
23.10.2022

1

Intelligent Autonomous Agents
and Cognitive Robotics

Solving problems by searching

Rainer Marrone

Hamburg University of Technology

Slides based on Hwee Tou Ng's

Literature

• Chapter 3

2

23.10.2022

2

Problem types

• Single-state problem: Deterministic, fully observable

 Agent knows exactly which state it will be in; can calculate optimal
action sequence to reach the goal

• Multiple state problem: Deterministic, partially/not observable

 Agent must reason about sequences of actions and states
assumed while working towards goal state.

• Contingency problem: Nondeterministic and partially observable

 Percepts provide new information about current state

 Solution is a contingent plan or policy

 Often interleave search and execution

• Exploration problem: Unknown state space

 Discover and learn about environment while taking actions

3

4

Example: vacuum world

• Single-state, start in #5.

Solution?

• Multiple-state, start in

{1,2,3,4,5,6,7,8} e.g.,

Right goes to {2,4,6,8}

Solution?

[Right, Suck]

[Right,Suck,Left,Suck]

23.10.2022

3

5

Example: vacuum world

• Contingency

 Nondeterministic: Suck may

dirty a clean carpet

 Partially observable: location, dirt at current location.

 Percept: [L, Clean], i.e., start in #5 or #7

Solution

6

Example: vacuum world

• Contingency

 Nondeterministic: Suck may

dirty a clean carpet

 Partially observable: location, dirt at current location.

 Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]

23.10.2022

4

Solving problems by searching

• We will discuss solutions for all the

different settings.

• We start with simple searches and modify

them for more complex settings

7

8

Tree search algorithms

• Basic idea:
 offline, simulated exploration of state space by

generating successors of already-explored states

(a.k.a. expanding states)

Function Tree-Search(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state problem

loop do

if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution

else expand the node and add resulting nodes to the search tree

end

23.10.2022

5

9

Measuring search performance

• A search strategy is defined by picking the order of node
expansion

• Strategies are evaluated along the following dimensions:
 completeness: does it always find a solution if one exists?

 time complexity: number of nodes generated

 space complexity: maximum number of nodes in memory

 optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of
 b: maximum branching factor of the search tree

 d: depth of the least-cost solution

 m: maximum depth of the state space (may be ∞)

10

Uninformed search strategies

Uninformed search strategies use only the

information available in the problem definition

• Breadth-first search

• Depth-first search

• Depth-limited search

• Iterative deepening search

23.10.2022

6

11

Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

 fringe is a FIFO queue, i.e., new successors

go at end

12

Time complexity of breadth-first

search

• If a goal node is found on depth d of the tree, all nodes up till that
depth are created.

m
Gb

d

• Thus: O(bd)

23.10.2022

7

13

• QUEUE contains all and nodes. (Thus: 4) .

• In General: bd

Space complexity of breadth-

first

• Largest number of nodes in QUEUE is reached on the level d of
the goal node.

G
m

b

d

G

• Complete? Yes (if b is finite)

• Time? 1+b+b2+b3+… +bd = O(bd)

• Space? O(bd+1) (keeps every node in memory)
O(bd) (only fringe)

• Optimal?

14

Properties of breadth-first search

Yes (if cost = 1 per step)

23.10.2022

8

Complexity example

15

16

Depth-first search

• Expand deepest unexpanded node

23.10.2022

9

17

Properties of depth-first search

• Complete? No: fails in infinite-depth spaces

 complete in finite spaces

• Time? O(bm): terrible if m is much larger than d

 but if solutions are dense, may be much faster than

breadth-first

• Space? O(bm), i.e., linear space!

• Optimal? No

Depth-limited search

• depth-first search with depth limit l, i.e., nodes at depth l

have no successors

• Solves infinite path problem

• Incomplete if l<d (shallowest goal node)

• Nonoptimal if l>d

18

23.10.2022

10

19

Iterative deepening search

20

Iterative deepening search

23.10.2022

11

21

Iterative deepening search

• Number of nodes generated in a depth-limited search to
depth d with branching factor b:

NDLS/BFS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd

• For b = 10, d = 5,
 NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

 NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

• Overhead = (123,456 - 111,111)/111,111 = 11%

22

Properties of iterative deepening

search

• Complete? Yes

• Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

• Space? O(bd)

• Optimal? Yes, if step cost = 1

23.10.2022

12

23

Summary of algorithms

24

Repeated states

• Failure to detect repeated states can turn

a linear problem into an exponential one!

