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Time and Uncertainty

The world changes over time, we need to track and predict it

Examples:
diabetes management, localization, speech recognition, ...

Basic idea: copy state and evidence variables for each time step

X, — set of unobservable state variables at time t
¢ e.g., BloodSugar,, StomachContents,, ...

E, — set of evidence variables at time t
¢ e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten,,...

Assumes discrete time steps

Dynamic Bayesian Networks

How can we model dynamic situations with a
Bayesian network?

Example: Is it raining today?
X, ={R}
E =}

=) next step: specify dependencies among the variables.

The term “dynamic” means we are modeling a dynamic system, not that
the network structure changes over time. 4
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DBN - Representation

*  Problem:

1. Necessity to specify an unbounded number of conditional
probability tables, one for each variable in each slice,

2. Each one might involve an unbounded number of parents.

DBN - Representation

*  Problem:

1. Necessity to specify an unbounded number of conditional
probability tables, one for each variable in each slice,

2. Each one might involve an unbounded number of parents.

» Solution:

1. Assume that changes in the world state are caused by a
stationary process (the laws for a state change do not change
over time).

P(U,/ Parent(U,)) isthe sameforall t
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DBN - Representation

*  Problem:

1. Necessity to specify an unbounded number of conditional
probability tables, one for each variable in each slice >solved

2. Each one might involve an unbounded number of parents.

DBN - Representation

»  Solution cont.:

2. Use Markov assumption - The current state depends on
only a finite history of previous states.

Using the first-order Markov process:

P(X,/X,, )=PX,/X,) Transition Model

CPT

CPT CPT
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DBN - Representation

»  Solution cont.:

2. Use Markov assumption - The current state depends on
only a finite history of previous states.

Using the first-order Markov process:
P(Xt /XOI_I) = P(Xt /Xt_l) Transition Model

In addition to restricting the parents of the state variable X;, we must
restrict the parents of the evidence variable E;

P(Et /XO:t’ EO:t—l) = P(Et /Xt) Sensor Model

DBN - Representation

»  Solution cont.:

2. Use Markov assumption - The current state depends on
only in a finite history of previous states.

Using the first-order Markov process:
P(X,/X,, )=PX,/X,) Transition Model

t
In addition to restricting the parents of the state variable X;, we must
restrict the parents of the evidence variable E;
Sensor Model

P(Et /XO:tDEO:t—l):P(Et/Xt)

State

10
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Dynamic Bayesian Networks

« There are two possible fixes if the approximation

is too inaccurate:

¢ Increasing the order of the Markov process model. For example,
adding Rain,, as a parent of Rain,, which might give slightly
more accurate predictions.

1

Dynamic Bayesian Networks

« There are two possible fixes if the approximation

is too inaccurate:

¢ Increasing the set of state variables. For example, adding
Season, to allow to incorporate historical records of rainy
seasons, or adding Temprature,, Humidity, and Presssure, to
allow to use a physical model of rainy conditions.

12

27.11.2022



Complete Joint Distribution

« Given:
¢+ Transition model: P(X{|X;_¢)
+ Sensor model: P(E (X))
* Prior probability: P(X,)
« Then we can specify complete joint distribution:
P(Xy,X,,.. X ,E,,..E)= P(X)] | P(X,| X, _)P(E,| X))

i=1

13

Simple Example

—— Rer | P(RIRes) Ry P(Ru4IRy)
( O_t) T 0.7 = T 0.7
0.5 E 0.3 F 0.3

R | P(UIRY) Rt | P(UwilRui)
T 0.9 = |7 0.9
F 0.2 F 0.2
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Inference Tasks: Examples

 Filtering/State estimation:
What is the probability that it is raining today, given all the umbrella
observations up through today?

* Prediction:
What is the probability that it will rain the day after tomorrow, given
all the umbrella observations up through today?

«  Smoothing:
What is the probability that it rained yesterday, given all the umbrella
observations through today?

* Most likely explanation:
If the umbrella appeared the first three days but not on the fourth,
what is the most likely weather sequence to produce these umbrella
sightings?

