N samples also represent an 

approximate representation of the current 

state distribution.

• Instead of using initial examples throw low 

weighted ones away. 

 Must add new examples else lose to much.

94
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Idea: Particle filtering

A population of N initial-state samples is 

created sampling from P(X0)

1. Based on the transition matrix propagate 

examples forward. P(Xt+1|xt)

2. Each sample is weighted by the likelihood it 

assigns to the  new evidence P(et+1|xt+1).

3. Resample examples based on it‘s weight.

95

Particle Filtering

96

No umbrella

is observed

at t+1

Our current

particles,10

resampling

Propagate forward



27.11.2022

44

Idea: Particle filtering

A population of N initial-state samples is 

created sampling from P(X0)

1. Based on the transition matrix propagate 

examples forward. P(Xt+1|xt)

2. Each sample is weighted by the likelihood it 

assigns to the  new evidence P(et+1|xt+1).

3. Resample examples based on it‘s weight.

95

Particle Filtering

96

No umbrella

is observed

at t+1

Our current

particles,10

resampling

Propagate forward



27.11.2022

45

Example

N(rt+1|e) =  xt 
P(xt+1|xt) N(xt|e)

For rain = 0.7*8+0.3*2= 6.2 => 6

For not rain = 0.3 *8 + 0.7*2= 3.8 => 4

Suppose no umbrella for t+1

total weight(rain particles) = 0.1 * 6= 0.6

total weight(not rain) = 0.8 * 4= 3.2

Normalized =<0.17, 0.83>

97

Particle Filtering: Performance

99
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Intelligent Autonomous Agents

and Cognitive Robotics
Topic 7: Decision-Making under Uncertainty

Simple Decisions

Ralf Möller, Rainer Marrone

Hamburg University of Technology

1

Non-Deterministic 

vs. Probabilistic Uncertainty

?

ba c

{a,b,c}

 decision that is
best for worst case

?

ba c

{a(pa),b(pb),c(pc)}

 decision that maximizes
expected utility value

Non-deterministic model Probabilistic model

~ Adversarial search 2
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Expected Utility

• Random variable X with n values x1,…,xn and 
distribution (p1,…,pn)
X is the state reached after doing an action A
under uncertainty

• Function U of X : U is the utility of a state

• The expected utility of A is
EU[A] = Si=1,…,n p(xi|A)U(xi)

MEU = argmax EU[A]

3

A

s0

s3s2s1

A1

0.2 0.7 0.1

100 50 70

U(S0) = 100 x 0.2 + 50 x 0.7 + 70 x 0.1

= 20 + 35 + 7

= 62

One State/One Action Example

4
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s0

s3s2s1

A1

0.2 0.7 0.1

100 50 70

A2

s4
0.2 0.8

80

• U1(S0) = 62

• U2(S0) = 0.2x50+0.8*80 = 74

• U(S0) = max{U1(S0),U2(S0)} 

= 74

One State/Two Actions Example

5

s0

s3s2s1

A1

0.2 0.7 0.1

100 50 70

A2

s4
0.2 0.8

80

• U1(S0) = 62 – 5 = 57

• U2(S0) = 74 – 25 = 49

• U(S0) = max{U1(S0),U2(S0)} 

= 57

-5 -25

Introducing Action Costs

6
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MEU Principle

• A rational agent should choose the action 
that maximizes agent’s expected utility

• This is the basis of the field of decision 
theory

• The MEU principle provides a normative 
criterion for rational choice of action 

7

But …

• Must have complete model of:
 Actions

 Utilities

 States

• Even if you have a complete model, it might be 
computationally intractable

• In fact, a truly rational agent takes into account the utility 
of reasoning as well---bounded rationality

• Nevertheless, great progress has been made in this area 
recently, and we are able to solve much more complex 
decision-theoretic problems than ever before

8
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We’ll look at

• Decision-Theoretic Planning

 Simple decision making (ch. 16)

 Sequential decision making (ch. 17)

9

Rational preferences

Idea: preferences of a rational agent must obey constraints.
Rational preferences 

behavior describable as maximization of expected utility

MEU is not the only possible solution:

minimize worst case

only preferences without numeric values

…

Why should a utility function with numerical values exist?

10
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Basis of utility theory: 

constrains on preferences

• An agent chooses among prizes (A,B,…) and lotteries, i.e., 
situations with uncertain prizes.

Lottery L =[p, A ; (1-p), B]

11A and B can be lotteries again: Prizes are special lotteries: [1, X; 0, not X]

Axioms of Utility Theory

12
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Rational preferences contd.

13

Last time

• Kalman filters

• Failure models for DBN: transient, persistent

• Approximate inference in DBNs: Particle filtering

• Utility theory

 Lotteries and axioms for preferences

14
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Axioms of Utility Theory

No fun in gambling

15

This also holds for 

Decomposabilty

16
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And then there was utility

• Theorem by Neumann and Morgenstern, 1944
Given preferences satisfying the constraints there exists a real-
valued function U such that

MEU principle:
Choose the action that maximizes expected utility

17

Allais Paradox

18

A : 80% chance of $4000 
B : 100% chance of $3000

C : 20% chance of $4000
D : 25% chance of $3000

When presented with a choice 
between A and B, most people
would choose the sure thing B. 

When presented with a choice 
between C and D, most people
would choose the C, with higher
expected utility (800 vs. 750). 

These choices together are inconsistent

1*U(3000) > 0.8*U(4000) 0.25*U(3000) < 0.2*U(4000)
1*U(3000) < 0.8*U(4000)
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Utilities

-and-continue

-as-before
19

Utility scales

U(pay $30...) = 0.999999

20
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Value Functions

• Provides a ranking of alternatives, but not a meaningful 
metric scale

• Also known as an “ordinal utility function”

• Remember the expectiminimax example:

 Sometimes, only relative judgments (value functions) are 
necessary

 At other times, absolute judgments (utility functions) are required

21

Money Versus Utility

• Money <> Utility

 More money is better, but not always in a linear 
relationship to the amount of money

• Expected Monetary Value

• Risk-averse – U(L) < U(SEMV(L))

• Risk-seeking – U(L) > U(SEMV(L))

• Risk-neutral – U(L) = U(SEMV(L))

23
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Two Concepts

• The certainty equivalent of a lottery: the sum of 
money, X, which, if received with certainty will yield the 
same utility as the gamble
X is CE if u(X) = EU=pG×u(cG)+pB×u(cB)

• The risk premium associated with a lottery is the 
maximum amount a person is prepared to pay to avoid 
the gamble
RP = EMV - CE

24

Risk averse

25

0 750500250

Probability is 0.5 for 250 and 750EU(500)

350

CE

CE is the utility one get for sure when not choosing the lottery. 
In our case 350.

The risk premium is 150=500-350. 

The RP is the money someone pays for not participating in the lottery 

and getting the sure thing.



12/13/2022

12

Two Concepts

• The certainty equivalent of a lottery: the sum of 
money, X, which, if received with certainty will yield the 
same utility as the gamble
X is CE if u(X) = EU=pG×u(cG)+pB×u(cB)

• The risk premium associated with a lottery is the 
maximum amount a person is prepared to pay to avoid 
the gamble
RP = EMV - CE

24

Risk averse

25

0 750500250

Probability is 0.5 for 250 and 750EU(500)

350

CE

CE is the utility one get for sure when not choosing the lottery. 
In our case 350.

The risk premium is 150=500-350. 

The RP is the money someone pays for not participating in the lottery 

and getting the sure thing.



12/13/2022

13

Risk Neutral

28

Risk Seeking

29



12/13/2022

13

Risk Neutral

28

Risk Seeking

29



12/13/2022

14

Multiattribute Utility Theory

• A given state may have multiple utilities

 ...because of multiple evaluation criteria

 ...because of multiple agents (interested 
parties) with different utility functions

30

Strict dominance

31
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Stochastic Dominance

32

Stochastic dominance

33

If two actions S1 and S2 lead to probability distributions p1(x) and p2(x) 
on attribute X, then S1 stochastically dominates S2 on X if:

For any monotonically non-decreasing utility function U(x), the expected utility 
of S1 is at least as high as the expected utility of S2. Hence, S2 can
be discarded.
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Stochastic dominance contd.