•

23.10.2022

13

25

Graph search

Remember nodes visited

Beyond classical search

• Informed search
 Greedy best-first search

 A* search

• Admissible heuristics, creating heuristics

• Local search algorithms
 Hill-climbing search

 Simulated annealing search

 Local beam search

 Genetic algorithms

• Searching with nondeterministic actions

26

23.10.2022

14

Best-first search

• Idea: use a heuristic evaluation function f(n) for each
node
 estimate of "desirability"

Expand most desirable unexpanded node

• Implementation:

Order the nodes in fringe in decreasing order of
desirability

• Special cases:
 greedy best-first search

 A* search

27

Greedy best-first search

• Evaluation function

f(n) = h(n) (heuristic)= estimate of cost from n to goal

e.g., hSLD(n) = straight-line distance from n to goal node

• Greedy best-first search expands the node that appears

to be closest to the goal

• Stop if the goal node appears on the fringe

28

23.10.2022

15

Greedy best-first search example:

Go from A to B

29

A

Z

R

S

F

P

B

140

75

140

80

99

211

101

97

A

ZS

B

A 366

Z 374

S 253

R 193

P 100

F 176

B 0

RA F

BS

140
99

211

450
Z

Properties of greedy best-first

search

• Complete? No – can get stuck in loops,

but can use graph search

• Time? O(bm), but a good heuristic can give

dramatic improvement

• Space? O(bm) -- keeps all nodes in memory

• Optimal? No

30

23.10.2022

16

A* search

• Idea: avoid expanding nodes that are already

expensive

• Evaluation function f(n) = g(n) + h(n)
g(n) = cost so far to reach n

h(n) = estimated cost from n to goal

• Goal node must also be expanded

32

A* search example: Go from A to B

33

A

Z

R

S

F

P

B

140

75

140

80

99

211

101

97

A

ZS

B

A 366

Z 374

S 253

R 193

P 100

F 176

B 0

f(n) = g(n) + h(n)

140+253=393 75+374=449

23.10.2022

17

A* search example: Go from A to B

34

A

Z

R

S

F

P

B

140

75

140

80

99

211

101

97

A

ZS

B

A 366

Z 374

S 253

R 193

P 100

F 176

B 0

RA F Z

280+374=654

239+176=415
220+193=413

280+366=646

140

449

A* search example: Go from A to B

35

A

Z

R

S

F

P

B

140

75

140

80

99

211

101

97

A

ZS

B

A 366

Z 374

S 253

R 193

P 100

F 176

B 0

RA F Z

300+253=553

S P

317+100=417

220

646 415

140

654

449

23.10.2022

18

A* search example: Go from A to B

36

A

Z

R

S

F

P

B

140

75

140

80

99

211

101

97

A

ZS

B

A 366

Z 374

S 253

R 193

P 100

F 176

B 0

RA F Z

553

S P

220

646

140

654

449

S B

239

338+253=591
450+0=450 417

317

A* search example: Go from A to B

37

A

Z

R

S

F

P

B

140

75

140

80

99

211

101

97

A

ZS

B

A 366

Z 374

S 253

R 193

P 100

F 176

B 0

RA F Z

553

S P

220

646

140

654

449

S B

239

591 450

R B

317

418+0=418414+193=607

23.10.2022

19

A* search example: Go from A to B

38

A

Z

R

S

F

P

B

140

75

140

80

99

211

101

97

A

ZS

B

A 366

Z 374

S 253

R 193

P 100

F 176

B 0

RA F Z

553

S P

220

646

140

654

449

S B

239

591 450

R B

317

607 418

compared to greedy

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.

An admissible heuristic never overestimates the cost to reach the goal,

i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual road distance)

• Theorem: If h(n) is admissible,
A* using TREE-SEARCH is optimal

• For graph searches we nee a stronger criteria

39

23.10.2022

20

Consistent heuristics

• “each side of a triangle cannot be longer than the sum of the other

two sides”

• A heuristic is consistent if for every node n, every successor n' of n

generated by any action a,

h(n) ≤ c(n,a,n') + h(n')

• If h is consistent, we have

f(n') = g(n') + h(n')

= g(n) + c(n,a,n') + h(n')

≥ g(n) + h(n)

= f(n)

• i.e., f(n) is non-decreasing along any path.
• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

40

Optimality of A*

• A* expands nodes in order of increasing f value

• A* will search all path with f(n)<C* (completeness)

• A* never expands nodes with f>C* (the true cost)

41

23.10.2022

21

Properties of A*

• Complete? Yes

• Time? The number of states in the goal contour

can still be exponential.

• Space?

Keeps all generated nodes in memory,

as do all graph search algorithms.

• Optimal? Yes

Not practical for very large scale problems

42

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ?

• h2(S) = ? 43

8

3+1+2+2+2+3+3+2 = 18

23.10.2022

22

Empirical Evaluation

44

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible) then h2 dominates h1

• Is h2 always better than h1?