15

DBN - Basic Inference

 Filtering or Monitoring:

Compute the belief state - the posterior distribution over the current state,
given all evidence to date.

P(X,/e.)

Filtering is what a rational agent needs to do in order to keep track
of the current state so that the rational decisions can be made.

17
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DBN - Basic Inference

. Fi|tering cont. P(BIA,C) = a P(A|B,C) P(B|C)

Given the results of filtering up to time ¢, one can easily compute the
result for +7 from the new evidence €,

P(Xt+1 /el:t+1) = f(et+1,P(Xt /el:t)) (Seeking for some

recursive function f ?)

=P(X,, /elzt,em) (dividing up the evidence)

=aP(e, /X

6 )P(X,, /e,) (usingBayes’ Theorem)

+1

=aP(e, | X,,)P(X

t+1 t+1

/e ) (by the Markov property
1 of evidence)

18

DBN - Basic Inference

« Filtering cont.

P(X,, /e,) represents a one-step prediction

P(et+11Xe+1)  updates this with the new evidence

P(Xt /el:t+1)= aP(eHl /Xt+1 /elzt)

P(Xt+1 /el:t+1) = aP(eH—l /XH—I)ZP(XH—I /xtﬁelzt)P(xt /el:t)

X,

+1 )P(Xz+1

(using the Markov property)
=aP(e /X z+1)z P(X,, /x)P(x, /e.,)

t+1
X

t

— - 19
| Sensor model | | Transition model H recursion ‘
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DBN - Basic Inference

For two steps in

the Umbrella example: = aP(eH-l /XH—I);P(XH—I /xt )P(xt /el:t)

On day 1, the umbrella appears so U1=true. The prediction from t=0 to t=1 is

P(R1)=ZP(R1/FO)P(FO)

o
and updating it with the evidence for t=1 gives

P(R, /u,) = aP(u,/ R))P(R,)
On day 2, the umbrella appears so U2=true. The prediction from t=1 to t=2 is

P(Rz/ul):ZP(Rz/rl)P(’?/ul)

-
and updating it \;vith the evidence for t=2 gives

PR, /u,,u,)=0aP(u,/R,)P(R,/u,)

20

Example: Day 1

T 07
F 03

P(Ry=t)
05

evidence prediction @
P(R, |u)=P(u,/ R)Y P(R /1,)P(ry) R

T 09
F 02

Rain,

—
|

P(R,)=<0.5,0.5>

P(Ry) = Xy, P(R1]1p) P(r)=<0.7,0.3>0.5+<0.3,0.7>0.5=<0.5,0.5>

= a < 045,01 >~<0.818,0.182 >

21
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Example: Day 2
F 03
P(Ry=t) _—' Rainy -
=
Umbrella,
evidence prediction ? E(:“R')
P(Rzluy,up) = OfP(u2|R2)ZP(R2|7‘1)P(T1|U-1) —

P(Ry|uy) ~ < 0.818,0.182 >

P(Rz|uy) = Zrlp(Rzm) P(ry|ug)=
<0.7,0.3>0.818+<0.3,0.7>0.182 ~ <0.627,0.373>

= a < 0.565,0075 >~ < 0.883,0.117 >

22

Example
2 PR, 1) P(ry Tuy)
0.500 0.627
0.500 0.373
g é *P(u,/ R,)
True 0.500 0.818 0.883
False  0.500 0.182 P(R,/u;) 0117 P(Rzluy,up)

@ Rain, Rain,

| |

Umbrella Umbrella,

23
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DBN - Basic Inference

* Prediction:

Compute the posterior distribution over the future state,
given all evidence to date.
P(X

) :ZP(XHM | X0+ K)P(x+ k| €1:4)

for some k>0 Xt+k

The task of prediction can be seen simply as filtering
without the addition of new evidence.

24

DBN - Basic Inference

» Smoothing or hindsight:

Compute the posterior distribution over the past state,
given all evidence up to the present.

P(Xk / 61:1 ) for some k such that 0 < k < t.

Hindsight provides a better estimate of the state than
was available at the time, because it incorporates
more evidence.

25
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Smoothing

« Can | use future information to increase the accuracy of
filtering for past states?