36

37

Example

Qualitative influence of greasy engine block on worn piston rings:

Greasy engine block is evidence of oil leak.

Oil leak and excessive oil consumption can each cause low oil level.

Oil leak explains low oil level and so is evidence against excessive oil consumption.

Decreased likelihood of excessive oil consumption is evidence against worn piston rings.

Therefore, greasy engine block is evidence against worn piston rings.
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Preference structure: Deterministic

38

Multi-attribute utility functions

• Multi-dimensional or multi-attribute utility theory deals with 
expressing such utilities

• Example: you are made a set of job offers, how do you decide?

u(job-offer) = u(salary) + u(location) + 

u(pension package) + u(career opportunities)

u(job-offer) = 0.4u(salary) + 0.1u(location) + 

0.3u(pension package) + 0.2u(career opportunities)

But if there are interdependencies between attributes, then additive 
utility functions do not suffice. Multiplicative utility function:

u(x,y)=wxu(x)+wyu(y)+wxwyu(x)u(y)

39
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Decision Networks/

Influence diagrams

• Extend BNs to handle actions and utilities

• Also called influence diagrams

• Use BN inference methods

• Perform Value of Information calculations

40

Decision Networks cont.

• Chance nodes: random variables, as in 
BNs: X={x1, …, xn}

• Decision nodes: actions that decision 
maker can take: A={a1, …, an}

• Utility function nodes: the utility of the 
outcome state:  U(X,A)

41
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Expected Utility in DN/ID

42

• Want to choose action a that maximizes the expected 
utility

�� � � � � � � � �	�, ��
�
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Simple example

EU(f0) =

EU(f1) =

43

0

0.5 x -7+0.3 x 5 + 0.2 x 10 = 2

poor mid great
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A more complex network

U = VG + VS + VQ

44

Information edges

45
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Finding MEU Decision rules

46

0.5*0.6*-7 = -2.1

0.2*0.1*20=0.4

Summing leads to -1.25

0.3*0.3*5=0.45

Finding MEU Decision rules

47MEU= 0 + 1.15 + 2.1 = 3.25
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More Generally

48

MEU Summary
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Value of Perfect Information

50

MEU(D) = 2

MEU(Ds) = 3.25

VPI(Ds) = MEU(Ds) - MEU(D)
= 3.25 – 2 = 1.25

Value of Perfect Information

51

Current evidence E, current best action �
Possible actions outcomes Si, potential new evidence Ej

Suppose we knew Ej, we would choose �ejk

��� � � � ���� � � �� �	��|�, ��
�

�

��� ���� �, �� � ��� � ���� � � �� �	��|�, �, �� � ����
�

�
Ej is not known. Must compute expected gain.

 �! �� � � � �� � ��� ���� �, �� � ���
�

�
" ���	�|��
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Properties of VPI

52

When is information useful?

Non negative

∀$, �  �!% �� & 0
Non additive

Order-independent

 �!% ��, �� (  �!% �� ) �!% ��

 �!% ��, �� �  �!% �� )  �!%,%� �� �  �!% �� )  �!%,%� ��

Example 1

53

poor mid great

EU(D[c1]) =

EU(D[c2]) =

0.1*0.1+0.2*0.4+0.7*0.9=0.72

0.4*0.1+0.5*0.4+0.1*0.9=0.33

1 if company gets funded
0 otherwise

General funding strategy

c1,c2

c2c1
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Example 1

54

poor mid great

EU(D[c1]) =

EU(D[c2]) =

0.72

0.33

1 if company gets funded
0 otherwise

If c2 is in state s1, the utility is 0.1

If c2 is in state s2, the utility is 0.4

If c2 is in state s3, the utility is 0.9

Example 1
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∑ 0.738
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Last time

• Existence of a utility function

 Additive vs multiplicative utility function

 Stochastic dominance

• Risk profiles

 Risk averse

 Risk neutral

 Risk seeking

56

Last time: Decision networks
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Select c2 if State2 = s3, c1 otherwise

poor mid great

EU(D[c1]) =

EU(D[c2]) =

0.72

0.33

1 if company gets funded
0 otherwise

MEU(DState2) = 0.738

VPI(DState2)= 0.738 – 0.72 = 0.018 

Example 2
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VPI = 0.43 – 0.35 = 0.08 
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Example 3

60VPI = 0.8142 – 0.788 = 0.0262 

Summary

• Influence diagrams provide clear and coherent 
semantics for the value of making an observation
 VPI = P(new observation) * MEU(new observation) 

– MEU (with current observations)

• Information is valuable if and only if it induces a 
change in action in at least one context, and with 
(significant) higher MEU.
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Sequential Decision Making

• Finite Horizon

 Fixed time N after that nothing happens

• Infinite Horizon

 N not fixed
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Simple Robot Navigation Problem

• In each state, the possible actions are U, D, R, L
Uncertainty in action
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Histories

• Planned sequence of actions:  (U, R)
• U has been executed
• R is executed

• There are 9 possible sequences of states 
– called histories – and 6 possible final states 
for the robot!

4321

2

3

1

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

7

Probability of Reaching the Goal

P([4,3] | (U,R).[3,2]) = 

2

3

1

4321

Note importance of Markov property 
in this derivation

= 0.65

8

+ P([4,2] | U.[3,2]) x P([4,3] | R.[4,2])
P([3,3] | U.[3,2]) x P([4,3] | R.[3,3])

= 0.8 x 0.8 + 0.1 x 0.1
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Utility of a History

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] or [4,2] are terminal states
• The utility of a history is defined by the utility of the last 

state (+1 or –1) minus n/25, where n is the number of moves
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Utility of an Action Sequence
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• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some
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• The utility of the sequence is the expected utility of the histories:

U = ShUh P(h)
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Policy (Reactive/Closed-Loop Strategy)

• A policy P is a complete mapping from states to actions

-1

+1

2

3

1

4321

13

Repeat:

 s  sensed state

 If s is terminal then exit

 a  P(s)

 Perform a

Reactive Agent Algorithm
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Optimal Policy
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Additive Utility: Stationarity

• History H = (s0,s1,…,sn)

• The utility of H is additive iff: 

U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = S R(i)

Reward

17
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• Robot navigation example:

 R(n) = +1 if sn = [4,3]

 R(n) = -1 if sn = [4,2]

 R(i) = -1/25 if i = 0, …, n-1

18
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Principle of Max Expected Utility

• History H = (s0,s1,…,sn)

• Utility of H: U(s0,s1,…,sn) = S R(i)

First-step analysis 

• U(i) = R(i) + maxa SjP(j | a.i) U(j)

• P*(i) = arg maxa SjP(k | a.i) U(j)

-1

+1

19
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4321

Value Iteration

• Initialize the utility of each non-terminal state si to U0(i) = 0

• For t = 0, 1, 2, …, do:

Ut+1(i)  R(i) + maxa SkP(k | a.i) Ut(k)
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+1

2

3

1

4321

(Bellmann equation)
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After a Full Iteration

24

• Only the state  one step away from a positive reward 

(3,3) has gained value, all the others are losing value 

because of the cost of moving
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Iteration 1

Value Iteration: from state 

utilities to policy

• Now the agent can  chose the action that implements the MEU 

principle: maximize the expected utility of the subsequent state

25

states reachable 
from s by doing a

expected value 
of following 
policy л* in s’

Probability of getting to s’ from s via a


'

)'(),|'(maxarg)(*
sa

sUassP  s 
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Example

 To find the best action in (1,1)

 We have to do this for all fields!!!!
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Value Iteration: the result

• Initialize the utility of each non-terminal state si to

U0(i) = 0

• For t = 0, 1, 2, …, do:

Ut+1(i)  R(i) + maxa SkP(k | a.i) Ut(k)

Ut([3,1])

t0 302010

0.611

0.5

0
-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

28

The Reward is important

- --

29



12/16/2022

14

Value Iteration: the result

• Initialize the utility of each non-terminal state si to

U0(i) = 0

• For t = 0, 1, 2, …, do:

Ut+1(i)  R(i) + maxa SkP(k | a.i) Ut(k)

Ut([3,1])

t0 302010

0.611

0.5

0
-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

28

The Reward is important

- --

29



12/16/2022

15

Infinite Horizon

30

-1
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4321

In many problems, e.g., the robot 
navigation example, histories are 
potentially unbounded and the same 
state can be reached many times

One trick:
Use discounting to make infinite
Horizon problem mathematically
tractable

U(i) = R(i) + g maxa SjP(j | a.i) U(j)

Value Iteration (finite and non-finite)

31
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Bellmann eq. is a contraction

• two important properties of contractions:
 A contraction has only one fixed point; if there were 

two fixed points they would not get closer together 

when the function was applied, so it would not be a 

contraction.

