Module 6: Nonlinear Programs (the KKT theorem)
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= (1,1)T is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove Z is optimal for the relaxation.
Step 3. Deduce that T is optimal for the NLP.
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Can we do this in general? YES

The key tool we'll use is subgradients.
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Example
Consider f: 2 — R where f(2) = —z1 + 23 and 7 = (1,1)7.
We claim that (—1,2) T is a subgradient of f at 7.

hz) = f@)+s"(-2)=
0+ (-1,2)(xz— (1,1)T) = —x1 + 225 — 1.
Check: h(z) < f(z) for all z € R".

?
—x1 + 222 — 1 < —z1 + 23

or equivalently, ?
z2—2xy +1>0,

which is the case as 23 — 2z + 1 = (23 — 1)2 > 0.
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WE USE IT TO CONSTRUCT RELAXATIONS OF NLPs
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Proposition
Let f: R™ — R be a convex function and let £ € R".
If the gradient V f(Z) of f exists at Z, then it is a subgradient.

Proposition
Let f: R™ — R be function and let Z € R™.
If the partial derivative agij) exists for f at x for all j =1,...,n, then

the gradient V f(Z) is obtained by evaluating for Z,
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Example

Compute the gradient of the convex function
f(z) = —x2 + a7
atz=(1,1)".

We have

For z we get Vf(z) = (2,-1)".

Since (2,—1)" is the gradient of f at Z, it is a subgradient as well.
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Definition

A feasible solution to Z is a Slater point of

min ¢z

s.t.

if g;(Z) <0foralli=1,...,k.

Example
min —x1 — T2
s.t.
—za4+27 < 0 (1)
—zi+x3 < 0 (2
—z1+3 < 0 (3)
—_ (3 3 T . .
T = (4, 4) is a Slater point. 0

I
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Consider the following NLP:

Suppose that

1.
2.
3.
4.
5.

gi,--., gk are all convex,

there exists a Slater point,

T is a feasible solution,

I is the set of indices i for which ¢;(Z) = 0, and

for all 7 € I there exists a gradient Vg;(Z) of g; at Z.

Then Z is optimal <= —c € cone{Vy;(Z):1i€ I}.

Remark

We proved the “easy” direction
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Recap
o We showed how to prove optimality using relaxations.
o We defined subgradients.
o We defined supporting halfspaces.
o We related subgradients and supporting halfspaces.
o We showed how to relax convex constraints by a linear constraint.
o We gave sufficient conditions for a solution to be optimal.

e \We stated the KKT theorem.
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