Intelligent Autonomous Agents

Agents and Rational Behavior

Topic 9: Decision-Making under Uncertainty
Decision-Theoretic Agent Design

S

Ralf Moller, Rainer Marrone
Hamburg University of Technology

Literature

« Chapter 17

=

s Acrtificial Intelligence
r. ot A Modern Approach

NOI’Vié Third Edition

1/16/2023

1/16/2023

Last time

+ Sequential decision making (uncertain actions)
+ Need a policy -> best action for each possible state

* Finding the best policy
+ Value iteration

repeat
U—U"36—0
for each state s in S do
U'[s] < R(s) + = ax P(s'|s,a) U[s
[s] (s) Y "Ié'l‘:R‘J Z (s | s,a) []
if|[U’[s] — Uls]| > dthend— |U'[s] — Uls|

7 *(s) = arg max ZP(S'|s,a)U(s’)

+ Bellman update is a contraction >
Lead to the definition of when to stop value iteration. 3

Policy Loss

« The policy loss of 1, is connected to the error in U; by the
following inequality:

if ||U, — U|| <& then |JU™ - U||< 2¢ (17.9)

1
Max error

, 08 Policy loss ------—
2
5
= 06 for the 4 x 3 environment with y =0.9. The policy i is optimal when
& i=4, even though the maximum errorin Ui is still 0.46
£ 04
5
g
=02

0

0 2 4 6 8 10 12 14

Number of iterations

Figure 17.6 FILES: . The maximum error ||U; — U|| of the utility estimates and the policy loss
||[U™ — U]|. as a function of the number of iterations of value iteration.

Last time: Policy iteration

» Create a random policy
Repeat:

+ Value determination

() € R + 2Pk T16) Uy(k)
+ Policy Update:

IT'(i) = arg max, 2., P(k | a.i) L(k)
¢ If IT = IT then return I1

+ We can combine Value- and Policy Iteration to get the
best of both

Further optimization

+ All algorithms require updating the utility or policy for all
states at once.

+ At each step we can also select a subset for updating

asynchronous policy iteration/mod. value iter.

(can show it will converge if some conditions for initial policy and
utility function hold)

» Leads to heuristic algorithms that concentrate on states
that are likely to be reached by a good policy.

+ “if one has no intention of throwing oneself off a cliff, one should
not spend time worrying about the exact value of the resulting
state”

1/16/2023

Summary

« Decision making under uncertainty
« Sequential decision making

+ Utility of histories

* Value iteration

+ Policy iteration

Jumping-off Point

» Let us assume again that the agent lives in the
4x3 environment
» The agent knows the environment
« BUT
+ Agent has no or very unreliable sensors
+ It does not make sense to determine the optimal policy
wrt. a single state
+ IT*(s) is not well defined

1/16/2023

POMDP: Uncertainty

» Uncertainty about the action outcome

 Uncertainty about the world state due to
imperfect (partial) information

Example: Target Tracking

There is uncertainty

in the robot’s and target's
positions; this uncertainty
grows with further motion

There is a risk that the target
may escape behind the corner, v@
requiring the robot to move

appropriately @’
But there is a positioning

landmark nearby. Should
the robot try to reduce its
position uncertainty?

1/16/2023

Decision cycle of a POMDP agent

- Action

Agent

Observation

« Given the current beligf state b, execute the action
a=rx (b)

* Receive observation o

« Set the current belief state to FORWARD(b,a,0) and

repeat
11
Example Scenario
The agent has no sensors!!!
0111 | 0111 | 0411 |[0.000] 0300 | 0.010 | 0.008 |[0.000 0.622 | 0.221 | 0.071 0.005 | 0.007 | 0.019 | [0.775
E- 0111 0.221 . 0.059 0.005 - 0.003 0.034 . 0.007
o111 | 0411 | 0411 | 0411 0.371 | 0.012 | 0.008 | 0.000 0.003 | 0.024 | 0.003 | 0.000 0.005 | 0.006 | 0.008 | 0.090
(a} (b) () (d)
Figure 17.8 () The initial probability distribution for the agent’s location. (b) After mov-
ing Left five times. (¢) After moving Up five times. (d) After moving Right five times.
12