 When the function is applied to any argument, the 

value must get closer to the fixed point, so 

repeated application of a contraction always reaches 

the fixed point in the limit.

32

Value iteration

• Let Ui denote the vector of utilities for all

the states at the ith iteration. Then the Bellman update 

equation can be written as

33

Ui+1 ⃪ ���
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repeated application of a contraction always reaches 

the fixed point in the limit.

32

Value iteration

• Let Ui denote the vector of utilities for all

the states at the ith iteration. Then the Bellman update 

equation can be written as

33

Ui+1 ⃪ ���
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Value iteration

• use the max norm, which measures the “length” of a vector 

by the absolute value of its biggest component:

• Let Ui and U’i be any two utility vectors. Then we have

34

||U|| = maxs |U(s)|

||BUi –BU‘i|| ≤ g||Ui –U‘i|| 17.7

Value iteration

36
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Value iteration

• From the contraction, it can be shown that if the update 

is small (i.e., no state's utility changes by much), then the 

error, compared with the true utility function, also is 

small. More precisely,

37

if ||Ui+1 – Ui|| < e(1g)/g then  ||Ui+1 – U|| ≤ e    (17.8)

This is the stopping criteria for value iteration

Value iteration

• But the crucial question is!!!! How well will I do using this 

utility function?

• policy loss

Uπi (s) is the utility obtained if πi is executed starting in s, 

policy loss ||Uπi – U|| is the most the agent can lose by 

executing πi instead of the optimal policy π*

38
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Value iteration

• The policy loss of πi is connected to the error in Ui by the 

following inequality:

39

if ||Ui – U|| < e then ||Uπi – U||< 2e  (17.9)

Policy Iteration

• Pick a policy P at random

40
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Policy Iteration

• Pick a policy P at random

• Repeat:

 Policy evaluation
Compute the utility of each state for P

Ut(i)  R(i) + SkP(k | P(i).i) Ut(k)

41

• Pick a policy P at random

• Repeat:

 Policy evaluation
Compute the utility of each state for P

Ut(i)  R(i) + SkP(k | P(i).i) Ut(k)

 Policy improvement: 
Compute the policy P’ given these utilities

P’(i) = arg maxa SkP(k | a.i) U(k)

Policy Iteration

42
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Policy Iteration

• Pick a policy P at random

• Repeat:

 Policy evaluation:
Compute the utility of each state for P:

Ut(i)  R(i) + SkP(k | P(i).i) Ut(k)

 Policy improvement:
Compute the policy P’ given these utilities

P’(i) = arg maxa SkP(k | a.i) U(k)

 If P’ = P then return P
43

Policy Iteration

44
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Linear equations

• By removing the max operator (Value Iteration)
we can also solve the set of linear equations: 

U(i) = R(i) + SkP(k | P(i).i) U(k)

(often a sparse system)

• Suppose we have P(1).1  Up  P(2).2=Up

U(1,1)= -0.04 + 0.8U(1,2)+0.1U(1,1)+0.1U(2,1)
U(1,2)= -0.04 + 0.8U(1,3)+0.2U(1,2)
…

• Can be solved in O(n3) by standard linear algebra 
methods

• For large state spaces we can mix value iteration and 
policy iteration

45

Further optimization

• All algorithms require updating the utility or policy for all 

states at once.

• At each step we can also select a subset for updating

asynchronous policy iteration/mod. value iter.

(can show it will  converge if some conditions for initial policy and 

utility function hold)

• Leads to heuristic algorithms that concentrate on states 

that are likely to be reached by a good policy.

 “if one has no intention of throwing oneself off a cliff, one should 

not spend time worrying about the exact value of the resulting 

state”

46
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Summary

• Decision making under uncertainty

• Sequential decision making

 Utility function

 Value iteration

 Policy iteration
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Last time

• Sequential decision making (uncertain actions)

 Need a policy -> best action for each possible state

• Finding the best policy

 Value iteration

 Bellman update is a contraction 

Lead to the definition of when to stop value iteration. 3


'

)'(),|'(maxarg)(*
sa

sUassP  s 

Policy Loss

• The policy loss of πi is connected to the error in Ui by the 

following inequality:

4

if ||Ui – U|| < e then ||Uπi – U||< 2e  (17.9)

for the 4×3 environment with γ =0.9. The policy πi is optimal when 

i=4, even though the maximum error in Ui is still 0.46
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Last time: Policy iteration

• Create a random policy

Repeat:

 Value determination

Ut(i) R(i) + SkP(k | P(i)) Ut(k)

 Policy Update: 

P’(i) = arg maxa SkP(k | a.i) U(k)

 If P’ = P then return P

• We can combine Value- and Policy Iteration to get the 

best of both
5

Further optimization

• All algorithms require updating the utility or policy for all 

states at once.

• At each step we can also select a subset for updating

asynchronous policy iteration/mod. value iter.

(can show it will  converge if some conditions for initial policy and 

utility function hold)

• Leads to heuristic algorithms that concentrate on states 

that are likely to be reached by a good policy.

 “if one has no intention of throwing oneself off a cliff, one should 

not spend time worrying about the exact value of the resulting 

state”

6
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Summary

• Decision making under uncertainty

• Sequential decision making

 Utility of histories

 Value iteration

 Policy iteration

7

Jumping-off Point

• Let us assume again that the agent lives in the 

4x3 environment

• The agent knows the environment

• BUT

 Agent has no or very unreliable sensors

 It does not make sense to determine the optimal policy 

wrt. a single state

 P*(s) is not well defined

8
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POMDP: Uncertainty

• Uncertainty about the action outcome

• Uncertainty about the world state due to 

imperfect (partial) information

9

Example: Target Tracking

There is uncertainty
in the robot’s and target’s 
positions; this uncertainty
grows with further motion

There is a risk that the target 
may escape behind the corner, 
requiring the robot to move 
appropriately

But there is a positioning
landmark nearby. Should
the robot try to reduce its
position uncertainty?

10
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Decision cycle of a POMDP agent 

• Given the current belief state b, execute the action 

• Receive observation o

• Set the current belief state to FORWARD(b,a,o) and 
repeat

)(
* ba 

SE 

Agent

World

Observation

Action

b

11

Example Scenario

12

The agent has no sensors!!!
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Belief state

• b(s) is the probability 
assigned to the actual 
state s by belief state b.
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�

b‘ = � FORWARD(b,a,e)
13

if a is executed in b and 

observation is e the

belief in s’ is?

Outcome of actions

• Probability of an observation e given that a was performed in b

P(e|a,b) = ∑s’ P(e|a,s’,b) P(s’|a,b)

= ∑s’ P(e|s’) P(s’|a,b)    markov assumption

= ∑s’ P(e|s’) ∑s P(s’|s,a) b(s)

• Probability of reaching b’ from b, given action a not knowing e

P(b’|a,b) = ∑e P(b’|e,a,b) P(e|a,b)

= ∑e P(b’|e,a,b)  ∑s’ P(e|s’) ∑s P(s’|s,a) b(s)

Where P(b’|e,a,b) = 1 if FORWARD(b, a, e) = b’  and P(b’|b, a, e) = 0 

otherwise

• A new reward function for belief states: (b)=∑s b(s)R(s) 

• P(b’|b,a) and (b) define an observable MDP on the space of belief 

states.

14
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Belief MDP

• A belief MDP is a tuple <B, A, , E>:

B = infinite set of belief states

E = percepts

A = finite set of actions

(b) = ∑s b(s)R(s) (reward function)

P(b’|b, a) = (transition function) 

0.111 0.111 0.111 0.000

0.111 0.111 0.000
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Move left once, without observations

b b’

∑e P(b’|e,a,b)  ∑s’ P(e|s’) ∑s P(s’|s,a) b(s)

15

≈
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0.2
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Solutions for POMDP

• Methods based on value and policy iteration:

A policy        can be represented as a set of regions of belief state 

space, each of which is associated with a particular optimal action. 

