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Intelligent Autonomous Agents
and Cognitive Robotics

Topic 5: Bayesian Networks

Ralf Möller, Rainer Marrone

Hamburg University of Technology

Uncertainty in prior knowledge

• Diagnosis:

 Toothache => Cavity  GumProblem  Abscess  …

RootInfection … 

• The connection between toothaches and cavity is just 

not a logical consequence. For medical diagnosis logic 

does not seem to be appropriate.

Cavity => Toothache

2
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Probability

Probabilistic assertions summarize effects of

• laziness: 

It is too much work to list the complete set of antecedents or 

consequents needed to ensure an exceptionless rule and too 

hard to use such rules

• theoretical ignorance: 

no complete theory, e.g., medical science has no complete 

theory for the domain.

• practical ignorance:
lack of relevant facts, initial conditions, tests, etc.

3

Making decisions under uncertainty

Suppose I believe the following:
P(A

25
gets me there on time | …) = 0.04 

P(A
90

gets me there on time | …) = 0.70 

P(A
120 

gets me there on time | …) = 0.95 

P(A
1440=24h

gets me there on time | …) = 0.9999

• Which action to choose?

Depends on my preferences for missing flight vs. time 
spent waiting, etc.
 Utility theory is used to represent and use preferences

 Decision theory = probability theory + utility theory

4
Later in this lecture
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Example: Dentist problem with four variables: 

Toothache (I have a toothache)

Cavity (I have a cavity)

Catch (steel probe catches in my tooth)

Weather (sunny,rainy,cloudy,snow )

Example world

5

Prior probability

• Prior or unconditional probabilities of propositions

e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 

correspond to belief prior to arrival of any (new) evidence

• Probability distribution

gives values for all possible assignments 

(sunny,rainy,cloudy,snow ):

P(Weather) = <0.72,0.1,0.08,0.1> 

(normalized, i.e., sums to 1 because one must be the case)

6
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Full joint probability distribution

• Joint probability distribution for a set of random variables gives the 
probability of every atomic event on those random variables
P(Weather,Cavity) = a 4 × 2 matrix of values:

Weather = sunny rainy cloudy snow 

Cavity = true 0.144 0.02 0.016 0.02

Cavity = false 0.576 0.08 0.064 0.08

• Full joint probability distribution: all random variables involved
 P(Toothache, Catch, Cavity, Weather)

• Every question about a domain can be answered by the full joint distribution

= 0.2
= 0.8

= 1.0

7

Conditional probability

• Conditional or posterior probabilities (after having received some 
information)
e.g., P(cavity | toothache) = 0.8

• Definition of conditional probability (in terms of uncond. prob.):
P(a | b) = P(a  b) / P(b) if  P(b) > 0

• Product rule gives an alternative formulation ( is commutative):
P(a  b) = P(a | b) P(b) = P(b | a) P(a)

• Chain rule is derived by successive application of product rule:

P(X
1
, …,X

n
) = P(X

1
,...,X

n-1
) P(X

n
| X

1
,...,X

n-1
)

= P(X
1
,...,X

n-2
) P(X

n-1
| X

1
,...,X

n-2
) P(X

n
| X

1
,...,X

n-1
)

= …

= P(X
i
| X

1
, … ,X

i-1
)
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Bayes rule
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Inference by enumeration

• Start with the joint probability distribution:

• For any proposition φ, sum the atomic events where it is 
true: P(φ) = Σω�φ P(ω)

10
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Inference by enumeration

• Start with the joint probability distribution:

P(cavity  toothache) = 
0.108 + 0.012 + 0.072 + 0.008+ 0.016 + 0.064 = 0.28

11

Inference by enumeration

• Start with the joint probability distribution:

• Can also compute conditional probabilities:

P(cavity | toothache) = P(cavity  toothache)

P(toothache)

= 0.016+0.064

0.108 + 0.012 + 0.016 + 0.064

= 0.4

Product rule

12
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Normalization

• Denominator P(z) (or P(toothache) in the example before) can be viewed as a 
normalization constant α

P(Cavity | toothache) = P(Cavity,toothache)/P(toothache)
= α P(Cavity,toothache) 
= α [P(Cavity,toothache,catch) + P(Cavity,toothache, catch)]

= α [<0.108,0.016> + <0.012,0.064>] 