......
-~ S,

= =

Umbrella,=t Umbrella,=t

26

Smoothing

Divide evidence e into ey, €114

P(Xileir) = P(Xy|eix, er+14)
= aP(X;|eyr)P(ers1:4| Xk, e1x) Bayes rule
aP(Xi|eyr)Plery1:4/Xk) Markov

= afpibryie

27
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Smoothing
———

Divide evidence e1; into ey, ep.1.4:
P(Xyler) = P(Xylei, ers1e)
= Q'P(Xk|elzk)P(ek+1:t|Xfc= err)
= Q'P(Xk|el:k)P(ek+1:t|Xk)
= afiibrsre

Backward message computed by a backwards recursion:

P(ek+1:t|Xk) = X P(ek+1:t|X:’f; Xk+1)P(Xk+1 |Xﬁ)

K41

28

Smoothing
———

Divide evidence e1; into ey, ep.1.4:
P(Xilers) = P(Xilerr, ert1)
= aP(Xilerr)Ple 14Xy, err)
= Q'P(Xk|el:k)P(ek+1:t|Xk)
= afiibryie

Backward message computed by a backwards recursion:

P(ek+1:t|Xk) =X P(ek+l:t|X:’f;Xk+1)P(Xk+l|Xk)

Xit1

= Yy Plersrexis) P (xns1 | Xa)

29
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Smoothing

Divide evidence e1; into e1, €14

P(Xilerr) = P(Xklers, ex1:)
= aP(Xylerr)Pler 141Xy, err)
= aP(Xylerr)Plers1:4/Xx)
= afikbrirs
Backward message computed by a backwards recursion:
P(eﬂ-+1:x|XA-J = Ex;‘HP{eﬁ-+1:r|Xﬁ-- XA-+1)P{XA-+1|X£-)
Ex;,ﬂp{ef.-ﬂ:r|XA-+1)P{XI.-+1|X;.-J
Zx;,ﬂp{eﬂ-ﬂ|XA-+1?JP{E‘A-+2:3|XA-+1?JP{XR-+1|XL-J

| Sensor model ‘ ‘ recursion | Transition model
30

[Re [PRIR.

Example aE ]

Umbrella, Unbrelia,) I

+ Smoothed estimate for rain at k=1, given u,, u,.
P(R|uy,up) = o P(Rq]uq)P(uyRy)
« The first term is taken from the forward example
<0.818, 0.182>

© P(Uy|Ry) =X, P(uylrp)P(|ry) P(ryRy)
=(0.9x 1x<0.7,0.3>)+(0.2 x 1 x <0.3,0.7>)
=<0.69, 0.41>
« P(R4|uq,u,) = 0. <0.818, 0.182> x <0.69. 0.41>
~<0.883, 0.117>
- If we do it for each time slice O(t?)!!!
31
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Example contd.

0.500 0627
0.500 0373
Tiie 0500 0 <!1a 0 5'53 S
False 0500 0.182 0117 orwarl
o.eisa 0 5!53
0117 0117 smoothed

0.690 1.000
0.410 1.000

@ /R-c;r-.'l\ Rain,
Umbrella w

Forward—backward algorithm: cache forward messages along the way
Time linear in t (polytree inference), space O(t|f])

backward

32

Forward-Backward Algorithm

function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions
inputs: ev, a vector of evidence values for steps 1,....1
prior, the prior distribution on the initial state, P(X;)
local variables: fv, a vector of forward messages for steps 0, . . ., t
b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for steps 1,... 1

fv[0] — prior
fori= ltotdo
fvji] « FORWARD (fv[i — 1], evli])
for i = 7 downto 1 do
sv[i] «— NORMALIZE(fv[i] x b)
b — BACKWARD(b, ev[i])
return sv

33

27.11.2022

16



DBN - Basic Inference

* Most likely explanation:

Compute the sequence of states that is most likely to have
generated a given sequence of observation.

argmax, P(X,/e,)

Algorithms for this task are useful in many applications,
including, e.g., speech recognition. Can also be used to
compare different temporal models that might have produced
as sequence of events.