The value function associates a distinct linear function of b with 

each region. Each value or policy iteration step refines the 

boundaries of the regions and may introduce new regions.

)(b

18

Value Iteration for POMDPS

• Consider an optimal policy π* and its application in belief 

state b.

• For this b the policy is a “conditional plan”

 Let the utility of executing a fixed conditional plan p in s

be up(s).

Expected utility Up(b) = ∑s b(s) up(s)

It varies linearly with b, a hyperplane in a belief space

 At any b, the optimal policy will choose the conditional 

plan with the highest expected utility

U(b) = U π* (b) = argmaxp b×up (summation of dot-

prod.)

• U(b) is the maximum of a collection of hyperplanes and will 

be piecewise linear and convex
19
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Example: Conditional Plans

• Two state world 0,1

• Two actions: stay(s), go(s)

 Actions achieve intended effect with some probability p

• One-step plan [go], [stay]

• Two-step plans are conditional

 [a1, IF percept = 0 THEN a2 ELSE a3]

 Shorthand notation: [a1, a2/a3]

• n-step plan are trees with nodes attached with 

actions and edges attached with percepts
20

Example

• Two state world 0,1. R(0)=0, R(1)=1

• Two actions: stay (0.9), go (0.9)

• The sensor reports the correct state with prob. 0.6

• Consider the one-step plans [stay] and [go]

 u[stay](0)=R(0) + 0.9R(0)+0.1R(1) = 0.1

 u[stay] (1)=R(1) + 0.9R(1)+0.1R(0) = 1.9

 u[go] (0)=R(0) + 0.9R(1)+0.1R(0) = 0.9

 u[go] (1)=R(1) + 0.9R(0)+0.1R(1) = 1.1

• This is just the direct reward function (taken into account 

the probabilistic transitions)

21
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Example

Utility of two one-step plans

as a function of b(1)

if(b(1)>0.5) stay else go

22

General formula

• Let p be a depth-d conditional plan whose initial action is a and 

whose depth-(d-1) subplan for percept e is p.e, then

up(s) = R(s) + ∑s’ P(s’| s,a) ∑e P(e|s’) up.e(s’)

23

[Stay; if Percept =0 then Stay else Stay]

[Stay; if Percept =0 then Stay else Go] . . .

We can compute the utilities for conditional plans of

depth-2 by considering each possible first action, each

possible subsequent percept and then each way of choosing

a depth-1 plan to execute for each percept
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u[stay, stay/stay](0)=R(0) + (0.9*(0.6*0.1 + 0.4*0.1) + 0.1*(0.4*1.9 + 0.6*1.9))=0.28

u[stay, stay/stay](1)=R(1) + ( 0.1*(0.6*0.1 + 0.4*0.1)+ 0.9*(0.4*1.9 + 0.6*1.9))=2.72

Example

8 distinct fixed depth 2 plans. 

4 are suboptimal across the 

entire belief space (dashed lines).
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R(1) + (0.1*(0.6*0.9 + 0.4*0.1) + 0.9*(0.4*1.1+ 0.6*1.9))=2.48

u[stay, go/stay](0)= R(0)

u[stay, go/stay](1)=

Example

8 distinct fixed depth 2 plans. 

4 are suboptimal across the 

entire belief space (dashed lines).

26

up(s) = R(s) + ∑s’ P(s’| s,a) ∑e P(e|s’) up.e(s’)

ugo(0) ustay(0) ugo(1) ustay(1)
+ (0.9*(0.6*0.9 + 0.4*0.1) + 0.1*(0.4*1.1 + 0.6*1.9))=0.68

Example

Utility of four undominated 

two-step plans
Utility function for optimal 

eight step plans

27
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Value Iteration

• This give us a value iteration algorithm

• The elimination of dominated plans is essential for reducing doubly 

exponential growth: 

the number of undominated plans with d=8 is just 144, 

otherwise 2255 (|A| O(|E|d-1))

If you have n undominated plans you have to generate |A| *n|E| new 

plans.

• For large POMDPs this approach is highly inefficient

28

up(s) = R(s) + ∑s’ P(s’| s,a) ∑e P(e|s’) up.e(s’)

Model for POMDPs

• Dynamic Bayesian network

 the transition and observation models

• Dynamic decision network (DDN)

 decision and utility

• A filtering algorithm

 incorporate each new percept and action and update the belief 

state representation.

• Decisions are made by projecting forward possible 

action sequences and choosing the best action 

sequence.

29



1/16/2023

14

Value Iteration

• This give us a value iteration algorithm

• The elimination of dominated plans is essential for reducing doubly 

exponential growth: 

the number of undominated plans with d=8 is just 144, 

otherwise 2255 (|A| O(|E|d-1))

If you have n undominated plans you have to generate |A| *n|E| new 

plans.

• For large POMDPs this approach is highly inefficient

28

up(s) = R(s) + ∑s’ P(s’| s,a) ∑e P(e|s’) up.e(s’)

Model for POMDPs

• Dynamic Bayesian network

 the transition and observation models

• Dynamic decision network (DDN)

 decision and utility

• A filtering algorithm

 incorporate each new percept and action and update the belief 

state representation.

• Decisions are made by projecting forward possible 

action sequences and choosing the best action 

sequence.

29



1/16/2023

15

The Generic Structure of a 

Dynamic Decision Network

• The decision problem involves calculating the value of      that 

maximizes the agent’s expected utility over the remaining state 

sequence.

t
A

30

Search Tree of the Lookahead DDN

t
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Search Tree of the Lookahead DDN

32

Wall NSWE

Search Tree: Exhaustive Enumeration

• The search tree of DDN is very similar to the 
EXPECTIMINIMAX algorithm for game trees 
with chance nodes, except hat:

 There can also be rewards at non-leaf states

 The decision nodes correspond to belief states 
rather than actual states.

• The time complexity:                         
d is the depth, |A| is the number of available 
actions, |E| is the number of possible 
observations.
This is far less than value iteration.

)|||(|
dd

EAO 
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Discussion of DDNs

• DDNs provide a general, concise
representation for large POMDPs

• Agent systems moved from 
 static, accessible, and simple environments to

 dynamic, inaccessible, and complex environments 
that are closer to the real world

• However, exact algorithms are exponential

34

Perspectives of DDNs to 

Reduce Complexity

• Heuristic estimate for 
the utility of the remaining steps

• Incremental pruning techniques

• Many approximation techniques as in our search 
lecture:

 Using less detailed state variables for states in the distant 
future.

 Using a greedy heuristic search through the space of decision 
sequences.

…

35
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Intelligent Autonomous Agents

and Cognitive Robotics

Topic 10: Agents and Game Theory

Topic 11: Social Choice (Preference Aggregation)

Ralf Möller, Rainer Marrone

Hamburg University of Technology

Literature

• Chapter 17 • Chapter 3
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Game Theory

• So far we looked at uncertainty of actions

and sensors

• Now, uncertainty due to the behavior of 

other agents !!!!!

 Game theory

3

Game Theory: The Basics

• A game: Formal representation of a situation 
of strategic interdependence (extension of 
Adversarial search)
 Set of agents, I (|I|=n)

 AKA players

 Each agent, j,  has a set of actions, Aj
 AKA moves

 Actions define outcomes
 For each possible action there is an outcome  state.