• f(n) < C* (true cost)

• Every node h(n) < C* -g(n) will surely get expanded

• Because h2(n) ≥ h1(n) every node of h2 will also be expanded
from h1, and h1 will cause other nodes to be expanded

45

23.10.2022

23

Relaxed problems

• A problem with fewer restrictions on the actions is called
a relaxed problem

• The cost of an optimal solution to a relaxed problem is
an admissible heuristic for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile can
move anywhere, then h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any
adjacent square, then h2(n) gives the shortest solution

46

Local search algorithms

• In many optimization problems, the path to the goal is
irrelevant; the goal state itself is the solution

• State space = set of "complete" configurations

• Find configuration satisfying constraints, e.g., n-queens;
integrated-circuit design; factory-floor layout,

• In such cases, we can use local search algorithms. Keep
a single "current" state, try to improve it

47

23.10.2022

24

State space and objective

Funtion

49

Hill-climbing search

• "Like climbing Everest in thick fog with

amnesia“ (Russell, Norvig)

50

23.10.2022

25

Hill-climbing search: 8-queens problem

• The successors of a state are all possible states generated by moving a

single queen to another square in the same column (so each state has

8×7=56 successors)

• Cost function: h = number of pairs of queens that are attacking each other,

either directly or indirectly

• h = 17 for the above state, best moves are marked. 51

Hill-climbing search: 8-queens problem

52

23.10.2022

26

Observations

• Get stuck 86% vs 14% success

• Taking 4 steps only if successful

3 steps if getting stuck (17 Million states)

• If sideways are allowed (100), success in 94%. Increase

of cost 21 steps.

• Variants

– Stochastic hill climbing

– First-choice hill climbing

– Random restart

53

Simulated annealing search

54

Stopping criteria

23.10.2022

27

Simulated Annealing

55

Properties of simulated

annealing search

• One can prove:
If T decreases slowly enough, then simulated annealing

search will find a global optimum/minimum with

probability approaching 1

• Widely used in VLSI layout, airline scheduling,

etc.

56

23.10.2022

28

Local beam search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k
states are generated

• If any one is a goal state, stop; else select the k
best successors from the complete list and
repeat.

57

Genetic algorithms

• A variant of stochastic beam search. But a successor
state is generated by different operations.

• Start with k randomly generated states (population)

• A state is represented as a string over a finite alphabet
(often a string of 0s and 1s)

• Evaluation function (fitness function). Higher values for
better states.

• Produce the next generation of states by selection,
crossover, and mutation

58

23.10.2022

29

Genetic algorithms

• Fitness function: number of non-attacking pairs of queens

(min = 0, max = 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28)

• 24/(24+23+20+11) = 31%

• 23/(24+23+20+11) = 29% etc
59

Genetic algorithms

• How many crossover, mutations

• How to encode the problem, fitness function

• One (more popular) vs. two child's 60

23.10.2022

30

Nondeterministic/Uncertain

actions

• What if the outcome of actions is non

deterministic

• Erratic vacuum cleaner

 When applied to a dirty square the square is cleaned

and adjacent square sometimes also.

 When applied to a clean square, sometimes dirt is

deposited on that square

 need to have contingency plan/strategy

61

Possible states

62

23.10.2022

31

Multiple States

• The result of an action is a set of states

• Suck in state 1 returns the set {5,7}

• We also need to generalize the concept of solution,

since for example, if we start in state 1 there is no single

sequence of actions to solve the problem instead we

need a contingency plan like:

[Suck, if State=5 then [Right, Suck] else []]

63

AND-OR Search trees

• Branching is also introduced by the environment choice

of the outcome of actions.

• This leads to

AND-OR trees

• The bold path is

the current plan

64

OR-node

AND-node

23.10.2022

32

AND-OR Search trees

• A solution is a subtree

 has a goal node at every leaf

 specifies one action at OR-nodes

 Includes every outcome branch at AND-nodes

• Leads to if then else or case if more then two

outcomes

65

AND-OR Search trees

• Can also be explored by BFS and best-first

methods

• Heuristic functions must be modified to estimate

cost of a contingent solution rather than a

sequence

• The notion of admissibility carries over.

66

23.10.2022

33

Partial Observable Env.

• The vacuum cleaner has only partial information, e.g., if

he is in the left square he does not see the state of the

right square.

If the initial state is left and dirt, we have a belief state

rather than a physical state

• But we also have uncertain actions: Move action may fail

67

Uncertain actions &

partial observable

• Prediction:

b’=Predict(b, a)

• Possible observations in b’

Percepts(b’)={o: o=PERCEPT(b’)}

• Update of belief state:

bo= UPDATE(b’,o)= {s:o = PERCEPT(s) and sb’}

• Putting all together:

68

b

b’
a

23.10.2022

34

Structure

• Can use different search structures

• E.g. And-Or-Graphs

69

