
Introduction to Optimization
Part 1: Formulations (Overview)

Outline

Introducing Optimization

Three Case Studies

A Modeling Example

Optimization - Abstract Perspective

I Abstractly, we will focus on problems of the following form:
I Given: set A ⊆ R

n and function f : A→ R

I Goal: find x ∈ A that minimizes/maximizes f

I Very general problem that is enormously useful in virtually
very branch of industry.

I Bad news: the above problem is notoriously hard to solve
(and may not even be well-defined).

Optimization - Abstract Perspective

I Abstractly, we will focus on problems of the following form:
I Given: set A ⊆ R

n and function f : A→ R

I Goal: find x ∈ A that minimizes/maximizes f

I Very general problem that is enormously useful in virtually
very branch of industry.

I Bad news: the above problem is notoriously hard to solve
(and may not even be well-defined).

Optimization - Abstract Perspective

I Abstractly, we will focus on problems of the following form:
I Given: set A ⊆ R

n and function f : A→ R

I Goal: find x ∈ A that minimizes/maximizes f

I Very general problem that is enormously useful in virtually
very branch of industry.

I Bad news: the above problem is notoriously hard to solve
(and may not even be well-defined).

Optimization - Important Special Cases

I Abstract optimization problem (P):
I Given: set A ⊆ R

n and function f : A→ R

I Goal: find x ∈ A that minimizes/maximizes f

I Will look at three special cases of (P) in this course:

(A) Linear Programming. A is implicitly given by linear
constraints, and f is a linear function.

(B) Integer Programming. Same as before, but now we want to
max/min over the integer points in A.

(C) Nonlinear Programming. A is given by non-linear
constraints, and f is a non-linear function.

Optimization - Important Special Cases

I Abstract optimization problem (P):
I Given: set A ⊆ R

n and function f : A→ R

I Goal: find x ∈ A that minimizes/maximizes f

I Will look at three special cases of (P) in this course:
(A) Linear Programming. A is implicitly given by linear

constraints, and f is a linear function.

(B) Integer Programming. Same as before, but now we want to
max/min over the integer points in A.

(C) Nonlinear Programming. A is given by non-linear
constraints, and f is a non-linear function.

Optimization - Important Special Cases

I Abstract optimization problem (P):
I Given: set A ⊆ R

n and function f : A→ R

I Goal: find x ∈ A that minimizes/maximizes f

I Will look at three special cases of (P) in this course:
(A) Linear Programming. A is implicitly given by linear

constraints, and f is a linear function.
(B) Integer Programming. Same as before, but now we want to

max/min over the integer points in A.

(C) Nonlinear Programming. A is given by non-linear
constraints, and f is a non-linear function.

Optimization - Important Special Cases

I Abstract optimization problem (P):
I Given: set A ⊆ R

n and function f : A→ R

I Goal: find x ∈ A that minimizes/maximizes f

I Will look at three special cases of (P) in this course:
(A) Linear Programming. A is implicitly given by linear

constraints, and f is a linear function.
(B) Integer Programming. Same as before, but now we want to

max/min over the integer points in A.
(C) Nonlinear Programming. A is given by non-linear

constraints, and f is a non-linear function.

Optimization - Typical Workflow

Typical development
process has three stages.

I Starting point is English
language description of
practical problem

I We will develop a
mathematical model for
the problem.

I Finally, feed model and
data into a solver.

I Iterate!

Practical Problem:

- Description in
 plain language
- Supporting data

Optimization - Typical Workflow

Typical development
process has three stages.

I Starting point is English
language description of
practical problem

I We will develop a
mathematical model for
the problem.

I Finally, feed model and
data into a solver.

I Iterate!

Mathematical Model:

- Capture problem
 in mathematics
- here: LP, IP, NLP

Practical Problem:

- Description in
 plain language
- Supporting data

Optimization - Typical Workflow

Typical development
process has three stages.

I Starting point is English
language description of
practical problem

I We will develop a
mathematical model for
the problem.

I Finally, feed model and
data into a solver.

I Iterate!

Practical Implementation:

- E.g., OPL (IBM ILOG)

Mathematical Model:
- Capture problem
 in mathematics
- here: LP, IP, NLP

Practical Problem:

- Description in
 plain language
- Supporting data

Optimization - Typical Workflow

Typical development
process has three stages.

I Starting point is English
language description of
practical problem

I We will develop a
mathematical model for
the problem.

I Finally, feed model and
data into a solver.

I Iterate! Practical Implementation:

- E.g., OPL (IBM ILOG)

Mathematical Model:
- Capture problem
 in mathematics
- here: LP, IP, NLP

Practical Problem:

- Description in
 plain language
- Supporting data

Optimization in Practice

Optimization is everywhere! Some examples:
I Booking hotel rooms or airline tickets,

I Setting the market price of a kwh of electricity,

I Determining an “optimal” portfolio of stocks,

I Computing energy efficient circuits in chip design,

I and many more!

CSX Rail

I One of the largest
transport suppliers in
the United States.

I CSX operates 21000
miles of rail network

I 11 Billion in annual
revenue

I Serves 23 states,
Ontario and Quebec

I Operates 1200 trains
per day

I Has a fleet of 3800
locomotives, and more
than 100000 freight
cars

I Transports 7.4 million
car loads per year

Optimization @ CSX Rail

I [Acharya, Sellers, Gorman
’10] use mathematical
programming to optimally
allocate and reposition
empty railcars dynamically

I Implementing system yields the following estimated
benefits for CSX:

Annual savings: $51 million
Avoided rail car capital investment: $1.4 billion

Optimization in Disease Control

I [Lee et al. ’13] Use
mathematical
programming to prepare
for disease outbreak and
medical catastrophes.

I Where should we place
medical dispensing
facilities, and how should
we staff these in order to
disseminate medication as
quickly as possible to
population?

I How should dispensing be
scheduled?

2001 Anthrax letter sent to
Senator T. Daschle

Optimization in Disease Control

I In collaboration with the
Center for Disease
Control, [Lee et al. ’13]
develop decision support
suite RealOpt

I Suite is being used by
≈ 6500 public health and
emergency directors in the
USA to design, place and
staff medical dispensing
centers

I In tests, throughput in
medical dispensing centers
increases by several
orders of magnitude.

2001 Anthrax letter sent to
Senator T. Daschle

WaterTech Production

I WaterTech produces 4 products P = {1,2,3,4} from the
following resources:
I Time on two machines,
I Skilled and unskilled labour

I The following table gives precise requirements:

E.g.: producing a unit of product 3 requires 6h on machine
1, 5h on machine 2, 5h of skilled, and 7h of unskilled
labour. It can be sold at $220 per unit.

WaterTech Production

I WaterTech produces 4 products P = {1,2,3,4} from the
following resources:
I Time on two machines,
I Skilled and unskilled labour

I The following table gives precise requirements:

E.g.: producing a unit of product 3 requires 6h on machine
1, 5h on machine 2, 5h of skilled, and 7h of unskilled
labour. It can be sold at $220 per unit.

WaterTech Production

I WaterTech produces 4 products P = {1,2,3,4} from the
following resources:
I Time on two machines,
I Skilled and unskilled labour

I The following table gives precise requirements:

E.g.: producing a unit of product 3 requires 6h on machine
1, 5h on machine 2, 5h of skilled, and 7h of unskilled
labour. It can be sold at $220 per unit.

WaterTech Production

Restrictions:
I WaterTech has available 700h of machine 1, and 500h of

machine 2 time
I Can purchase 600h of skilled labour at $8 per hour, and at

most 650h of unskilled labour at $6 per hour

Question: How much of each product should WaterTech
produce in order to maximize profit?

Formulate this as a mathematical program!

WaterTech Production

Restrictions:
I WaterTech has available 700h of machine 1, and 500h of

machine 2 time
I Can purchase 600h of skilled labour at $8 per hour, and at

most 650h of unskilled labour at $6 per hour

Question: How much of each product should WaterTech
produce in order to maximize profit?

Formulate this as a mathematical program!

WaterTech Production

Restrictions:
I WaterTech has available 700h of machine 1, and 500h of

machine 2 time
I Can purchase 600h of skilled labour at $8 per hour, and at

most 650h of unskilled labour at $6 per hour

Question: How much of each product should WaterTech
produce in order to maximize profit?

Formulate this as a mathematical program!

Ingredients of a Math Model

I Decision Variables. Capture unknown information

I Constraints. Describe what assignments to variables are
feasible.

I Objective function. A function of the variables that we
would like to maximize/minimize.

Ingredients of a Math Model

I Decision Variables. Capture unknown information
I Constraints. Describe what assignments to variables are

feasible.

I Objective function. A function of the variables that we
would like to maximize/minimize.

Ingredients of a Math Model

I Decision Variables. Capture unknown information
I Constraints. Describe what assignments to variables are

feasible.
I Objective function. A function of the variables that we

would like to maximize/minimize.

WaterTech Model – Variables

I WaterTech needs to decide how many units of each
product to produce
=⇒ introduce variable xi for number of units of product i to
produce

I For convenience, we also introduce:
ys, yu : number of hours of skilled/unskilled labour to
purchase

WaterTech Model – Variables

I WaterTech needs to decide how many units of each
product to produce
=⇒ introduce variable xi for number of units of product i to
produce

I For convenience, we also introduce:
ys, yu : number of hours of skilled/unskilled labour to
purchase

WaterTech Model – Variables

I WaterTech needs to decide how many units of each
product to produce
=⇒ introduce variable xi for number of units of product i to
produce

I For convenience, we also introduce:
ys, yu : number of hours of skilled/unskilled labour to
purchase

WaterTech Model – Constraints

I When makes an assignment to
{xi}i∈P , ys, yu a feasible?

I E.g., production plan described
by assignment may not use more
than 700h of time on machine 1.

=⇒ 11x1 + 7x2 + 6x3 + 5x4 ≤ 700

I Similarly, we may not use more than 500h of machine 2
time:

=⇒ 4x1 + 6x2 + 5x3 + 4x4 ≤ 500

WaterTech Model – Constraints

I When makes an assignment to
{xi}i∈P , ys, yu a feasible?

I E.g., production plan described
by assignment may not use more
than 700h of time on machine 1.

=⇒ 11x1 + 7x2 + 6x3 + 5x4 ≤ 700

I Similarly, we may not use more than 500h of machine 2
time:

=⇒ 4x1 + 6x2 + 5x3 + 4x4 ≤ 500

WaterTech Model – Constraints

I When makes an assignment to
{xi}i∈P , ys, yu a feasible?

I E.g., production plan described
by assignment may not use more
than 700h of time on machine 1.

=⇒ 11x1 + 7x2 + 6x3 + 5x4 ≤ 700

I Similarly, we may not use more than 500h of machine 2
time:

=⇒ 4x1 + 6x2 + 5x3 + 4x4 ≤ 500

WaterTech Model – Constraints

I When makes an assignment to
{xi}i∈P , ys, yu a feasible?

I E.g., production plan described
by assignment may not use more
than 700h of time on machine 1.

=⇒ 11x1 + 7x2 + 6x3 + 5x4 ≤ 700

I Similarly, we may not use more than 500h of machine 2
time:

=⇒ 4x1 + 6x2 + 5x3 + 4x4 ≤ 500

WaterTech Model – Constraints

I Producing xi units of
product i ∈ P requires

8x1 + 5x2 + 5x3 + 6x4

units of skilled labour, and
this must not exceed ys.

=⇒ 8x1+5x2+5x3+6x4 ≤ ys

I Similarly for unskilled labour:

=⇒ 7x1 + 8x2 + 7x3 + 4x4 ≤ yu

I . . . and ys ≤ 600 as well as yu ≤ 650 as only limited
amounts of labour can be purchased.

WaterTech Model – Constraints

I Producing xi units of
product i ∈ P requires

8x1 + 5x2 + 5x3 + 6x4

units of skilled labour, and
this must not exceed ys.

=⇒ 8x1+5x2+5x3+6x4 ≤ ys

I Similarly for unskilled labour:

=⇒ 7x1 + 8x2 + 7x3 + 4x4 ≤ yu

I . . . and ys ≤ 600 as well as yu ≤ 650 as only limited
amounts of labour can be purchased.

WaterTech Model – Constraints

I Producing xi units of
product i ∈ P requires

8x1 + 5x2 + 5x3 + 6x4

units of skilled labour, and
this must not exceed ys.

=⇒ 8x1+5x2+5x3+6x4 ≤ ys

I Similarly for unskilled labour:

=⇒ 7x1 + 8x2 + 7x3 + 4x4 ≤ yu

I . . . and ys ≤ 600 as well as yu ≤ 650 as only limited
amounts of labour can be purchased.

WaterTech Model – Constraints

I Producing xi units of
product i ∈ P requires

8x1 + 5x2 + 5x3 + 6x4

units of skilled labour, and
this must not exceed ys.

=⇒ 8x1+5x2+5x3+6x4 ≤ ys

I Similarly for unskilled labour:

=⇒ 7x1 + 8x2 + 7x3 + 4x4 ≤ yu

I . . . and ys ≤ 600 as well as yu ≤ 650 as only limited
amounts of labour can be purchased.

WaterTech Model – Objective Function

I Revenue from sales:

300x1 + 260x2 + 220x3 + 180x4

I Cost of labour: 8ys + 6yu

I Objective function:

maximize 300x1 + 260x2 + 220x3 + 180x4

− 8ys − 6yu

WaterTech Model – Objective Function

I Revenue from sales:

300x1 + 260x2 + 220x3 + 180x4

I Cost of labour: 8ys + 6yu

I Objective function:

maximize 300x1 + 260x2 + 220x3 + 180x4

− 8ys − 6yu

WaterTech Model – Objective Function

I Revenue from sales:

300x1 + 260x2 + 220x3 + 180x4

I Cost of labour: 8ys + 6yu

I Objective function:

maximize 300x1 + 260x2 + 220x3 + 180x4

− 8ys − 6yu

WaterTech – Entire Model

max 300x1 + 260x2 + 220x3 + 180x4 − 8ys − 6yu

s.t. 11x1 + 7x2 + 6x3 + 5x4 ≤ 700
4x1 + 6x2 + 5x3 + 4x4 ≤ 500
8x1 + 5x2 + 5x3 + 6x4 ≤ ys

7x1 + 8x2 + 7x3 + 4x4 ≤ yu

ys ≤ 600
yu ≤ 650
x1, x2, x3, x4, yu, ys ≥ 0.

