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Problem types 

• Single-state problem: Deterministic, fully observable

 Agent knows exactly which state it will be in; can calculate optimal 
action sequence to reach the goal

• Multiple state problem: Deterministic, partially/not observable

 Agent must reason about sequences of actions and states 
assumed while working towards goal state.

• Contingency problem: Nondeterministic and partially observable

 Percepts provide new information about current state

 Solution is a contingent plan or policy

 Often interleave search and execution

• Exploration problem: Unknown state space

 Discover and learn about environment while taking actions

3
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Example: vacuum world

• Single-state, start in #5. 

Solution?

• Multiple-state, start in 

{1,2,3,4,5,6,7,8} e.g., 

Right goes to {2,4,6,8} 

Solution?

[Right, Suck]

[Right,Suck,Left,Suck]
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Example: vacuum world

• Contingency

 Nondeterministic: Suck may 

dirty a clean carpet

 Partially observable: location, dirt at current location.

 Percept: [L, Clean], i.e., start in #5 or #7

Solution

6

Example: vacuum world

• Contingency

 Nondeterministic: Suck may 

dirty a clean carpet

 Partially observable: location, dirt at current location.

 Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]
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Solving problems by searching

• We will discuss solutions for all the 

different settings.

• We start with simple searches and modify 

them for more complex settings

7
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Tree search algorithms

• Basic idea:
 offline, simulated exploration of state space by 

generating successors of already-explored states 

(a.k.a. expanding states)

Function Tree-Search(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state problem

loop do

if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution

else expand the node and add resulting nodes to the search tree

end
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Measuring search performance

• A search strategy is defined by picking the order of node 
expansion

• Strategies are evaluated along the following dimensions:
 completeness: does it always find a solution if one exists?

 time complexity: number of nodes generated

 space complexity: maximum number of nodes in memory

 optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of 
 b: maximum branching factor of the search tree

 d: depth of the least-cost solution

 m: maximum depth of the state space (may be ∞)

10

Uninformed search strategies

Uninformed search strategies use only the 

information available in the problem definition

• Breadth-first search

• Depth-first search

• Depth-limited search

• Iterative deepening search
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Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

 fringe is a FIFO queue, i.e., new successors 

go at end

12

Time complexity of breadth-first 

search

• If a goal node is found on depth d of the tree, all nodes up till that 
depth are created. 

m
Gb

d

• Thus:  O(bd) 
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• QUEUE contains all         and        nodes.  (Thus: 4) .

• In General: bd

Space complexity of breadth-

first

• Largest number of nodes in QUEUE is reached on the level d of 
the goal node.

G
m

b

d

G

• Complete? Yes (if b is finite)

• Time? 1+b+b2+b3+… +bd = O(bd)

• Space? O(bd+1) (keeps every node in memory)
O(bd)  (only fringe)

• Optimal?

14

Properties of breadth-first search

Yes (if cost = 1 per step)



23.10.2022

8

Complexity example

15

16

Depth-first search

• Expand deepest unexpanded node
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Properties of depth-first search

• Complete? No: fails in infinite-depth spaces

 complete in finite spaces

• Time? O(bm): terrible if m is much larger than d

 but if solutions are dense, may be much faster than 

breadth-first

• Space? O(bm), i.e., linear space!

• Optimal? No

Depth-limited search

• depth-first search with depth limit l, i.e., nodes at depth l

have no successors

• Solves infinite path problem

• Incomplete if l<d (shallowest goal node)

• Nonoptimal if l>d

18
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Iterative deepening search

20

Iterative deepening search
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Iterative deepening search

• Number of nodes generated in a depth-limited search to 
depth d with branching factor b: 

NDLS/BFS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• Number of nodes generated in an iterative deepening 
search to depth d with branching factor b: 

NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd

• For b = 10, d = 5,
 NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

 NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

• Overhead = (123,456 - 111,111)/111,111 = 11%

22

Properties of iterative deepening 

search

• Complete? Yes

• Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

• Space? O(bd)

• Optimal? Yes, if step cost = 1
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Summary of algorithms

24

Repeated states

• Failure to detect repeated states can turn 

a linear problem into an exponential one!

