
1/16/2023

1

Intelligent Autonomous Agents

Agents and Rational Behavior
Topic 9: Decision-Making under Uncertainty

Decision-Theoretic Agent Design

Ralf Möller, Rainer Marrone

Hamburg University of Technology

1

Literature

• Chapter 17

2

1/16/2023

2

Last time

• Sequential decision making (uncertain actions)

 Need a policy -> best action for each possible state

• Finding the best policy

 Value iteration

 Bellman update is a contraction 

Lead to the definition of when to stop value iteration. 3


'

)'(),|'(maxarg)(*
sa

sUassP s 

Policy Loss

• The policy loss of πi is connected to the error in Ui by the

following inequality:

4

if ||Ui – U|| < e then ||Uπi – U||< 2e (17.9)

for the 4×3 environment with γ =0.9. The policy πi is optimal when

i=4, even though the maximum error in Ui is still 0.46

1/16/2023

3

Last time: Policy iteration

• Create a random policy

Repeat:

 Value determination

Ut(i) R(i) + SkP(k | P(i)) Ut(k)

 Policy Update:

P’(i) = arg maxa SkP(k | a.i) U(k)

 If P’ = P then return P

• We can combine Value- and Policy Iteration to get the

best of both
5

Further optimization

• All algorithms require updating the utility or policy for all

states at once.

• At each step we can also select a subset for updating

asynchronous policy iteration/mod. value iter.

(can show it will converge if some conditions for initial policy and

utility function hold)

• Leads to heuristic algorithms that concentrate on states

that are likely to be reached by a good policy.

 “if one has no intention of throwing oneself off a cliff, one should

not spend time worrying about the exact value of the resulting

state”

6

1/16/2023

4

Summary

• Decision making under uncertainty

• Sequential decision making

 Utility of histories

 Value iteration

 Policy iteration

7

Jumping-off Point

• Let us assume again that the agent lives in the

4x3 environment

• The agent knows the environment

• BUT

 Agent has no or very unreliable sensors

 It does not make sense to determine the optimal policy

wrt. a single state

 P*(s) is not well defined

8

1/16/2023

5

POMDP: Uncertainty

• Uncertainty about the action outcome

• Uncertainty about the world state due to

imperfect (partial) information

9

Example: Target Tracking

There is uncertainty
in the robot’s and target’s
positions; this uncertainty
grows with further motion

There is a risk that the target
may escape behind the corner,
requiring the robot to move
appropriately

But there is a positioning
landmark nearby. Should
the robot try to reduce its
position uncertainty?

10

1/16/2023

6

Decision cycle of a POMDP agent

• Given the current belief state b, execute the action

• Receive observation o

• Set the current belief state to FORWARD(b,a,o) and
repeat

)(
* ba 

SE 

Agent

World

Observation

Action

b

11

Example Scenario

12

The agent has no sensors!!!

1/16/2023

7

Belief state

• b(s) is the probability
assigned to the actual
state s by belief state b.

0.111 0.111 0.111 0.000

0.111 0.111 0.000

0.111 0.111 0.111 0.111

()0,0,,,,,,,,,
9
1

9
1

9
1

9
1

9
1

9
1

9
1

9
1

9
1

�� �� � ���|�′� � � �� �, � � � �ℎ�� �� ���������
�

b‘ = � FORWARD(b,a,e)
13

if a is executed in b and

observation is e the

belief in s’ is?

Outcome of actions

• Probability of an observation e given that a was performed in b

P(e|a,b) = ∑s’ P(e|a,s’,b) P(s’|a,b)

= ∑s’ P(e|s’) P(s’|a,b) markov assumption

= ∑s’ P(e|s’) ∑s P(s’|s,a) b(s)

• Probability of reaching b’ from b, given action a not knowing e

P(b’|a,b) = ∑e P(b’|e,a,b) P(e|a,b)

= ∑e P(b’|e,a,b) ∑s’ P(e|s’) ∑s P(s’|s,a) b(s)

Where P(b’|e,a,b) = 1 if FORWARD(b, a, e) = b’ and P(b’|b, a, e) = 0

otherwise

• A new reward function for belief states: (b)=∑s b(s)R(s)

• P(b’|b,a) and (b) define an observable MDP on the space of belief

states.