 Outcomes define payoffs
 Agents’ derive utility from different outcomes. Utilities can 

be the same or different. 4
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Normal form game*
(matching pennies)

Agent 1

Agent 2

H

H

T

T

-1, 1

-1, 1

1, -1

1, -1

*aka strategic form, matrix form

Action
Outcome

Payoffs

5

Extensive form game
(matching pennies)

Agent 1

Agent 2

H

H H

T

TT

(-1,1) (-1,1)(1,-1) (1,-1)

Action

Terminal node 
(outcome)

Payoffs

Can model sequential games

Can model uncertain states

6
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H

H H

T

TT

(-1,1) (-1,1)(1,-1) (1,-1)

Action

Terminal node 
(outcome)

Payoffs

Can model sequential games

Can model uncertain states

Can also model partly sequential & 
partly parallel situations 7

Strategies (aka Policies)

• Strategy:
 A strategy, sj, is a complete contingency plan 

(policy); defines actions agent j should take for all 
possible states of the world

• Strategy profile: 
 s = (s1,…,sn) (all agents)

 s-i = (s1,…,si-1,si+1,…,sn) (all agents without i)

• Utility function: ui(s)
 Note that the utility of an agent depends on the 

strategy profile, not just its own strategy

 We assume agents are expected utility 
maximizers 8



1/16/2023

4

Extensive form game
(matching pennies)

Agent 1

Agent 2

H

H H

T

TT

(-1,1) (-1,1)(1,-1) (1,-1)

Action

Terminal node 
(outcome)

Payoffs

Can model sequential games

Can model uncertain states

Can also model partly sequential & 
partly parallel situations 7

Strategies (aka Policies)

• Strategy:
 A strategy, sj, is a complete contingency plan 

(policy); defines actions agent j should take for all 
possible states of the world

• Strategy profile: 
 s = (s1,…,sn) (all agents)

 s-i = (s1,…,si-1,si+1,…,sn) (all agents without i)

• Utility function: ui(s)
 Note that the utility of an agent depends on the 

strategy profile, not just its own strategy

 We assume agents are expected utility 
maximizers 8



1/16/2023

5

Normal form game*
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Agent 1

Agent 2

H
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T
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-1, 1
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1, -1
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*aka strategic form, matrix form
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Strategy for 
agent 2: T

9

Extensive form game
(matching pennies)

Player 1
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H

H H

T
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Payoffs
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Extensive form game
(matching pennies, seq moves)

H

H H

T

TT

(-1,1) (-1,1)(1,-1) (1,-1)

Strategy for agent 1: T

Strategy profile: (T,(H,T))

U1((T,(H,T)))=-1

U2((T,(H,T)))=1

Recall: A strategy is a contingency 
plan for all states of the game

Strategy for agent 2:  H if 1 
plays H, T if 1 plays T (H,T)

11

Dominant Strategies

• Recall that  

 Agents’ utilities depend on what strategies other agents are playing

 Agents’ are expected utility maximizers

• Agents’ will play best-response strategies for s-i

• A dominant strategy is a best-response for all s-i

 They do not always exist

 Inferior strategies are called dominated

si* is a best response if ui(si*,s-i)ui(si’,s-i) for all si’

12
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Dominant Strategy Equilibrium

• A dominant strategy equilibrium is a strategy 

profile where the strategy for each player is 

dominant

 s*=(s1*,…,sn*) 

 ui(si*,s-i)ui(si’,s-i) for all i, for all si’, for all s-i

• GOOD: 

Agents do not need to counterspeculate!

13

Example: Prisoner’s Dilemma

• Two people are arrested for a crime. A prosecutor offers each a deal: 

if you testify against your partner as the leader of a burglary ring, 

you’ll go free for being the cooperative one, while your partner will 

serve 10 years in prison. However, if both testify against each other, 

they both get 5 years. If both refuse, each get 1 year.

B:testify

A: testify

B:refuse

Dom. 
Str. Eq

Pareto 
Optimal 
Outcome

A: refuse

B = -5

A = -5

B = 0

A = -10

B = -10

A = 0
B = -1

A = -1

14
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Example: Bach or Stravinsky

• A couple likes going to two concerts.  One loves Bach 

but not Stravinsky.  The other loves Stravinsky but not 

Bach.  However, they prefer being together than being 

apart.

2,1 0,0

0,0 1,2

B

B S

S

No dom. 
str. equil.

aka Battle of sexes

15

Nash Equilibrium

• Sometimes an agent’s best-response depends on the 

strategies other agents are playing

 No dominant strategy equilibria

• A strategy profile is a Nash equilibrium if no player has 

incentive to deviate from his strategy given that others do 

not deviate: 

 for every agent i, ui(si*,s-i) ≥ ui(si’,s-i)  si* is a best response to s-i

2,1 0,0

0,0 1,2

B

S

B S

16
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How to find (Nash) Equilibria

• Can agents rule out strategies?

 Strategies an agent will not play

• Get rid of those strategies

 Maybe there will exist a single solution

17

Example

3,-3 7,-7 9,-15

9,-9 8,-8 10,-10
D

U

r l c

18
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Iterated Elimination of Dominated 

Strategies

• Let Ri⊆Si be the set of removed strategies for agent i

• Initially  Ri=Ø

• Choose agent i, and strategy si such that siSi\Ri and there exists si’ 
Si\Ri such that

• Add si to Ri, continue

• Thm: If a unique strategy profile, s*,  survives then it is a Nash Eq.

• Thm: If a profile, s*, is a Nash Equilibrium then it must survive iterated 
elimination.

ui(si’,s-i)>ui(si,s-i) for all s-i S-i\R-i

19

Nash Equilibrium

• Criticisms
 They may not be unique (Bach or Stravinsky)

 Ways of overcoming this

• Refinements of equilibrium concept, Mediation, Learning

 Do not exist in all games (in form defined)

 They may be hard to find

 People don’t always behave based on what equilibria 
would predict (ultimatum games and notions of fairness,…)

20
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Example: Matching Pennies

-1, 1 1,-1

1,-1 -1, 1

H

H T

T

21

There is NO (Nash) strategy in pure strategies

Example: Bach Stravinsky

2,1 0,0

0,0 1,2

B

S

B S

22

If I do not know, what the other agent is doing, and

if communication is not possible, what should the agents do

So far we have talked only about pure strategy 

equilibria.

Not all games have pure strategy equilibria.  Some 

equilibria are mixed strategy equilibria.
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Example: Bach Stravinski

2, 1 0, 0

0, 0 1, 2

p    B

q  B 1-q  S

1-p  S

Mixed strategies can help if no communication is possible.
Want to play a strategy so that the other is indifferent 
playing a pure strategy (B or S).

EUHB = 
EUHS =

Husband

Wife

p = 2-2p
p=2/3    (wife has mixed <2/3;1/3>)

1p + 0 (1-p)
0p+ 2 (1-p)

EUHB = EUHS

23
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EUWB = EUWS

2q = 1-1q
q=1/3    (husband has mixed <1/3;2/3>)
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Example: Bach Stravinski

• If Husband strictly plays B with q=1/3

 Which distribution can his wife play

 EUw(p,1-p) = 

2, 1 0, 0

0, 0 1, 2

p    B

1-p  S

1/3  B 2/3  S

1/3*p*2 + 2/3 *p * 0 + 1/3*(1-p)*0 + 2/3*(1-p)*1 =

2/3*p + 2/3 -2/3p =

2/3

any distribution leads to 2/3 in average
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Example: Bach Stravinski

• If Husband strictly plays B with q=1/3

 Which distribution should wife play

 Euw(p,1-p) = 2/3

• If Husband deviates q<1/3

 Wife deviates plays S

• If Husband q>1/3

 Wife plays B

• Equilibrium: {(2/3,1/3);(1/3,2/3)}

27

Mixed strategy equilibria

• Mixed strategy:

• Strategy profile: =(1,…, n)

• Expected utility: ui()=sS(j (sj))ui(s)

• Nash Equilibrium:

 * is a mixed Nash equilibrium if

ii defines a probability distribution over Si

ui(*i, *-i)ui(i, *-i) for all ii, for all i
28



1/16/2023

14

Example: Bach Stravinski

• If Husband strictly plays B with q=1/3

 Which distribution should wife play

 Euw(p,1-p) = 2/3

• If Husband deviates q<1/3

 Wife deviates plays S

• If Husband q>1/3

 Wife plays B

• Equilibrium: {(2/3,1/3);(1/3,2/3)}

27

Mixed strategy equilibria

• Mixed strategy:

• Strategy profile: =(1,…, n)

• Expected utility: ui()=sS(j (sj))ui(s)

• Nash Equilibrium:

 * is a mixed Nash equilibrium if

ii defines a probability distribution over Si

ui(*i, *-i)ui(i, *-i) for all ii, for all i
28



1/16/2023

15

Mixed Nash Equilibrium

• Thm (Nash 50):
 Every game in which the strategy sets S1,…,Sn

have a finite number of elements, has a mixed 
strategy equilibrium.