= α <0.12,0.08>

a*(0,12+0,08)=1

a=1/0,2=5

5*0,12=0,6

5*0,08=0,4

13

General idea: compute distribution on query variable by fixing 
evidence variables (toothache) and summing over hidden variables 
(Catch)

= <0.6,0.4>

General inference procedure

Typically, we are interested in 

the posterior joint distribution of the query variables Y 

given specific values e for the evidence variables E

X are all variables of the modeled world

Let the hidden variables be H = X - Y – E then the required summation of joint entries is 
done by summing out the hidden variables:

P(Y | E = e) = αP(Y,E = e) = αΣ
h
P(Y,E= e, H = h)

• The terms in the summation are joint entries because Y, E and H together exhaust 
the set of random variables (X)

• Obvious problems:

1. Space complexity O(dn) to store the joint distribution where d is the largest arity 
and n denotes the number of random variables

2. Worst-case time complexity O(dn) 

3. How to find the numbers for O(dn) entries?

14
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Independence

• A and B are independent iff

P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B) = P(A) P(B)

P(Toothache, Catch, Cavity, Weather)

= P(Toothache, Catch, Cavity) P(Weather)

• 32 entries table can be constructed from 8 and 4 entries; 

• Absolute independence powerful but rare

• How can we check whether we have independent variables in the 
full joint?

15

Example #1

Bread Bagels Butter p(r,a,u)

0 0 0 0.24

0 0 1 0.06

0 1 0 0.12

0 1 1 0.08

1 0 0 0.12

1 0 1 0.18

1 1 0 0.04

1 1 1 0.16

Bread p(r)

0 0.5

1 0.5

P(a,u)=P(a)P(u)? P(r,a)=P(r)P(a)?
16
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Example #1

Bread Bagels Butter p(r,a,u)

0 0 0 0.24

0 0 1 0.06

0 1 0 0.12

0 1 1 0.08

1 0 0 0.12

1 0 1 0.18

1 1 0 0.04

1 1 1 0.16

Bread p(r)

0 0.5

1 0.5

Bagels p(a)

0 0.6

1 0.4

Butter p(u)

0 0.52

1 0.48

Bagels Butter p(a,u)

0 0 0.36

0 1 0.24

1 0 0.16

1 1 0.24

P(a,u)=P(a)P(u)?
17

P(r,a)=P(r)P(a)?

?

Example #1

Bread Bagels Butter p(r,a,u)

0 0 0 0.24

0 0 1 0.06

0 1 0 0.12

0 1 1 0.08

1 0 0 0.12

1 0 1 0.18

1 1 0 0.04

1 1 1 0.16

Bread p(r)

0 0.5

1 0.5

Bagels p(a)

0 0.6

1 0.4

Butter p(u)

0 0.52

1 0.48

Bread Bagels p(r,a)

0 0 0.3

0 1 0.2

1 0 0.3

1 1 0.2

Bagels Butter p(a,u)

0 0 0.36

0 1 0.24

1 0 0.16

1 1 0.24

P(a,u)=P(a)P(u)? P(r,a)=P(r)P(a)?

≠ 0.52*0.6=0.312

YES
18

NO
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Conditional independence

• P(Toothache, Cavity, Catch) has 23 – 1 = 7 independent entries 

• If I have a cavity, the probability that the probe catches in doesn't depend on 
whether I have a toothache:
(1) P(catch | toothache, cavity) = P(catch | cavity)

(2) P(catch | toothache,cavity) = P(catch | cavity)

• Catch is conditionally independent of Toothache given Cavity:
P(Catch | Toothache,Cavity) = P(Catch | Cavity)

• Equivalent statements:
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

19

Conditional independence contd.

• Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)

conditional independence

= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

i.e., 2 + 2 + 1 = 5 independent numbers

• In most cases, the use of conditional independence reduces the size 
of the representation of the joint distribution from exponential in n to 
linear in n.

• Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.

20
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Car Example

• Three variables:
 Gas, Battery, Starts

• P(Battery|Gas) = P(Battery)
Gas and Battery are independent

• P(Battery|Gas,Starts) = P(Battery|Starts)

• Independence does not imply conditional 
independence.

• Conditional independence does not imply 
independence

Gas and Battery are not 
independent given Starts

?