14

1/16/2023

8

?

Belief MDP

• A belief MDP is a tuple <B, A, , E>:

B = infinite set of belief states

E = percepts

A = finite set of actions

(b) = ∑s b(s)R(s) (reward function)

P(b’|b, a) = (transition function)

0.111 0.111 0.111 0.000

0.111 0.111 0.000

0.111 0.111 0.111 0.111

Move left once, without observations

b b’

∑e P(b’|e,a,b) ∑s’ P(e|s’) ∑s P(s’|s,a) b(s)

15

≈

+0.8*0.111

0.2

0.8*0.111+0.1*0.111 +0.1*0.111 = 0.2

Belief MDP

• A belief MDP is a tuple <B, A, , E>:

B = infinite set of belief states

E = percepts

A = finite set of actions

(b) = ∑s b(s)R(s) (reward function)

P(b’|b, a) = (transition function)

0.111 0.111 0.111 0.000

0.111 0.111 0.000

0.111 0.111 0.111 0.111

Move left once, without observations

b b’

∑e P(b’|e,a,b) ∑s’ P(e|s’) ∑s P(s’|s,a) b(s)

16

≈

+0.1*0.111

0.2

0.8*0.111 +0.1*0.111

? 0.111

= 0.111

1/16/2023

9

Solutions for POMDP

• Methods based on value and policy iteration:

A policy can be represented as a set of regions of belief state

space, each of which is associated with a particular optimal action.

The value function associates a distinct linear function of b with

each region. Each value or policy iteration step refines the

boundaries of the regions and may introduce new regions.

)(b

18

Value Iteration for POMDPS

• Consider an optimal policy π* and its application in belief

state b.

• For this b the policy is a “conditional plan”

 Let the utility of executing a fixed conditional plan p in s

be up(s).

Expected utility Up(b) = ∑s b(s) up(s)

It varies linearly with b, a hyperplane in a belief space

 At any b, the optimal policy will choose the conditional

plan with the highest expected utility

U(b) = U π* (b) = argmaxp b×up (summation of dot-

prod.)

• U(b) is the maximum of a collection of hyperplanes and will

be piecewise linear and convex
19

1/16/2023

10

Example: Conditional Plans

• Two state world 0,1

• Two actions: stay(s), go(s)

 Actions achieve intended effect with some probability p

• One-step plan [go], [stay]

• Two-step plans are conditional

 [a1, IF percept = 0 THEN a2 ELSE a3]

 Shorthand notation: [a1, a2/a3]

• n-step plan are trees with nodes attached with

actions and edges attached with percepts
20

Example

• Two state world 0,1. R(0)=0, R(1)=1

• Two actions: stay (0.9), go (0.9)

• The sensor reports the correct state with prob. 0.6

• Consider the one-step plans [stay] and [go]

 u[stay](0)=R(0) + 0.9R(0)+0.1R(1) = 0.1

 u[stay] (1)=R(1) + 0.9R(1)+0.1R(0) = 1.9

 u[go] (0)=R(0) + 0.9R(1)+0.1R(0) = 0.9

 u[go] (1)=R(1) + 0.9R(0)+0.1R(1) = 1.1

• This is just the direct reward function (taken into account

the probabilistic transitions)

21

1/16/2023

11

Example

Utility of two one-step plans

as a function of b(1)

if(b(1)>0.5) stay else go

22

General formula

• Let p be a depth-d conditional plan whose initial action is a and

whose depth-(d-1) subplan for percept e is p.e, then

up(s) = R(s) + ∑s’ P(s’| s,a) ∑e P(e|s’) up.e(s’)

23

[Stay; if Percept =0 then Stay else Stay]

[Stay; if Percept =0 then Stay else Go] . . .

We can compute the utilities for conditional plans of

depth-2 by considering each possible first action, each

possible subsequent percept and then each way of choosing

a depth-1 plan to execute for each percept

1/16/2023

12

u[stay, stay/stay](0)=R(0) + (0.9*(0.6*0.1 + 0.4*0.1) + 0.1*(0.4*1.9 + 0.6*1.9))=0.28

u[stay, stay/stay](1)=R(1) + (0.1*(0.6*0.1 + 0.4*0.1)+ 0.9*(0.4*1.9 + 0.6*1.9))=2.72

Example

8 distinct fixed depth 2 plans.