1/16/2023

Belief state

* b(s) is the probability 0.1 | 0411 | 0411 | 0.000
assigned to the actual

state s by belief state b. I- 0.111 | 0.000

0.111 0.111 0.111 0.111

if a is executed in b and

observation is e the |
beliefin s’ is? (3,9,9,9,9,9,9,9,9,

b'(s") = P(e|s’)ZP(s’|s,a)b(s) this is Filtering
S

b*= a FORWARD(b,a,e)

LLLLLLLLO())
M

13

Outcome of actions

Probability of an observation e given that a was performedin b
P(ela,b) = > P(e|a,s’,b) P(s’|a,b)

=3, P(els’) P(s’|]a,b) markov assumption

=25 P(els’) 25 P(s'ls,a) b(s)

Probability of reaching b’ from b, given action a not knowing e
P(b’|la,b) = >, P(b’|e,a,b) P(e|a,b)

= 2. P(ble,ab) 34 P(els’) 3 P(s]s,a) b(s)
Where P(b’|e,a,b) = 1 if FORWARD(b, a, e) =b’ and P(b’|b, a,e) =0
otherwise
A new reward function for belief states: p(b)=> ¢ b(s)R(s)

P(b’|b,a) and p(b) define an observable MDP on the space of belief
states.

14

1/16/2023

Belief MDP

E = percepts

A belief MDP is a tuple <B, A, p, E>:
B = infinite set of belief states

P(b'lb, a) = 2. P(ble,a,b) 3. P(els) >, P(ss,a) b(s)

08

(transition function)

A = finite set of actions
p(b) = 3¢ b(s)R(s)

(reward function)

Move left once, without observations

b = b
0.111 0.111 0.111 0.000 ? <J0_2
0.111 0.111 0.000
0.111 0.111 0.111 0.111
0.8*0.111+0.1*0.111+0.1*0.111 +0.8*0.111 = 0.2 15
A belief MDP is a tuple <B, A, p, E>: 08
B = infinite set of belief states o o
E = percepts
A = finite set of actions
p(b) = ¥ b(s)R(s) (reward function)
P(b'lb, a) = 3. P(ble,ab) ¥ P(els) 3 P(s’s,a) b(s) (transition function)
Move left once, without observations
b = b
0.111 0.111 0.111 0.000 l 0.2
0.111 0.111 0.000 ? 0.1
0.111 0.111 0.111 0.111 T
0.8*0.111 +0.1*0.111 +0.1*0.111 = 0.1M11 16

1/16/2023

Solutions for POMDP

Methods based on value and policy iteration:

A policy z(b)can be represented as a set of regions of belief state
space, each of which is associated with a particular optimal action.
The value function associates a distinct linear function of b with
each region. Each value or policy iteration step refines the
boundaries of the regions and may introduce new regions.

el

18

Value Iteration for POMDPS

» Consider an optimal policy Tr* and its application in belief
state b.

+ For this b the policy is a “conditional plan”

+ Let the utility of executing a fixed conditional plan p in s
be uy(s).
Expected utility Uy(b) = >, b(s) uy(s)
It varies linearly with b, a hyperplane in a belief space

+ At any b, the optimal policy will choose the conditional
plan with the highest expected utility
U(b) = U ™ (b) = argmax, b x u, (summation of dot-
prod.)

