Module 3: Duality through examples (Correctness Shortest
Path Algorithm)

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes

e An s,t-path P

Shortest path LP:
min Z(ceme te€ k)

s.t. Z(axe ceed(s)>1
(6(S) s,t-cut)
x>0

Shortest path dual:
max Z(ys : 8(9) s, t-cut)

st. Y (ys:e€d(S) <ee
(e€ E)
y=>0

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes
e An s,t-path P whose
characteristic vector, z, is
feasible for the shortest path

LP, and

Shortest path LP:
min Z(cexe te€ k)

s.t. Z(axe ceed(s)>1
(6(S) s,t-cut)
x>0

Shortest path dual:
max Z(ys : 8(9) s, t-cut)

st. Y (ys:e€d(S) <ee
(e€ E)
y=>0

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes
e An s,t-path P whose
characteristic vector, z, is
feasible for the shortest path
LP, and

e a feasible solution, y, for the
dual of the shortest path LP.

Shortest path LP:
min Z(cexe te€ k)

s.t. Z(axe ceed(s)>1
(6(S) s,t-cut)
x>0

Shortest path dual:
max Z(ys : 8(9) s, t-cut)

st. Y (ys:e€d(S) <ee
(e€ E)
y=>0

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes
e An s,t-path P whose
characteristic vector, z, is
feasible for the shortest path
LP, and

e a feasible solution, y, for the
dual of the shortest path LP.

Important: ¢Tz =17y

Shortest path LP:
min Z(cexe te€ k)

s.t. Z(axe ceed(s)>1
(6(S) s,t-cut)
x>0

Shortest path dual:
max Z(ys : 8(9) s, t-cut)

st. Y (ys:e€d(S) <ee
(e€ E)
y=>0

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes

e An s,t-path P whose
characteristic vector, =%, is
feasible for the shortest path

LP, and

e a feasible solution, y, for the
dual of the shortest path LP.

Important: ¢’z =17y — P is a
shortest path!

Shortest path LP:
min Z(cexe te€ k)

s.t. Z(axe ceed(s)>1
(6(S) s,t-cut)
x>0

Shortest path dual:
max Z(ys : 8(9) s, t-cut)

st. Y (ys:e€d(S) <ee
(e€ E)
y=>0

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes

e An s,t-path P whose
characteristic vector, =%, is
feasible for the shortest path

LP, and

e a feasible solution, y, for the
dual of the shortest path LP.

Important: ¢’z =17y — P is a
shortest path!

We will start this lecture with
another example!

Shortest path LP:
min Z(cexe te€ k)

s.t. Z(l‘e ceed(s)>1
(6(S) s,t-cut)
x>0

Shortest path dual:
max Z(ys : 8(9) s, t-cut)

st. Y (ys:e€d(S) <ee
(e€ E)
y=>0

Recall the algorithm we developed previously:

Algorithm 3.2 Shortest path.

Input: Graph G = (V,E), costs ¢, >0 foralle € E, s, € V where s # .
Qutput: A shortest st-path P
1: yw =0 for all st-cuts §(W). Set U := {s}
2: whilet ¢ U do
3: Letab be an edge in §(U) of smallest slack for y wherea e U, b ¢ U
4: yy :=slack,(ab)
50 U:=UU{b}
6: change edge ab into an arc %
7: end while
8: return A directed st-path P.

Recall the algorithm we developed previously:

Algorithm 3.2 Shortest path.

Input: Graph G = (V,E), costs ¢, >0 foralle € E, s, € V where s # .
Qutput: A shortest st-path P

1:
: whilet ¢ U do

R St oprowR

yw =0 for all st-cuts §(W). Set U := {s}

Let ab be an edge in §(U) of smallest slack for y where a € U, b ¢ U
yu := slack,(ab)

U:=UuU{b}

change edge ab into an arc 3

: end while
: return A directed st-path P.

— Run this on the example instance on the right.

Recall the algorithm we developed previously:

Algorithm 3.2 Shortest path.

Input: Graph G = (V,E), costs ¢, >0 foralle € E, s, € V where s # .
Qutput: A shortest st-path P

1:
: whilet ¢ U do

R St oprowR

yw =0 for all st-cuts §(W). Set U := {s}

Let ab be an edge in §(U) of smallest slack for y where a € U, b ¢ U
yu := slack,(ab)

U:=UuU{b}

change edge ab into an arc 3

: end while
: return A directed st-path P.