• Finding Nash Equilibria is another problem
 “Together with prime factoring, the complexity 

of finding a Nash Eq is the most important 
concrete open question …” (Papadimitriou)

29

Bayesian-Nash Equil
(Harsanyi 68)

• So far we have assumed that agents have complete 

information about each other (including payoffs)

 Very strong assumption!

• Assume agent i has type ii, defines the payoff ui(s, i)

• Agents have common prior over distribution of types p()

 Conditional probability p(-i| i) 

(obtained by Bayes Rule when possible)

30
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Battle of the sexes

• Shopping  or Basketball?

• Sally knows Kevins type
Kevin does not know Sally‘s type but possible types.

1, 30,0

2,13, 2Basketball

Basketball

Shopping

Shopping

Kevin

Sally Sally a 

basketball fan

3, 32,0

0,11, 2Basketball

Basketball

Shopping

Shopping

Sally Sally a 

shopping fan

Kevin

31

What should

Sally play?

Her dominant strategy!

Battle of the sexes

• Sally should play her dominant strategy

1 ={11,, 12} , 2 ={2} ,

2p +0(1-p)

P(11,2) =p     P(12,2) =(1-p)

If p>3/4 Basketball

If p<3/4 Shopping

If p=3/4 ??

basketball  vs shopping

2p > -2p+3 

> 1p + 3 (1-p)

p > 3/4

32
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Battle of the sexes

• Sally‘s decision depends on her known type

• Kevin’s decision depends on p

S2
*(2) =

Basketball if p>3/4

Shopping if p<3/4

(q, 1-q),q [0,1] if p=3/4

33

Bayesian-Nash Equil

• Strategy: i(i) is the (mixed) strategy agent i plays if its type 
is i . 

• Strategy profile: =(1,…, n)

• Expected utility:
 Ui(i(i),-i(), i)=-i

p(-i|i)ui(i(i),-i(-i),i)

• Bayesian Nash Eq: Strategy profile * is a Bayesian-Nash 
Equilibrium if for all i, for all i,
Ui(*i(i),*-i(),i) Ui(i(i),*-i(),i)

(best responding w.r.t. its beliefs about the types of the other agents, 
assuming they are also playing a best response)

34
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Last time

• Definition of games

• Strategies & Strategy profiles

 Dominant strategy equilibrium 

 Nash equilibrium

 Mixed Nash strategy equilibrium

 Bayesian Nash equilibrium

ui(*i(i),*-i(),i) ui(i(i),*-i(),i)
36

ui(si*,s-i)ui(si’,s-i) ∀ si’, ∀ s-i, ∀ i,

ui(si*,s-i)ui(si’,s-i) ∀ si’, ∀ i,

ui(�i*, �-i)ui(�i’, �-i) ∀ �i’, ∀ i,

Extensive Form Games

Any finite game of 
perfect information has a 
pure strategy Nash 
equilibrium.  

37

It can be found by
backward induction.

1

1

3

0

1

2

1

0

2

2

1

1

2 2

M N

L R

U UD

D

How to find a Nash Equilibrium?

U
1

2

D

2

2

R
2

2

M
2

2

By backward induction!     

Have to define an action for every choice point.

(MR, UD) 
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Subgame perfect equilibrium & credible 

threats

• Proper subgame = subtree (of the game tree) whose 
root is alone in its information set (agent knows his 
state)

• Subgame perfect equilibrium 

 Strategy profile that is in Nash equilibrium in every 
proper subgame (including the root), whether or not 
that subgame is reached along the equilibrium path 
of play

38

Subgame perfect equilibrium

39

1

1

3

0

1

2

1

1

2 2

M N

L R

U UD

DU
1

2

D

2

2

R
2

2

M
2

2

(MR, UD) 

1

1

3

0

1

2

1

1

2 2

M N

L R

U UD D

1

0

2

2

1

0

2

2

What is the strategy now?
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Subgame perfect NE equilibrium

40

(MR, UD) 

1

1

3

0

1

2

1

1

2 2

M N

L R

U UD D

1

0

2

2

What is the strategy now?

If U best is L or R 
If D best is L
If L best is U

If R best is D

(L,U) is the NE

(L,U) 
1

2

(ML, U) and (NL, U) are the SPNE of the game
1

2

1

1

Non creditable threats

• A firm is deciding whether to enter the market, which 

another firm currently has a monopoly over.

• If the firm enters, the monopolist chooses whether to 

accept it or declare a price war.

 The firm only wants to enter if the monopolist won’t engage in a 

price war

 A price war is unprofitable for the monopolist

41
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Non creditable threats

Firm 1

Firm 2

In

Out

Accept War

2,2

0,03,1

Accept War

In 3,1 0,0

Out 2,2 2,2

Firm 2 announce to make a price war
if Firm 1 enters.
(out, war) is a Nash equilibria.

But, it is not subgame perfect 
This is a non creditable thread

42

Social choice theory

• Study of decision problems in which a group has to make the decision

• The decision affects all members of the group

 Their opinions! should count

• Applications:

 Political elections

 Note that outcomes can be vectors

 Allocation of money among agents, allocation of goods, tasks, 
resources…

• CS applications:

 Multiagent planning [Ephrati&Rosenschein]

 Accepting a joint project, rating Web articles 
[Avery,Resnick&Zeckhauser]

 …

43
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Criteria for evaluating multiagent systems

• Social welfare: maxoutcome ∑i ui(outcome)

• Surplus: social welfare of outcome – social welfare of status quo

 Zero sum games have 0 surplus.  Markets are not zero sum 

• Pareto efficiency: An outcome o is Pareto efficient if there exists no other 

outcome o’ s.t. some agent has higher utility in o’ than in o and no agent 

has lower

 Implied by social welfare maximization

• Individual rationality: Participating in the negotiation (or individual deal) is 

no worse than not participating

• Stability: No agents can increase their utility by changing their strategies

• Symmetry: No agent should be inherently preferred, e.g. dictator

44

Assumptions

1. Agents have preferences over alternatives
• Agents can rank order the outcomes

 a>b>c=d is read as “a is preferred to b which is preferred to c 
which is equivalent to d”

2. Voters are sincere
• They truthfully tell the center their preferences

3. Outcome is enforced on all agents

45
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Voting

• Majority decision:

 If more agents prefer a to b, then a should 

be chosen

• Two outcome setting is easy

 Choose outcome with more votes!

• What happens if you have 3 or more 

possible outcomes?

46

Case 1: Agents specify their top 

preference

Ballot

X

47
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Election System

• Plurality Voting

 One name is ticked on a ballot

 One round of voting

 One candidate is chosen

Is this a “good” 
system?

What do we mean by good? 48

Example: Plurality (Canada)

• 3 candidates 

 Lib, NDP, C

• 21 voters with the preferences

 10 Lib>NDP>C

 6 NDP>C>Lib

 5 C>NDP>Lib

• Result: Lib 10, NDP 6, C 5

 But a majority of voters (11) prefer all other 

parties more than the Libs!
49
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What can we do?

• Majority system
 Works well when there are 2 alternatives

 Not great when there are more than 2 choices

• Proposal:
 Organize a series of votes between 2 alternatives at a 

time

 How this is organized is called an Agenda 
 Or a cup (often in sports)

50

Agendas

• 3 alternatives {a,b,c}

• Agenda a,b,c

a

b

c Chosen alternative

Majority vote between a and b

51
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Example: Agenda

• Binary protocol (majority rule) Three types of agents:

• Power of agenda setter (e.g. chairman)

1. x > z > y (35%)  
2. y > x > z (33%)
3. z > y > x (32%)

x y z

y

z

x z y

x

y

y z x

z

x

52

Chairman defines order

x,y,z x,z,y y,z,x

Pareto dominated winner paradox

Agents:

1. x > y > b > a
2. a > x > y > b
3. b > a > x > y x a b

a

b

y

y

BUT

Everyone prefers x to y!

53
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Case 2: Agents specify their complete 

preferences

Ballot

X>Y>Z

Maybe the 
problem was with 
the ballots!