+ U(b) is the maximum of a collection of hyperplanes and will

be piecewise linear and convex b

1/16/2023

Example: Conditional Plans

Two state world 0,1

Two actions: stay(s), go(s)
+ Actions achieve intended effect with some probability p

One-step plan [go], [stay]
Two-step plans are conditional

+ [a1, IF percept = 0 THEN a2 ELSE a3]

+ Shorthand notation: [a1, a2/a3]

n-step plan are trees with nodes attached with

actions and edges attached with percepts A

Example

Two state world 0,1. R(0)=0, R(1)=1
Two actions: stay (0.9), go (0.9)
The sensor reports the correct state with prob. 0.6

Consider the one-step plans [stay] and [go]
* Ugtay(0)=R(0) + 0.9R(0)+0.1R(1) = 0.1
* Ugtay (1)=R(1) + 0.9R(1)+0.1R(0) = 1.9
* U (0)=R(0) + 0.9R(1)+0.1R(0) = 0.9
* Ugg (1)=R(1) + 0.9R(0)+0.1R(1) = 1.1

This is just the direct reward function (taken into account
the probabilistic transitions)

21

1/16/2023

10

Example

Utility

5 (Stay] Utility of two one-step plans
. [Gol as a function of b(1)

0 0.2 04 0.6 0.8 1
Probability of state 1

if(b(1)>0.5) stay else go

22

General formula

We can compute the utilities for conditional plans of

depth-2 by considering each possible first action, each
possible subsequent percept and then each way of choosing
a depth-1 plan to execute for each percept

[Stay; if Percept =0 then Stay else Stay]
[Stay; if Percept =0 then Stay else Go]. ..

» Let p be a depth-d conditional plan whose initial action is a and
whose depth-(d-1) subplan for percept e is p.e, then

Up(8) = R(8) + 35 P(s'] 5,2) 2 P(elS) Upe(S)

23

1/16/2023

11

Example

* Usia)(0)=R(0) + 0.9R(0)+0.1R(1) = 0.1
* Ugsiay (1)=R(1) + 0.9R(1)+0.1R(0) = 1.9
* Ujge)(0)=R(0) + 0.9R(1)+0.1R(0) = 0.9

0 . -+ Uy (1)=R(1) + 0.9R(0)+0.1R(1) = 1.1
L] 2 0.4 (o 0.8 |
Frobabality of state 1

Up(S) = R(s) + 35 P(s] s,8) 3o P(els)) Up.e(S)

Uity stainn(0)=R(0) + (0.9°(0.6°0.1+ 0.4°0.1) + 0.1°(0.4"1.9+ 0.6°1.9))=0.28
Y Y
USe Ugo(0) use Ugg,y (1)

Upstay, staylstay)(1)=R(1) + (0.1%(0.6*0.1 + 0.4*0.1)+ 0.9%(0.4*1.9 + 0.6*1.9))=2.72

k—Y—)

u stay(o) u stay(1)

24

Example

* Usia)(0)=R(0) + 0.9R(0)+0.1R(1) = 0.1
* Ugsiay (1)=R(1) + 0.9R(1)+0.1R(0) = 1.9
* Ujge)(0)=R(0) + 0.9R(1)+0.1R(0) = 0.9

o ¥ : * Uge(1)=R(1) + 0.9R(0)+0.1R(1) =11
L] 2 0.4 (o 0.8 |
Frobabality of state 1

Up(S) = R(s) + 35 P(s] s,8) 3o P(els)) Upe(S)

Urgo, stayistayi(0)=R(0) + (0.1%(0.6*0.1 + 0.4*0.1) + 0.9*(0.4*1.9 + 0.6*1.9))=1.72
Urgo, stayistayi(1)=R(1) + (0.9%(0.6*0.1 + 0.4*0.1) + 0.1*(0.4*1.9 + 0.6*1.9))=1.28

\—Y—}\—Y—)

u stay(o) u stay(1)

25

1/16/2023

12

1/16/2023

Example

* Usia)(0)=R(0) + 0.9R(0)+0.1R(1) = 0.1
* Ugsiay (1)=R(1) + 0.9R(1)+0.1R(0) = 1.9
* Ujge)(0)=R(0) + 0.9R(1)+0.1R(0) = 0.9

a Y = +u 1)=R(1) + 0.9R(0)+0.1R(1) =11
o 42 04 06 08 i ol (1=R(1) ©))