— Run this on the example instance on the right.

Initially: y =0 and U = {s}

Initially: y =0 and U = {s}

S5(U) W

A

3 4

4

Step 1 su edge with smallest slack in
s
1

W

Initially: y =0 and U = {s}

Step 1 su edge with smallest slack in

5(U) S 1
— increase yy by 1 W
2 1
Y
3 1 3
W
Z
3 4

4

Initially: y =0 and U = {s}

Step 1 su edge with smallest slack in
5(U)
—> increase yy by 1

Step 2 Now: U = {s,u}
Slack-minimal edge is sv

Initially: y =0 and U = {s}

Step 1

Step 2

su edge with smallest slack in
5(U)
—> increase yy by 1

Now: U = {s,u}
Slack-minimal edge is sv
— increase yy by 1

Initially: y =0 and U = {s}

Step 1 su edge with smallest slack in
5(U)
—> increase yy by 1

Step 2 Now: U = {s,u}
Slack-minimal edge is sv
— increase yy by 1

Step3 U ={s,v,u}
Slack minimizer is vw

Initially: y =0 and U = {s}

Step 1 su edge with smallest slack in
5(U)
—> increase yy by 1

Step 2 Now: U = {s,u}
Slack-minimal edge is sv
— increase yy by 1

Step3 U ={s,v,u}
Slack minimizer is vw
— increase yy by 1

Initially: y =0 and U = {s}

Step 1

Step 2

Step 3

Step 4

su edge with smallest slack in
5(U)
—> increase yy by 1

Now: U = {s,u}
Slack-minimal edge is sv
— increase yy by 1

U= {s,v,u}
Slack minimizer is vw
— increase yy by 1

U = {s,v,u,w}
Slack minimizer is vz

Initially: y =0 and U = {s}

Step 1

Step 2

Step 3

Step 4

su edge with smallest slack in
5(U)
—> increase yy by 1

Now: U = {s,u}
Slack-minimal edge is sv
— increase yy by 1

U= {s,v,u}
Slack minimizer is vw
— increase yy by 1

U = {s,v,u,w}
Slack minimizer is vz
— increase yy by 2

Initially: y =0 and U = {s}

Step 1

Step 2

Step 3

Step 4

Step 5

su edge with smallest slack in
5(U)
—> increase yy by 1

Now: U = {s,u}
Slack-minimal edge is sv
— increase yy by 1

U= {s,v,u}
Slack minimizer is vw
— increase yy by 1

U = {s,v,u,w}
Slack minimizer is vz
— increase yy by 2

U = {s,v,u,w,z}
Slack minimizer is wt

Initially: y =0 and U = {s}

Step 1

Step 2

Step 3

Step 4

Step 5

su edge with smallest slack in
5(U)
—> increase yy by 1

Now: U = {s,u}
Slack-minimal edge is sv
— increase yy by 1

U= {s,v,u}
Slack minimizer is vw
— increase yy by 1

U = {s,v,u,w}
Slack minimizer is vz
— increase yy by 2

U = {s,v,u,w,z}
Slack minimizer is wt
— increase yy by 2

Initially: y =0 and U = {s}

Step 1

Step 2

Step 3

Step 4

Step 5

su edge with smallest slack in
5(U)
—> increase yy by 1

Now: U = {s,u}
Slack-minimal edge is sv
— increase yy by 1

U= {s,v,u}
Slack minimizer is vw
— increase yy by 1

U = {s,v,u,w}
Slack minimizer is vz
— increase yy by 2

U = {s,v,u,w,z}
Slack minimizer is wt
— increase yy by 2

Now: We have a directed
s, t-path P of length 7,

Initially: y =0 and U = {s}

Step 1

Step 2

Step 3

Step 4

Step 5

su edge with smallest slack in
5(U)
—> increase yy by 1

Now: U = {s,u}
Slack-minimal edge is sv
— increase yy by 1

U= {s,v,u}
Slack minimizer is vw
— increase yy by 1

U = {s,v,u,w}
Slack minimizer is vz
— increase yy by 2

U = {s,v,u,w,z}
Slack minimizer is wt
— increase yy by 2

Now: We have a directed
s,t-path P of length 7, and
a dual feasible solution of
the same value!