35
Most likely path to each x,
= most likely path to some x; plus one more step
nax P(x1, ..., % Xei1]€1:41)
= Plew ‘XHI ) uﬁx (P(Xr+1 x¢) xll.lfi%:{,l P, -0 Xt-1, Xr\CJ:t))
Identical to filtering, except | replaced by
My = nax | 24 b VI X¢-1, Xtlers),
l.e., my,(7) gives the probability of the most likely path to state i.
Update has sum replaced by max, giving the Viterbi algorithm:
my1 = Pleg[Xer) max (P(Xgpafxe)miy)
36
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The occasionally
dishonest casino

« A casino uses a fair die most of the time, but occasionally switches to
a loaded one

+ Fairdie: Prob(1) =. .. = Prob(6) = 1/6
¢ Loaded die: Prob(1) =. .. = Prob(5) = 1/10, Prob(6) = %2
+ These are the emission probabilities

« Transition probabilities
¢ Prob(Fair — Loaded) = 0.01
+ Prob(Loaded — Fair)=0.2

+ Transitions between states modeled by
a Markov process

Slides following by Changui Yan

37

The occasionally dishonest casino

 Known:
*

*

Hidden: What the casino did
* FFFFFLLLLLLLFFFF...

Observable: The series of die tosses
+ 3415256664666153. ..

 What we must infer:
*

= The answer is a sequence
FFFFFFFLLLLLLFFF. ..

39
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Making the inference

* Model assigns a probability to each explanation of the observation:

P(326|FFL) (,99( . s
= P(3|F)-P(F—>F)-P(2IF)-P(F-L)-P(6IL) é/‘“”\ib*
=1/6-099-1/6-0.01" % ~—

*  Maximum Likelihood: Determine which explanation is most likely

*

» Total probability: Determine the probability that the observed
sequence was produced by the model

*

40

Notation

+ xis the sequence of symbols/observations emitted by
the model
* x;is the symbol emitted at time

* A path, r, is a sequence of states
¢ The i-th state in zis 7z

- t,,is the probability of making a transition from state k
to state r: tkr — PI’(7Z'1. _ | T = k)

* g,(b) is the probability that symbol b is emitted when in
tate k
state e, (b) =Pr(x. =b | 7, =k)

41
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A “parse” of a sequence

! ! ! !

X X3 X3 XL

L
Pr(x,7)=t,, H e, (X))t ..
i=1

42

The occasionally
dishonest casino

x = (%, %,%) - (626)

Pr(x, 77"(1)) =top€r (6) pper (2)t e, (6)

1
=0 = FFF :O.Sx%x0.99xéx0.99><%

= 0.00227

2@ Z LLL Pr(x,7?) =1,,e,(6)t,,.€,(2)t,,e,(6)
=0.5%0.5x0.8x0.1x0.8x0.5

0.008 |

2 = LFL Pr(x,7) = 1,,e,(6)t,.¢,(2)1 ¢, (6)
- 0.5><0.5><0.2><%><0.01><0.5
~0.0000417 43
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The most likely path

The most likely path n”* satisfies
7~ =argmax Pr(x,r)

To find z*, consider all possible ways the last symbol
of x could have been emitted

Let
p, (i) = Prob. of path <7z1,- -, 7zl.> most likely

to emit <x1,. .. ,x,.> such that 7, =k
Then _ _
P (i) = ¢, (x)max(p, (i =1, )

44

The Viterbi Algorithm

¢ Initialization (i = 0)
2,(0)=1, p,(0)=0fork >0

* Recursion (i=1, ..., L): For each state k
P (i) = ¢ (x)max(p, (i~ 1)r,;)

+ Termination:

Pr(x,7°) = m]gX(pk (Length)fk_l,k)

To find 7", use trace-back, as in dynamic programming
45

27.11.2022
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Viterbi: Example

X
Fl o] -i/> (1/4)-0.2} 0.02x0.2}
4 =0.01375 = 0.00226875

(1/21/2) | (1710)xmax{(1/12)~0.01, (1/2)xmax{0.01375x0.01,

LI O (1/4)x0.8} 0.02x0.8}

- -

0.99 0.8
’ . 0.01
| pO=ex)max(p, (-1, |
46
0.2
Viterbi gets it right
Rolls 315116246446644245321131631164152133625144543631656626566666
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbi FFFFFFFFFFFPFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL
Rolls 651166453132651245636664631636663162326455235266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLILLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF
Rolls 222555441666566563564324364131513465146353411126414626253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFL
Rells 36€163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFEFFFFF
47
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Dynamic Bayesian Networks

« |n addition to the discussed tasks, methods are
needed for learning the transition and sensor
models from observation.