Solution (via CPLEX): x = (16 + 2
3 ,50,0,33 + 1

3)
T ,

ys = 583 + 1
3 , yu = 650 of profit $15433 + 1

3 .

WaterTech – Entire Model

max 300x1 + 260x2 + 220x3 + 180x4 − 8ys − 6yu

s.t. 11x1 + 7x2 + 6x3 + 5x4 ≤ 700
4x1 + 6x2 + 5x3 + 4x4 ≤ 500
8x1 + 5x2 + 5x3 + 6x4 ≤ ys

7x1 + 8x2 + 7x3 + 4x4 ≤ yu

ys ≤ 600
yu ≤ 650
x1, x2, x3, x4, yu, ys ≥ 0.

Solution (via CPLEX): x = (16 + 2
3 ,50,0,33 + 1

3)
T ,

ys = 583 + 1
3 , yu = 650 of profit $15433 + 1

3 .

Correctness of Model

I Is our model correct?
What does this mean?

I Some terminology:

(i) Word description of
problem

(ii) Formulation

I A solution to the
formulation is an
assignment to all of its
variables

I This is feasible if all
constraints are satisfied,
and optimal if no better
feasible solution exists.

I Similar: solution to word description is an assignment to
the unknowns

Correctness of Model

I Is our model correct?
What does this mean?

I Some terminology:
(i) Word description of

problem

(ii) Formulation
I A solution to the

formulation is an
assignment to all of its
variables

I This is feasible if all
constraints are satisfied,
and optimal if no better
feasible solution exists.

I Similar: solution to word description is an assignment to
the unknowns

Correctness of Model

I Is our model correct?
What does this mean?

I Some terminology:
(i) Word description of

problem
(ii) Formulation

I A solution to the
formulation is an
assignment to all of its
variables

I This is feasible if all
constraints are satisfied,
and optimal if no better
feasible solution exists.

I Similar: solution to word description is an assignment to
the unknowns

Correctness of Model

I Is our model correct?
What does this mean?

I Some terminology:
(i) Word description of

problem
(ii) Formulation

I A solution to the
formulation is an
assignment to all of its
variables

I This is feasible if all
constraints are satisfied,
and optimal if no better
feasible solution exists.

I Similar: solution to word description is an assignment to
the unknowns

Correctness of Model

I Is our model correct?
What does this mean?

I Some terminology:
(i) Word description of

problem
(ii) Formulation

I A solution to the
formulation is an
assignment to all of its
variables

I This is feasible if all
constraints are satisfied,
and optimal if no better
feasible solution exists.

I Similar: solution to word description is an assignment to
the unknowns

Correctness of Model

I One way of showing correctness: define a mapping
between feasible solutions to the word description, and
feasible solutions to the model, and vice versa.

I E.g., feasible solution to WaterTech word description is
given by

(i) Producing 10 units of product 1, 50 units of product 2, 0
units of product 3, and 20 units of product 4, and by

(ii) Purchasing 600 units of skilled and unskilled labour.
I It is easily checked that

x1 = 10, x2 = 50, x3 = 0, x4 = 20, ys = yu = 600

is feasible for the mathematical program we wrote.

Correctness of Model

I One way of showing correctness: define a mapping
between feasible solutions to the word description, and
feasible solutions to the model, and vice versa.

I E.g., feasible solution to WaterTech word description is
given by

(i) Producing 10 units of product 1, 50 units of product 2, 0
units of product 3, and 20 units of product 4, and by

(ii) Purchasing 600 units of skilled and unskilled labour.

I It is easily checked that

x1 = 10, x2 = 50, x3 = 0, x4 = 20, ys = yu = 600

is feasible for the mathematical program we wrote.

Correctness of Model

I One way of showing correctness: define a mapping
between feasible solutions to the word description, and
feasible solutions to the model, and vice versa.

I E.g., feasible solution to WaterTech word description is
given by

(i) Producing 10 units of product 1, 50 units of product 2, 0
units of product 3, and 20 units of product 4, and by

(ii) Purchasing 600 units of skilled and unskilled labour.
I It is easily checked that

x1 = 10, x2 = 50, x3 = 0, x4 = 20, ys = yu = 600

is feasible for the mathematical program we wrote.

I Your map should preserve cost.
In example, profit of solution to word description should
correspond to objective value of its image (under map),
and vice versa. Check this!

I In the example, the map was simply the identity. This need
not necessarily be the case in general!

I Your map should preserve cost.
In example, profit of solution to word description should
correspond to objective value of its image (under map),
and vice versa. Check this!

I In the example, the map was simply the identity. This need
not necessarily be the case in general!

CO 250: Introduction to Optimization
Module 1: Formulations (LP Models)

Constrained Optimization

In this course, we consider optimization problems of the following
form:

min{f(x) : gi(x) ≤ bi, (1 ≤ i ≤ m), x ∈ Rn},

where

n,m ∈ N,
b1, . . . , bm ∈ R, and
f , g1, . . . , gm are functions with from Rn to R.

Problems like the above are very hard to solve in general
=⇒ we focus on special cases.

This class: all functions are affine.

Constrained Optimization

In this course, we consider optimization problems of the following
form:

min{f(x) : gi(x) ≤ bi, (1 ≤ i ≤ m), x ∈ Rn},

where

n,m ∈ N,
b1, . . . , bm ∈ R, and
f , g1, . . . , gm are functions with from Rn to R.

Problems like the above are very hard to solve in general
=⇒ we focus on special cases.

This class: all functions are affine.

Constrained Optimization

In this course, we consider optimization problems of the following
form:

min{f(x) : gi(x) ≤ bi, (1 ≤ i ≤ m), x ∈ Rn},

where

n,m ∈ N,
b1, . . . , bm ∈ R, and
f , g1, . . . , gm are functions with from Rn to R.

Problems like the above are very hard to solve in general
=⇒ we focus on special cases.

This class: all functions are affine.

Constrained Optimization

In this course, we consider optimization problems of the following
form:

min{f(x) : gi(x) ≤ bi, (1 ≤ i ≤ m), x ∈ Rn},

where

n,m ∈ N,
b1, . . . , bm ∈ R, and
f , g1, . . . , gm are functions with from Rn to R.

Problems like the above are very hard to solve in general
=⇒ we focus on special cases.

This class: all functions are affine.

Modeling: Linear Programs

Affine Functions

Definition

A function f : Rn → R is affine if f(x) = aTx+ β for a ∈ Rn, β ∈ R.

It is linear if in addition β = 0.

Example

(i) f(x) = 2x1 + 3x2 − x3 + 7

(affine, but not linear)

(ii) f(x) = −3x1 + 5x3

(linear)

(iii) f(x) = 5x− 3 cos(x) +
√
x

(not affine and not linear)

Affine Functions

Definition

A function f : Rn → R is affine if f(x) = aTx+ β for a ∈ Rn, β ∈ R.
It is linear if in addition β = 0.

Example

(i) f(x) = 2x1 + 3x2 − x3 + 7

(affine, but not linear)

(ii) f(x) = −3x1 + 5x3

(linear)

(iii) f(x) = 5x− 3 cos(x) +
√
x

(not affine and not linear)

Affine Functions

Definition

A function f : Rn → R is affine if f(x) = aTx+ β for a ∈ Rn, β ∈ R.
It is linear if in addition β = 0.

Example

(i) f(x) = 2x1 + 3x2 − x3 + 7

(affine, but not linear)

(ii) f(x) = −3x1 + 5x3

(linear)

(iii) f(x) = 5x− 3 cos(x) +
√
x

(not affine and not linear)

Affine Functions

Definition

A function f : Rn → R is affine if f(x) = aTx+ β for a ∈ Rn, β ∈ R.
It is linear if in addition β = 0.

Example

(i) f(x) = 2x1 + 3x2 − x3 + 7

(affine, but not linear)

(ii) f(x) = −3x1 + 5x3

(linear)

(iii) f(x) = 5x− 3 cos(x) +
√
x

(not affine and not linear)

Affine Functions

Definition

A function f : Rn → R is affine if f(x) = aTx+ β for a ∈ Rn, β ∈ R.
It is linear if in addition β = 0.

Example

(i) f(x) = 2x1 + 3x2 − x3 + 7 (affine, but not linear)

(ii) f(x) = −3x1 + 5x3

(linear)

(iii) f(x) = 5x− 3 cos(x) +
√
x

(not affine and not linear)

Affine Functions

Definition

A function f : Rn → R is affine if f(x) = aTx+ β for a ∈ Rn, β ∈ R.
It is linear if in addition β = 0.

Example

(i) f(x) = 2x1 + 3x2 − x3 + 7 (affine, but not linear)

(ii) f(x) = −3x1 + 5x3

(linear)

(iii) f(x) = 5x− 3 cos(x) +
√
x

(not affine and not linear)

Affine Functions

Definition

A function f : Rn → R is affine if f(x) = aTx+ β for a ∈ Rn, β ∈ R.
It is linear if in addition β = 0.

Example

(i) f(x) = 2x1 + 3x2 − x3 + 7 (affine, but not linear)

(ii) f(x) = −3x1 + 5x3 (linear)

(iii) f(x) = 5x− 3 cos(x) +
√
x

(not affine and not linear)

Affine Functions

Definition

A function f : Rn → R is affine if f(x) = aTx+ β for a ∈ Rn, β ∈ R.
It is linear if in addition β = 0.

Example

(i) f(x) = 2x1 + 3x2 − x3 + 7 (affine, but not linear)

(ii) f(x) = −3x1 + 5x3 (linear)

(iii) f(x) = 5x− 3 cos(x) +
√
x

(not affine and not linear)

Affine Functions

Definition

A function f : Rn → R is affine if f(x) = aTx+ β for a ∈ Rn, β ∈ R.
It is linear if in addition β = 0.

Example

(i) f(x) = 2x1 + 3x2 − x3 + 7 (affine, but not linear)

(ii) f(x) = −3x1 + 5x3 (linear)

(iii) f(x) = 5x− 3 cos(x) +
√
x (not affine and not linear)

Definition

The optimization problem

min{f(x) : gi(x) ≤ bi,
∀1 ≤ i ≤ m, x ∈ Rn} (P)

is called a linear program if f is affine and g1, . . . , gm is finite number of
linear functions.

Instead of set notation, we
often write LPs more
verbosely

May use max instead of
min

Often give non-negativity
constraints separately

Sometimes replace subject
to by s.t.

max − 2x1 + 7x3

subject to x1 + 7x2 ≤ 3

3x2 + 4x3 ≤ 2

x1, x3 ≥ 0

Definition

The optimization problem

min{f(x) : gi(x) ≤ bi,
∀1 ≤ i ≤ m, x ∈ Rn} (P)

is called a linear program if f is affine and g1, . . . , gm is finite number of
linear functions.

Comments:

Instead of set notation, we
often write LPs more
verbosely

May use max instead of
min

Often give non-negativity
constraints separately

Sometimes replace subject
to by s.t.

max − 2x1 + 7x3

subject to x1 + 7x2 ≤ 3

3x2 + 4x3 ≤ 2

x1, x3 ≥ 0

Definition

The optimization problem

min{f(x) : gi(x) ≤ bi,
∀1 ≤ i ≤ m, x ∈ Rn} (P)

is called a linear program if f is affine and g1, . . . , gm is finite number of
linear functions.

Comments:

Instead of set notation, we
often write LPs more
verbosely

May use max instead of
min

Often give non-negativity
constraints separately

Sometimes replace subject
to by s.t.

max − 2x1 + 7x3

subject to x1 + 7x2 ≤ 3

3x2 + 4x3 ≤ 2

x1, x3 ≥ 0

Definition

The optimization problem

min{f(x) : gi(x) ≤ bi,
∀1 ≤ i ≤ m, x ∈ Rn} (P)

is called a linear program if f is affine and g1, . . . , gm is finite number of
linear functions.

Comments:

Instead of set notation, we
often write LPs more
verbosely

May use max instead of
min

Often give non-negativity
constraints separately

Sometimes replace subject
to by s.t.

max − 2x1 + 7x3

subject to x1 + 7x2 ≤ 3

3x2 + 4x3 ≤ 2

x1, x3 ≥ 0

Definition

The optimization problem

min{f(x) : gi(x) ≤ bi,
∀1 ≤ i ≤ m, x ∈ Rn} (P)

is called a linear program if f is affine and g1, . . . , gm is finite number of
linear functions.

Comments:

Instead of set notation, we
often write LPs more
verbosely

May use max instead of
min

Often give non-negativity
constraints separately

Sometimes replace subject
to by s.t.

max − 2x1 + 7x3

subject to x1 + 7x2 ≤ 3

3x2 + 4x3 ≤ 2

x1, x3 ≥ 0

We often write x ≥ 0 as a
short for all variables are
non-negative.

Second mathematical
program is not an LP.
Three reasons:

Dividing by variables is
not allowed
Cannot have strict
inequalities
Must have finite
number of constraints

min − x1 − 2x2 − x3
s.t. 2x1 + x3 ≥ 3

x1 + 2x2 = 2

x ≥ 0

max − 1/x1 − x3
subject to 2x1 + x3 < 3

x1 + αx2 = 2 ∀α ∈ R

(α ∈ R)

We often write x ≥ 0 as a
short for all variables are
non-negative.

Second mathematical
program is not an LP.
Three reasons:

Dividing by variables is
not allowed
Cannot have strict
inequalities
Must have finite
number of constraints

min − x1 − 2x2 − x3
s.t. 2x1 + x3 ≥ 3

x1 + 2x2 = 2

x ≥ 0

max − 1/x1 − x3
subject to 2x1 + x3 < 3

x1 + αx2 = 2 ∀α ∈ R

(α ∈ R)

We often write x ≥ 0 as a
short for all variables are
non-negative.