Initially: y =0 and U = {s}

Step 1

Step 2

Step 3

Step 4

Step 5

su edge with smallest slack in
5(U)
—> increase yy by 1

Now: U = {s,u}
Slack-minimal edge is sv
— increase yy by 1

U= {s,v,u}
Slack minimizer is vw
— increase yy by 1

U = {s,v,u,w}
Slack minimizer is vz
— increase yy by 2

U = {s,v,u,w,z}
Slack minimizer is wt
— increase yy by 2

Now: We have a directed
s,t-path P of length 7, and
a dual feasible solution of
the same value!

— P is a shortest path!

Question

Will the algorithm always terminate?

Question

Will the algorithm always terminate? Will it
always find an s, t-path P whose length is
equal to the value of a feasible dual
solution?

Question

Will the algorithm always terminate? Will it
always find an s, t-path P whose length is
equal to the value of a feasible dual
solution?

This lecture: We will show the answers to
the above are yes & yes!

Revisited: Shortest Path Optimality Conditions

Recall: the slack of an edge uv € E for a
feasible dual solution ¥ is

Cuw = Y (yu = e € 8(U))

Revisited: Shortest Path Optimality Conditions

Recall: the slack of an edge uv € E for a
feasible dual solution ¥ is

Cuw = Y (yu = e € 8(U))

We call an edge uv € E an equality edge if
its slack is 0.

Revisited: Shortest Path Optimality Conditions

Recall: the slack of an edge uv € E for a
feasible dual solution ¥ is

Cuw = Y (yu = e € 8(U))

We call an edge uv € E an equality edge if
its slack is 0.

Example: edge vz is an equality edge, and
zt is not!

Revisited: Shortest Path Optimality Conditions

We will also call a cut §(U) active for a
dual solution y if yy > 0.

Revisited: Shortest Path Optimality Conditions

We will also call a cut §(U) active for a
dual solution y if yy > 0.

Example: §({s,v,u}) is active, while
5({s,v}) is not!

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual solution, and P and
s, t-path. P is a shortest path if

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual solution, and P and
s, t-path. P is a shortest path if

(i) all edges on P are equality edges, and

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual solution, and P and
s, t-path. P is a shortest path if

(i) all edges on P are equality edges, and

(ii) every active cut 6(U) has exactly one
edge of P.

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual solution, and P and
s, t-path. P is a shortest path if

(i) all edges on P are equality edges, and

(ii) every active cut 6(U) has exactly one
edge of P.

Note: Both conditions are satisfied in the
example on the right.

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual

solution, and P and s, t-path.

P is a shortest path if

(i) all edges on P are
equality edges, and

(i) every active cut 6(U)
has exactly one edge of
P.

Proof: Let's suppose that P and y satisfy
(i) and (ii) of the proposition.

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual

solution, and P and s, t-path.

P is a shortest path if

(i) all edges on P are
equality edges, and

(i) every active cut 6(U)
has exactly one edge of
P.

Proof: Let's suppose that P and y satisfy
(i) and (ii) of the proposition.Then,

D= O (yw:ecsU))
ecP ecP

because every edge on P is an equality
edge by (i).

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual

solution, and P and s, t-path.

P is a shortest path if

(i) all edges on P are
equality edges, and

(i) every active cut 6(U)
has exactly one edge of
P.

Proof: Let's suppose that P and y satisfy
(i) and (ii) of the proposition.Then,

D= O (yw:ecsU))

ecP eeP

because every edge on P is an equality
edge by (i). The right-hand side equals

Sy - 1PN < ()

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual

solution, and P and s, t-path.

P is a shortest path if

(i) all edges on P are
equality edges, and

(i) every active cut 6(U)
has exactly one edge of
P.

Note: Both conditions are
satisfied in the example on
the right!

Proof: Let's suppose that P and y satisfy
(i) and (ii) of the proposition.Then,

doce=> O (v :ecsU)

ecP ecP

because every edge on P is an equality
edge by (i). The right-hand side equals

Y (- I1PNSU)| : 6(U))

But, by (ii), yu > 0 only if |[PN§(U)| = 1.