•
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Graph search

Remember nodes visited

Beyond classical search

• Informed search
 Greedy best-first search

 A* search 

• Admissible heuristics, creating heuristics

• Local search algorithms
 Hill-climbing search

 Simulated annealing search

 Local beam search

 Genetic algorithms

• Searching with nondeterministic actions

26
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Best-first search

• Idea: use a heuristic evaluation function f(n) for each 
node
 estimate of "desirability"

Expand most desirable unexpanded node

• Implementation:

Order the nodes in fringe in decreasing order of 
desirability

• Special cases:
 greedy best-first search

 A* search

27

Greedy best-first search

• Evaluation function 

f(n) = h(n) (heuristic)= estimate of cost from n to goal

e.g., hSLD(n) = straight-line distance from n to goal node

• Greedy best-first search expands the node that appears

to be closest to the goal

• Stop if the goal node appears on the fringe

28
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Greedy best-first search example: 

Go from A to B

29
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Properties of greedy best-first 

search

• Complete? No – can get stuck in loops, 

but can use graph search

• Time? O(bm), but a good heuristic can give 

dramatic improvement

• Space? O(bm) -- keeps all nodes in memory

• Optimal? No

30
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A* search

• Idea: avoid expanding nodes that are already 

expensive

• Evaluation function f(n) = g(n) + h(n)
g(n) = cost so far to reach n

h(n) = estimated cost from n to goal

• Goal node must also be expanded

32

A* search example: Go from A to B

33
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A* search example: Go from A to B

34
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A* search example: Go from A to B
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A* search example: Go from A to B

36
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A* search example: Go from A to B
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A* search example: Go from A to B
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compared to greedy

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.

An admissible heuristic never overestimates the cost to reach the goal, 

i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual road distance)

• Theorem: If h(n) is admissible, 
A* using TREE-SEARCH is optimal

• For graph searches we nee a stronger criteria

39
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Consistent heuristics

• “each side of a triangle cannot be longer than the sum of the other 

two sides”

• A heuristic is consistent if for every node n, every successor n' of n

generated by any action a,   

h(n) ≤ c(n,a,n') + h(n')

• If h is consistent, we have

f(n') = g(n') + h(n') 

= g(n) + c(n,a,n') + h(n') 

≥ g(n) + h(n) 

= f(n)

• i.e., f(n) is non-decreasing along any path.
• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

40

Optimality of A*

• A* expands nodes in order of increasing f value

• A* will search all path with f(n)<C* (completeness)

• A* never expands nodes with f>C* (the true cost)

41
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Properties of A*

• Complete? Yes 

• Time? The number of states in the goal contour 

can still be exponential.

• Space?

Keeps all generated nodes in memory, 

as do all graph search algorithms.

• Optimal? Yes

Not practical for very large scale problems

42

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ?

• h2(S) = ? 43

8

3+1+2+2+2+3+3+2 = 18 
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Empirical Evaluation

44

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible) then h2 dominates h1

• Is h2 always better than h1?

• f(n) < C*   (true cost)

• Every node h(n) < C* -g(n) will surely get expanded

• Because h2(n) ≥ h1(n) every node of h2 will also be expanded 
from h1, and h1 will cause other nodes to be expanded

45
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Relaxed problems

• A problem with fewer restrictions on the actions is called 
a relaxed problem

• The cost of an optimal solution to a relaxed problem is 
an admissible heuristic for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile can 
move anywhere, then h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any 
adjacent square, then h2(n) gives the shortest solution

46

Local search algorithms

• In many optimization problems, the path to the goal is 
irrelevant; the goal state itself is the solution

• State space = set of "complete" configurations

• Find configuration satisfying constraints, e.g., n-queens; 
integrated-circuit design; factory-floor layout, 