Second mathematical
program is not an LP.
Three reasons:

Dividing by variables is
not allowed

Cannot have strict
inequalities
Must have finite
number of constraints

min − x1 − 2x2 − x3
s.t. 2x1 + x3 ≥ 3

x1 + 2x2 = 2

x ≥ 0

max − 1/x1 − x3
subject to 2x1 + x3 < 3

x1 + αx2 = 2 ∀α ∈ R

(α ∈ R)

We often write x ≥ 0 as a
short for all variables are
non-negative.

Second mathematical
program is not an LP.
Three reasons:

Dividing by variables is
not allowed
Cannot have strict
inequalities

Must have finite
number of constraints

min − x1 − 2x2 − x3
s.t. 2x1 + x3 ≥ 3

x1 + 2x2 = 2

x ≥ 0

max − 1/x1 − x3
subject to 2x1 + x3 < 3

x1 + αx2 = 2 ∀α ∈ R

(α ∈ R)

We often write x ≥ 0 as a
short for all variables are
non-negative.

Second mathematical
program is not an LP.
Three reasons:

Dividing by variables is
not allowed
Cannot have strict
inequalities
Must have finite
number of constraints

min − x1 − 2x2 − x3
s.t. 2x1 + x3 ≥ 3

x1 + 2x2 = 2

x ≥ 0

max − 1/x1 − x3
subject to 2x1 + x3 < 3

x1 + αx2 = 2 ∀α ∈ R

(α ∈ R)

Production revisited

max 300x1 + 260x2 + 220x3 + 180x4 − 8ys − 6yu

s.t.

11x1 + 7x2 + 6x3 + 5x4 ≤ 700
4x1 + 6x2 + 5x3 + 4x4 ≤ 500
8x1 + 5x2 + 5x3 + 6x4 ≤ ys
7x1 + 8x2 + 7x3 + 4x4 ≤ yu

ys ≤ 600
yu ≤ 650

x1, x2, x3, x4, yu, ys ≥ 0.

The mathematical program for WaterTech example from last class is in
fact an LP!

Example: Multiperiod Models

Main feature of WaterTech production model:
Decisions about production levels have to be made once and for all.

In practice, we often have to make a sequence of decision that
influence each other.

One such example: Multiperiod Models:

Time is split into periods,
We have to make a decision in each period, and
All decisions influence the final outcome.

Main feature of WaterTech production model:
Decisions about production levels have to be made once and for all.

In practice, we often have to make a sequence of decision that
influence each other.

One such example: Multiperiod Models:

Time is split into periods,
We have to make a decision in each period, and
All decisions influence the final outcome.

Main feature of WaterTech production model:
Decisions about production levels have to be made once and for all.

In practice, we often have to make a sequence of decision that
influence each other.

One such example: Multiperiod Models:

Time is split into periods,
We have to make a decision in each period, and
All decisions influence the final outcome.

KW Oil

KW Oil is local supplier of heating oil

Needs to decide on how much oil to purchase in order to satisfy
demand of its customers

Years of experience give the following demand forecast for the next 4
months:

Month 1 2 3 4
Demand (`) 5000 8000 9000 6000

The projected price of oil fluctuates from month to month:

Month 1 2 3 4
Price ($/`) 0.75 0.72 0.92 0.90

Question: When should we purchase how much oil?

KW Oil

KW Oil is local supplier of heating oil

Needs to decide on how much oil to purchase in order to satisfy
demand of its customers

Years of experience give the following demand forecast for the next 4
months:

Month 1 2 3 4
Demand (`) 5000 8000 9000 6000

The projected price of oil fluctuates from month to month:

Month 1 2 3 4
Price ($/`) 0.75 0.72 0.92 0.90

Question: When should we purchase how much oil?

KW Oil

KW Oil is local supplier of heating oil

Needs to decide on how much oil to purchase in order to satisfy
demand of its customers

Years of experience give the following demand forecast for the next 4
months:

Month 1 2 3 4
Demand (`) 5000 8000 9000 6000

The projected price of oil fluctuates from month to month:

Month 1 2 3 4
Price ($/`) 0.75 0.72 0.92 0.90

Question: When should we purchase how much oil?

KW Oil

KW Oil is local supplier of heating oil

Needs to decide on how much oil to purchase in order to satisfy
demand of its customers

Years of experience give the following demand forecast for the next 4
months:

Month 1 2 3 4
Demand (`) 5000 8000 9000 6000

The projected price of oil fluctuates from month to month:

Month 1 2 3 4
Price ($/`) 0.75 0.72 0.92 0.90

Question: When should we purchase how much oil?

KW Oil

Question: When should we purchase how much oil when the goal is
to minimize overall total cost?

Additional complication: Company has storage tank that

Currently (beginning of month 1) contains 2000 litres of oil, and
Has a capacity of 4000 litres of oil.

Assumption: Oil is delivered at beginning of month, and
consumption occurs mid month

KW Oil

Question: When should we purchase how much oil when the goal is
to minimize overall total cost?

Additional complication: Company has storage tank that

Currently (beginning of month 1) contains 2000 litres of oil, and
Has a capacity of 4000 litres of oil.

Assumption: Oil is delivered at beginning of month, and
consumption occurs mid month

KW Oil

Question: When should we purchase how much oil when the goal is
to minimize overall total cost?

Additional complication: Company has storage tank that

Currently (beginning of month 1) contains 2000 litres of oil, and
Has a capacity of 4000 litres of oil.

Assumption: Oil is delivered at beginning of month, and
consumption occurs mid month

KW Oil Model – Variables

Month 1 2 3 4
Demand (`) 5000 8000 9000 6000

Month 1 2 3 4
Price ($/`) 0.75 0.72 0.92 0.90

(i) Need to decide how many litres of oil to purchase in each month i.

(ii) How much oil is stored in the tank at beginning of month i?

KW Oil Model – Variables

Month 1 2 3 4
Demand (`) 5000 8000 9000 6000

Month 1 2 3 4
Price ($/`) 0.75 0.72 0.92 0.90

(i) Need to decide how many litres of oil to purchase in each month i.

(ii) How much oil is stored in the tank at beginning of month i?

KW Oil Model – Variables

Month 1 2 3 4
Demand (`) 5000 8000 9000 6000

Month 1 2 3 4
Price ($/`) 0.75 0.72 0.92 0.90

(i) Need to decide how many litres of oil to purchase in each month i.
−→ variable pi for i ∈ [4]

(ii) How much oil is stored in the tank at beginning of month i?

KW Oil Model – Variables

Month 1 2 3 4
Demand (`) 5000 8000 9000 6000

Month 1 2 3 4
Price ($/`) 0.75 0.72 0.92 0.90

(i) Need to decide how many litres of oil to purchase in each month i.
−→ variable pi for i ∈ [4]

(ii) How much oil is stored in the tank at beginning of month i?

KW Oil Model – Variables

Month 1 2 3 4
Demand (`) 5000 8000 9000 6000

Month 1 2 3 4
Price ($/`) 0.75 0.72 0.92 0.90

(i) Need to decide how many litres of oil to purchase in each month i.
−→ variable pi for i ∈ [4]

(ii) How much oil is stored in the tank at beginning of month i?
−→ variable ti for i ∈ [4]

Objective function

Minimize cost of oil procurement. Variables:

pi : oil purchase in month i
ti : tank level in month i

Objective function

Minimize cost of oil procurement.

min 0.75p1+0.72p2+0.92p3+0.90p4

Variables:

pi : oil purchase in month i
ti : tank level in month i

Objective function

Minimize cost of oil procurement.

min 0.75p1+0.72p2+0.92p3+0.90p4

Constraints: when do

t1, . . . , t4, p1, . . . , p4

correspond to a feasible purchasing
scheme?

Variables:

pi : oil purchase in month i
ti : tank level in month i

Constraints

Assumptions:

(i) Oil is purchased
at beginning of
month

(ii) Oil is consumed
afterwards

Time
beginning of

month i
end of

month i

Constraints

Assumptions:

(i) Oil is purchased
at beginning of
month

(ii) Oil is consumed
afterwards

oil purchase

Time
beginning of

month i
end of

month i

Constraints

Assumptions:

(i) Oil is purchased
at beginning of
month

(ii) Oil is consumed
afterwards

oil consumption
oil purchase

Time
beginning of

month i
end of

month i

Constraints

Assumptions:

(i) Oil is purchased
at beginning of
month

(ii) Oil is consumed
afterwards

tank measurement oil consumption
oil purchase

Time
beginning of

month i
end of

month i

Variables:

pi : oil purchase in month i
ti : tank level in month i

Constraints

Assumptions:

(i) Oil is purchased
at beginning of
month

(ii) Oil is consumed
afterwards

tank measurement oil consumption
oil purchase

Time
beginning of

month i
end of

month i

Variables:

pi : oil purchase in month i
ti : tank level in month i

We need: pi + ti ≥ {demand in month i}

Constraints

Assumptions:

(i) Oil is purchased
at beginning of
month

(ii) Oil is consumed
afterwards

tank measurement oil consumption
oil purchase

Time
beginning of

month i
end of

month i

Variables:

pi : oil purchase in month i
ti : tank level in month i

[Balance Equation] pi + ti = {demand in month i} +ti+1

Constraints

[Balance Equation] pi + ti = {demand in month i} +ti+1

Month 1:
p1 + 2000 = 5000 + t2

Month 2:
p2 + t2 = 8000 + t3

Month 3:
p3 + t3 = 9000 + t4

Month 4:
p4 + t4 ≥ 6000

Tank content in month 1: 2000 litres

Constraints

[Balance Equation] pi + ti = {demand in month i} +ti+1

Month 1:
p1 + 2000 = 5000 + t2

Month 2:
p2 + t2 = 8000 + t3

Month 3:
p3 + t3 = 9000 + t4

Month 4:
p4 + t4 ≥ 6000

Tank content in month 1: 2000 litres

Constraints

[Balance Equation] pi + ti = {demand in month i} +ti+1

Month 1:
p1 + 2000 = 5000 + t2

Month 2:
p2 + t2 = 8000 + t3

Month 3:
p3 + t3 = 9000 + t4

Month 4:
p4 + t4 ≥ 6000

Tank content in month 1: 2000 litres

Constraints

[Balance Equation] pi + ti = {demand in month i} +ti+1

Month 1:
p1 + 2000 = 5000 + t2

Month 2:
p2 + t2 = 8000 + t3

Month 3:
p3 + t3 = 9000 + t4

Month 4:
p4 + t4 ≥ 6000

Tank content in month 1: 2000 litres

Constraints

[Balance Equation] pi + ti = {demand in month i} +ti+1

Month 1:
p1 + 2000 = 5000 + t2

Month 2:
p2 + t2 = 8000 + t3

Month 3:
p3 + t3 = 9000 + t4

Month 4:
p4 + t4 ≥ 6000

Tank content in month 1: 2000 litres

KW Oil: Entire LP

KW Oil: Entire LP

Solution: p = (3000, 12000, 5000, 6000)T , and
t = (2000, 0, 4000, 0)T

KW Oil: Add-Ons

Can easily capture additional
features. E.g. ...

Storage comes at a cost:
storage cost is $.15 per
litre/month.

Minimize maximum #l of oil
purchased over all months

KW Oil: Add-Ons

Can easily capture additional
features. E.g. ...

Storage comes at a cost:
storage cost is $.15 per
litre/month.

Add
∑4

i=1 .15ti to objective.

Minimize maximum #l of oil
purchased over all months

KW Oil: Add-Ons

Can easily capture additional
features. E.g. ...

Storage comes at a cost:
storage cost is $.15 per
litre/month.

Add
∑4

i=1 .15ti to objective.

Minimize maximum #l of oil
purchased over all months

KW Oil: Add-Ons

Can easily capture additional
features. E.g. ...

Storage comes at a cost:
storage cost is $.15 per
litre/month.

Add
∑4

i=1 .15ti to objective.

Minimize maximum #l of oil
purchased over all months

(i) We will need a new
variable M for maximum
#l purchased

(ii) Will have to add
constraints

KW Oil: Add-Ons

Can easily capture additional
features. E.g. ...

Storage comes at a cost:
storage cost is $.15 per
litre/month.

Add
∑4

i=1 .15ti to objective.

Minimize maximum #l of oil
purchased over all months

(i) We will need a new
variable M for maximum
#l purchased

(ii) Will have to add
constraints

KW Oil: Add-Ons

(i) Add variable M for maximum
#l purchased over all months.

(ii) Add constraints

pi ≤M

for all i ∈ [4].

(iii) Done?

Goal: Minimize maximum #l of oil
purchased over all months.

KW Oil: Add-Ons

(i) Add variable M for maximum
#l purchased over all months.

(ii) Add constraints

pi ≤M

for all i ∈ [4].

(iii) Done?

Goal: Minimize maximum #l of oil
purchased over all months.

KW Oil: Add-Ons

(i) Add variable M for maximum
#l purchased over all months.

(ii) Add constraints

pi ≤M

for all i ∈ [4].

(iii) Done?

Goal: Minimize maximum #l of oil
purchased over all months.

KW Oil: Add-Ons

(i) Add variable M for maximum
#l purchased over all months.

(ii) Add constraints

pi ≤M

for all i ∈ [4].

(iii) Done? No! Need to replace
objective function by

min M Goal: Minimize maximum #l of oil
purchased over all months.

Minimizing the Maximum Purchase: LP

min M

s.t.

p1 + t1 = 5000 + t2
p2 + t2 = 8000 + t3
p3 + t3 = 9000 + t4
p4 + t4 ≥ 6000
t1 = 2000
ti ≤ 4000 (i = 2, 3, 4)
pi ≤ M (i = 1, 2, 3, 4)
ti, pi ≥ 0 (i = 1, 2, 3, 4)

KW Oil: Correctness

Why is this a correct
model?