Hence:
Z Ce = Z Yyu
U

ecP

Correctness of the Shortest Path Algorithm

Algorithm 3.2 Shortest path.
Input: Graph G = (V,E),costs ¢, >0foralle € E, s,t €V where s # 1.
Output: A shortest st-path P
: yw :=0 for all st-cuts §(W). Set U := {s}
: whilez ¢ U do
Let ab be an edge in §(U) of smallest slack for y wherea € U, b ¢ U

1

2:

3:

4 yy :=slack,(ab)

50 U:=UU{b}

6: change edge ab into an arc 3
7: end while

8: return A directed st-path P.

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

Correctness of the Shortest Path Algorithm

Algorithm 3.2 Shortest path.

Input: Graph G = (V,E),costs ¢, >0foralle € E, s,t €V where s # 1.
Output: A shortest st-path P

1: yw := 0 for all st-cuts §(W). Set U := {s}

2: whilet ¢ U do

3: Letab be an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
4 yy :=slack,(ab)

50 U:=UU{b}

6: change edge ab into an arc 3

7: end while

8: return A directed s¢-path P.

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

It suffices to show:
Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I11) y is a feasible dual,

Correctness of the Shortest Path Algorithm

Algorithm 3.2 Shortest path.

Input: Graph G = (V,E),costs ¢, >0foralle € E, s,t €V where s # 1.
Output: A shortest st-path P

1: yw := 0 for all st-cuts §(W). Set U := {s}

2: whilet ¢ U do

3: Letab be an edge in 8(U) of smallest slack for y wherea € U, b ¢ U

4 yy :=slack,(ab)

50 U:=UU{b}

6: change edge ab into an arc E

7: end while

8: return A directed s¢-path P.

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

It suffices to show:
Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I11) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

Correctness of the Shortest Path Algorithm

Algorithm 3.2 Shortest path.
Input: Graph G = (V,E),costs ¢, >0foralle € E, s,t €V where s # 1.
Output: A shortest st-path P
1: yw := 0 for all st-cuts §(W). Set U := {s}
2: whilet ¢ U do
3: Letab be an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
4 yy :=slack,(ab)
50 U:=UU{b}
6: change edge ab into an arc E

7: end while
8: return A directed s¢-path P.

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

It suffices to show:
Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I11) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

Correctness of the Shortest Path Algorithm

Algorithm 3.2 Shortest path.
Input: Graph G = (V,E),costs ¢, >0foralle € E, s,t €V where s # 1.
Output: A shortest st-path P
1: yw := 0 for all st-cuts §(W). Set U := {s}
2: whilet ¢ U do
3: Letab be an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
4 yy :=slack,(ab)
50 U:=UU{b}
6: change edge ab into an arc E

7: end while
8: return A directed s¢-path P.

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

It suffices to show:
Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I11) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

Correctness of the Shortest Path Algorithm

Algorithm 3.2 Shortest path.
Input: Graph G = (V,E),costs ¢, >0foralle € E, s,t €V where s # 1.
Output: A shortest st-path P
1: yw := 0 for all st-cuts §(W). Set U := {s}
2: whilet ¢ U do
3: Letab be an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
4 yy :=slack,(ab)
50 U:=UU{b}
6: change edge ab into an arc E

7: end while
8: return A directed s¢-path P.

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

It suffices to show:
Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I11) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Suppose the invariants hold when the
algorithm terminates. Then:

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,
(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Suppose the invariants hold when the
algorithm terminates. Then:

e t € U and (14) implies that there is
a directed s, t-path P,

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,
(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Suppose the invariants hold when the
algorithm terminates. Then:

e t € U and (14) implies that there is
a directed s, t-path P,

e y is feasible by (I1), and

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,
(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Suppose the invariants hold when the
algorithm terminates. Then:

e t € U and (14) implies that there is
a directed s, t-path P,

e y is feasible by (I1), and

e arcs on P are equality arcs by (12)

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,
(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Suppose the invariants hold when the
algorithm terminates. Then:

e t € U and (14) implies that there is
a directed s, t-path P,

e y is feasible by (I1), and

e arcs on P are equality arcs by (12)

To show: §(U) active — P has
exactly one edge in 6(U).