• In such cases, we can use local search algorithms. Keep 
a single "current" state, try to improve it

47



23.10.2022

24

State space and objective 

Funtion

49

Hill-climbing search

• "Like climbing Everest in thick fog with 

amnesia“ (Russell, Norvig)

50
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Hill-climbing search: 8-queens problem

• The successors of a state are all possible states generated by moving a 

single queen to another square in the same column (so each state has 

8×7=56 successors)

• Cost function: h = number of pairs of queens that are attacking each other, 

either directly or indirectly 

• h = 17 for the above state, best moves are marked. 51

Hill-climbing search: 8-queens problem

52
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Observations

• Get stuck 86% vs 14% success

• Taking 4 steps only if successful

3 steps if getting stuck (17 Million states)

• If sideways are allowed (100), success in 94%. Increase

of cost 21 steps.

• Variants

– Stochastic hill climbing

– First-choice hill climbing

– Random restart

53

Simulated annealing search

54

Stopping criteria
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Simulated Annealing

55

Properties of simulated 

annealing search

• One can prove:
If T decreases slowly enough, then simulated annealing 

search will find a global optimum/minimum with 

probability approaching 1

• Widely used in VLSI layout, airline scheduling, 

etc.

56
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Local beam search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k
states are generated

• If any one is a goal state, stop; else select the k
best successors from the complete list and 
repeat.

57

Genetic algorithms

• A variant of stochastic beam search. But a successor 
state is generated by different operations.

• Start with k randomly generated states (population)

• A state is represented as a string over a finite alphabet 
(often a string of 0s and 1s)

• Evaluation function (fitness function). Higher values for 
better states.

• Produce the next generation of states by selection, 
crossover, and mutation

58
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Genetic algorithms

• Fitness function: number of non-attacking pairs of queens 

(min = 0, max = 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28)

• 24/(24+23+20+11) = 31%

• 23/(24+23+20+11) = 29% etc
59

Genetic algorithms

• How many crossover, mutations

• How to encode the problem, fitness function

• One (more popular) vs. two child's 60
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Nondeterministic/Uncertain 

actions

• What if the outcome of actions is non 

deterministic

• Erratic vacuum cleaner

 When applied to a dirty square the square is cleaned

and adjacent square sometimes also.

 When applied to a clean square, sometimes dirt is 

deposited on that square

 need to have contingency plan/strategy

61

Possible states

62
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Multiple States 

• The result of an action is a set of states

• Suck in state 1 returns the set {5,7}

• We also need to generalize the concept of solution, 

since for example, if we start in state 1 there is no single 

sequence of actions to solve the problem instead we 

need a contingency plan like:

[Suck, if State=5 then [Right, Suck] else []]

63

AND-OR Search trees

• Branching is also introduced by the environment choice

of the outcome of actions.

• This leads to

AND-OR trees

• The bold path is

the current plan

64

OR-node

AND-node
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AND-OR Search trees

• A solution is a subtree

 has a goal node at every leaf

 specifies one action at OR-nodes

 Includes every outcome branch at AND-nodes

• Leads to if then else or case if more then two 

outcomes

65

AND-OR Search trees

• Can also be explored by BFS and best-first 

methods

• Heuristic functions must be modified to estimate 

cost of a contingent solution rather than a 

sequence

• The notion of admissibility carries over. 

66
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Partial Observable Env.

• The vacuum cleaner has only partial information, e.g., if 

he is in the left square he does not see the state of the 

right square.

If the initial state is left and dirt, we have a belief state

rather than a physical state 

• But we also have uncertain actions: Move action may fail

67

Uncertain actions &

partial observable

• Prediction:

b’=Predict(b, a)

• Possible observations in b’

Percepts(b’)={o: o=PERCEPT(b’)}

• Update of belief state:

bo= UPDATE(b’,o)= {s:o = PERCEPT(s) and sb’}

• Putting all together:

68

b

b’
a
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Structure

• Can use different search structures

• E.g. And-Or-Graphs

69


