Module 3: Duality through examples (Shortest Path Algorithm)
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Recap: Feasible Widths via Duality

Shortest path LP:
min Z(cexe te€ k)

s.t. Z(we re€d(9)>1
(6(S) s,t-cut)
x>0

Shortest path dual:
max Z(ys : 6(S) s, t-cut)

st. Y (ys:e€d(9)) <ce
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Letting

1 e bold in figure
LTe = .
0 otherwise

for all e € E' is feasible for shortest
path LP.
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Shortest path LP:
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x>0

Shortest path dual:
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Letting

Y{s} = Yis,by = L, Y{s,a,b,c} = 3,

and yg = 0 for all other s, t-cuts
4(S) yields a feasible dual solution
of value 5!
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Recap: Feasible Widths

Weak Duality Theorem

If z is feasible for shortest path LP,
and ¢ is feasible for its dual then
Ty < Tz

— Bold path in figure is shortest
s, t-path!

via Duality

Today:
1. How did we find the bold path?

2. How did we find the dual
solution?

3. Is there always a shortest
s, t-path and a dual solution
whose value matches its length?



An Algorithm for the Shortest s, t-Path Problem
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Arcs and Directed Paths

So far: edges of a graph G = (V, E) are ug——O vV
unordered pairs of vertices.

. . @Q—»
Now: introduce arcs — ordered pairs of u ®v

vertices. Denote an arc from u to v as ﬁ
and draw it as arrow from u to v.

A directed path is then a sequence of arcs:
sy P
V102, V203, . . ., Uk—1Vk,

where v;v; 11 is an arc in the given graph,
and v; # v; for all ¢ # j.

Example:

wt, o, wi

is a directed u, z-path.



Shortest Paths: Algorithmic Ideas

Idea: Find an s,t-path P and a feasible

dual y s.t. ¢(P) = 1Ty. How?
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Shortest Paths: Algorithmic Ideas

Definition
Let y be a feasible dual solution. The slack
of an edge e € E is defined as

slacky(e) = c. — Z(yU g
0(U) s,t-cut, e € 6(U))

Examples: for the dual y given on the right,

e slacky(sa) =2—-1=1
o slacky(sd)=3—-1-1=1
o slacky(ct) =4—-1-2=1

max Z(ys : §(9) s, t-cut)

st. Y (ys:e€d(S) <ec
(e€ E)
y=>0
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Q: By how much can you increase yy? The

maximum increase possible for y, . is
determined by the slack of edges in

5({s,c})!
slack,(sa) = 2-1=1
slack, (cb) =
slacky(ct) =
lack,(cd) = 1
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Shortest Paths: Building Duals Incrementally

Q: By how much can you increase yy? The

maximum increase possible for y, . is
determined by the slack of edges in

d({s,c})!
slacky(sa) = 2—-1=1
slacky(cb) =
slacky(ct) =
slacky(cd) =
slacky(sd) = 3—-1=2

Edges cd and sa minimize slack. Pick one
arbitrarily: sa.
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Q: By how much can you increase yy? The

maximum increase possible for y, . is
determined by the slack of edges in
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Edges cd and sa minimize slack. Pick one
arbitrarily: sa.

Set yy = slacky(sa) = 1 and convert sa
into arc s
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Shortest Paths: Building Duals Incrementally

Q: Which vertices are reachable from s via
directed paths?
U=/{s,a,c}

Natural idea: Increase y(, 4.} by as much
as we can. How much?
—— the slack of ¢d is 0, and hence

Y{s,a,c} = 0

Also: change cd into ;i and let max Z(ys . 8(S) s, t-cut)

s.t. Z(ys eed(Y) <ce

be the reachable vertices from s (e € E)

y=>0

U ={s,a,c,d}



Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:

U=/{s,a,cd}

max Z(ys : 6(9) s, t-cut)

s.t. Z(ys e €d(9) <ece
(e € F)
y>0
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Vertices reachable from s by directed paths:
U={s,a,c,d}
Let us compute the slack of edges in §(U):
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slack, (dt)
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Vertices reachable from s by directed paths:
U={s,a,c,d}

Let us compute the slack of edges in §(U):

slacky (ab) 1
slacky(ch) = 2-1=1
slacky(ct) = 4—-1=3
slack, (dt) =




Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:
U={s,a,c,d}

Let us compute the slack of edges in §(U):

slacky(ab) = 1
slacky(ch) = 2-1=1
slacky(ct) = 4—-1=3
slack, (dt) = 2

Let Y(s,a,c,ay = 1, add equality arc Z and

update the set max Z(ys 2 0(S) s, t-cut)
U= {s,0,b,c,d} st (s ecd() <
(e € F)

of vertices reachable from s
y=>0
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Vertices reachable from s by directed paths:

U=/{s,a,b,c,d}

max Z(ys : 8(S) s, t-cut)

st. Y (ys:e€d(9) <c
(e€ E)
y=>0
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Vertices reachable from s by directed paths:
U=/{s,a,b,c,d}
Let us compute the slack of edges in §(U):

slack, (bt) =
slacky(ct) =
slack, (dt) =

max Z(ys : 8(S) s, t-cut)

st. Y (ys:e€d(9) <c
(e€ E)
y=>0



Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:
U=/{s,a,b,c,d}
Let us compute the slack of edges in §(U):

slack, (bt) = 4
slacky(ct) =
slack, (dt) =

max Z(ys : 8(S) s, t-cut)

st. Y (ys:e€d(9) <c
(e€ E)
y=>0
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Vertices reachable from s by directed paths:
U=/{s,a,b,c,d}
Let us compute the slack of edges in §(U):

slack, (bt) =
slacky(ct) = 4—-2=2
slack, (dt) =




Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:
U=/{s,a,b,c,d}

Let us compute the slack of edges in §(U):

slack, (bt) =
slacky(ct) = 4—-2=2
slack,(dt) = 2—-1=1

max Z(ys : 8(S) s, t-cut)

st. Y (ys:e€d(9) <c
(e€ E)
y=>0



Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:
U=/{s,a,b,c,d}

Let us compute the slack of edges in §(U):

slack, (bt) =
slacky(ct) = 4—-2=2
slack,(dt) = 2—-1=1

%
Let y(s,a,,c,ay = 1, add equality arc dt.
max Z(ys : 0(9) s, t-cut)

s.t. Z(ys ce€d(y) <ee
(e € E)
y=>0



Shortest Paths: Building Duals Incrementally

~
250
° b
Iyc o
. 4
and its length is 4! 1
=t
d

max Z(ys : 0(9) s, t-cut)

s.t. Z(ys ce€d(s) <ee
(e € E)

Note: we now have a directed s, t-path in
our graph:

P =3¢ cd, df,

y>0



Shortest Paths: Building Duals Incrementally

X
2 1
s b
1c2/
4
3

and its length is 4! 1
We also have a feasible dual solution: l//2 t
d

Yi{sy = Y{s,c} = Y{s,a,c,d} = Y{s,a,b,c,d} = 1,

Note: we now have a directed s, t-path in
our graph:

P =3¢ cd, df,

and yy = 0 otherwise.

max Z(ys : 0(9) s, t-cut)

s.t. Z(ys ce€d(s) <ee
(e € E)
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X
2 1
s b
1c2/
4
3

and its length is 4! 1
We also have a feasible dual solution: l//2 t
d

Yi{sy = Y{s,c} = Y{s,a,c,d} = Y{s,a,b,c,d} = 1,

Note: we now have a directed s, t-path in
our graph:

P =3¢ cd, df,

and yy = 0 otherwise. Its value is 4!
max Z(ys : 0(9) s, t-cut)
s.t. Z(ys ce€d(9)) <ece
(e€ E)
y=>0



Shortest Paths: Building Duals Incrementally

X
2 1
s b
1c2/
4
3

and its length is 4! 1
We also have a feasible dual solution: l//2 t
d

Yi{sy = Y{s,c} = Y{s,a,c,d} = Y{s,a,b,c,d} = 1,

Note: we now have a directed s, t-path in
our graph:

P =3¢ cd, df,

and yy = 0 otherwise. Its value is 4!
max Z(ys : 0(9) s, t-cut)

s.t. Z(ys ce€d(s) <ee
(e € E)

— Path P is a shortest path!

y>0



Shortest Path Algorithm

To compute the shortest Path for the instance on
the right, we used the following algorithm:

a
Algorithm 3.2 Shortest path. 2,.\ 1
Input: Graph G = (V,E), costs ¢, >0 foralle € E, s,t € V where s # 1. S \b
Output: A shortest sz-path P
Y
1: yw := 0 for all st-cuts 8 (W). Set U := {s} c2
2: whiler ¢ U do 3 4
3:  Let ab be an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
4:  yy :=slacky(ab)
5. Uw=Uu{b} / 2
6:  change edge ab into an arc 5; d
7: end while
8: return A directed st-path P.




Recap

o We saw a shortest path algorithm that computes
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Recap

e We saw a shortest path algorithm that computes
(a) an s,t-path P, and
(b) a feasible solution y for the dual of the shortest path LP
simultaneously

e We will soon show, that the length of the output path P, and the
value of the dual solution y are the same, showing that both P and
y are optimal

e Have a look at the book. It has another full example run of the
shortest path algorithm
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