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,
(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

For a contradiction suppose §(U) active

and P has more than one edge in 6(U) 5@ Ol eOn.
U Ol o
u w

Correctness of the Shortest Path Algorithm

For a contradiction suppose §(U) active
and P has more than one edge in 6(U)

Let e and €’ be the first two edges on P
that leave §(U).

Correctness of the Shortest Path Algorithm

For a contradiction suppose §(U) active
and P has more than one edge in 6(U)

Let e and €’ be the first two edges on P
that leave §(U).

Then, there must also be an arc f on P
that enters U,

Correctness of the Shortest Path Algorithm

For a contradiction suppose §(U) active
and P has more than one edge in 6(U)

Let e and €’ be the first two edges on P
that leave §(U).

Then, there must also be an arc f on P
that enters U, but this contradicts (I3)!

Proposition

The Shortest Path Algorithm maintains
throughout its execution that:

(13) no active cut §(U) has an entering
arc: an arc wu with w € U, and
uel

Correctness of the Shortest Path Algorithm

Algorithm 3.2 Shortest path. P . e

Input: Graph G = (V,E), costs ¢, > 0 foralle € E, s,t €V where s #¢. roposltlon

Output: A shortest st-path P .
1: yw := 0 for all st-cuts §(W). Set U := {s} The ShorteSt Path Algorlth m
2 whilet ¢ U do maintains throughout its

3: Letabbe an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
4: yy :=slacky(ab)

execution that:

s Us=Uu{} (I1) y is a feasible dual,
6: change edgeabinmanarcﬂ . .
7: end while (12) arcs are equality arcs (i.e.,
8: return A directed st-path P. haVe 0 Slack)

(13) no active cut 6(U) has an
Let's now prove the proposition! entering, arc: an arc wu

with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Algorithm 3.2 Shortest path.

Input: Graph G = (V,E), costs ¢, > 0 foralle € E, s,t €V where s #¢. PI’OpOSItIOﬂ

Output: A shortest st-path P .
1: yw := 0 for all st-cuts §(W). Set U := {s} The ShorteSt Path Algorlthm
2 whilet ¢ U do maintains throughout its

3: Letabbe an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
4: yy :=slacky(ab)

execution that:

Z g;g’::}f;}abimmmﬂ (I1) y is a feasible dual,
7: end while (12) arcs are equality arcs (i.e.,
8: return A directed st-path P. haVe 0 Slack),
(13) no active cut 6(U) has an
Let's now prove the proposition! entering, arc: an arc wu
with w € U, and u € U,
Trivial: (11) — (15) hold after Step 1. (14) for every u € U there is a

directed s, u-path, and
(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Algorithm 3.2 Shortest path.

Input: Graph G = (V,E), costs ¢, > 0 foralle € E, s,t €V where s #¢.
Output: A shortest st-path P
yw := 0 for all st-cuts §(W). Set U := {s}
while t ¢ U do
Let ab be an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
yu := slack,(ab)
U:=UU{b}
change edge ab into an arc 3
- end while
: return A directed st-path P.

I R

Let's now prove the proposition!

Trivial: (11) — (15) hold after Step 1.
Suppose (I1) = (15) hold before Step 3.

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),
(13) no active cut 6(U) has an

entering, arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Algorithm 3.2 Shortest path.

Input: Graph G = (V,E), costs ¢, > 0 foralle € E, s,t €V where s #¢.
Output: A shortest st-path P

1: yw := 0 for all st-cuts §(W). Set U := {s}

2: while: ¢ U do

3: Letabbe an edge in 8(U) of smallest slack for y wherea € U, b ¢ U

4: yy :=slacky(ab)

51 U:=UU{b}

6: change edge ab into an arc 3

7: end while

8: return A directed st-path P.

Let's now prove the proposition!

Trivial: (11) — (15) hold after Step 1.
Suppose (I1) = (15) hold before Step 3.
We will show that they also hold after
Step 6.