21

Question

• How can we make use of 

 independence 

 and conditional independence

Need a model that can express this

22
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Bayesian networks

• A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of the full joint distributions

• Syntax:
 a set of nodes, one per variable

 a directed, acyclic graph (link ≈ "directly influences")

 a conditional distribution for each node given its parents:
P (Xi | Parents (Xi))

• In the simplest case, conditional distribution represented 
as a conditional probability table (CPT) giving the 
distribution over Xi for each combination of parent values

23

• also called Naïve Bayesian networks

• conditional independence of all effect variables

Simplest Bayesian Network

24

� �����|������
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Cavity

Toothache Catch
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More complex example

• I'm at work, neighbor John calls to say my alarm is ringing, but 
neighbor Mary calls but not as often as John. Sometimes it's set off 
by minor earthquakes but also on burglary. Is there a burglar?

• Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

• Network topology reflects "causal" knowledge:

 A burglar can set the alarm off

 An earthquake can set the alarm off

 The alarm can cause Mary to call

 The alarm can cause John to call

25

Example contd.

26
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Compactness

• A CPT for Boolean Xi with k Boolean parents has 2k rows for the 
combinations of parent values

• Each row requires one number p for Xi = true
(the number for  Xi = false is just 1-p)

• If each of n Boolean variables has no more than k parents, the complete 
network requires O(n · 2k) numbers
i.e., grows linearly with n, vs. O(2n) for the full joint distribution

• For burglary net? 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)

k parents with n values each and m values for the child node of the parents?

Number of indepenent values = nk ∙(m-1)
27

Semantics

The full joint distribution can be rewritten using the chain rule:

28

Assumption: Independence and Conditional independence 

assertions are correctly modeled
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Semantics

The full joint distribution is defined as the product of the local 

conditional distributions:

e.g., P(j  m  a  b  e)

= P (j | a) P (m | a) P (a | b, e) P (b) P (e)

= 0.90x0.7x0.001x0.999x0.998

 0.00063

29

� 
�, … ,
� = ��(
�| ������(
�)

�

���

) 

• We can determine if  conditional independence holds by 

a graph separation criterion called d-separation

(direction dependent separation)

• X and Y are d-separated if there is no active path 

between them.

• The formals definition of active is somewhat involved.

The Bayes Ball Algorithm gives a nice graphical 

definition.

Encoding conditional independence via

d-separation

30
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The six rules of Bayes Ball

31

A double-header: two games of Bayes Ball

32
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A double-header: two games of Bayes Ball

33

Markov Blanket

• Markov blanket: Parents + children + children’s parents

• Node is conditionally independent of all other nodes in network, 

given its Markov Blanket -> simplifies computation -> gather 

information on the nodes of the Markov Blanket?

34
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Constructing Bayesian networks

• 1. Choose an ordering of variables X
1
, … ,X

n 
.

Cause should precede effects.

• 2. For i = 1 to n

 add Xi to the network

 select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)

This choice of parents guarantees:

P (X
1
, … ,X

n
) = π

i =1
P (X

i
| X

1
, … , X

i-1
)

(chain rule)

= π
i =1

P (X
i 
| Parents(X

i
))

(by construction)

n

n

35

• Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?

Example

36

No
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• Suppose we choose the ordering M, J, A, B, E

P(A | J, M) = P(A)? 

P(A | J, M) = P(A | J)?

Example

37

No

No

• Suppose we choose the ordering M, J, A, B, E

P(B | A, J, M) = P(B)?

P(B | A, J, M) = P(B | A)? 

Example

38

Yes

No
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• Suppose we choose the ordering M, J, A, B, E

P(E | B, A ,J, M) = P(E | A)?

P(E | B, A, J, M) = P(E | A, B)?

Example

39

No
Yes

Example contd.

• Deciding conditional independence is hard in noncausal directions

• (Causal models and conditional independence seem hardwired for 

humans!)

• Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

instead of 10.
40
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Efficient implementation of

CPTs

41

• The number of independent entries grow exponentially 

with the number of parents.

• Two ways to overcome this

 Restrict the number of parents if possible

 Instead of free distributions, often canonical (parameterized) 

distributions are suggested. One popular example

of such a pattern is the noisy OR for discrete cases.