Suppose that
M,p1, . . . , p4, t1, . . . , t4
is an optimal
solution to the LP

Clearly:
M ≥ maxi pi

Since M,p, t is
optimal we must
have M = maxi pi.
Why?

KW Oil: Correctness

Why is this a correct
model?

Suppose that
M,p1, . . . , p4, t1, . . . , t4
is an optimal
solution to the LP

Clearly:
M ≥ maxi pi

Since M,p, t is
optimal we must
have M = maxi pi.
Why?

KW Oil: Correctness

Why is this a correct
model?

Suppose that
M,p1, . . . , p4, t1, . . . , t4
is an optimal
solution to the LP

Clearly:
M ≥ maxi pi

Since M,p, t is
optimal we must
have M = maxi pi.
Why?

KW Oil: Correctness

Why is this a correct
model?

Suppose that
M,p1, . . . , p4, t1, . . . , t4
is an optimal
solution to the LP

Clearly:
M ≥ maxi pi

Since M,p, t is
optimal we must
have M = maxi pi.
Why?

Integer Programming

CO 250: Introduction to Optimization
Module 1: Formulations (IP Models)

CO 250: Introduction to Optimization

Integer Programming

Recap: WaterTech

max 300x1 + 260x2 + 220x3 + 180x4 − 8ys − 6yu

s.t. 11x1 + 7x2 + 6x3 + 5x4 ≤ 700

4x1 + 6x2 + 5x3 + 4x4 ≤ 500

8x1 + 5x2 + 5x3 + 6x4 ≤ ys

7x1 + 8x2 + 7x3 + 4x4 ≤ yu

ys ≤ 600

yu ≤ 650

x1, x2, x3, x4, yu, ys ≥ 0.

Optimal solution: x = (16 + 2
3 , 50, 0, 33 + 1

3)T , ys = 583 + 1
3 ,

yu = 650

Fractional solutions are often not desirable! Can we force solution
to take on only integer values?

CO 250: Introduction to Optimization

Integer Programming

Recap: WaterTech

max 300x1 + 260x2 + 220x3 + 180x4 − 8ys − 6yu

s.t. 11x1 + 7x2 + 6x3 + 5x4 ≤ 700

4x1 + 6x2 + 5x3 + 4x4 ≤ 500

8x1 + 5x2 + 5x3 + 6x4 ≤ ys

7x1 + 8x2 + 7x3 + 4x4 ≤ yu

ys ≤ 600

yu ≤ 650

x1, x2, x3, x4, yu, ys ≥ 0.

Optimal solution: x = (16 + 2
3 , 50, 0, 33 + 1

3)T , ys = 583 + 1
3 ,

yu = 650

Fractional solutions are often not desirable! Can we force solution
to take on only integer values?

CO 250: Introduction to Optimization

Integer Programming

Recap: WaterTech

max 300x1 + 260x2 + 220x3 + 180x4 − 8ys − 6yu

s.t. 11x1 + 7x2 + 6x3 + 5x4 ≤ 700

4x1 + 6x2 + 5x3 + 4x4 ≤ 500

8x1 + 5x2 + 5x3 + 6x4 ≤ ys

7x1 + 8x2 + 7x3 + 4x4 ≤ yu

ys ≤ 600

yu ≤ 650

x1, x2, x3, x4, yu, ys ≥ 0.

Optimal solution: x = (16 + 2
3 , 50, 0, 33 + 1

3)T , ys = 583 + 1
3 ,

yu = 650

Fractional solutions are often not desirable! Can we force solution
to take on only integer values?

CO 250: Introduction to Optimization

Integer Programming

Yes!

An integer program is a
linear program with added
integrality constraints for
some/all variables.

We call an IP mixed if there
are integer and fractional
variables, and pure
otherwise.

Difference between LPs and
IPs is subtle. Yet: LPs are
easy to solve, IPs are not!

max x1 + x2 + 2x4

s.t. x1 + x2 ≤ 1

− x2 − x3 ≥ −1

x1 + x3 = 1

x1, x2, x3 ≥ 0

CO 250: Introduction to Optimization

Integer Programming

Yes!

An integer program is a
linear program with added
integrality constraints for
some/all variables.

We call an IP mixed if there
are integer and fractional
variables, and pure
otherwise.

Difference between LPs and
IPs is subtle. Yet: LPs are
easy to solve, IPs are not!

max x1 + x2 + 2x4

s.t. x1 + x2 ≤ 1

− x2 − x3 ≥ −1

x1 + x3 = 1

x1, x2, x3 ≥ 0

x1, x3 integer.

CO 250: Introduction to Optimization

Integer Programming

Yes!

An integer program is a
linear program with added
integrality constraints for
some/all variables.

We call an IP mixed if there
are integer and fractional
variables, and pure
otherwise.

Difference between LPs and
IPs is subtle. Yet: LPs are
easy to solve, IPs are not!

max x1 + x2 + 2x4

s.t. x1 + x2 ≤ 1

− x2 − x3 ≥ −1

x1 + x3 = 1

x1, x2, x3 ≥ 0

x1, x3 integer.

CO 250: Introduction to Optimization

Integer Programming

Yes!

An integer program is a
linear program with added
integrality constraints for
some/all variables.

We call an IP mixed if there
are integer and fractional
variables, and pure
otherwise.

Difference between LPs and
IPs is subtle. Yet: LPs are
easy to solve, IPs are not!

max x1 + x2 + 2x4

s.t. x1 + x2 ≤ 1

− x2 − x3 ≥ −1

x1 + x3 = 1

x1, x2, x3 ≥ 0

x1, x3 integer.

CO 250: Introduction to Optimization

Integer Programming

Can we solve IPs?

Integer programs are provably difficult to solve!

Every problem instance has a size which we normally denote
by n.
.

The running time of an algorithm is then the number of steps
that an algorithm takes.

It is stated as a function of n: f (n) measures the largest
number of steps an algorithm takes on an instance of size n.

CO 250: Introduction to Optimization

Integer Programming

Can we solve IPs?

Integer programs are provably difficult to solve!

Every problem instance has a size which we normally denote
by n.
.

The running time of an algorithm is then the number of steps
that an algorithm takes.

It is stated as a function of n: f (n) measures the largest
number of steps an algorithm takes on an instance of size n.

CO 250: Introduction to Optimization

Integer Programming

Can we solve IPs?

Integer programs are provably difficult to solve!

Every problem instance has a size which we normally denote
by n.
Think: n ∼ number of variables/constraints of IP.

The running time of an algorithm is then the number of steps
that an algorithm takes.

It is stated as a function of n: f (n) measures the largest
number of steps an algorithm takes on an instance of size n.

CO 250: Introduction to Optimization

Integer Programming

Can we solve IPs?

Integer programs are provably difficult to solve!

Every problem instance has a size which we normally denote
by n.
Think: n ∼ number of variables/constraints of IP.

The running time of an algorithm is then the number of steps
that an algorithm takes.

It is stated as a function of n: f (n) measures the largest
number of steps an algorithm takes on an instance of size n.

CO 250: Introduction to Optimization

Integer Programming

Can we solve IPs?

Integer programs are provably difficult to solve!

Every problem instance has a size which we normally denote
by n.
Think: n ∼ number of variables/constraints of IP.

The running time of an algorithm is then the number of steps
that an algorithm takes.

It is stated as a function of n: f (n) measures the largest
number of steps an algorithm takes on an instance of size n.

CO 250: Introduction to Optimization

Integer Programming

Can we solve IPs?

An algorithm is efficient if its
running time f (n) is a polynomial
of n.

LPs can be solved efficiently.

IPs are very unlikely to admit
efficient algorithms!

It is very important to look for an
efficient algorithm for a problem.
The table states actual running
times of a computer that can
execute 1 million operations per
second on an instance of size
n = 100:

CO 250: Introduction to Optimization

Integer Programming

Can we solve IPs?

An algorithm is efficient if its
running time f (n) is a polynomial
of n.

LPs can be solved efficiently.

IPs are very unlikely to admit
efficient algorithms!

It is very important to look for an
efficient algorithm for a problem.
The table states actual running
times of a computer that can
execute 1 million operations per
second on an instance of size
n = 100:

CO 250: Introduction to Optimization

Integer Programming

Can we solve IPs?

An algorithm is efficient if its
running time f (n) is a polynomial
of n.

LPs can be solved efficiently.

IPs are very unlikely to admit
efficient algorithms!

It is very important to look for an
efficient algorithm for a problem.
The table states actual running
times of a computer that can
execute 1 million operations per
second on an instance of size
n = 100:

CO 250: Introduction to Optimization

Integer Programming

Can we solve IPs?

An algorithm is efficient if its
running time f (n) is a polynomial
of n.

LPs can be solved efficiently.

IPs are very unlikely to admit
efficient algorithms!

It is very important to look for an
efficient algorithm for a problem.
The table states actual running
times of a computer that can
execute 1 million operations per
second on an instance of size
n = 100:

f (n) n n log2(n) n3 1.5n 2n

Time < 1s < 1s 1s 12, 892y 4× 1016yCO 250: Introduction to Optimization

Integer Programming

IP Models: Knapsack

CO 250: Introduction to Optimization

Integer Programming

KitchTech Shipping

Company wishes to ship crates from Toronto to Kitchener.

Each crate type has weight and value:

Type 1 2 3 4 5 6

weight (lbs) 30 20 30 90 30 70
value ($) 60 70 40 70 20 90

Total weight of crates shipped must not exceed 10,000 lbs.

Goal: Maximize total value of shipped goods.

CO 250: Introduction to Optimization

Integer Programming

KitchTech Shipping

Company wishes to ship crates from Toronto to Kitchener.

Each crate type has weight and value:

Type 1 2 3 4 5 6

weight (lbs) 30 20 30 90 30 70
value ($) 60 70 40 70 20 90

Total weight of crates shipped must not exceed 10,000 lbs.

Goal: Maximize total value of shipped goods.

CO 250: Introduction to Optimization

Integer Programming

KitchTech Shipping

Company wishes to ship crates from Toronto to Kitchener.

Each crate type has weight and value:

Type 1 2 3 4 5 6

weight (lbs) 30 20 30 90 30 70
value ($) 60 70 40 70 20 90

Total weight of crates shipped must not exceed 10,000 lbs.

Goal: Maximize total value of shipped goods.

CO 250: Introduction to Optimization

Integer Programming

KitchTech Shipping

Company wishes to ship crates from Toronto to Kitchener.

Each crate type has weight and value:

Type 1 2 3 4 5 6

weight (lbs) 30 20 30 90 30 70
value ($) 60 70 40 70 20 90

Total weight of crates shipped must not exceed 10,000 lbs.

Goal: Maximize total value of shipped goods.

CO 250: Introduction to Optimization

Integer Programming

IP Model

Variables.

Constraints.

Objective function: Maximize total value.

CO 250: Introduction to Optimization

Integer Programming

IP Model

Variables. One variable xi for number of crates of type i to
pack.

Constraints.

Objective function: Maximize total value.

CO 250: Introduction to Optimization

Integer Programming

IP Model

Variables. One variable xi for number of crates of type i to
pack.

Constraints.

Objective function: Maximize total value.

CO 250: Introduction to Optimization

Integer Programming

IP Model

Variables. One variable xi for number of crates of type i to
pack.

Constraints. The total weight of a crates picked must not
exceed 10000 lbs.

Objective function: Maximize total value.

CO 250: Introduction to Optimization

Integer Programming

IP Model

Variables. One variable xi for number of crates of type i to
pack.

Constraints. The total weight of a crates picked must not
exceed 10000 lbs.

30x1 + 20x2 + 30x3 + 90x4 + 30x5 + 70x6 ≤ 10000

Objective function: Maximize total value.

CO 250: Introduction to Optimization

Integer Programming

IP Model

Variables. One variable xi for number of crates of type i to
pack.

Constraints. The total weight of a crates picked must not
exceed 10000 lbs.

30x1 + 20x2 + 30x3 + 90x4 + 30x5 + 70x6 ≤ 10000

Objective function: Maximize total value.

CO 250: Introduction to Optimization

Integer Programming

IP Model

Variables. One variable xi for number of crates of type i to
pack.

Constraints. The total weight of a crates picked must not
exceed 10000 lbs.

30x1 + 20x2 + 30x3 + 90x4 + 30x5 + 70x6 ≤ 10000

Objective function: Maximize total value.

max 60x1 + 70x2 + 40x3 + 70x4 + 20x5 + 90x6

CO 250: Introduction to Optimization

Integer Programming

IP Model

max 60x1 + 70x2 + 40x3 + 70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3 + 90x4 + 30x5 + 70x6 ≤ 10000

xi ≥ 0 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

IP Model

max 60x1 + 70x2 + 40x3 + 70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3 + 90x4 + 30x5 + 70x6 ≤ 10000

xi ≥ 0 (i ∈ [6])

xi integer (i ∈ [6])

Let’s make this model a bit more interesting...

CO 250: Introduction to Optimization

Integer Programming

KitchTech: Added Conditions

Suppose that ...

We must not send
more than 10 crates
of the same type.

Can only send crates
of type 3, if we send
at least 1 crate of
type 4.

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

xi ≥ 0 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

KitchTech: Added Conditions

Suppose that ...

We must not send
more than 10 crates
of the same type.

Can only send crates
of type 3, if we send
at least 1 crate of
type 4.

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

0 ≤ xi ≤ 10 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

KitchTech: Added Conditions

Suppose that ...

We must not send
more than 10 crates
of the same type.

Can only send crates
of type 3, if we send
at least 1 crate of
type 4.

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

0 ≤ xi ≤ 10 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

KitchTech: Added Conditions

Suppose that ...

We must not send
more than 10 crates
of the same type.

Can only send crates
of type 3, if we send
at least 1 crate of
type 4.

Note: Can send at
most 10 crates of
type 3 by previous
constraint!

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

0 ≤ xi ≤ 10 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

KitchTech: Added Conditions

Suppose that ...

We must not send
more than 10 crates
of the same type.

Can only send crates
of type 3, if we send
at least 1 crate of
type 4.