» Learning can be done by inference, where
inference provides an estimate of what transitions
actually occurred and of what states generated the
sensor readings. These estimates can be used to
update the models.

* The updated models provide new estimates, and
the process iterates to convergence.

48

DBN — Special Cases

* Hidden Markov Model (HMMs):

Temporal probabilistic model in which the state of the process
is described by a single discrete random variable. (The simplest
kind of DBN )

« Kalman Filter Models (KFMs):

Estimate the state (continuous) of a physical system from noisy
observations over time. Also known as linear dynamical systems
(LDSs).

49
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Hidden Markov Models

X is a single, discrete variable (usually E; is too)
Domain of X, is {1,...,5}
0.7 03 gg
Transition matrix T, = P(X,=j|X,_, =1), e.g, (0% 0”]
at o

Xe=1i)

Sensor matrix O for each time step, diagonal elements P(e;

e.g., with U, =true, Oy = (0‘9 0 )

0 02

Hidden Markov Models

X is a single, discrete variable (usually E; is too)
Domain of X, is {1,...,5}
0.7 03
Transition matrix T, = P(X,=j|X,_, =1), e.g, (0% 0”]
at o

Xe=1i)

Sensor matrix O for each time step, diagonal elements P(e;

e.g., with Uy =true, O = (0[‘]9 00-))

Forward and backward messages as column vectors:

-
fl:t+1 = (1'0t+1T fl:t
bit1t = TOpbgyoy

Forward-backward algorithm needs time ()(5%t) and space ()(S7)

Umbrella;,

27.11.2022
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

Te
f1:f+1 = “Or+1T £

Algorithm: forward pass computes f;, backward pass does f;, b;

N 0N 0N 0N

52

Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

Te
fl:f+1 = (‘IOH_lT f1:1‘.

Algorithm: forward pass computes f;, backward pass does f;, b;

JAR) N N N

53
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

Te
fri1 = a0y T f1y

Algorithm: forward pass computes f;, backward pass does f;, b;

/AN N 0N

54

Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

Te
frepr = a0 T iy

Algorithm: torward pass computes 1;, backward pass does f;, b;

N N N

55
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
a1 = “OH»lTTfl:r.
Ogt_.t,_llfl:f+1 = “TTfl:r
“!{TT]_loa}lfl:f+l = fis
Algorithm: forward pass computes f;, backward pass does f;, b;

N (N (N A

56
Country Dance Algorithm
Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
fiip = ﬂOr+1TTf1:x
Ox_+11f1:f+1 = “TTfl:r.
o (T 'O fres = Fue
Algorithm: forward pass computes f;, backward pass does f;, b;
(N M N N
57
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Applications

Speech recognition
Robot localization

58

clerele One non-deterministic operation MOVE.

P(Xyy1=7|Xy=1) =Ty = (1/N(i) if j € NEIGHBORS() else 0)

E, has 16 possible values, each a four-bit sequence giving the presence or
absence of an obstacle: NSWE.
¢ is the error rate. All four bits right (1- €)*. All wrong &*

d;; is the number of bits that are different between the true values for square i
and the actual reading e,, then the probability that a robot in square i would
receive a sensor reading e, is:

P(Ei=e;| Xi=1i) = Oy, = (1 — e) et

27.11.2022
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Cell numbers: start in top row, left to right

Matrix for NSW

B ENENENEEE

(1-e)e

(1-e)? &2

(1-e)? &2

Example AIMA

o s}

ool Pl elef]
O [ Jelo[ - [1@[-[-[ - [ ]e]efe]-]