Example

42
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Example

43

� ¬� ��,��, … , �� , ¬����, … , ¬�� = ∏ ���
���

Example

44
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• Structure and semantic of BN

 Modelling of independence and conditional 

independence

 Causal and non-causal networks

 d-separation, Markov blanket

 Efficient CPTs, e.g., noisy OR, trees, Min, Max, …

Last Time

45

Hybrid (discrete+contionous) networks

46



12.11.2022

24

Continous variables:

Gaussian density

47

����    � =
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• Need one conditional density function for child variable given

 continuous parents

 for each discrete value of parents

• Mean Cost varies linearly with Harvest, variance fixed

• Linear variation is unreasonable over the full range but works

if the likely range of Harvest is narrow

Continuous child variables

48
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Continuous child variables

• Determine a Gaussian for subsidy and ¬subsidy

• What happens if subsidy is not given P(c|h)?

49

Discrete variabel cont. parents

• Probability of Buys given Cost should be a soft threshold

Use integral

Leads to Probit

LogitAlternativ 50
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• Simple queries: P(X1,…, Xn|e2, e4, e5)

• Optimal decisions: decision networks include utility 

information; inference must handle utility nodes.

• Value of information: which evidence to seek next?

• Sensitivity analysis: which probability values are more 

critical?

• Explanation: why do I need a new engine?

Inference tasks

51

Inference by enumeration

52

= a S
a
S
e
P(bjmae) [marginalization]

= a S
a
S
e
P(b)P(e)P(a|b,e)P(j|a)P(m|a) [BN]

= a P(b)S
e
P(e)S

a
P(a|b,e)P(j|a)P(m|a) [re-ordering]

P(b|j,m) = a P(b,j,m)
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Evaluation Tree

53

Irrelevant variables

62

What  about M?

We sum over all possible values of m

For each row it means that the value is 1
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Irrelevant variables

63

For each row it means that the value is 1

Moral Graph: Markov Blanket

• The moral graph is an undirected graph that is obtained 

as follows:

 connect all parents of all nodes

 make all directed links undirected

• Note:

 the moral graph connects each node to all nodes of its Markov 

blanket

 it is already connected to parents and children

 now it is also connected to the parents of its children

64
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Irrelevant variables continued:

• m-separation:

 A is m-separated from B by C iff it is separated by C in the moral

graph

• Example:

 J is m-separated from E by A

• Example: 

Theorem 2: Y is irrelevant if it is m-separated from X by E

65

For P(JohnCalls| Alarm=true),

Burglary, Earthquake and MarryCalls are irrelevant. 

Approximate Inference 

In Bayesian Network

• Singly connected networks (or polytrees):
 any two nodes are connected by at most one (undirected) path

 time and space cost of variable elimination linear in the size of 
the network (number of CPT entries; number of parents O(dkn)).

• Multiply connected networks: NP-hard

• We need approximate inference techniques!!!!!!!

• Monte Carlo algorithm
 Widely used to estimate quantities that are difficult to calculate 

exactly

 Randomized sampling algorithm

 Accuracy depends on the number of samples

 Two families

 Direct sampling

 Markov chain sampling 66
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Inference by stochastic simulation

67

Sampling from empty network

• Generating samples from a network that has no 

evidence associated with it (empty network)

• Basic idea

 sample a value for each variable in topological order

 using the specified conditional probabilities

68
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Example in simple case

Cloudy

WetGrass

Sprinkler Rain

S R P(W)

______________

t t .99

t f .90

f t .90

f f .00

P(C)=.5

C P(R)

________

t .80

f .20

C P(S)

_______

_

t .10

f .50

[Cloudy, Sprinkler, Rain, WetGrass]

[true,         ,       ,       ]

[true, false,       ,       ]

[true, false, true,       ]

[true, false, true, true]

Sampling

N = 1000

N(Rain=true) = N([ _ , _ , true, _ ]) = 511

P(Rain=true) = 0.511

Estimating

69

Properties

70
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Rejection Sampling

• Used to compute conditional probabilities

• Procedure

 Generating sample from prior distribution 

specified by the Bayesian Network

 Rejecting all that do not match the evidence

 Estimating probability

71

Rejection Sampling

72
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Rejection Sampling

Example

• Let us assume we want to estimate P(Rain|Sprinkler = true) with 100 
samples

• 100 samples
 73 samples => Sprinkler = false

 27 samples => Sprinkler = true
 8 samples => Rain = true

 19 samples =>  Rain = false

• P(Rain|Sprinkler = true) = NORMALIZE({8,19}) = {0.296,0.704}

• The true answer ist <0.3,0.7>

• Problem
 It rejects too many samples

73

Analysis of rejection sampling

75
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Likelihood Weighting

• Goal
 Avoiding inefficiency of rejection sampling

• Idea
 Generating only events consistent with evidence

 Each event is weighted by likelihood that the event 
accords to the evidence

76

Likelihood weighting

77

,e)
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Likelihood Weighting

Example

• P(Rain|Sprinkler=true, WetGrass = true)?