Note: Can send at
most 10 crates of
type 3 by previous
constraint!

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

x3 ≤ 10x4

0 ≤ xi ≤ 10 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

KitchTech: Added Conditions

Correctness:

x4 ≥ 1 −→ new
constraint is
redundant!

x4 = 0 −→ new
constraint becomes

x3 ≤ 0.

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

x3 ≤ 10x4

0 ≤ xi ≤ 10 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

KitchTech: Added Conditions

Correctness:

x4 ≥ 1 −→ new
constraint is
redundant!

x4 = 0 −→ new
constraint becomes

x3 ≤ 0.

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

x3 ≤ 10x4

0 ≤ xi ≤ 10 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

KitchTech: One More Tricky Case

Suppose that we must

1 take a total of at
least 4 crates of type
1 or 2, or

2 take at least 4 crates
of type 5 or 6.

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

x3 ≤ 10x4

0 ≤ xi ≤ 10 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

KitchTech: One More Tricky Case

Suppose that we must

1 take a total of at
least 4 crates of type
1 or 2, or

2 take at least 4 crates
of type 5 or 6.

Ideas?

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

x3 ≤ 10x4

0 ≤ xi ≤ 10 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

KitchTech: One More Tricky Case

Suppose that we must

1 take a total of at
least 4 crates of type
1 or 2, or

2 take at least 4 crates
of type 5 or 6.

Ideas?

Create a new variable y
s.t.

1 y = 1 −→
x1 + x2 ≥ 4,

2 y = 0 −→
x5 + x6 ≥ 4.

Force y to take on values
0 or 1.

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

x3 ≤ 10x4

0 ≤ xi ≤ 10 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

KitchTech: One More Tricky Case

Create a new variable y
s.t.

1 y = 1 −→
x1 + x2 ≥ 4,

2 y = 0 −→
x5 + x6 ≥ 4.

Force y to take on values
0 or 1.

Add constraints:

1 x1 + x2 ≥ 4y

2 x5 + x6 ≥ 4(1− y)

3 0 ≤ y ≤ 1

4 y integer

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

x3 ≤ 10x4

0 ≤ xi ≤ 10 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

KitchTech: One More Tricky Case

Create a new variable y
s.t.

1 y = 1 −→
x1 + x2 ≥ 4,

2 y = 0 −→
x5 + x6 ≥ 4.

Force y to take on values
0 or 1.

Add constraints:

1 x1 + x2 ≥ 4y

2 x5 + x6 ≥ 4(1− y)

3 0 ≤ y ≤ 1

4 y integer

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

x3 ≤ 10x4

0 ≤ xi ≤ 10 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

KitchTech: One More Tricky Case

Create a new variable y
s.t.

1 y = 1 −→
x1 + x2 ≥ 4,

2 y = 0 −→
x5 + x6 ≥ 4.

Force y to take on values
0 or 1.

Add constraints:

1 x1 + x2 ≥ 4y

2 x5 + x6 ≥ 4(1− y)

3 0 ≤ y ≤ 1

4 y integer

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

x3 ≤ 10x4

0 ≤ xi ≤ 10 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

KitchTech: One More Tricky Case

Create a new variable y
s.t.

1 y = 1 −→
x1 + x2 ≥ 4,

2 y = 0 −→
x5 + x6 ≥ 4.

Force y to take on values
0 or 1.

Add constraints:

1 x1 + x2 ≥ 4y

2 x5 + x6 ≥ 4(1− y)

3 0 ≤ y ≤ 1

4 y integer

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

x3 ≤ 10x4

0 ≤ xi ≤ 10 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

KitchTech: One More Tricky Case

Create a new variable y
s.t.

1 y = 1 −→
x1 + x2 ≥ 4,

2 y = 0 −→
x5 + x6 ≥ 4.

Force y to take on values
0 or 1.

Add constraints:

1 x1 + x2 ≥ 4y

2 x5 + x6 ≥ 4(1− y)

3 0 ≤ y ≤ 1

4 y integer

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

x3 ≤ 10x4

0 ≤ xi ≤ 10 (i ∈ [6])

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

KitchTech: One More Tricky Case

Create a new variable y
s.t.

1 y = 1 −→
x1 + x2 ≥ 4,

2 y = 0 −→
x5 + x6 ≥ 4.

Force y to take on values
0 or 1.

Add constraints:

1 x1 + x2 ≥ 4y

2 x5 + x6 ≥ 4(1− y)

3 0 ≤ y ≤ 1

4 y integer

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

x3 ≤ 10x4

x1 + x2 ≥ 4y

x5 + x6 ≥ 4(1− y)

0 ≤ y ≤ 1

0 ≤ xi ≤ 10 (i ∈ [6])

y integer

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

Binary Variables

Variable y is called a
binary variable.

These are very useful for
modeling logical
constraints of the form:

[Condition (A or B) and
C] −→ D

Will see more examples ...

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

x3 ≤ 10x4

x1 + x2 ≥ 4y

x5 + x6 ≥ 4(1− y)

0 ≤ y ≤ 1

0 ≤ xi ≤ 10 (i ∈ [6])

y integer

xi integer (i ∈ [6])

CO 250: Introduction to Optimization

Integer Programming

IP Models: Scheduling

CO 250: Introduction to Optimization

Integer Programming

The neighbourhood coffee
shop is open on workdays.

Daily demand for workers:

Mon Tues Wed Thurs Fri

3 5 9 2 7

Each worker works for 4
consecutive days and has
one day off.

Goal: hire the smallest
number of workers so that
the demand can be met!

CO 250: Introduction to Optimization

Integer Programming

The neighbourhood coffee
shop is open on workdays.

Daily demand for workers:

Mon Tues Wed Thurs Fri

3 5 9 2 7

Each worker works for 4
consecutive days and has
one day off.

Goal: hire the smallest
number of workers so that
the demand can be met!

CO 250: Introduction to Optimization

Integer Programming

The neighbourhood coffee
shop is open on workdays.

Daily demand for workers:

Mon Tues Wed Thurs Fri

3 5 9 2 7

Each worker works for 4
consecutive days and has
one day off.

Goal: hire the smallest
number of workers so that
the demand can be met!

CO 250: Introduction to Optimization

Integer Programming

The neighbourhood coffee
shop is open on workdays.

Daily demand for workers:

Mon Tues Wed Thurs Fri

3 5 9 2 7

Each worker works for 4
consecutive days and has
one day off.
e.g.: work: Mon, Tue, Wed,
Thu; off: Fri
or work: Wed, Thu, Fri,
Mon; off: Tue

Goal: hire the smallest
number of workers so that
the demand can be met!

CO 250: Introduction to Optimization

Integer Programming

The neighbourhood coffee
shop is open on workdays.

Daily demand for workers:

Mon Tues Wed Thurs Fri

3 5 9 2 7

Each worker works for 4
consecutive days and has
one day off.
e.g.: work: Mon, Tue, Wed,
Thu; off: Fri
or work: Wed, Thu, Fri,
Mon; off: Tue

Goal: hire the smallest
number of workers so that
the demand can be met!

CO 250: Introduction to Optimization

Integer Programming

The neighbourhood coffee
shop is open on workdays.

Daily demand for workers:

Mon Tues Wed Thurs Fri

3 5 9 2 7

Each worker works for 4
consecutive days and has
one day off.
e.g.: work: Mon, Tue, Wed,
Thu; off: Fri
or work: Wed, Thu, Fri,
Mon; off: Tue

Goal: hire the smallest
number of workers so that
the demand can be met!

Can we solve this
using IP?

CO 250: Introduction to Optimization

Integer Programming

1 Variables. What do we need to decide on?

2 Objective function. What do we want to minimize?

3 Constraints. Need to ensure that enough people work on each
of the days.

CO 250: Introduction to Optimization

Integer Programming

1 Variables. What do we need to decide on?
→ introduce variable xd for every d ∈ {M,T ,W ,Th,F}
counting the number of people to hire with starting day d .

2 Objective function. What do we want to minimize?

3 Constraints. Need to ensure that enough people work on each
of the days.

CO 250: Introduction to Optimization

Integer Programming

1 Variables. What do we need to decide on?
→ introduce variable xd for every d ∈ {M,T ,W ,Th,F}
counting the number of people to hire with starting day d .

2 Objective function. What do we want to minimize?

3 Constraints. Need to ensure that enough people work on each
of the days.

CO 250: Introduction to Optimization

Integer Programming

1 Variables. What do we need to decide on?
→ introduce variable xd for every d ∈ {M,T ,W ,Th,F}
counting the number of people to hire with starting day d .

2 Objective function. What do we want to minimize?
→ the total number of people hired:

min xM + xT + xW + xTh + xF .

3 Constraints. Need to ensure that enough people work on each
of the days.

CO 250: Introduction to Optimization

Integer Programming

1 Variables. What do we need to decide on?
→ introduce variable xd for every d ∈ {M,T ,W ,Th,F}
counting the number of people to hire with starting day d .

2 Objective function. What do we want to minimize?
→ the total number of people hired:

min xM + xT + xW + xTh + xF .

3 Constraints. Need to ensure that enough people work on each
of the days.

CO 250: Introduction to Optimization

Integer Programming

1 Variables. What do we need to decide on?
→ introduce variable xd for every d ∈ {M,T ,W ,Th,F}
counting the number of people to hire with starting day d .

2 Objective function. What do we want to minimize?
→ the total number of people hired:

min xM + xT + xW + xTh + xF .

3 Constraints. Need to ensure that enough people work on each
of the days.

Question: Given a solution (xM , xT , xW , xTh, xF), how many
people work on Monday?

CO 250: Introduction to Optimization

Integer Programming

1 Variables. What do we need to decide on?
→ introduce variable xd for every d ∈ {M,T ,W ,Th,F}
counting the number of people to hire with starting day d .

2 Objective function. What do we want to minimize?
→ the total number of people hired:

min xM + xT + xW + xTh + xF .

3 Constraints. Need to ensure that enough people work on each
of the days.

Question: Given a solution (xM , xT , xW , xTh, xF), how many
people work on Monday?
All but those that start on Tuesday; i.e.,

xM + xW + xTh + xF .

CO 250: Introduction to Optimization

Integer Programming

Constraints

[Daily Demand]
Mon Tues Wed Thurs Fri

3 5 9 2 7

Monday: xM + xW + xTh + xF ≥ 3

CO 250: Introduction to Optimization

Integer Programming

Constraints

[Daily Demand]
Mon Tues Wed Thurs Fri

3 5 9 2 7

Monday: xM + xW + xTh + xF ≥ 3
Tuesday: xM + xT + xTh + xF ≥ 5

CO 250: Introduction to Optimization

Integer Programming

Constraints

[Daily Demand]
Mon Tues Wed Thurs Fri

3 5 9 2 7

Monday: xM + xW + xTh + xF ≥ 3
Tuesday: xM + xT + xTh + xF ≥ 5

Wednesday: xM + xT + xW + xF ≥ 9

CO 250: Introduction to Optimization

Integer Programming

Constraints

[Daily Demand]
Mon Tues Wed Thurs Fri

3 5 9 2 7

Monday: xM + xW + xTh + xF ≥ 3
Tuesday: xM + xT + xTh + xF ≥ 5

Wednesday: xM + xT + xW + xF ≥ 9
Thursday: xM + xT + xW + xT ≥ 2

CO 250: Introduction to Optimization

Integer Programming

Constraints

[Daily Demand]
Mon Tues Wed Thurs Fri

3 5 9 2 7

Monday: xM + xW + xTh + xF ≥ 3
Tuesday: xM + xT + xTh + xF ≥ 5

Wednesday: xM + xT + xW + xF ≥ 9
Thursday: xM + xT + xW + xT ≥ 2

Friday: xT + xW + xTh + xF ≥ 7

CO 250: Introduction to Optimization

Integer Programming

Scheduling LP

min xM + xT + xW + xTh + xF

s.t. xM + xW + xTh + xF ≥ 3

xM + xT + xTh + xF ≥ 5

xM + xT + xW + xF ≥ 9

xM + xT + xW + xT ≥ 2

xT + xW + xTh + xF ≥ 7

x ≥ 0, x integer

CO 250: Introduction to Optimization

Integer Programming

Quiz

Given an integer program with integer variables x1, . . . , x6. Let

S := {127, 289, 1310, 2754}.

We want to add constraints and/or variables to the IP that enforce
that the x1 + . . . + x6 is in S. How?

Add binary variables y127, y289, y1310, y2754, one for each i ∈ S.

Want: Exactly one of these variables is 1 in a feasible solution.

If yn = 1 for n ∈ S then
∑6

i=1 xi = n

CO 250: Introduction to Optimization

Integer Programming

Quiz

Given an integer program with integer variables x1, . . . , x6. Let

S := {127, 289, 1310, 2754}.

We want to add constraints and/or variables to the IP that enforce
that the x1 + . . . + x6 is in S. How?

Add binary variables y127, y289, y1310, y2754, one for each i ∈ S.

Want: Exactly one of these variables is 1 in a feasible solution.

If yn = 1 for n ∈ S then
∑6

i=1 xi = n

CO 250: Introduction to Optimization

Integer Programming

Quiz

Given an integer program with integer variables x1, . . . , x6. Let

S := {127, 289, 1310, 2754}.

We want to add constraints and/or variables to the IP that enforce
that the x1 + . . . + x6 is in S. How?

Add binary variables y127, y289, y1310, y2754, one for each i ∈ S.

Want: Exactly one of these variables is 1 in a feasible solution.

If yn = 1 for n ∈ S then
∑6

i=1 xi = n

CO 250: Introduction to Optimization

Integer Programming

Quiz

Given an integer program with integer variables x1, . . . , x6. Let

S := {127, 289, 1310, 2754}.

We want to add constraints and/or variables to the IP that enforce
that the x1 + . . . + x6 is in S. How?

Add binary variables y127, y289, y1310, y2754, one for each i ∈ S.

Want: Exactly one of these variables is 1 in a feasible solution.