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering, arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

(11) y is Dual Feasible

Shortest path dual:

Algorithm 3.2 Shortest path.
Input: Graph G = (V,E), costs ¢. > 0 foralle € E, s,t € V where s #£ 1.
Output: A shortest st-path P max Z(ys : 5(5) S, t-cut)
: yw := 0 for all st-cuts §(W). Set U := {s}
: whiler ¢ U do
Let ab be an edge in §(U) of smallest slack for y where a € U, b ¢ U s.t. Z(ys L ec 6(3)) S Ce

1
2
3
4: yy = slacky(ab)

s U=Uu{b} (e€ E)
6: change edge ab into an arc J

7: end while Y Z O

8: return A directed st-path P.

(11) y is Dual Feasible

Algorithm 3.2 Shortest path. S hortGSt pat h d ua I

Input: Graph G = (V,E), costs ¢. > 0 foralle € E, s,t € V where s #£ 1.
Output: A shortest st-path P max E (ys : 5(5) S, t-cut)

: yw := 0 for all st-cuts §(W). Set U := {s}

1
2: whiler ¢ U do

3: Letab be an edge in §(U) of smallest slack for y wherea € U, b ¢ U s.t. Z(ys L ec 6(3)) S Ce
4: yy = slacky(ab)

s U=Uu{b} (e€ E)

6: change edge ab into an arc J

7: end while Y Z O

8: return A directed st-path P.

Note: In Step 3-6, only yy for the current U changes.

(11) y is Dual Feasible

Algorithm 3.2 Shortest path. S hortGSt pat h d ua I

Input: Graph G = (V,E), costs ¢. > 0 foralle € E, s,t € V where s #£ 1.
Output: A shortest st-path P max Z(ys : 5(5) S, t-cut)
: yw := 0 for all st-cuts §(W). Set U := {s}
: whiler ¢ U do
Let ab be an edge in §(U) of smallest slack for y where a € U, b ¢ U s.t. Z(ys L ec 6(3)) S Ce

1
2
3
4: yy = slacky(ab)

s U=Uu{b} (e€ E)
6: change edge ab into an arc J >

7: end while Y O

8: return A directed st-path P.

Note: In Step 3-6, only yy for the current U changes.

yu appears only on the left-hand sides of constraints for edges in §(U).

(11) y is Dual Feasible

Algorithm 3.2 Shortest path. S horteSt pat h d ua l :

Input: Graph G = (V,E), costs ¢. > 0 foralle € E, s,t € V where s #£ 1.
Output: A shortest st-path P max Z(ys : 5(5) S, t-cut)
: yw := 0 for all st-cuts §(W). Set U := {s}
: whiler ¢ U do
Let ab be an edge in §(U) of smallest slack for y where a € U, b ¢ U s.t. Z(ys L ec 6(3)) S Ce

1
2
3
4: yy = slacky(ab)

s U=Uu{b} (e€ E)
6: change edge ab into an arc J >

7: end while Y O

8: return A directed st-path P.

Note: In Step 3-6, only yy for the current U changes.
yu appears only on the left-hand sides of constraints for edges in §(U).

The smallest slack of any of these constraints is precisely the increase in
Yu-

(11) y is Dual Feasible

Algorithm 3.2 Shortest path. S horteSt pat h d ua l :

Input: Graph G = (V,E), costs ¢. > 0 foralle € E, s,t € V where s #£ 1.
Output: A shortest st-path P max Z(ys : 5(5) S, t-cut)
: yw := 0 for all st-cuts §(W). Set U := {s}
: whiler ¢ U do
Let ab be an edge in §(U) of smallest slack for y where a € U, b ¢ U s.t. Z(ys L ec 6(3)) S Ce

1
2
3
4: yy = slacky(ab)

s U=Uu{b} (e€ E)
6: change edge ab into an arc J >

7: end while Y O

8: return A directed st-path P.

Note: In Step 3-6, only yy for the current U changes.
yu appears only on the left-hand sides of constraints for edges in §(U).

The smallest slack of any of these constraints is precisely the increase in
Yu-

— y remains feasible!