(a) Posterior distribution over robot location after E;1= NSW

olefel-]-[TlO |- F e
HENENDen

o o o

(b) Posterior distribution over robot location after E; = NSW,E»> = NS

27.11.2022

29



Performance

Localization error

6 1 il 1
55 1 B
S e=010 -~ 03
4; ] e=005 - 0.8
5 =002 - & 07
41 e=0.00 ---- g =
35 1 g 06
= 51
34 2 95
2.; 1 E 04
15 4 0.3
Iy 0.2
05 0.1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Number of observations Number of observations
(a) (b)

Figure 15.8  Performance of HMM localization as a function of the length of the observa-
tion sequence for various different values of the sensor error probability e: data averaged over
400 runs. (a) The localization error, defined as the Manhattan distance from the true location.
(b) The Viterbi path accuracy. defined as the fraction of correct states on the Viterbi path.

Last time

Filtering

Prediction

Smoothing

Viterbi for most likely path/state sequence for given
observation

HMM

— Only one state variable
— Efficient computation because of matrix operations

. TTe
frem = “Or+11 f1.4
_— Te
Oullfl:r--l = oT 'fy,
mTy=1A-1 ¢ .
o (T )" Opfrer = i

63
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Speech recognition

source sentenceg
Dorothy lived in the...

It was seven o'c " alag 1
guess at source: I call our world iy 2
Dorothy lived in the... Lived in tha 3 g

Dan Jurafsky, Stanford

Dophne Koller

Segmentation of Acoustic signals

Dan Jurafsky, Stanford

Dephne Keller

27.11.2022
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Phonetic alphabet

+ AA odd AAD

+ AE at AET

+ AH hut HHAHT
+ AO ought AOT

+ AW cow K AW

+ AY hide HH AY D
+ B be BIY

CH cheese CHIYZ

« D dee DIy

+ DH thee DH IY

+ EH Ed EHD

» ER  hurt HHERT
+ EY ate EYT

+ F fee FIY

me
knee
ping
oat
toy
pee

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

R read RIYD
s sea SIY
SH she SHIY
T tea TIY

TH theta THEYTAH
UH  hood HHUHD
Uw two TUuw

v vee VIY

W we W1y

Y yield YIYLD

Z Zee ZIy

ZH seizure SIYZHER

The CMU Pronouncing Dictionary

HMM ah

Dan Jurafsky, Stanford

M U M

Dephne Keller

27.11.2022
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Word HMM: nine

Dan Jurafsky, Stanford

Dephne. Keller

Recognition HMM

Lexioon-’

Phone HMM

Dan Jurafsky, Stanford

Dephne Keller

27.11.2022

33



Kalman Filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, =X V. 7, X |V 7.

Airplanes, robots, ecosystems, economies, chemical plants, planets, . ..

Gaussian prior, linear Gaussian transition model and sensor model

70

Updating Gaussian Distributions

Prediction step: if P(X;|e1) is Gaussian, then prediction
P(Xi 1lew) = /Xt P(Xi1x) P(xlery) dx;

is Gaussian. If P(X,|es.) is Gaussian, then the updated distribution
P(Xialerir) = aPler]| Xe)P(Xea]ers)

is Gaussian

Hence P(X;|e1,) is multivariate Gaussian N (g, 33;) for all ¢

71
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Simple 1-D Example

i 7;(& — 1 )2)
Prior Plag) = e o .
’ _1 [3‘r+1—-l‘r}2
Transition model Plzeple) = ae H(=)
_af emap®
Sensor model Plz|a) = ae H(e)

Prediction Pl = | PP dn=a [ =) (=) 4,

—
adiey *tnigﬂ!iuoﬂm]

= a jm e_%(_u—"g;rh_g) dxg .
—0c0

1 (u] )’ ) (by using completing the square.