• Sampling, start with weight=1

 Sample from P(Cloudy) = {0.5,0.5} => true

 Sprinkler is an evidence variable with value true 

w  w * P(Sprinkler=true | Cloudy = true) = 0.1

 Sample from P(Rain|Cloudy=true)={0.8,0.2} => true

 WetGrass is an evidence variable with value true

w w * P(WetGrass=true |Sprinkler=true, Rain = true) = 0.099

 [true, true, true, true] with weight 0.099

78

Likelihood Weighting

Example

• P(Rain|Sprinkler=true, WetGrass = true)?

• Sampling, start with weight=1

 Sample from P(Cloudy) = {0.5,0.5} => false

 Sprinkler is an evidence variable with value true

w  w * P(Sprinkler=true | Cloudy = false) = 0.5

 Sample from P(Rain|Cloudy= false)={0.2,0.8} => false

 WetGrass is an evidence variable with value true

w w * P(WetGrass=true |Sprinkler=true, Rain = false) = 0.45

 [true, true, true, true] with weight 0.45

• Estimating

 Accumulating weights to either Rain=true or Rain=false

 Normalize

79
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Likelihood analysis

81

Markov Chain Monte Carlo

• Let’s think of the network as being in a particular current state 
specifying a value for every variable

• MCMC generates each event by making a random change to the 
preceding event

• The next state is generated by randomly sampling a value for one of 
the non evidence variables X

i
, conditioned on the current values 

of the variables in the MarkovBlanket of X
i

• Likelihood Weighting only takes into account the evidences of the 
parents.

82
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Gibbs sampling

• Gibbs sampling is a MCMC method
 State of the network => current assignment

 Generate next state by sampling one non-evidence variable 
given Markov blanket

 Sample each variable in turn ( can choose it random)

83

Example

84
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Gibbs Example

• Query P(Rain| Sprinkler = true, WetGrass = true)

• Initial state is [true, true, false, true] [Cloudy,Sprinkler,Rain,WetGrass]

• The following steps are executed repeatedly:

 Cloudy is sampled,  given the current values of its Markov Blanket variables

So, we sample from P(Cloudy|Sprinkler= true, Rain=false)

The result is Cloudy = false (???????)

 Now current state is [false, true, false, true] and counts are updated

 Rain is sampled, given the current values of its Markov Blanket variables

Sample from P(Rain|Cloudy=false,Sprinkler=true, WetGrass=true)

First create the distribution we want to sample from.
Rain = true.

 Current state is [false, true, true, true]

• After all the iterations, let’s say the process visited 20 states where rain is true 
and 60 states where rain is false then the answer of the query is 
NORMALIZE({20,60})={0.25,0.75} 85

Want to sample Cloudy. 

The current state is [Cloudy?, true, false, true]

What is the Markov blanket, the sampling distribution?

Sample distribution 

P(Cloudy | Sprinkler= true, Rain=false) =

 P(Cloudy) * P(Sprinkler= true | Cloudy ) P(Rain=false | Cloudy)=

 (<0.5, 0.5> * <0.1 , 0.5> * <0.2, 0.8>)

 (<0.5, 0.5> * <0.1 * 0.2, 0.5*0.8>) =

 (<0.5, 0.5> * <0.02 , 0.4>) =

 <0.01, 0.2>  <0.05, 0,95>

86

evidence sampled

[false, true, false, true] with probability 0,95

[true, true, false, true] with probability 0,05
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Summary

• Bayesian networks provide a natural representation for (causally 
induced) conditional independence

• Topology + CPTs = compact representation of joint distribution

• Generally easy for domain experts to construct (if not to big)

• Exact inference by variable elimination

 polytime on polytrees, NP-hard on general graphs

 space can be exponential as well

• Approximate inference based on sampling and counting help to 
overcome complexity of exact inference
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