Now have 
more 
information

54

Condorcet

• Proposed the following 

 Compare each pair of alternatives

 Declare “a” is socially preferred to “b”  if more 

voters strictly prefer a to b

• Condorcet Principle: If one alternative is 

preferred to all other candidates then it 

should be selected

55

Marie Jean Antoine Nicolas Caritat, Marquis de Condorcet
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Example: Condorcet

• 3 candidates 

 Lib, NDP, C

• 21 voters with the preferences

 10 Lib>NDP>C

 6 NDP>C>Lib

 5 C>NDP>Lib

• Result: 

 NDP win! (11/21 prefer them to Lib, 16/21 

prefer them to C)
56

A Problem

• 3 candidates 

 Lib, NDP, C

• 3 voters with the preferences

 Lib>NDP>C

 NDP>C>Lib

 C>Lib>NDP

• Result: 

 No Condorcet Winner

Lib

C

NDP

57
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Borda Count

• Each ballot is a list of ordered 

alternatives

• Over all ballots compute the rank of 

each alternative

• Rank order alternatives based on 

decreasing sum of their ranks

A>B>C

A>C>B

C>A>B

A: 4

B: 8

C: 6 58

Borda Count

• Simple. Only counting ranks

• Always a Borda Winner, but have to define

a solution for ties.

• BUT does not always choose Condorcet 

winner!

• 3 voters

 2: b>a>c>d

 1: a>c>d>b

Borda scores:

a:5, b:6, c:8, d:11 

Therefore a wins

BUT b is the 
Condorcet winner

59
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Another example

• Borda rule  with 4 alternatives

• Agents:

• x=13

• a=18

• b=19

• c=20

1. x > c > b > a
2. a > x > c > b
3. b > a > x > c
4. x > c > b > a
5. a > x > c > b
6. b > a > x > c
7. x > c > b > a

61

The winner is dropped

• X went out  Remove x:

• x=13, a=18, b=19, c=20

• c=13

• b=14

• a=15

1. c > b > a
2. a > c > b
3. b > a > c
4. c > b > a
5. a > c > b
6. b > a > c
7. c > b > a

62

1. x > c > b > a
2. a > x > c > b
3. b > a > x > c
4. x > c > b > a
5. a > x > c > b
6. b > a > x > c
7. x > c > b > a

Inverted order paradox
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Another example

• Borda rule  with 4 alternatives

• Agents:

• x=13

• a=18

• b=19

• c=20

1. x > c > b > a
2. a > x > c > b
3. b > a > x > c
4. x > c > b > a
5. a > x > c > b
6. b > a > x > c
7. x > c > b > a

61

The winner is dropped

• X went out  Remove x:

• x=13, a=18, b=19, c=20

• c=13

• b=14

• a=15

1. c > b > a
2. a > c > b
3. b > a > c
4. c > b > a
5. a > c > b
6. b > a > c
7. c > b > a

62

1. x > c > b > a
2. a > x > c > b
3. b > a > x > c
4. x > c > b > a
5. a > x > c > b
6. b > a > x > c
7. x > c > b > a

Inverted order paradox
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• Three types of agents: 

• Borda winner is y

Borda rule vulnerable to irrelevant 

alternatives

1. x > y (35%)  
2. y > x (33%)
3. y > x (32%)

63

x y

35 70

66 33

64 32

165 135

second first

• Three types of agents: 

• Borda winner is y

• Add z

Borda rule vulnerable to irrelevant 

alternatives

64

x y z

35 105 70

66 33 99

96 64 32

197 202 201

first third second

Borda winner is x

x y

35 70

66 33

64 32

165 135

second first

The social preferences between alternatives x and y depend 

only on the individual preferences between x and y

1. x > z > y (35%)  
2. y > x > z (33%)
3. z > y > x (32%)
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Desirable properties for a voting 

protocol

• No dictators

• Universality (unrestricted domain)

 It should work with any set of preferences

• Independence of irrelevant alternatives

 The comparison of two alternatives should depend only 
on their standings among agents’ preferences, not on 
the ranking of other alternatives

• Pareto efficient

 If all agents prefer x to y then in the outcome x should 
be preferred to y

65

Arrow’s Theorem (1951)

• Thrm. If there are 3 or more alternatives 

and a finite number of agents then there is 

no protocol which satisfies the 4 desired 

properties

• Thrm.  Let |O | ≥ 3, any social welfare 

function W that is Pareto efficient and 

independent of irrelevant alternatives is 

dictatorial.

66
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Take-home Message

• Despair?
 No ideal voting method

 That would be boring!

• A group is more complex than an individual

• Weigh the pro’s and con’s of each system and 
understand the setting they will be used in

• Do not believe anyone who says they have the best 
voting system out there!

67
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Introduction

• Game Theory

 Given a game we are 
able to analyze the 
strategies agents will 
follow

• Social Choice Theory

 Given a set of agents’ 
preferences we can 
choose some outcome

So far we have looked at

Ballot

X>Y>Z
H

H H

T

TT

(1,2) (4,0)(2,1) (2,1) 3

Introduction

• Now: Mechanism Design

 Game Theory + Social Choice

• Goal of Mechanism Design is to 

 Obtain a dedicated outcome
(function of agents’ preferences)

 But agents are rational
They may lie about their preferences

• Goal: 

Define the rules of a game so that in equilibrium 

the agents do what the social community in 

general wants 4
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Fundamentals

• Set of possible outcomes, O

• Agents iI, |I|=n, each agent i has type ii
 Type captures all private information that is relevant to agent’s 

decision making (its payoffs, which may be different)

• Utility ui(o, i), over outcome oO

• Recall: goal is to implement some system-wide solution
 Captured by a social choice function (SCF)

f:Q
1

x … xQ
n
 O

f(q
1
,…q

n
)=o is a collective choice

5

Mechanisms

• Recall: We want to implement a social choice function
 Need to know agents’ preferences 

 They may not reveal them to us truthfully

• Example:
 1 item to allocate, and want to give it to the agent who values it the 

most

 If we just ask agents to tell us their preferences, they may lie

I like the 

bear the 

most!

No, I do!

7
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Mechanism Design Problem

• By having agents interact through an 

institution (M) we might be able to solve 

the problem

• Mechanism:

M=(S
1
,…,S

n
, g(.))

Strategy spaces of agents
Outcome function

g:S
1
x…x S

n
 O

8

Implementation

• A mechanism 

implements social choice function 

if there is an equilibrium strategy profile 

of the game induced by M such that

for all 

M=(S
1
,…,S

n
,g(.))

f(q)

s*(.)=(s*
1
(.),…,s*

n
(.))

g(s
1
*(q

1
),…,s

n
*(q

n
))=f(q

1
,…,q

n
)

(q
1
,…,q

n
)  Q

1
x… x Q

n
9
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Implementation

• We did not specify the type of 

equilibrium in the definition 

 (Mixed) Nash

 Bayes-Nash

 Dominant

10

Direct Mechanisms

• Recall that a mechanism specifies the 
strategy sets of the agents
 These sets can contain complex strategies

• Direct mechanisms:

 Mechanism in which Si=i for all i, and g()=f() 
for all  Q1x…xQn

• Incentive-compatible:

 A direct mechanism is incentive-compatible if it 
has an equilibrium s* where s*

i(i)=i for all i  Qi

and all i

 (truth telling by all agents is an equilibrium)

 Strategy-proof if dominant-strategy equilibrium
11
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Dominant Strategy Implementation

• Is a certain social choice function implementable 
in dominant strategies? Did the mechanism 
enforce dominant strategies?
 In principle we would need to consider all possible 

mechanisms

• Revelation Principle (for Dom Strategies)
 Suppose there exists a (in)direct mechanism 

M=(S1,…,Sn,g(.)) that implements social choice 
function f() in dominant strategies. Then there is a 
direct strategy-proof mechanism, M’,  which also 
implements f().

12

Revelation Principle: Intuition

13



28.01.2023

6

Dominant Strategy Implementation

• Is a certain social choice function implementable 
in dominant strategies? Did the mechanism 
enforce dominant strategies?
 In principle we would need to consider all possible 

mechanisms

• Revelation Principle (for Dom Strategies)
 Suppose there exists a (in)direct mechanism 

M=(S1,…,Sn,g(.)) that implements social choice 
function f() in dominant strategies. Then there is a 
direct strategy-proof mechanism, M’,  which also 
implements f().

