
CO 250: Introduction to Optimization
Module 5: Integer Programs (IP versus LP)



LP versus IP

Linear programming Integer programming

Can solve very large instances

Algorithms exist that are
guaranteed to be fast

Short certificate of
infeasibility (Farka’s Lemma)

Short certificate of
optimality (Strong Duality)

The only possible outcomes are
infeasible, unbounded, r optimal
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Linear programming Integer programming

Can solve very large instances Some small instances cannot be solved

Algorithms exist that are No fast algorithm exists
guaranteed to be fast

Short certificate of
infeasibility (Farka’s Lemma)

Short certificate of
optimality (Strong Duality)

The only possible outcomes are
infeasible, unbounded, or optimal

Remark

We cannot PROVE an algorithm that is guaranteed to be fast does not
exist, but we can show that it is “highly unlikely”.



LP versus IP

Linear programming Integer programming

Can solve very large instances Some small instances cannot be solved

Algorithms exist that are No fast algorithm exists
guaranteed to be fast

Short certificate of Does not always exist
infeasibility (Farka’s Lemma)

Short certificate of
optimality (Strong Duality)

The only possible outcomes are
infeasible, unbounded, or optimal

Remark

We cannot PROVE that sometimes there is no short certificate of
infeasibility, but we can show that it is “highly unlikely”.
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Can solve very large instances Some small instances cannot be solved

Algorithms exist that are No fast algorithm exists
guaranteed to be fast
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Let us look at an example...



LP versus IP

Linear programming Integer programming

Can solve very large instances Some small instances cannot be solved

Algorithms exist that are No fast algorithm exists
guaranteed to be fast

Short certificate of Does not always exist
infeasibility (Farka’s Lemma)

Short certificate of Does not always exist
optimality (Strong Duality)

The only possible outcomes are Can have other outcomes
infeasible, unbounded, or optimal

Let us look at an example...



A Bad Example

Proposition

The following IP,

max x1 −
√

x2

s.t.

x1 ≤
√

x2

x1, x2 ≥
x1, x2 integer

is feasible, bounded, and has no optimal solution.

• It is feasible. X

• is an upper bound. X

• It has no optimal solution. ???
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x1, x2 ≥ 1
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No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= x1 + x2 x′

2
= x1 + x2

We will show:

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

contradiction !!!



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2.

Let

x′
1
= x1 + x2 x′

2
= x1 + x2

We will show:

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

contradiction !!!



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

We will show:

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

contradiction !!!



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

We will show:

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

contradiction !!!



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

We will show:

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

contradiction !!!



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

We will show:

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

contradiction !!!



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

We will show:

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

contradiction !!!



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= x1 + x2 ≥ and x′

2
= x1 + x2 ≥ X

x′
1

?

≤
√

x′
2

x1 + x2

?

≤
√

(x1 + x2) =
√

x1 +
√

x2

x1(2−
√
2)

?

≤ (2
√

− 2)x2

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
x2 X



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√

x′
2

x1 + x2

?

≤
√

(x1 + x2) =
√

x1 +
√

x2

x1(2−
√
2)

?

≤ (2
√

− 2)x2

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
x2 X



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√
2x′

2

x1 + x2

?

≤
√

(x1 + x2) =
√

x1 +
√

x2

x1(2−
√
2)

?

≤ (2
√

− 2)x2

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
x2 X



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√
2x′

2
⇐⇒

2x1 + 2x2

?

≤
√
2 (x1 + 2x2)

=
√

x1 +
√

x2

x1(2−
√
2)

?

≤ (2
√

− 2)x2

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
x2 X



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√
2x′

2
⇐⇒

2x1 + 2x2

?

≤
√
2 (x1 + 2x2) =

√
2x1 + 2

√
2x2

x1(2−
√
2)

?

≤ (2
√

− 2)x2

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
x2 X



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√
2x′

2
⇐⇒

2x1 + 2x2

?

≤
√
2 (x1 + 2x2) =

√
2x1 + 2

√
2x2 ⇐⇒

x1(2−
√
2)

?

≤ (2
√
2− 2)x2

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
x2 X



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√
2x′

2
⇐⇒

2x1 + 2x2

?

≤
√
2 (x1 + 2x2) =

√
2x1 + 2

√
2x2 ⇐⇒

x1(2−
√
2)

?

≤ (2
√
2− 2)x2 ⇐⇒

x1

?

≤ 2
√
2−2

2−
√
2
x2

=
√

x2 X



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√
2x′

2
⇐⇒

2x1 + 2x2

?

≤
√
2 (x1 + 2x2) =

√
2x1 + 2

√
2x2 ⇐⇒

x1(2−
√
2)

?