If yn = 1 for n ∈ S then
∑6

i=1 xi = n

CO 250: Introduction to Optimization

Integer Programming

Quiz

Add the following constraints:

y127 + y289 + y1310 + y2754 = 1

6∑
i=1

xi =
∑
i∈S

iyi

0 ≤ yi ≤ 1, yi integer ∀i ∈ S

CO 250: Introduction to Optimization

Integer Programming

Quiz

Add the following constraints:

y127 + y289 + y1310 + y2754 = 1

6∑
i=1

xi =
∑
i∈S

iyi

0 ≤ yi ≤ 1, yi integer ∀i ∈ S

Why is the resulting IP correct?

CO 250: Introduction to Optimization

Integer Programming

Recap:

An integer program is obtained by adding integrality
constraints for some/all of the variables to an LP.

An algorithm is efficient if its running time can be bounded by
a polynomial of the input size of the instance.

While LPs admit efficient algorithms, IPs are unlikely to have
efficient algorithms. Thus, whenever possible, formulate a
problem as an LP!

Variables that can take value 0 or 1 only are called binary.

Binary variables are useful for expressing logical conditions.

CO 250: Introduction to Optimization

Integer Programming

Recap:

An integer program is obtained by adding integrality
constraints for some/all of the variables to an LP.

An algorithm is efficient if its running time can be bounded by
a polynomial of the input size of the instance.

While LPs admit efficient algorithms, IPs are unlikely to have
efficient algorithms. Thus, whenever possible, formulate a
problem as an LP!

Variables that can take value 0 or 1 only are called binary.

Binary variables are useful for expressing logical conditions.

CO 250: Introduction to Optimization

Integer Programming

Recap:

An integer program is obtained by adding integrality
constraints for some/all of the variables to an LP.

An algorithm is efficient if its running time can be bounded by
a polynomial of the input size of the instance.

While LPs admit efficient algorithms, IPs are unlikely to have
efficient algorithms. Thus, whenever possible, formulate a
problem as an LP!

Variables that can take value 0 or 1 only are called binary.

Binary variables are useful for expressing logical conditions.

CO 250: Introduction to Optimization

Integer Programming

Recap:

An integer program is obtained by adding integrality
constraints for some/all of the variables to an LP.

An algorithm is efficient if its running time can be bounded by
a polynomial of the input size of the instance.

While LPs admit efficient algorithms, IPs are unlikely to have
efficient algorithms. Thus, whenever possible, formulate a
problem as an LP!

Variables that can take value 0 or 1 only are called binary.

Binary variables are useful for expressing logical conditions.

CO 250: Introduction to Optimization

Integer Programming

Recap:

An integer program is obtained by adding integrality
constraints for some/all of the variables to an LP.

An algorithm is efficient if its running time can be bounded by
a polynomial of the input size of the instance.

While LPs admit efficient algorithms, IPs are unlikely to have
efficient algorithms. Thus, whenever possible, formulate a
problem as an LP!

Variables that can take value 0 or 1 only are called binary.

Binary variables are useful for expressing logical conditions.

CO 250: Introduction to Optimization

CO 250: Introduction to Optimization
Module 1: Formulations (Optimization on Graphs)

Shortest Paths

Columbia Ave

Victoria St

Erb St A
lb

er
t S

t

W
es

tm
ou

nt
 R

d

K
in

g
St

Fi
sh

er
 R

d

s

t

a

d

b f g

c

• Familiar problem: Starting at location s, we wish to travel to t.
What is the best (i.e., shortest) route?

• In the figure above, such a route is indicated in bold.

Shortest Paths

Columbia Ave

Victoria St

Erb St A
lb

er
t S

t

W
es

tm
ou

nt
 R

d

K
in

g
St

Fi
sh

er
 R

d

s

t

a

d

b f g

c

• Familiar problem: Starting at location s, we wish to travel to t.
What is the best (i.e., shortest) route?

• In the figure above, such a route is indicated in bold.

Shortest Paths

Columbia Ave

Victoria St

Erb St A
lb

er
t S

t

W
es

tm
ou

nt
 R

d

K
in

g
St

Fi
sh

er
 R

d

s

t

a

d

b f g

c

• Goal: Write the problem of finding the shortest route between s and
t as an integer program!

Shortest Paths

Columbia Ave

Victoria St

Erb St A
lb

er
t S

t

W
es

tm
ou

nt
 R

d

K
in

g
St

Fi
sh

er
 R

d

s

t

a

d

b f g

c

• Goal: Write the problem of finding the shortest route between s and
t as an integer program!
... How?

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

• vertices u,w, . . . ∈ V

• edges uw,wz, . . . ∈ E

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V

• edges uw,wz, . . . ∈ E

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V

• edges uw,wz, . . . ∈ E

u

v

w

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V
(drawn as filled circles)

• edges uw,wz, . . . ∈ E

u

v

w

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V
(drawn as filled circles)

• edges uw,wz, . . . ∈ E

u

v

w

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V
(drawn as filled circles)

• edges uw,wz, . . . ∈ E
(drawn as lines connecting circles)

u

v

w

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V
(drawn as filled circles)

• edges uw,wz, . . . ∈ E
(drawn as lines connecting circles)

Two vertices u and v are adjacent if
uv ∈ E.

y

u

v

t

x

z

w

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V
(drawn as filled circles)

• edges uw,wz, . . . ∈ E
(drawn as lines connecting circles)

Two vertices u and v are adjacent if
uv ∈ E. Vertices u and v are the
endpoints of edge uv ∈ E,

y

u

v

t

x

z

w

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V
(drawn as filled circles)

• edges uw,wz, . . . ∈ E
(drawn as lines connecting circles)

Two vertices u and v are adjacent if
uv ∈ E. Vertices u and v are the
endpoints of edge uv ∈ E, and edge e ∈ E
is incident to u ∈ V if u is an endpoint of e.

y

u

v

t

x

z

w

Graphs – Why do we care?

Graphs are useful to
compactly model
many real-world
entities.

• Modeling circuits
in chip design

• Social networks

• Trade networks

• and many
more!

Graphs – Why do we care?

Graphs are useful to
compactly model
many real-world
entities. For example:

• Modeling circuits
in chip design

• Social networks

• Trade networks

• and many
more!

Eyematrix/iStock/Thinkstock

Graphs – Why do we care?

Graphs are useful to
compactly model
many real-world
entities. For example:

• Modeling circuits
in chip design

• Social networks

• Trade networks

• and many
more!

VLADGRIN/iStock/Thinkstock

Graphs – Why do we care?

Graphs are useful to
compactly model
many real-world
entities. For example:

• Modeling circuits
in chip design

• Social networks

• Trade networks

• and many
more!

Lampman, 2008 [Online Image]. Late Medieval Trade Routes. Wikimedia Commons.
http://commons.wikimedia.org/wiki/File:Late Medieval Trade Routes.jpg

Graphs – Why do we care?

Graphs are useful to
compactly model
many real-world
entities. For example:

• Modeling circuits
in chip design

• Social networks

• Trade networks

• and many
more!

Lampman, 2008 [Online Image]. Late Medieval Trade Routes. Wikimedia Commons.
http://commons.wikimedia.org/wiki/File:Late Medieval Trade Routes.jpg

The Map of Water Town

Columbia Ave

Victoria St

Erb St A
lb

er
t S

t

W
es

tm
ou

nt
 R

d

K
in

g
St

Fi
sh

er
 R

d

s

t

a

d

b f g

c

• We can think of the street map as a graph, G.

• Vertices: Road intersections

• Edges: Road segments connecting adjacent intersections

The Map of Water Town

Columbia Ave

Victoria St

Erb St A
lb

er
t S

t

W
es

tm
ou

nt
 R

d

K
in

g
St

Fi
sh

er
 R

d

s

t

a

d

b f g

c

• We can think of the street map as a graph, G.

• Vertices: Road intersections

• Edges: Road segments connecting adjacent intersections

The Map of Water Town

Columbia Ave

Victoria St

Erb St A
lb

er
t S

t

W
es

tm
ou

nt
 R

d

K
in

g
St

Fi
sh

er
 R

d

s

t

a

d

b f g

c

• We can think of the street map as a graph, G.

• Vertices: Road intersections

• Edges: Road segments connecting adjacent intersections

The Map of Water Town

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

• Each edge e ∈ E is labelled by its length ce ≥ 0.

• We are looking for a path connecting s and t of smallest total length!

The Map of Water Town

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

• Each edge e ∈ E is labelled by its length ce ≥ 0.

• We are looking for a path connecting s and t of smallest total length!

Paths

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

An s, t-path in G = (V,E) is a sequence

v1v2, v2v3, v3v4, . . . , vk−2vk−1, vk−1vk

where

• vi ∈ V and vivi+1 ∈ E for all i, and

• v1 = s, vk = t, and vi 6= vj for all i 6= j.

Paths

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

An s, t-path in G = (V,E) is a sequence

v1v2, v2v3, v3v4, . . . , vk−2vk−1, vk−1vk

where

• vi ∈ V and vivi+1 ∈ E for all i, and

• v1 = s, vk = t, and vi 6= vj for all i 6= j.

Paths

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

An s, t-path in G = (V,E) is a sequence

v1v2, v2v3, v3v4, . . . , vk−2vk−1, vk−1vk

where

• vi ∈ V and vivi+1 ∈ E for all i, and

• v1 = s, vk = t, and vi 6= vj for all i 6= j.
(Without this, it is called an s, t-walk)

Paths

830

s

t

a

d

b f g

650

45
0

25
0

600

70
0

An s, t-path in G = (V,E) is a sequence

v1v2, v2v3, v3v4, . . . , vk−2vk−1, vk−1vk

where

• vi ∈ V and vivi+1 ∈ E for all i, and

• v1 = s, vk = t, and vi 6= vj for all i 6= j.
(Without this, it is called an s, t-walk)

Paths

830

s

t

a

d

b f g

650
45
0

25
0

600

70
0

P= sa, ad, db, bf, fg, gt

Paths

830

s

t

a

d

b f g

650
45
0

25
0

600

70
0

P= sa, ad, db, bf, fg, gt

The length of a path P = v1v2, . . . , vk−1vk is the sum of the lengths of
the edges on P :

c(P) :=
∑

(ce : e ∈ P).

Paths

830

s

t

a

d

b f g

650
45
0

25
0

600

70
0

P= sa, ad, db, bf, fg, gt

c(P) = csa + cad + cdb + cbf + cfg + cgt

= 650 + 490 + 250 + 830 + 600 + 700

= 3520

The length of a path P = v1v2, . . . , vk−1vk is the sum of the lengths of
the edges on P :

c(P) :=
∑

(ce : e ∈ P).

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

Shortest Path Problem

• Given: Graph G = (V,E), lengths ce ≥ 0 for all e ∈ E, s, t ∈ V

• Find: Minimum-length s, t-path P

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

Shortest Path Problem

• Given: Graph G = (V,E), lengths ce ≥ 0 for all e ∈ E, s, t ∈ V

• Find: Minimum-length s, t-path P

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

Shortest Path Problem

• Given: Graph G = (V,E), lengths ce ≥ 0 for all e ∈ E, s, t ∈ V

• Find: Minimum-length s, t-path P

Goal: Write an IP whose solutions are the shortest s, t-paths!

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

Shortest Path Problem

• Given: Graph G = (V,E), lengths ce ≥ 0 for all e ∈ E, s, t ∈ V

• Find: Minimum-length s, t-path P

Goal: Write an IP whose solutions are the shortest s, t-paths!

−→ Later!

Example: Matchings

WaterTech - Job Assignment

WaterTech has a collection of
important jobs:

J = {1′, 2′, 3′, 4′}

that it needs to handle urgently.

WaterTech - Job Assignment

WaterTech has a collection of
important jobs:

J = {1′, 2′, 3′, 4′}

that it needs to handle urgently.

It also has 4 employees:

E = {1, 2, 3, 4}

that need to handle these jobs.

WaterTech - Job Assignment

WaterTech has a collection of
important jobs:

J = {1′, 2′, 3′, 4′}

that it needs to handle urgently.

It also has 4 employees:

E = {1, 2, 3, 4}

that need to handle these jobs.

Employees have different skill-sets
and may take different amounts of
time to execute a job.

WaterTech - Job Assignment

WaterTech has a collection of
important jobs:

J = {1′, 2′, 3′, 4′}

that it needs to handle urgently.

It also has 4 employees:

E = {1, 2, 3, 4}

that need to handle these jobs.

Employees have different skill-sets
and may take different amounts of
time to execute a job.

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - 2 -
3 - 1 - -
4 8 - 3 -

WaterTech - Job Assignment

WaterTech has a collection of
important jobs:

J = {1′, 2′, 3′, 4′}

that it needs to handle urgently.

It also has 4 employees:

E = {1, 2, 3, 4}

that need to handle these jobs.

Employees have different skill-sets
and may take different amounts of
time to execute a job.

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - 2 -
3 - 1 - -
4 8 - 3 -

Note: Some workers are not able to
handle certain jobs!

WaterTech - Job Assignment

WaterTech has a collection of
important jobs:

J = {1′, 2′, 3′, 4′}

that it needs to handle urgently.

It also has 4 employees:

E = {1, 2, 3, 4}

that need to handle these jobs.

Employees have different skill-sets
and may take different amounts of
time to execute a job.

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - 2 -
3 - 1 - -
4 8 - 3 -

Note: Some workers are not able to
handle certain jobs!

Goal: Assign each worker to exactly
one task so that the total execution
time is smallest!

WaterTech - Job Assignment

WaterTech has a collection of
important jobs:

J = {1′, 2′, 3′, 4′}

that it needs to handle urgently.

It also has 4 employees:

E = {1, 2, 3, 4}

that need to handle these jobs.

Employees have different skill-sets
and may take different amounts of
time to execute a job.

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - 2 -
3 - 1 - -
4 8 - 3 -

Note: Some workers are not able to
handle certain jobs!

Goal: Assign each worker to exactly
one task so that the total execution
time is smallest!

−→ We will rephrase this in the
language of graphs

Matchings

Create a graph with one vertex for
each employee and job.