2 T L .
=ae e Not discussed here)

72
-
Simple 1-D Example
Gaussian random walk on X=—-axis, s.d. 7., sensor s.d. o.
(07 + 03) 241 + T2pny 2 (07 + c2)o?
M1 = : . . Of 1= —F5——5
o} + o2 + o? LT 02 4 02 4 o2
045

04 | i j

0.35 i

03 .‘. P(x11z1=2.5) |

g 0.25 P(x0) j/ \-.-'. 4

= 02 ) i

0.15 ‘ i

0.1 Pil) 7 ‘ ' i

0.05 S . N\ ]

0 L i L ’/ L = 1 Zl \'I'-.: 1
s 6 4 2 0 2 4 6 8
. 75
X position
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- - -
2-D Tracking: Filtering
20 filtering
12r
—8— true
+ observed

1} [N e filiered

10
> 8-

al-

7k

58 1‘0 1‘2 1‘4 1‘6 " 1‘8 éO 2‘2 2‘4 2‘5 7

- -
2-D Tracking: Smoothing
2D smocthing
12r
—=—  true
* observed
Hk - smoothed
""‘-k.\" *
| ) - B
¢ Ly
\qJ

> 9F *

al

7k

68 llﬂ 1‘2 1‘4 1‘6 . 1‘8 2‘0 2‘2 2‘4 2‘6 78
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Where it breaks

C

(@ ®)

Figure 15.12  FILES: figures/kalman-birdl.eps (Tue Nov 3 16:23:06 2009) figures/kalman-
bird2.eps (Tue Nov 3 16:23:06 2009). A bird flying toward a tree (top views). (a) A Kalman filter will
predict the location of the bird using a single Gaussian centered on the obstacle. (b) A more realistic
model allows for the bird’s evasive action. predicting that it will fly to one side or the other.

One solution 2 switching kalman filters 4

Creating DBNs with failures

© X' =( X, Y,) for velocity X; =(X,, Y,) for position
- Battery powered robot BMeter,

Battery, Battery,

81
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Failure of sensors

+ Sensor measurements are noisy
* Real sensors can fail

* May use a Gaussian error %
model for discrete variables — (aatersy y—eChaers,)

G—®)
* Transient failure @

« Persistent failure @

82

Transient failure model

% E(Battery, |...5555005555...)
5
Battery —h- =

e K = WA= X
E(Battery, |...5555000000...)

E(Battery,)
o = i ™

-

15 20 25 30
Time step ¢

P(BMeter,=0|Battery,) P(Battery,)
P(Battery,|BMeter,=0) = « <0.99, 0.006, 0.004><0.05, 0.05, 0.95

=<0,92178771,0,01117318 , 0,06703911 >
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Transient failure model

E(Battery,)
[ ]

(1] = M =X e =K = W =M= P =X 0

E(Battery, |...5555005555...)

E(Battery,)
[ ]

E(Battery, |...5555000000...)

E(Battery, |...5555005555...)

I e T

‘l
‘\
X
\

"= X M M=K K

E(Battery, |...5555000000...)

4

15 20 25 30 15 20
Time step 7

25 30

imeystep
Ub)

s P(BMeter,=0|Batter
P(Battery,|BMeter,=0) = « <0.8, 0.1, 0.1><0.05, 0.05, 0.9>

~<0.44, 0.06,0.5 > 4

Persistent failure model

E(Battery, |...5355005355...)
By | P(B) g | %
i | 1.000 TS e
f | 0001 4 bk
7 : _ E(Battery, |...5555000000...)
23
BMBroken BMBroken | %
S 2
= P(BMBroken, ...53355000000...)
1 B 5806888060880
1] - R E-E-E - E B B B8 IF S8 b S R
P(BMBroken, ...5555003555...)
-1
15 20 25 30
Time step
(a) (b)

Figure 15.15  FILES: figures/battery-persistence.eps (Tue Nov 3 16:22:26 2009). (a) A DBN
fragment showing the sensor status variable required for modeling persistent failure of the battery sen-
sor. (b) Upper curves: trajectories of the expected value of Battery, for the “transient failure” and
“permanent failure” observations sequences. Lower curves: probability trajectories for BM Broken
given the two observation sequences.
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1

BMets r;)

BMetar!
Observed Valua: 2

Bueterd

e S— BMBroken2 —

~ . - ——

i\Bh‘BmkanU/ BMBrokant I EHBrnken!\ BMBrokend
— - i e

86
DBNs vs. HMMs
Every HMM is a single-variable DBN; every discrete DBN is an HMM
e
Consider the transition model
Sparse dependencies = exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has 20 x 2% = 160 parameters, HMM has 22" x 220 ~ (12
87
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DBNs vs. Kalman Filters

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What's the battery charge?