≤ (2
√
2− 2)x2 ⇐⇒

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
2x2

X



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√
2x′

2
⇐⇒

2x1 + 2x2

?

≤
√
2 (x1 + 2x2) =

√
2x1 + 2

√
2x2 ⇐⇒

x1(2−
√
2)

?

≤ (2
√
2− 2)x2 ⇐⇒

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
2x2 X



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
−
√
2x′

2
> x1 −

√
2x2.



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
−
√
2x′

2
> x1 −

√
2x2.

Proof

( x1 + x2)−
√
2(x1 + x2)

√ ?

> x1 −
√

x2

Simplifying (takes a little w rk), we obtain√
x2

?

> x1

• ≥ since x1, x2 are feasible for (IP)

• > otherwise
√

= x1

x2

but
√

is not a rational number



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
−
√
2x′

2
> x1 −

√
2x2.

Proof

(2x1 + 2x2)−
√
2(x1 + 2x2)

√
2

?

> x1 −
√
2x2

Simplifying (takes a little w rk), we obtain√
x2

?

> x1

• ≥ since x1, x2 are feasible for (IP)

• > otherwise
√

= x1

x2

but
√

is not a rational number



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
−
√
2x′

2
> x1 −

√
2x2.

Proof

(2x1 + 2x2)−
√
2(x1 + 2x2)

√
2

?

> x1 −
√
2x2

Simplifying (takes a little work), we obtain

√
x2

?

> x1

• ≥ since x1, x2 are feasible for (IP)

• > otherwise
√

= x1

x2

but
√

is not a rational number



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
−
√
2x′

2
> x1 −

√
2x2.

Proof

(2x1 + 2x2)−
√
2(x1 + 2x2)

√
2

?

> x1 −
√
2x2

Simplifying (takes a little work), we obtain√
2x2

?

> x1

• ≥ since x1, x2 are feasible for (IP)

• > otherwise
√

= x1

x2

but
√

is not a rational number



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
−
√
2x′

2
> x1 −

√
2x2.

Proof

(2x1 + 2x2)−
√
2(x1 + 2x2)

√
2

?

> x1 −
√
2x2

Simplifying (takes a little work), we obtain√
2x2

?

> x1

• ≥ since x1, x2 are feasible for (IP)

• > otherwise
√

= x1

x2

but
√

is not a rational number



max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
−
√
2x′

2
> x1 −

√
2x2.

Proof

(2x1 + 2x2)−
√
2(x1 + 2x2)

√
2

?

> x1 −
√
2x2

Simplifying (takes a little work), we obtain√
2x2

?

> x1

• ≥ since x1, x2 are feasible for (IP)

• > otherwise
√
2 = x1

x2

but
√
2 is not a rational number



Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as p wefull.

Go d News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.



Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as p wefull.

Go d News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.



Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as p wefull.

Go d News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.



Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as p wefull.

Go d News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.



Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Go d News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.



Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.



Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.



Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.



Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.



Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.



Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.



Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.



Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.



Definition

Let C be a subset of ℜn.

The convex hull of C is the smallest convex set that contains C.

Convex hull of C



Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

Convex hull of C



Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

x2

x11 2 3

a

b

c

0

1

2

C = {a, b, c}

Convex hull of C



Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

x2

x11 2 3

a

b

c

0

1

2

C = {a, b, c}

Convex hull of C



Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

Convex hull of C

C



Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

Convex hull of C

C

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

The notion of a convex hull is well defined.



Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

Convex hull of C

C

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C?

YES

The notion of a convex hull is well defined.



Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

Convex hull of C

C

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

The notion of a convex hull is well defined.



Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

Convex hull of C

C

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

The notion of a convex hull is well defined.



Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 = H2



Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 = H2



Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 = H2



Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 = H2



Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 = H2



Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2



Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

C



Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

C

H1



Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

H2C



Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

H1

H2C



Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

H2C

H1

• C ⊆ H1 ∩H2,

• H1 ∩H2 is convex

However, H1∩H2 is smaller than bothH1 andH2. This is a contradiction.



Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

H2C

H1

• C ⊆ H1 ∩H2,

• H1 ∩H2 is convex

However, H1∩H2 is smaller than bothH1 andH2. This is a contradiction.



Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

H2C

H1

• C ⊆ H1 ∩H2,

• H1 ∩H2 is convex

However, H1∩H2 is smaller than bothH1 andH2. This is a contradiction.



Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

H2C

H1

• C ⊆ H1 ∩H2,

• H1 ∩H2 is convex

However, H1∩H2 is smaller than bothH1 andH2. This is a contradiction.