(11) y is Dual Feasible

Algorithm 3.2 Shortest path. S horteSt pat h d ua l :

Input: Graph G = (V,E), costs ¢. > 0 foralle € E, s,t € V where s #£ 1.
Output: A shortest st-path P max Z(ys : 5(8) S, t-cut)
: yw := 0 for all st-cuts §(W). Set U := {s}
: whiler ¢ U do
Let ab be an edge in §(U) of smallest slack for y where a € U, b ¢ U s.t. Z(ys L ec 6(3)) S Ce

1
2
3
4: yy = slacky(ab)

s U=Uu{b} (e€ E)
6: change edge ab into an arc J >

7: end while Y O

8: return A directed st-path P.

Note: In Step 3-6, only yy for the current U changes.
yu appears only on the left-hand sides of constraints for edges in §(U).

The smallest slack of any of these constraints is precisely the increase in
Yu-

— y remains feasible!

Also: The constraint of the newly created arc holds with equality after
the increase

(11) y is Dual Feasible

Algorithm 3.2 Shortest path. S horteSt pat h d ua l :

Input: Graph G = (V,E), costs ¢. > 0 foralle € E, s,t € V where s #£ 1.
Output: A shortest st-path P max Z(ys : 5(8) S, t-cut)
: yw := 0 for all st-cuts §(W). Set U := {s}
: whiler ¢ U do
Let ab be an edge in §(U) of smallest slack for y where a € U, b ¢ U s.t. Z(ys L ec 6(3)) S Ce

1
2
3
4: yy = slacky(ab)

s U=Uu{b} (e€ E)
6: change edge ab into an arc J >

7: end while Y O

8: return A directed st-path P.

Note: In Step 3-6, only yy for the current U changes.
yu appears only on the left-hand sides of constraints for edges in §(U).

The smallest slack of any of these constraints is precisely the increase in
Yu-

— y remains feasible!

Also: The constraint of the newly created arc holds with equality after

the increase
— (I2) continues to hold and constraints for arcs have slack 0.

Correctness of the Shortest Path Algorithm

Al

gorithm 3.2 Shortest path.

Input: Graph G = (V,E), costs ¢, > 0 foralle € E, s,t €V where s #¢.
Output: A shortest st-path P

1
2;
3;
4
5:
6:
7
8

: yw := 0 for all st-cuts §(W). Set U := {s}

: while r ¢ U do

Let ab be an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
yu := slack,(ab)

U:=UU{b}

change edge ab into an arc 3

- end while

: return A directed st-path P.

e the only new active cut created is
o(U)

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Al

gorithm 3.2 Shortest path.

Input: Graph G = (V,E), costs ¢, > 0 foralle € E, s,t €V where s #¢.
Output: A shortest st-path P

1
2;
3;
4
5:
6:
7
8

: yw := 0 for all st-cuts §(W). Set U := {s}

: while r ¢ U do

Let ab be an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
yu := slack,(ab)

U:=UU{b}

change edge ab into an arc 3

- end while

: return A directed st-path P.

e the only new active cut created is
5(U)

e (I5) — all old arcs have both
ends in U

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Al

gorithm 3.2 Shortest path.

Input: Graph G = (V,E), costs ¢, > 0 foralle € E, s,t €V where s #¢.
Output: A shortest st-path P

1
2;
3;
4
5:
6:
7
8

: yw := 0 for all st-cuts §(W). Set U := {s}

: while r ¢ U do

Let ab be an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
yu := slack,(ab)

U:=UU{b}

change edge ab into an arc 3

- end while

: return A directed st-path P.

e the only new active cut created is
6(U)

e (I5) — all old arcs have both
ends in U

e one new arc has tail in U, and head
outside U

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Algorithm 3.2 Shortest path.

Input: Graph G = (V,E), costs ¢, > 0 foralle € E, s,t €V where s #¢.
Output: A shortest st-path P

1: yw := 0 for all st-cuts §(W). Set U := {s}

2: while: ¢ U do

3: Letabbe an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
4: yy :=slacky(ab)

51 U:=UU{b}

6: change edge ab into an arc 3

7: end while

8: return A directed st-path P.

e the only new active cut created is

6(U)

e (I5) — all old arcs have both
ends in U

e one new arc has tail in U, and head
outside U

— (I3) holds after Step 6

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Note: Algorithms adds arc ab in current
step, and (I4) implies that there is a
directed s, a-path P.

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Note: Algorithms adds arc ab in current
step, and (I4) implies that there is a
directed s, a-path P.