Frobabality of state 1

Up(S) = R(s) + 3 P(s 5,8) 2 P(elS) Upo(S)

Ustay, gorstay](0)= R(0) + (0.9%(0.6*0.9 + 0.4*0.1) + 0.1%(0.4*1.1 + 0.6*1.9))=0.68
u go (0) usta y(o) ugo(1) u sta; y(1)

Ugstay, qorstay(1)= R(1) + (0.1%(0.6*0.9 + 0.4*0.1) + 0.9%(0.4*1.1+ 0.6*1.9))=2.48

26
T
¥
6.5
=
=z = =
= = =
= = 33
5
! 4.5
0 0:2 04 0.6 08 1 Y 02 04 0.6 0.8
Probability of state 1 Probability of state 1
Utility of four undominated - . .
y Utility function for optimal
two-step plans .
eight step plans
27

13

1/16/2023

Value lteration

Up(s) = R(S) + Zs' P(Sll S’a) Ze P(e|S,) up.e(S,)
» This give us a value iteration algorithm

« The elimination of dominated plans is essential for reducing doubly
exponential growth:
the number of undominated plans with d=8 is just 144,
otherwise 2255 (|A| O(EI")
If you have n undominated plans you have to generate |A| *nlEl new
plans.

« For large POMDPs this approach is highly inefficient

28

Model for POMDPs

+ Dynamic Bayesian network
+ the transition and observation models
« Dynamic decision network (DDN)
+ decision and utility
 Afiltering algorithm
+ incorporate each new percept and action and update the belief
state representation.
» Decisions are made by projecting forward possible
action sequences and choosing the best action
sequence.

29

14

The Generic Structure of a
Dynamic Decision Network

RS S L '\M
%@ T‘o T% To

Figure 17.10 FILES: figures/generic-ddn.eps (Tue Nov 3 16:22:53 2009). The generic structure
of a dynamic decision network. Vanables with known values are shaded. The current time 1s £ and the
agent must decide what to do—that 1s, choose a value for A;. The network has been unrolled into the

future for three steps and represents future rewards, as well as the utility of the state at the look-ahead
horizon.

The decision problem involves calculating the value of 4, that
maximizes the agent’s expected utility over the remaining state

sequence.
30
Search Tree of the Lookahead DDN
P(X,|E,)
A, S
P(X | Ey) £ A\ A A
At+1 (
Et+2 o 7T
(t+2 | El t+2) """
At+2 77777
E.,
(+3) ”””
10 4 6 3 31

1/16/2023

15

Search Tree of the Lookahead DDN

U
Wall NSWE L |

Up Right Down Left

1100 0110 1100 1010 0110

{ ol

32

Search Tree: Exhaustive Enumeration

* The search tree of DDN is very similar to the
EXPECTIMINIMAX algorithm for game trees
with chance nodes, except hat:

¢+ There can also be rewards at non-leaf states

+ The decision nodes correspond to belief states
rather than actual states.

The time complexity: O(4[| E[")
d is the depth, |A] is the number of available
actions, |E| is the number of possible

observations.

This is far less than value iteration.
33

1/16/2023

16

Discussion of DDNs

+ DDNs provide a general, concise
representation for large POMDPs

» Agent systems moved from
+ static, accessible, and simple environments to

+ dynamic, inaccessible, and complex environments
that are closer to the real world

* However, exact algorithms are exponential

34

Perspectives of DDNs to
Reduce Complexity

¢ Heuristic estimate for
the utility of the remaining steps

* Incremental pruning techniques
* Many approximation techniques as in our search

lecture:
. Using less detailed state variables for states in the distant
future.
. Using a greedy heuristic search through the space of decision
sequences.

35

1/16/2023

17