4 are suboptimal across the

entire belief space (dashed lines).

ustay(0) ustay(1)
24

up(s) = R(s) + ∑s’ P(s’| s,a) ∑e P(e|s’) up.e(s’)

use ustay(0) use ustay(1)

u[go, stay/stay](0)=R(0) + (0.1*(0.6*0.1 + 0.4*0.1) + 0.9*(0.4*1.9 + 0.6*1.9))=1.72

u[go, stay/stay](1)=R(1) + (0.9*(0.6*0.1 + 0.4*0.1) + 0.1*(0.4*1.9 + 0.6*1.9))=1.28

Example

8 distinct fixed depth 2 plans.

4 are suboptimal across the

entire belief space (dashed lines).

25

up(s) = R(s) + ∑s’ P(s’| s,a) ∑e P(e|s’) up.e(s’)

ustay(0) ustay(1)

1/16/2023

13

R(1) + (0.1*(0.6*0.9 + 0.4*0.1) + 0.9*(0.4*1.1+ 0.6*1.9))=2.48

u[stay, go/stay](0)= R(0)

u[stay, go/stay](1)=

Example

8 distinct fixed depth 2 plans.

4 are suboptimal across the

entire belief space (dashed lines).

26

up(s) = R(s) + ∑s’ P(s’| s,a) ∑e P(e|s’) up.e(s’)

ugo(0) ustay(0) ugo(1) ustay(1)
+ (0.9*(0.6*0.9 + 0.4*0.1) + 0.1*(0.4*1.1 + 0.6*1.9))=0.68

Example

Utility of four undominated

two-step plans
Utility function for optimal

eight step plans

27

1/16/2023

14

Value Iteration

• This give us a value iteration algorithm

• The elimination of dominated plans is essential for reducing doubly

exponential growth:

the number of undominated plans with d=8 is just 144,

otherwise 2255 (|A| O(|E|d-1))

If you have n undominated plans you have to generate |A| *n|E| new

plans.

• For large POMDPs this approach is highly inefficient

28

up(s) = R(s) + ∑s’ P(s’| s,a) ∑e P(e|s’) up.e(s’)

Model for POMDPs

• Dynamic Bayesian network

 the transition and observation models

• Dynamic decision network (DDN)

 decision and utility

• A filtering algorithm

 incorporate each new percept and action and update the belief

state representation.

• Decisions are made by projecting forward possible

action sequences and choosing the best action

sequence.

29

1/16/2023

15

The Generic Structure of a

Dynamic Decision Network

• The decision problem involves calculating the value of that

maximizes the agent’s expected utility over the remaining state

sequence.

t
A

30

Search Tree of the Lookahead DDN

t
A

1t
A

2t
A

10 4 6 3

1tE

2t
E

3t
E

)|(:1 tt
EXP

)|(1:11  tt
EXP

)|(2:12  tt
EXP

)(3t
XU

31

1/16/2023

16

Search Tree of the Lookahead DDN

32

Wall NSWE

Search Tree: Exhaustive Enumeration

• The search tree of DDN is very similar to the
EXPECTIMINIMAX algorithm for game trees
with chance nodes, except hat:

 There can also be rewards at non-leaf states

 The decision nodes correspond to belief states
rather than actual states.

• The time complexity:
d is the depth, |A| is the number of available
actions, |E| is the number of possible
observations.
This is far less than value iteration.

)|||(|
dd

EAO 

33

1/16/2023

17

Discussion of DDNs

• DDNs provide a general, concise
representation for large POMDPs

• Agent systems moved from
 static, accessible, and simple environments to

 dynamic, inaccessible, and complex environments
that are closer to the real world

• However, exact algorithms are exponential

34

Perspectives of DDNs to

Reduce Complexity

• Heuristic estimate for
the utility of the remaining steps

• Incremental pruning techniques

• Many approximation techniques as in our search
lecture:

 Using less detailed state variables for states in the distant
future.

 Using a greedy heuristic search through the space of decision
sequences.

…

35