Convex Hulls and Integer Programs

P =







(

x1

x2

)

:





−1 0
1 −1
−1 −3





(

x1

x2

)

≤





−3/2
5/2
−3





(1)
(2)
(3)







.



Convex Hulls and Integer Programs

P =







(

x1

x2

)

:





−1 0
1 −1
−1 −3





(

x1

x2

)

≤





−3/2
5/2
−3





(1)
(2)
(3)







.



Convex Hulls and Integer Programs

P =







(

x1

x2

)

:





−1 0
1 −1
−1 −3





(

x1

x2

)

≤





−3/2
5/2
−3





(1)
(2)
(3)







.

x2

x11 2 30

1

2

(1)

(2)

(3)

3

4

4

P



Convex Hulls and Integer Programs

P =







(

x1

x2

)

:





−1 0
1 −1
−1 −3





(

x1

x2

)

≤





−3/2
5/2
−3





(1)
(2)
(3)







.

x2

x11 2 30

1

2

(1)

(2)

(3)

3

4

4

P

Integer points in P



Convex Hulls and Integer Programs

P =







(

x1

x2

)

:





−1 0
1 −1
−1 −3





(

x1

x2

)

≤





−3/2
5/2
−3





(1)
(2)
(3)







.

x2

x11 2 30

1

2

(1)

(2)

(3)

(a) (b)

(c)

Q
3

4

4

P

Q convex hull of
integer points in P

Q =







(

x1

x2

)

:





−1 0
1 −1
0 −1





(

x1

x2

)

≤





−2
2
−1





(a)
(b)
(c)







. Polyhedron



Convex Hulls and Integer Programs

P =







(

x1

x2

)

:





−1 0
1 −1
−1 −3





(

x1

x2

)

≤





−3/2
5/2
−3





(1)
(2)
(3)







.

x2

x11 2 30

1

2

(1)

(2)

(3)

(a) (b)

(c)

Q
3

4

4

P

Q convex hull of
integer points in P

Q =







(

x1

x2

)

:





−1 0
1 −1
0 −1





(

x1

x2

)

≤





−2
2
−1





(a)
(b)
(c)







.

Polyhedron



Convex Hulls and Integer Programs

P =







(

x1

x2

)

:





−1 0
1 −1
−1 −3





(

x1

x2

)

≤





−3/2
5/2
−3





(1)
(2)
(3)







.

x2

x11 2 30

1

2

(1)

(2)

(3)

(a) (b)

(c)

Q
3

4

4

P

Q convex hull of
integer points in P

Q =







(

x1

x2

)

:





−1 0
1 −1
0 −1





(

x1

x2

)

≤





−2
2
−1





(a)
(b)
(c)







. Polyhedron



Meyer’s Theorem

Consider P = {x : Ax ≤ b} where A, b are rational.
Then, the convex hull of all integer points in P is a polyhedron.

(We’ll omit the proof)

Remark

The condition that all entries of and b are rational numbers cannot be
excluded from the hypothesis.

Example

Consider

=

{(

x1

x2

)

: x1 ≤
√

x2, x1, x2 ≥ .

The convex hull of all integer points in is NOT a polyhedron.

Goal: Use Meyer’s the rem to reduce the problem of solving
Integer Programs, to the problem of solving Linear Program.
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Let A, b be rational.

max{c⊤x : Ax ≤ b, x integer}. (IP)

The convex hull of the feasible sol. of (IP) is a polyhedron x : ′x ≤ b′ .

max c⊤x : ′x ≤ b′ (LP)

Theorem

(IP) is infeasible if and only if (LP) is infeasible,
(IP) is unbounded if and only if (LP) is unbounded,
an optimal solution to (IP) is an optimal solution to (LP), and
an extreme optimal solution to (LP) is an optimal solution to (IP).

(We’ll omit the proofs)

Conceptual way of solving (IP):

Step 1. Compute ′, b′.

Step 2. Use Simplex to find an extreme optimal solution to (LP).
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Conceptual way of solving (IP):

Step 1. Compute A′, b′.

Step 2. Use Simplex to find an extreme optimal solution.

Remark

This is NOT a practical way to solve an Integer Program.

Why Not?

• We d not know how to compute ′, b′, and

•
′, b′ can be much more complicated than A, b.
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Question

How do we fix these problems?

Idea

Construct an approximation of the convex hull of the solutions of (IP).

Recap

• Integer Programs are much harder to solve than Linear Programs.

• Linear Programming theory does not extend to Integer Programs.

• We defined the notion of convex hulls.

• The convex hull of the integer points in a rational polyhedron is a
polyhedron.

• Integer pr grammin reduces to Linear programming,
but it is not a practical reduction.
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