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Note: Algorithms adds arc ab in current
step, and (I4) implies that there is a
directed s, a-path P.

(I15) — arcs different from ab have
both ends in U

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Note: Algorithms adds arc ab in current
step, and (I4) implies that there is a
directed s, a-path P.

(I15) — arcs different from ab have
both ends in U
— since b is outside U, it cannot be
on P, and thus, P together with ab is a
directed s, b-path

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Note: Algorithms adds arc ab in current
step, and (I4) implies that there is a
directed s, a-path P.

(I15) — arcs different from ab have
both ends in U
— since b is outside U, it cannot be
on P, and thus, P together with ab is a
directed s, b-path

— (14) holds at the end of loop

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Finally, the only new arc added is ab. As
b is added to U, (15) continues to hold.

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Correctness of the Shortest Path Algorithm

Finally, the only new arc added is ab. As
b is added to U, (15) continues to hold.

We are now done!

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(12) arcs are equality arcs (i.e.,
have 0 slack),

(13) no active cut 6(U) has an
entering arc: an arc wu
with w € U, and u € U,

(14) for every u € U there is a
directed s, u-path, and

(I5) arcs have both ends in U.

Algorithm 3.2 Shortest path.

Input: Graph G = (V,E),costsc, >0foralle € E, s,t €V wheres #¢.
Output: A shortest st-path P
1: yw =0 for all st-cuts §(W). Set U :={s}
2: whiler ¢ U do
3: Letab be an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
4: yy :=slack,(ab)
5. U:=Uu{b}
6: change edge ab into an arc E
7: end while
8: return A directed st-path P.

Recap
o We saw that the shortest path algorithm

Algorithm 3.2 Shortest path.

Input: Graph G = (V,E),costsc, >0foralle € E, s,t €V wheres #¢.
Output: A shortest st-path P
1: yw =0 for all st-cuts §(W). Set U :={s}
2: whiler ¢ U do
3: Letab be an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
4: yy :=slack,(ab)
5. U:=Uu{b}
6: change edge ab into an arc E
7: end while
8: return A directed st-path P.

Recap

o We saw that the shortest path algorithm
(i) always produces an s, t-path P, and

Algorithm 3.2 Shortest path.

Input: Graph G = (V,E),costsc, >0foralle € E, s,t €V wheres #¢.
Output: A shortest st-path P
1: yw =0 for all st-cuts §(W). Set U :={s}
2: whiler ¢ U do
3: Letab be an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
4: yy :=slack,(ab)
5. U:=Uu{b}
6: change edge ab into an arc E
7: end while
8: return A directed st-path P.

Recap

o We saw that the shortest path algorithm

(i) always produces an s, t-path P, and
(ii) a feasible dual solution y.

Algorithm 3.2 Shortest path.

Input: Graph G = (V,E),costsc, >0foralle € E, s,t €V wheres #¢.
Output: A shortest st-path P

: yw := 0 for all st-cuts §(W). Set U := {s}

: whiler ¢ U do

Let ab be an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
yu := slack,(ab)

U:=UU{b}

change edge ab into an arc E

end while
return A directed st-path P.

L O S

Recap

o We saw that the shortest path algorithm
(i) always produces an s, t-path P, and
(ii) a feasible dual solution y.

o Moreover, the length of P equals the objective value of ¥, and
hence, P must be a shortest s, t-path.

Algorithm 3.2 Shortest path.
Input: Graph G = (V,E),costsc, >0foralle € E, s,t €V wheres #¢.
Output: A shortest st-path P
1: yw =0 for all st-cuts §(W). Set U :={s}
2: whiler ¢ U do
3: Letab be an edge in 8(U) of smallest slack for y wherea € U, b ¢ U
4: yy :=slack,(ab)
5. U:=Uu{b}
6: change edge ab into an arc E

7: end while
8: return A directed st-path P.

Recap

o We saw that the shortest path algorithm
(i) always produces an s, t-path P, and
(ii) a feasible dual solution y.
o Moreover, the length of P equals the objective value of ¥, and
hence, P must be a shortest s, t-path.
o Implicitly, we therefore showed that the shortest path LP always has
an optimal integer solution!

	Computing Shortest Paths

