
CO 250: Introduction to Optimization
Module 6: Nonlinear Programs (the KKT theorem)
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Claim

x = (1, 1)⊤ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove x is optimal for the relaxation.

Step 3. Deduce that x is optimal for the NLP.



min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

(3)

(2)

(1)

x1

x2

x̄ =

(

1
1

)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

Claim

x̄ = (1, 1)⊤ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove x is optimal for the relaxation.

Step 3. Deduce that x is optimal for the NLP.



min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

(3)

(2)

(1)

x1

x2

x̄ =

(

1
1

)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

Claim

x̄ = (1, 1)⊤ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove x is optimal for the relaxation.

Step 3. Deduce that x is optimal for the NLP.



min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

(3)

(2)

(1)

x1

x2

x̄ =

(

1
1

)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

Claim

x̄ = (1, 1)⊤ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove x is optimal for the relaxation.

Step 3. Deduce that x is optimal for the NLP.



min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

(3)

(2)

(1)

x1

x2

x̄ =

(

1
1

)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

Claim

x̄ = (1, 1)⊤ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove x̄ is optimal for the relaxation.

Step 3. Deduce that x is optimal for the NLP.



min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

(3)

(2)

(1)

x1

x2

x̄ =

(

1
1

)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

Claim

x̄ = (1, 1)⊤ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove x̄ is optimal for the relaxation.

Step 3. Deduce that x̄ is optimal for the NLP.



Original NLP

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x1

x2

(1)

(2)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(3)

Relaxation

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)



Original NLP

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x1

x2

(1)

(2)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(3)

Relaxation

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

x1

x2

(1)

(2)

1

4

1

2

3

4

11

4

1

2

3

4

1

0



Original NLP

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x1

x2

(1)

(2)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(3)

New relaxation

min − x1 − x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + x2

2 ≤ 0 (2)

x1

x2

(2)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(a)



Original NLP

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x1

x2

(1)

(2)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(3)

New relaxation

min − x1 − x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

x1

x2

(b)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(a)



Claim
x̄ = (1, 1)⊤ is an optimal solution to

min − x1 − x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)



Claim
x̄ = (1, 1)⊤ is an optimal solution to

max x1 + x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

Proof

Tight constraints for x are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

( )

?
∈ cone

{(

−

)

,

(

−
)}

=

( )

= ×

(

−

)

+ ×

(

−
)

X



Claim
x̄ = (1, 1)⊤ is an optimal solution to

max x1 + x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

Proof

Tight constraints for x are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

( )

?
∈ cone

{(

−

)

,

(

−
)}

=

( )

= ×

(

−

)

+ ×

(

−
)

X



Claim
x̄ = (1, 1)⊤ is an optimal solution to

max x1 + x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

Proof

Tight constraints for x̄ are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

( )

?
∈ cone

{(

−

)

,

(

−
)}

=

( )

= ×

(

−

)

+ ×

(

−
)

X



Claim
x̄ = (1, 1)⊤ is an optimal solution to

max x1 + x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

Proof

Tight constraints for x̄ are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

( )

?
∈ cone

{(

−

)

,

(

−
)}

=

( )

= ×

(

−

)

+ ×

(

−
)

X



Claim
x̄ = (1, 1)⊤ is an optimal solution to

max x1 + x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

Proof

Tight constraints for x̄ are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

(

1
1

)

?
∈ cone

{(

2
−1

)

,

(

−1
2

)}

=

( )

= ×

(

−

)

+ ×

(

−
)

X



Claim
x̄ = (1, 1)⊤ is an optimal solution to

max x1 + x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

Proof

Tight constraints for x̄ are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

(

1
1

)

?
∈ cone

{(

2
−1

)

,

(

−1
2

)}

⇐=

(

1
1

)

= 1×

(

2
−1

)

+ 1×

(

−1
2

)

X



Original NLP

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

Relaxation

min − x1 − x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

x = (1, 1)⊤ is an optimal solution to the relaxation

x is an optimal solution to the riginal NLP

Question

Can we do this in general? YES

The key tool we’ll use is subgradients.
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h(x) is affine

h(x) = f(x)

h is a lower bound f r f
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Definition

s ∈ ℜn is a subgradient of f at x̄ if

h(x) := f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

Example

Consider f : ℜ2 ℜ where f(x) = −x1 + x2
2 and x = (1, 1)⊤.