BMBroken,

Battery |

++++++++++++++++++++++

E(Batteryl...5555000000.. 7

P(BMBrokenl...5555000000.
g 0000000004

L]
} @ @ 8 86 888 T N

+ 4+ + g
P(BMBrokenl.. 5555005555 )

E(Battery)
Lo - ow e w
iy
g
i
w
n
5
8
&
o
&

15 20 25 30

Time step 88
Ry PRy) [ 'i“‘ PR)| [ ’jl [ F(‘]RZ)\ [ ’::\ F(']RR)\
Naive: G L) e T
) Gy —Rainy—eRainy—+(Rainy)
nbretler  Gnbrelas
[R[PWD] [Ra ] PW)] [Rs [ PWs))
HEBEIIREBIAE
Rollup filtering:
b
O(d™k) largest factor d = possible values for variables
. n = number of states
20 state variables (4 values) _
mean 420+ =4.398.046.511.104 k= number of parents %
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Approximate inference:
Likelihood Weighting

Set of weighted samples approximates the belief state

91
Set of weighted samples approximates the belief state
LW samples pay no attention to the evidencel!
= fraction “agreeing” falls exponentially with ¢
= number of samples required grows exponentially with ¢
92
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Likelihood Weighting

A angghp T TET T

: - .
A ol
Lwisfy +
os | ¥ S0 LW{Ia00) o
; S LWw(edn) -
" [ ]
F P ="
ﬁ'ﬁ I ! : (L L
: e
B4t "
. -l-'d'l".L L] 15
Vol wth B g
L
0.2 ._hﬂ_": LB
4 v bt
ﬂﬂd?:‘n -I 1 i i i i i i
0 5 10 15 20 25 30 35 40 45 30
Time mep 93

* Instead of running one example at a time
run N.

+ The N samples also represent an
approximate representation of the current
state distribution.

* Instead of using initial examples throw low
weighted ones away.

+ Must add new examples else lose to much.

94
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Idea: Particle filtering

A population of N initial-state samples is
created sampling from P(X,)

1. Based on the transition matrix propagate
examples forward. P(X,4|x,)

2. Each sample is weighted by the likelihood it
assigns to the new evidence P(e,|X1)-

3. Resample examples based on it‘s weight.

95

Particle Filtering

Rir | PRIRw)
T 07
F 03

—( Rain, 4"@
Our current
particles,10 Propagate forward J
R(Hlﬂ'l R(”.”H-] R(J’i”,+1 RLH;HH_] R, | P(UR)
0000 a| ®80 sos 5] I 33
true cooe [ 7 I e
. / ee 1) o000
_}‘(r!se ° ¥l e e [eleTele]
No umbrella resampling
is observed
at t+1

96
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Example

R [P N(r.qle) =2  P(Xu4lx) N(xle)
P los For rain =0.7*8+0.3"2= 6.2 => 6
(Rain ) For notrain=0.3 *8 + 0.7*2= 3.8 =>4
Ymbrete, Suppose no umbrella for t+1
R PO total weight(rain particles) = 0.1 * 6= 0.6
LY total weight(not rain) = 0.8 * 4= 3.2

Normalized =<0.17, 0.83>

97
- - - -
Particle Filtering: Performance
Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult
1 PR R e T et
LW(s) - R R T
LW(100) « T e
LW(1000) = ¢ o o
08 I 1W(10000) / e y
) ER/SOF(2S) - .
g o s 3
06t .
= T +T =
2 / F
=
% 04 I 3
< - I -,
o +tm . g¥m
02F T watim ]
e +++ o ol CRp -
Lt Eﬂﬂu.n
0 iﬁéﬂz'?”“'ﬂ R R
] 5 10 15 20 25 30 35 40 45 50
Time step
99
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Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP (X, |X;_)
— sensor model P (E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow 7 state variables, linear Gaussian, O(n*) update
Dynamic Bayes nets subsume HMMSs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs

100
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