12

Revelation Principle: Intuition

13



28.01.2023

7

Theoretical Implications

• Literal interpretation: Need only study direct mechanisms
 This is a much smaller space of mechanisms 

 Negative results: If no direct mechanism can implement SCF f() 

then no mechanism can do it => impossibility theorems, e.g. 

Arrow in voting.

 Analysis tool:

 Best direct mechanism gives us an upper bound on what we can 

achieve with an indirect mechanism

 Analyze all direct mechanisms and  choose the best one

15

Practical Implications

• Incentive-compatibility is “free” from an 

implementation perspective

• BUT!!!

 A lot of mechanisms used in practice are 

not direct and incentive-compatible

 Maybe there are some issues that are 

being ignored here

16
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Quasi-Linear Preferences

• Outcome o=(x,t1,…,tn)
 x is a “project choice” and tiR are transfers (money)

• Utility function of agent i
 ui(o,i)=ui((x,t1,…,tn),i)=vi(x,i)-ti

• Quasi-linear mechanism: 
M=(S1,…,Sn,g(.)) where g(.)=(x(.),t1(.),…,tn(.)) 

20

Social choice functions and quasi-

linear settings

• SCF is efficient if for all types q=(q1,…,qn)

 n
i=1vi(x(q),qi) ≥ n

i=1vi(x’(q),qi)   x’(q)
 Aka social welfare maximizing, x is the selection 

function

• SCF is budget-balanced (BB) if
 n

i=1ti()=0

 Weakly budget-balanced if

n
i=1ti()≥0

21
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Groves Mechanisms
[Groves 1973]

• A Groves mechanism, 

M=(S1,…,Sn, (x,t1,…,tn)) is defined by

 Choice rule x*(q’)=argmaxx i vi(x,qi
’)

 Transfer rules

 ti(q
’)=hi(q-i

’)-j i vj(x
*(q’),q’j)

where hi(.) is an (arbitrary) function that does not
depend on the reported type qi

’ of 
agent i (quasi linear)

22

VCG Mechanism
(aka Clarke tax mechanism  aka Pivotal mechanism)

• Def: Implement efficient outcome,

x*=argmaxx i vi(x,i
’)

Compute transfers

ti(
’)=j i vj(x

-i,’
j) -j ivj(x

*, j
’)

Where x-i=argmaxx j ivj(x,j
’)

VCGs are efficient and strategy-proof 

Agent’s equilibrium utility is:

ui(x
*,ti,i

)=vi(x
*,i)-[j i vj(x

-i,j) -j ivj(x
*,j)] 

= j vj(x
*,j) - j  i vj(x

-i,j)

= marginal contribution to the welfare of the system24
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Example: Building a pool

• The cost of building the pool is $300

• If together all agents value the pool more than $300 then 
it will be built

• VCG  Mechanism:

 Each agent announces their value, vi

 If  vi 300 then it is built

 Payments ti(qi
’)=j i vj(x

-i,q’j) -j ivj(x
*, qj

’) if built, 0 otherwise

v1=50, v2=50, v3=250

Pool should be built

t1=(250+50)-(250+50)=0
t2=(250+50)-(250+50)=0
t3=(0)-(50+50)=-100

Not budget balanced
25

Example

• The government is deciding on number of street lights to 
be installed.

• Three beneficiaries - A, B, C.

• Four alternatives: n = 0, 1, 2, 3 where n is the number of 
street lights. The cost of a street light is 120.

• The government’s objective to install the socially efficient 
number of street lights.

26
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Net benefits with equal cost 

share

• If n = 2, the total cost is 240. 

Hence, cost share for each is 80 (40 for each lamp). 

27

Net benefits with equal cost 

share

• The private net benefit for A is then 90 − 80 = 10. 

• Similarly for B and C and n = 1, 3. Figure show the benefits for each 

agent.

28
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Groves Clarke Taxes

• Is Person A pivotal? Does he has to pay a tax?

Person A is not pivotal. Without him, the net benefit is maximum at 

n = 2. With him the net benefit is maximum at n = 2. So his tax is

zero.

29

Person B

 Person B however is pivotal. With him the net benefit is maximum at

n = 2. Without him the net benefit is maximum at n = 3.

 B’s tax is the difference between the sum of net benefits of

others at n = 3 and the sum of net benefits of others at n = 2, i.e.

135 − 130 = 5.

 B is paying the tax because his report changes the decision from

n = 3 to n = 2.
30



28.01.2023

12

Groves Clarke Taxes

• Is Person A pivotal? Does he has to pay a tax?

Person A is not pivotal. Without him, the net benefit is maximum at 

n = 2. With him the net benefit is maximum at n = 2. So his tax is

zero.

29

Person B

 Person B however is pivotal. With him the net benefit is maximum at

n = 2. Without him the net benefit is maximum at n = 3.

 B’s tax is the difference between the sum of net benefits of

others at n = 3 and the sum of net benefits of others at n = 2, i.e.

135 − 130 = 5.

 B is paying the tax because his report changes the decision from

n = 3 to n = 2.
30



28.01.2023

13

Person C

 Person C is pivotal as well. With him the net benefit is maximum 

at n = 2. Without him the net benefit is maximum at n = 1

 C’s tax is therefore the sum of others’ benefits at n = 1 and the 

sum of others’ benefits at n = 2, i.e. 60 − 50 = 10.

31

Net benefits with taxes

• Post tax net benefit from this scheme:
10 for A, 
40 − 5 = 35 for B,
120 − 10 = 110 for C.

32
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Incentives for truthful revelation

 Notice that A’s net benefit is maximum at n = 3. Does he have an 

incentive to lie and change the decision to n = 3?

 Suppose A states his net benefit from n = 3 to be 70 instead of 

35. Then, sum of stated net benefits is maximum at n = 3.

35 70
?

33

Incentives for truthful revelation

 But then A becomes pivotal. Without him the sum of net benefits is 

maximum at n = 2. 

His report changes the decision from n = 2 to n = 3.

 So he has to pay a tax and his tax will be equal to 160 − 120 = 40.

34
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Incentives for truthful revelation

• A’s net benefit from lying will be 
(Net benefit from n = 3) − Tax
= 35 − 40
= −5

• A’s net benefit from truthfully reporting is 10.

• Hence A doesn’t have incentive to lie.

• You can repeat the same exercise for B and C to verify 
that they do not have incentive to lie either.

35

Clarke tax mechanism…

• Pros

Social welfare maximizing outcome

Truth-telling is a dominant strategy

Feasible in that it does not need a 

benefactor (
i
t
i
 0) (not discussed here)

36
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Participation Constraints

• Agents can not be forced to participate in a 

mechanism

 It must be in their own best interest

• A mechanism is individually rational (IR) if 

an agent’s (expected) utility from 

participating is (weakly) better than what it 

could get by not participating

37

Participation Constraints

• Can classify mechanisms based on participation 
constraints
 Let ui

*(qi) be an agent’s utility if it does not participate and has type qi
 Ex ante IR: An agent must decide to participate before it knows its own 

type and other types

 EqQ[ui(f(q),qi)]≥ Eq
i
 Q

i
[ui

*(qi)]

 Interim IR: An agent decides whether to participate once it knows its 
own type, but no other agent’s type

 Eq
-i
 Q

-i
[ui(f(qi,q-i),qi)]≥ ui

*(qi)

 Ex post IR: An agent decides whether to participate after it knows 
everyone’s types (after the mechanism has completed)

 ui(f(q),qi)≥ ui
*(qi)

38
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[ui(f(qi,q-i),qi)]≥ ui

*(qi)

 Ex post IR: An agent decides whether to participate after it knows 
everyone’s types (after the mechanism has completed)

 u
i
(f(q),q

i
)≥ u

i
*(q

i
)
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17

Quick Review

• Gibbard-Satterthwaite
 Impossible to get non-dictatorial mechanisms if using dominant 

strategy implementation and general preferences

• Groves
 Possible to get dominant strategy implementation with quasi-linear 

utilities

 Efficient

• Clarke (or VCG)
 Possible to get dominant strategy implementation with quasi-linear 

utilities

 Efficient, interim IR

39

The End

• Exam: 30.03, 9:00, Audimax I

• Remember comments in exercises

• There will be no questions about “Mechanism 

Design” in the exam!!!.
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