Module 4: Duality Theory (Strong Duality)
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1 0 -1\ <
E.g.: consider the primal LP, (P), on st. [0 =2 1 |z = 1
the right —a max LP that falls in 1 1 0 > \-2

the left (Pmax) part of the table.
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1 0 -1 < 2 1 0 1 >
st. [0 -2 1 |z = 1 s.t. 0 -2 1]y <
1 1 0 > \-2 -1 1 0 =
Ty > O,l‘g < O,l‘3 free Y1 > O,yg free,yg < 0

Weak Duality Theorem
if Z is feasible for (P) and g is feasible for (D),
— Jz<bly

If ¢z = by, then both Z and § are optimal.
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< constraint | > 0 variable
max c'x = constraint | free variable min by
subject to > constraint | < 0 variable subject to
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Question

Can we always find feasible solutions Z and ¢ to a primal-dual pair,
(Pmax), (Pmin). such that ¢’z = b73?

Strong Duality Theorem

If (Pmax) has an optimal solution Z, then (P
solution 7 such that ¢7z = b7.

min) has an optimal
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We can rewrite (P) for basis B:

T
ma x P
max z =g b+l x (P") e (P)
. . st. Az =b
s.t. LL’B—FAB ANI‘N:ABb >0
x>0
and: g = Az'band Ty =0
B B N min by (D)
Recall that (P) and (P’) are equivalent! st. ATy > ¢
— I is feasible in (P), and has same
bjecti lue in (P) and (P’
objective value in (P) and (P") where:
Az = gb+clz y=A5"co

= g'b+chIn
= vl'y

Goal: Show that 7 is dual feasible.
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st. xp + AglANxN = Aélb x>0
z>0
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Note that B is an optimal basis — ¢ <0
—  d—gTA<o0 where:
y=Az"cp

Equivalently, AT > ¢, T _aTy
meaning ¢ is dual feasible!
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Strong Duality Theorem

Strong Duality Theorem

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal
solution, then (D) has one, and their objective values equal.

Note: (P) is feasible and (D) is feasible — (P) cannot be unbounded
Fundamental Theorem of LP — (P) has an optimal solution.

Subtly different version via previous results:

Strong Duality Theorem — Feasibility Version

Let (P) and (D) be primal-dual pair of LPs. If both are feasible, then
both have optimal solutions of the same objective value.
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(D) (P) optimal solution | unbounded infeasible
optimal solution || possible @ | impossible 2) | impossible 3)
unbounded impossible (%) | impossible 5) | possible (®)
infeasible impossible  (7) | possible possible (9
e (D, (6, and many examples exist max oLz (P)
e (2 follows directly from Weak Duality as st. Ax = b
follows:
x>0

Suppose, for a contradiction, that (D) has an
optimal solution .

¢’z < bTg for all feasible primal solutions
by Weak Duality — (P) is bounded!
Similar arguments apply to @ and (5

o (3, (7 follow directly from Strong Duality
o |'ll leave (9) for you to do as an exercise!

min b7y (D)
st. ATy > ¢



Recap

Strong Duality Theorem

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal
solution, then (D) has one, and their objective values equal.



Recap

Strong Duality Theorem

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal

solution, then (D) has one, and their objective values equal.

(D) (P) optimal solution unbounded infeasible

optimal solution || possible @ | impossible @) | impossible 3)
unbounded impossible (4 | impossible 5) | possible (6
infeasible impossible  (7) | possible possible (9