Matchings

Create a graph with one vertex for
each employee and job.

1

4

2

3

1’

4’

2’

3’

E J

Matchings

Create a graph with one vertex for
each employee and job.

1

4

2

3

1’

4’

2’

3’

E J

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - - 4
3 - 1 - -
4 8 - 3 -

Matchings

Create a graph with one vertex for
each employee and job.

Add an edge ij for i ∈ E and j ∈ J
if employee i can handle job j.

1

4

2

3

1’

4’

2’

3’

E J

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - - 4
3 - 1 - -
4 8 - 3 -

Matchings

Create a graph with one vertex for
each employee and job.

Add an edge ij for i ∈ E and j ∈ J
if employee i can handle job j.

1

4

2

3

1’

4’

2’

3’

E J

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - - 4
3 - 1 - -
4 8 - 3 -

Matchings

Create a graph with one vertex for
each employee and job.

Add an edge ij for i ∈ E and j ∈ J
if employee i can handle job j.

Let the cost cij of edge ij be the
amount of time needed by i to
complete j.

1

4

2

3

1’

4’

2’

3’

E J

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - - 4
3 - 1 - -
4 8 - 3 -

Matchings

Create a graph with one vertex for
each employee and job.

Add an edge ij for i ∈ E and j ∈ J
if employee i can handle job j.

Let the cost cij of edge ij be the
amount of time needed by i to
complete j.

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - - 4
3 - 1 - -
4 8 - 3 -

Matchings

Definition

A collection M ⊆ E is a matching if no two
edges ij, i′j′ ∈M (ij 6= i′j′) share an
endpoint;

Examples

1. M = {14′, 21′, 32′, 43′} is a matching.

2. M = {14′, 32′, 41′, 43′} is not a
matching.

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Matchings

Definition

A collection M ⊆ E is a matching if no two
edges ij, i′j′ ∈M (ij 6= i′j′) share an
endpoint; i.e., {i, j} ∩ {i′, j′} = ∅.

Examples

1. M = {14′, 21′, 32′, 43′} is a matching.

2. M = {14′, 32′, 41′, 43′} is not a
matching.

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Matchings

Definition

A collection M ⊆ E is a matching if no two
edges ij, i′j′ ∈M (ij 6= i′j′) share an
endpoint; i.e., {i, j} ∩ {i′, j′} = ∅.

Examples

1. M = {14′, 21′, 32′, 43′} is a matching.

2. M = {14′, 32′, 41′, 43′} is not a
matching.

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Matchings

Definition

A collection M ⊆ E is a matching if no two
edges ij, i′j′ ∈M (ij 6= i′j′) share an
endpoint; i.e., {i, j} ∩ {i′, j′} = ∅.

Examples

1. M = {14′, 21′, 32′, 43′} is a matching.

2. M = {14′, 32′, 41′, 43′} is not a
matching.

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Matchings

The cost of a matching M is the
sum of costs of its edges:

c(M) =
∑

(ce : e ∈M)

e.g., M = {14′, 21′, 32′, 43′}
−→ c(M) = 19

Definition

A matching M is perfect if every
vertex v in the graph is incident to
an edge in M .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

E.g., matching in figure is perfect,
and this one is not!

Matchings

The cost of a matching M is the
sum of costs of its edges:

c(M) =
∑

(ce : e ∈M)

e.g., M = {14′, 21′, 32′, 43′}
−→ c(M) = 19

Definition

A matching M is perfect if every
vertex v in the graph is incident to
an edge in M .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

E.g., matching in figure is perfect,
and this one is not!

Matchings

The cost of a matching M is the
sum of costs of its edges:

c(M) =
∑

(ce : e ∈M)

e.g., M = {14′, 21′, 32′, 43′}
−→ c(M) = 19

Definition

A matching M is perfect if every
vertex v in the graph is incident to
an edge in M .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

E.g., matching in figure is perfect,
and this one is not!

Matchings

The cost of a matching M is the
sum of costs of its edges:

c(M) =
∑

(ce : e ∈M)

e.g., M = {14′, 21′, 32′, 43′}
−→ c(M) = 19

Definition

A matching M is perfect if every
vertex v in the graph is incident to
an edge in M .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

E.g., matching in figure is perfect,

and this one is not!

Matchings

The cost of a matching M is the
sum of costs of its edges:

c(M) =
∑

(ce : e ∈M)

e.g., M = {14′, 21′, 32′, 43′}
−→ c(M) = 19

Definition

A matching M is perfect if every
vertex v in the graph is incident to
an edge in M .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

E.g., matching in figure is perfect,
and this one is not!

Restating the Assignment Problem

Definition

A matching M is perfect if every vertex v in
the graph is incident to an edge in M .

Note: Perfect matchings correspond to
feasible assignments of workers to jobs!

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Restating the Assignment Problem

Definition

A matching M is perfect if every vertex v in
the graph is incident to an edge in M .

Note: Perfect matchings correspond to
feasible assignments of workers to jobs!

E.g., the matching shown corresponds to
the following assignment:

1→ 4′, 2→ 1′, 3→ 2′, and 4→ 3′

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Restating the Assignment Problem

Definition

A matching M is perfect if every vertex v in
the graph is incident to an edge in M .

Note: Perfect matchings correspond to
feasible assignments of workers to jobs!

E.g., the matching shown corresponds to
the following assignment:

1→ 4′, 2→ 1′, 3→ 2′, and 4→ 3′

whose execution time equals c(M) = 19!

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Restating the Assignment Problem

Definition

A matching M is perfect if every vertex v in
the graph is incident to an edge in M .

Note: Perfect matchings correspond to
feasible assignments of workers to jobs!

E.g., the matching shown corresponds to
the following assignment:

1→ 4′, 2→ 1′, 3→ 2′, and 4→ 3′

whose execution time equals c(M) = 19!

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Restatement of original
question:

Find a perfect matching M
in our graph of smallest cost.

A Little More Notation...

Notation: Use δ(v) to denote the set of
edges incident to v; i.e.,

δ(v) = {e ∈ E : e = vu for some u ∈ V }.

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Examples

• δ(2) = {21′, 24′}
• δ(3′) = {43′}

A Little More Notation...

Notation: Use δ(v) to denote the set of
edges incident to v; i.e.,

δ(v) = {e ∈ E : e = vu for some u ∈ V }.

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Examples

• δ(2) = {21′, 24′}

• δ(3′) = {43′}

A Little More Notation...

Notation: Use δ(v) to denote the set of
edges incident to v; i.e.,

δ(v) = {e ∈ E : e = vu for some u ∈ V }.

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Examples

• δ(2) = {21′, 24′}
• δ(3′) = {43′}

A Little More Notation...

Notation: Use δ(v) to denote the set of
edges incident to v; i.e.,

δ(v) = {e ∈ E : e = vu for some u ∈ V }.

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Examples

• δ(2) = {21′, 24′}
• δ(3′) = {43′}

An IP for Perfect Matchings

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

An IP for Perfect Matchings

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

The IP will have a binary variable xe for
every edge e ∈ E.

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

An IP for Perfect Matchings

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

The IP will have a binary variable xe for
every edge e ∈ E. Idea:

xe = 1 ↔ e ∈M

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

An IP for Perfect Matchings

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

The IP will have a binary variable xe for
every edge e ∈ E. Idea:

xe = 1 ↔ e ∈M

Constraints: For all v ∈ V , need∑
(xe : e ∈ δ(v)) = 1

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

An IP for Perfect Matchings

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

The IP will have a binary variable xe for
every edge e ∈ E. Idea:

xe = 1 ↔ e ∈M

Constraints: For all v ∈ V , need∑
(xe : e ∈ δ(v)) = 1

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Objective:∑
(cexe : e ∈ E)

An IP for Perfect Matchings

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(v)) = 1 (v ∈ V)

x ≥ 0, x integer

1
2

4

3

5
4

1
3

An IP for Perfect Matchings

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(v)) = 1 (v ∈ V)

x ≥ 0, x integer

min (5, 1, 3, 4)x

s.t.



12 13 14 23

1 1 1 1 0

2 1 0 0 1

3 0 1 0 1

4 0 0 1 0

x = 1

x ≥ 0 integer

1
2

4

3

5
4

1
3

Recap

• Graphs consist of vertices V and edges E ... and are very useful in
modeling many practical problems.

• In particular, graphs can be used to model road networks, where
roads are edges and street intersections are vertices.

• In the shortest path problem, each edge e ∈ E has an associated
weight ce, and we are looking for a path connecting two specific
vertices of smallest total weight.

• A matching is a collection of edges, no two of which share an
endpoint.

A perfect matching is a matching that covers all vertices
in V .

Recap

• Graphs consist of vertices V and edges E ... and are very useful in
modeling many practical problems.

• In particular, graphs can be used to model road networks, where
roads are edges and street intersections are vertices.

• In the shortest path problem, each edge e ∈ E has an associated
weight ce, and we are looking for a path connecting two specific
vertices of smallest total weight.

• A matching is a collection of edges, no two of which share an
endpoint.

A perfect matching is a matching that covers all vertices
in V .

Recap

• Graphs consist of vertices V and edges E ... and are very useful in
modeling many practical problems.

• In particular, graphs can be used to model road networks, where
roads are edges and street intersections are vertices.

• In the shortest path problem, each edge e ∈ E has an associated
weight ce, and we are looking for a path connecting two specific
vertices of smallest total weight.

• A matching is a collection of edges, no two of which share an
endpoint.

A perfect matching is a matching that covers all vertices
in V .

Recap

• Graphs consist of vertices V and edges E ... and are very useful in
modeling many practical problems.

• In particular, graphs can be used to model road networks, where
roads are edges and street intersections are vertices.

• In the shortest path problem, each edge e ∈ E has an associated
weight ce, and we are looking for a path connecting two specific
vertices of smallest total weight.

• A matching is a collection of edges, no two of which share an
endpoint.

A perfect matching is a matching that covers all vertices
in V .

Recap

• Graphs consist of vertices V and edges E ... and are very useful in
modeling many practical problems.

• In particular, graphs can be used to model road networks, where
roads are edges and street intersections are vertices.

• In the shortest path problem, each edge e ∈ E has an associated
weight ce, and we are looking for a path connecting two specific
vertices of smallest total weight.

• A matching is a collection of edges, no two of which share an
endpoint. A perfect matching is a matching that covers all vertices
in V .

CO 250: Introduction to Optimization
Module 1: Formulations (Shortest Paths)

Recap: Shortest Paths

Input:

• Graph G = (V,E)

• Non-negative edge lengths ce
for all e ∈ E

• Vertices s, t ∈ V

1. vivi+1 ∈ E for all
i ∈ {1, . . . , k − 1},

2. vi 6= vj for all i 6= j, and

3. v1 = s and vk = t.

Recap: Shortest Paths

Input:

• Graph G = (V,E)

• Non-negative edge lengths ce
for all e ∈ E

• Vertices s, t ∈ V

s t

a

b

3 2

1

24

1. vivi+1 ∈ E for all
i ∈ {1, . . . , k − 1},

2. vi 6= vj for all i 6= j, and

3. v1 = s and vk = t.

Recap: Shortest Paths

Input:

• Graph G = (V,E)

• Non-negative edge lengths ce
for all e ∈ E

• Vertices s, t ∈ V

s t

a

b

3 2

1

24

1. vivi+1 ∈ E for all
i ∈ {1, . . . , k − 1},

2. vi 6= vj for all i 6= j, and

3. v1 = s and vk = t.

Recap: Shortest Paths

Input:

• Graph G = (V,E)

• Non-negative edge lengths ce
for all e ∈ E

• Vertices s, t ∈ V

s t

a

b

3 2

1

24

1. vivi+1 ∈ E for all
i ∈ {1, . . . , k − 1},

2. vi 6= vj for all i 6= j, and

3. v1 = s and vk = t.

Recap: Shortest Paths

Input:

• Graph G = (V,E)

• Non-negative edge lengths ce
for all e ∈ E

• Vertices s, t ∈ V

Goal: Compute an s, t-path of
smallest total length.

s t

a

b

3 2

1

24

1. vivi+1 ∈ E for all
i ∈ {1, . . . , k − 1},

2. vi 6= vj for all i 6= j, and

3. v1 = s and vk = t.

Recap: Shortest Paths

Input:

• Graph G = (V,E)

• Non-negative edge lengths ce
for all e ∈ E

• Vertices s, t ∈ V

Goal: Compute an s, t-path of
smallest total length.

Recall: P is an s, t-path if it is of
the form

v1v2, v2v3, . . . , vk−1vk

and

s t

a

b

3 2

1

24

1. vivi+1 ∈ E for all
i ∈ {1, . . . , k − 1},

2. vi 6= vj for all i 6= j, and

3. v1 = s and vk = t.

Recap: Shortest Paths

Input:

• Graph G = (V,E)

• Non-negative edge lengths ce
for all e ∈ E

• Vertices s, t ∈ V

Goal: Compute an s, t-path of
smallest total length.

Recall: P is an s, t-path if it is of
the form

v1v2, v2v3, . . . , vk−1vk

and

s t

a

b

3 2

1

24

1. vivi+1 ∈ E for all
i ∈ {1, . . . , k − 1},

2. vi 6= vj for all i 6= j, and

3. v1 = s and vk = t.

Recap: Shortest Paths

Input:

• Graph G = (V,E)

• Non-negative edge lengths ce
for all e ∈ E

• Vertices s, t ∈ V

Goal: Compute an s, t-path of
smallest total length.

Recall: P is an s, t-path if it is of
the form

v1v2, v2v3, . . . , vk−1vk

and

s t

a

b

3 2

1

24

1. vivi+1 ∈ E for all
i ∈ {1, . . . , k − 1},

2. vi 6= vj for all i 6= j, and

3. v1 = s and vk = t.

Recap: Shortest Paths

Input:

• Graph G = (V,E)

• Non-negative edge lengths ce
for all e ∈ E

• Vertices s, t ∈ V

Goal: Compute an s, t-path of
smallest total length.

