
CO 250: Introduction to Optimization
Module 3: Duality through examples (Shortest Path Algorithm)



Recap: Feasible Widths via Duality

The figure on the right shows
another simple instance of the
shortest s, t-path problem.
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Recap: Feasible Widths via Duality

The figure on the right shows
another simple instance of the
shortest s, t-path problem.

By inspection: shortest s, t-path
(bold edges) has length 5

There is a feasible width assignment
of value 5, proving optimality!
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Recap: Feasible Widths via Duality

The figure on the right shows
another simple instance of the
shortest s, t-path problem.

By inspection: shortest s, t-path
(bold edges) has length 5

There is a feasible width assignment
of value 5, proving optimality!

Shortest path LP:

min
∑

(xe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0
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Recap: Feasible Widths via Duality

The figure on the right shows
another simple instance of the
shortest s, t-path problem.

By inspection: shortest s, t-path
(bold edges) has length 5

There is a feasible width assignment
of value 5, proving optimality!

Shortest path LP:
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(xe : e ∈ δ(S)) ≥ 1
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Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0



Recap: Feasible Widths via Duality

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0
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Letting

xe =

{
1 e bold in figure

0 otherwise

for all e ∈ E is feasible for shortest
path LP.



Recap: Feasible Widths via Duality

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
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(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)
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Letting

y{s} = y{s,b} = 1, y{s,a,b,c} = 3,

and yS = 0 for all other s, t-cuts
δ(S) yields a feasible dual solution
of value 5!
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Shortest path LP:

min
∑

(xe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1
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x ≥ 0
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Weak Duality Theorem

If x̄ is feasible for shortest path LP,
and ȳ is feasible for its dual then
bT ȳ ≤ cT x̄.
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Weak Duality Theorem

If x̄ is feasible for shortest path LP,
and ȳ is feasible for its dual then
bT ȳ ≤ cT x̄.

−→ Bold path in figure is shortest
s, t-path!
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Weak Duality Theorem

If x̄ is feasible for shortest path LP,
and ȳ is feasible for its dual then
bT ȳ ≤ cT x̄.

Today:

1. How did we find the bold path?

2. How did we find the dual
solution?

3. Is there always a shortest
s, t-path and a dual solution
whose value matches its length?
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Weak Duality Theorem

If x̄ is feasible for shortest path LP,
and ȳ is feasible for its dual then
bT ȳ ≤ cT x̄.

−→ Bold path in figure is shortest
s, t-path!

Today:

1. How did we find the bold path?

2. How did we find the dual
solution?

3. Is there always a shortest
s, t-path and a dual solution
whose value matches its length?



An Algorithm for the Shortest s, t-Path Problem
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So far: edges of a graph G = (V,E) are
unordered pairs of vertices.
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Arcs and Directed Paths

So far: edges of a graph G = (V,E) are
unordered pairs of vertices.

Now: introduce arcs – ordered pairs of
vertices. Denote an arc from u to v as −→uv,
and draw it as arrow from u to v.

A directed path is then a sequence of arcs:

−−→v1v2,−−→v2v3, . . . ,−−−−→vk−1vk,

where −−−→vivi+1 is an arc in the given graph,
and vi 6= vj for all i 6= j.
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Arcs and Directed Paths

So far: edges of a graph G = (V,E) are
unordered pairs of vertices.

Now: introduce arcs – ordered pairs of
vertices. Denote an arc from u to v as −→uv,
and draw it as arrow from u to v.

A directed path is then a sequence of arcs:

−−→v1v2,−−→v2v3, . . . ,−−−−→vk−1vk,

where −−−→vivi+1 is an arc in the given graph,
and vi 6= vj for all i 6= j.

Example:
−→uv,−→vw,−→wx

is a directed u, x-path.
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Shortest Paths: Algorithmic Ideas

Idea: Find an s, t-path P and a feasible
dual y s.t. c(P ) = 1T y. How?
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(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0
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Definition

Let y be a feasible dual solution. The slack
of an edge e ∈ E is defined as

slacky(e) = ce −
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(yU :
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Examples: for the dual y given on the right,
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Definition

Let y be a feasible dual solution. The slack
of an edge e ∈ E is defined as
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Shortest Paths: Building Duals Incrementally

Start with the trivial dual y = 0
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Simplest s, t-cut: δ({s})
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Start with the trivial dual y = 0
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−→ increase y{s} as much as we can
maintaining feasibility
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Start with the trivial dual y = 0

Simplest s, t-cut: δ({s})
−→ increase y{s} as much as we can
maintaining feasibility
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Note: This decreases the slack of sc to 0!
−→ replace sc by −→sc

Next: Look at all vertices that are reachable
from s via directed paths:

U = {s, c}

s

a

b
c

d
t

3

2 1

2

4

2

4

1

1

1
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0



Shortest Paths: Building Duals Incrementally

Start with the trivial dual y = 0
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maintaining feasibility
−→ y{s} = 1

Note: This decreases the slack of sc to 0!
−→ replace sc by −→sc

Next: Look at all vertices that are reachable
from s via directed paths:
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Shortest Paths: Building Duals Incrementally

Start with the trivial dual y = 0

Simplest s, t-cut: δ({s})
−→ increase y{s} as much as we can
maintaining feasibility
−→ y{s} = 1

Note: This decreases the slack of sc to 0!
−→ replace sc by −→sc

Next: Look at all vertices that are reachable
from s via directed paths:

U = {s, c}

and consider increasing yU

Q: By how much can you increase yU?
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Q: By how much can you increase yU? The

maximum increase possible for y{s,c} is
determined by the slack of edges in
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Shortest Paths: Building Duals Incrementally

Q: By how much can you increase yU? The

maximum increase possible for y{s,c} is
determined by the slack of edges in
δ({s, c})!

slacky(sa) = 2− 1 = 1

slacky(cb) = 2

slacky(ct) = 4

slacky(cd) = 1

slacky(sd) = 3− 1 = 2

Edges cd and sa minimize slack. Pick one
arbitrarily: sa.
Set yU = slacky(sa) = 1 and convert sa
into arc −→sa
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Shortest Paths: Building Duals Incrementally

Q: Which vertices are reachable from s via
directed paths?
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U = {s, a, c}

Natural idea: Increase y{s,a,c} by as much
as we can. How much?
−→ the slack of cd is 0, and hence
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Shortest Paths: Building Duals Incrementally

Note: we now have a directed s, t-path in
our graph:

P = −→sc,
−→
cd,
−→
dt,

and its length is 4!
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Shortest Paths: Building Duals Incrementally

Note: we now have a directed s, t-path in
our graph:

P = −→sc,
−→
cd,
−→
dt,

and its length is 4!

We also have a feasible dual solution:

y{s} = y{s,c} = y{s,a,c,d} = y{s,a,b,c,d} = 1,

and yU = 0 otherwise. Its value is 4!

−→ Path P is a shortest path!
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Shortest Path Algorithm

To compute the shortest Path for the instance on
the right, we used the following algorithm:
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Recap

• We saw a shortest path algorithm that computes

(a) an s, t-path P , and
(b) a feasible solution y for the dual of the shortest path LP

simultaneously

• We will soon show, that the length of the output path P , and the
value of the dual solution y are the same, showing that both P and
y are optimal

• Have a look at the book. It has another full example run of the
shortest path algorithm
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