We claim that (− , 2)⊤ is a subgradient of f at x.

h(x) = f(x) + s⊤(x− x) =

= + (− , 2)(x− (1, 1)⊤) = − x1 + x2 − .

Check: h(x) ≤ f(x) for all x ∈ ℜn.

−x1 + x2 −
?
≤ −x1 + x2

2

r equivalently,
x2
2 − x2 +

?
≥ ,

which is the case as x2
2 − x2 + = (x2 − 1)2 ≥ .
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Subgradients and Supporting Halfspaces

Proposition

Let g : ℜn ℜ be convex and let x where g(x) = .

Let s be a subgradient of g at x.

Let C = x : g(x) ≤ .

Let F = x : h(x) := g(x) + s⊤(x− x) ≤ .

Then, F is a supp rtin halfspace of C at x.

Remark

• C is convex, as g is a convex function,

• F is a halfspace, as h(x) is an affine function, and

• h(x) = g(x) = thus, x is on the boundary of F .
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min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

x is a feasible solution
g1 is convex
g1(x) =
s is a subgradient for g1 at x

If we replace the nonlinear constraint

g1(x) ≤

with the linear constraint

h(x) = g1(x) + s⊤(x− x) ≤

we get a relaxation.
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gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x is a feasible solution

∀i ∈ I, gi(x) =

∀i ∈ I, s(i) subgradient for gi at x

If −c ∈ cone
{

s(i) : i ∈ I
}

then x is optimal.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x = (1, 1)⊤ feasible

I = ,

(2,−1)⊤ subgradient for g1 at x

(− , 2)⊤ subgradient for g2 at x

−

(

−
−

)

∈ cone

{(

−

)

,

(

−
)}

= x optimal.
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Gradients: A Calculus Detour

Proposition

Let f : ℜn ℜ be a convex function and let x ∈ ℜn.

If the gradient ∇f(x) of f exists at x, then it is a subgradient.

Proposition

Let f : ℜn ℜ be function and let x ∈ ℜn.

If the partial derivative ∂f(x)
∂xj

exists for f at x for all j = , . . . , n, then

the gradient ∇f(x) is obtained by evaluating for x,

(

∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)⊤

.
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Example

Compute the gradient of the convex function

f(x) = −x2 + x2
1

at x̄ = (1, 1)⊤.

We have
(

∂f(x)

∂x1
,
∂f(x)

∂x2

)⊤

= (2x1,−1)⊤

F r x we get ∇f(x) = (2,−1)⊤.

Since (2,−1)⊤ is the gradient of f at x, it is a subgradient as well.
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Definition

A feasible solution to x̄ is a Slater point of

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

if gi(x̄) < 0 for all i = 1, . . . , k.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x̄ =
(

3

4
, 3

4

)

⊤
is a Slater point.
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The Karush-Kuhn-Tucker (KKT) Theorem

Consider the following NLP:

min c⊤x

s.t.

gi(x) ≤ (i = , . . . , k)

Suppose that

1. g1, . . . , gk are all convex,

2. there exists a Slater point,

3. x is a feasible solution,

4. I is the set of indices i for which gi(x) = , and

5. for all i ∈ I there exists a gradient ∇gi(x) of gi at x.

Then x is optimal − c ∈ cone {∇gi(x) : i ∈ I .

Remark

We proved the “easy” direction =”.
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Recap

• We showed how to prove optimality using relaxations.

• We defined subgradients.

• We defined supp rting halfspaces.

• We related subgradients and supp rting halfspaces.

• We showed how to relax convex constraints by a linear constraint.

• We gave sufficient conditions for a solution to be optimal.

• We stated the KKT theorem.
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