Recall: P is an s, t-path if it is of
the form

v1v2, v2v3, . . . , vk−1vk

and

s t

a

b

3 2

1

24

1. vivi+1 ∈ E for all
i ∈ {1, . . . , k − 1},

2. vi 6= vj for all i 6= j, and

3. v1 = s and vk = t.

Recap: Shortest Paths

Input:

• Graph G = (V,E)

• Non-negative edge lengths ce
for all e ∈ E

• Vertices s, t ∈ V

Goal: Compute an s, t-path of
smallest total length.

Recall: P is an s, t-path if it is of
the form

v1v2, v2v3, . . . , vk−1vk

and

s t

a

b

3 2

1

24

1. vivi+1 ∈ E for all
i ∈ {1, . . . , k − 1},

2. vi 6= vj for all i 6= j, and

3. v1 = s and vk = t.

E.g., P = sa, ab, bt

Recap: Shortest Paths

Shortest Path Problem: Given
G = (V,E), ce ≥ 0 for all e ∈ E,
and s, t ∈ V , compute an s, t-path
of smallest total length.

Now: Formulate the problem as an
IP!

Useful Observation: Let C ⊆ E be a
set of edges whose removal
disconnects s and t.

−→Every s, t-path P must have at
least

one edge in C.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the set of
edges with exactly one endpoint in
S.

Recap: Shortest Paths

Shortest Path Problem: Given
G = (V,E), ce ≥ 0 for all e ∈ E,
and s, t ∈ V , compute an s, t-path
of smallest total length.

Now: Formulate the problem as an
IP!

Useful Observation: Let C ⊆ E be a
set of edges whose removal
disconnects s and t.

−→Every s, t-path P must have at
least

one edge in C.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the set of
edges with exactly one endpoint in
S.

Recap: Shortest Paths

Shortest Path Problem: Given
G = (V,E), ce ≥ 0 for all e ∈ E,
and s, t ∈ V , compute an s, t-path
of smallest total length.

Now: Formulate the problem as an
IP!

Useful Observation: Let C ⊆ E be a
set of edges whose removal
disconnects s and t.

−→Every s, t-path P must have at
least

one edge in C.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the set of
edges with exactly one endpoint in
S.

Recap: Shortest Paths

Shortest Path Problem: Given
G = (V,E), ce ≥ 0 for all e ∈ E,
and s, t ∈ V , compute an s, t-path
of smallest total length.

Now: Formulate the problem as an
IP!

Useful Observation: Let C ⊆ E be a
set of edges whose removal
disconnects s and t.

−→Every s, t-path P must have at
least

one edge in C.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the set of
edges with exactly one endpoint in
S.

Recap: Shortest Paths

Shortest Path Problem: Given
G = (V,E), ce ≥ 0 for all e ∈ E,
and s, t ∈ V , compute an s, t-path
of smallest total length.

Now: Formulate the problem as an
IP!

Useful Observation: Let C ⊆ E be a
set of edges whose removal
disconnects s and t.

−→Every s, t-path P must have at
least

one edge in C.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the set of
edges with exactly one endpoint in
S.

Recap: Shortest Paths

Shortest Path Problem: Given
G = (V,E), ce ≥ 0 for all e ∈ E,
and s, t ∈ V , compute an s, t-path
of smallest total length.

Now: Formulate the problem as an
IP!

Useful Observation: Let C ⊆ E be a
set of edges whose removal
disconnects s and t.

−→Every s, t-path P must have at
least

one edge in C.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the set of
edges with exactly one endpoint in
S.

Recap: Shortest Paths

Shortest Path Problem: Given
G = (V,E), ce ≥ 0 for all e ∈ E,
and s, t ∈ V , compute an s, t-path
of smallest total length.

Now: Formulate the problem as an
IP!

Useful Observation: Let C ⊆ E be a
set of edges whose removal
disconnects s and t.

−→Every s, t-path P must have at
least

one edge in C.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the set of
edges with exactly one endpoint in
S.

δ(S) = {uv ∈ E : u ∈ S, v 6∈ S}

Cuts

Examples:

1. S = {s}

→ δ(S) = {sa, sb}

2. S = {s, a}

→ δ(S) = {ab, at, sb}

3. S = {a, b}

→ δ(S) = {sa, sb, at, bt}

Definition

δ(S) is an s, t-cut if s ∈ S and t 6∈ S.

E.g., 1 and 2 are s, t-cuts, 3 is not.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the
set of edges with exactly one
endpoint in S.

δ(S) = {uv ∈ E : u ∈ S, v 6∈ S}

Cuts

Examples:

1. S = {s}

→ δ(S) = {sa, sb}

2. S = {s, a}

→ δ(S) = {ab, at, sb}

3. S = {a, b}

→ δ(S) = {sa, sb, at, bt}

Definition

δ(S) is an s, t-cut if s ∈ S and t 6∈ S.

E.g., 1 and 2 are s, t-cuts, 3 is not.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the
set of edges with exactly one
endpoint in S.

δ(S) = {uv ∈ E : u ∈ S, v 6∈ S}

Cuts

Examples:

1. S = {s} → δ(S) = {sa, sb}

2. S = {s, a}

→ δ(S) = {ab, at, sb}

3. S = {a, b}

→ δ(S) = {sa, sb, at, bt}

Definition

δ(S) is an s, t-cut if s ∈ S and t 6∈ S.

E.g., 1 and 2 are s, t-cuts, 3 is not.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the
set of edges with exactly one
endpoint in S.

δ(S) = {uv ∈ E : u ∈ S, v 6∈ S}

Cuts

Examples:

1. S = {s} → δ(S) = {sa, sb}

2. S = {s, a}

→ δ(S) = {ab, at, sb}

3. S = {a, b}

→ δ(S) = {sa, sb, at, bt}

Definition

δ(S) is an s, t-cut if s ∈ S and t 6∈ S.

E.g., 1 and 2 are s, t-cuts, 3 is not.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the
set of edges with exactly one
endpoint in S.

δ(S) = {uv ∈ E : u ∈ S, v 6∈ S}

Cuts

Examples:

1. S = {s} → δ(S) = {sa, sb}

2. S = {s, a} → δ(S) = {ab, at, sb}

3. S = {a, b}

→ δ(S) = {sa, sb, at, bt}

Definition

δ(S) is an s, t-cut if s ∈ S and t 6∈ S.

E.g., 1 and 2 are s, t-cuts, 3 is not.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the
set of edges with exactly one
endpoint in S.

δ(S) = {uv ∈ E : u ∈ S, v 6∈ S}

Cuts

Examples:

1. S = {s} → δ(S) = {sa, sb}

2. S = {s, a} → δ(S) = {ab, at, sb}

3. S = {a, b}

→ δ(S) = {sa, sb, at, bt}

Definition

δ(S) is an s, t-cut if s ∈ S and t 6∈ S.

E.g., 1 and 2 are s, t-cuts, 3 is not.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the
set of edges with exactly one
endpoint in S.

δ(S) = {uv ∈ E : u ∈ S, v 6∈ S}

Cuts

Examples:

1. S = {s} → δ(S) = {sa, sb}

2. S = {s, a} → δ(S) = {ab, at, sb}

3. S = {a, b} → δ(S) = {sa, sb, at, bt}

Definition

δ(S) is an s, t-cut if s ∈ S and t 6∈ S.

E.g., 1 and 2 are s, t-cuts, 3 is not.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the
set of edges with exactly one
endpoint in S.

δ(S) = {uv ∈ E : u ∈ S, v 6∈ S}

Cuts

Examples:

1. S = {s} → δ(S) = {sa, sb}

2. S = {s, a} → δ(S) = {ab, at, sb}

3. S = {a, b} → δ(S) = {sa, sb, at, bt}

Definition

δ(S) is an s, t-cut if s ∈ S and t 6∈ S.

E.g., 1 and 2 are s, t-cuts, 3 is not.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the
set of edges with exactly one
endpoint in S.

δ(S) = {uv ∈ E : u ∈ S, v 6∈ S}

Cuts

Examples:

1. S = {s} → δ(S) = {sa, sb}

2. S = {s, a} → δ(S) = {ab, at, sb}

3. S = {a, b} → δ(S) = {sa, sb, at, bt}

Definition

δ(S) is an s, t-cut if s ∈ S and t 6∈ S.

E.g., 1 and 2 are s, t-cuts, 3 is not.

s t

a

b

3 2

1

24

Definition

For S ⊆ V , we let δ(S) be the
set of edges with exactly one
endpoint in S.

δ(S) = {uv ∈ E : u ∈ S, v 6∈ S}

Cuts

Definition

δ(S) is an s, t-cut if s ∈ S and t 6∈ S. s t

a

b

3 2

1

24

Cuts

Definition

δ(S) is an s, t-cut if s ∈ S and t 6∈ S.

E.g., δ({s, a}) = {sb, ab, at} is an
s, t-cut.

s t

a

b

3 2

1

24

Cuts

Definition

δ(S) is an s, t-cut if s ∈ S and t 6∈ S.

E.g., δ({s, a}) = {sb, ab, at} is an
s, t-cut.

Remark

If P is an s, t-path and δ(S) is an
s, t-cut, then P must have an edge from
δ(S).

s t

a

b

3 2

1

24

Cuts

Definition

δ(S) is an s, t-cut if s ∈ S and t 6∈ S.

E.g., δ({s, a}) = {sb, ab, at} is an
s, t-cut.

Remark

If P is an s, t-path and δ(S) is an
s, t-cut, then P must have an edge from
δ(S).

E.g., P = sa, ab, bt.

s t

a

b

3 2

1

24

Cuts

Remark

If S ⊆ E contains at least one edge
from every s, t-cut, then S contains an
s, t-path. s t

a

b

3 2

1

24

• Note: There cannot be an
edge uv ∈ S with u ∈ R
and v 6∈ R.

Cuts

Remark

If S ⊆ E contains at least one edge
from every s, t-cut, then S contains an
s, t-path.

Proof: (by contradiction)

• Suppose S has an edge from every
s, t-cut, but S has no s, t-path.

• Let R be the set of vertices
reachable from s in S:

R = {u ∈ V : S has an s, u−path}.

• δ(R) is an s, t-cut since s ∈ R and
t 6∈ R.

s t

a

b

3 2

1

24

• Note: There cannot be an
edge uv ∈ S with u ∈ R
and v 6∈ R.

Cuts

Remark

If S ⊆ E contains at least one edge
from every s, t-cut, then S contains an
s, t-path.

Proof: (by contradiction)

• Suppose S has an edge from every
s, t-cut, but S has no s, t-path.

• Let R be the set of vertices
reachable from s in S:

R = {u ∈ V : S has an s, u−path}.

• δ(R) is an s, t-cut since s ∈ R and
t 6∈ R.

s t

a

b

3 2

1

24

• Note: There cannot be an
edge uv ∈ S with u ∈ R
and v 6∈ R.

Cuts

Remark

If S ⊆ E contains at least one edge
from every s, t-cut, then S contains an
s, t-path.

Proof: (by contradiction)

• Suppose S has an edge from every
s, t-cut, but S has no s, t-path.

• Let R be the set of vertices
reachable from s in S:

R = {u ∈ V : S has an s, u−path}.

• δ(R) is an s, t-cut since s ∈ R and
t 6∈ R.

s t

a

b

3 2

1

24

R

• Note: There cannot be an
edge uv ∈ S with u ∈ R
and v 6∈ R.

Cuts

Remark

If S ⊆ E contains at least one edge
from every s, t-cut, then S contains an
s, t-path.

Proof: (by contradiction)

• Suppose S has an edge from every
s, t-cut, but S has no s, t-path.

• Let R be the set of vertices
reachable from s in S:

R = {u ∈ V : S has an s, u−path}.

• δ(R) is an s, t-cut since s ∈ R and
t 6∈ R.

s t

a

b

3 2

1

24

R

• Note: There cannot be an
edge uv ∈ S with u ∈ R
and v 6∈ R.

Cuts

Remark

If S ⊆ E contains at least one edge
from every s, t-cut, then S contains an
s, t-path.

Proof: (by contradiction)

• Suppose S has an edge from every
s, t-cut, but S has no s, t-path.

• Let R be the set of vertices
reachable from s in S:

R = {u ∈ V : S has an s, u−path}.

• δ(R) is an s, t-cut since s ∈ R and
t 6∈ R.

s t

a

b

3 2

1

24

R

• Note: There cannot be an
edge uv ∈ S with u ∈ R
and v 6∈ R.

Cuts

Remark

If S ⊆ E contains at least one edge
from every s, t-cut, then S contains an
s, t-path.

Proof: (by contradiction)

• Suppose S has an edge from every
s, t-cut, but S has no s, t-path.

• Let R be the set of vertices
reachable from s in S:

R = {u ∈ V : S has an s, u−path}.

• δ(R) is an s, t-cut since s ∈ R and
t 6∈ R.

s t

a

b

3 2

1

24

R

• Note: There cannot be an
edge uv ∈ S with u ∈ R
and v 6∈ R. Otherwise: v
should have been in R!

Cuts

Remark

If S ⊆ E contains at least one edge
from every s, t-cut, then S contains an
s, t-path.

Proof: (by contradiction)

• Suppose S has an edge from every
s, t-cut, but S has no s, t-path.

• Let R be the set of vertices
reachable from s in S:

R = {u ∈ V : S has an s, u−path}.

• δ(R) is an s, t-cut since s ∈ R and
t 6∈ R.

s t

a

b

3 2

1

24

R

• Note: There cannot be an
edge uv ∈ S with u ∈ R
and v 6∈ R. Otherwise: v
should have been in R!

−→ δ(R) ∩ S = ∅.
Contradiction!

An IP for Shortest Paths

Variables: We have one binary variable
xe for each edge e ∈ E.

s t

a

b

3 2

1

24

R

Remark

If S ⊆ E contains at least one
edge from every s, t-cut, then S
contains an s, t-path.

An IP for Shortest Paths

Variables: We have one binary variable
xe for each edge e ∈ E. We want:

xe =

{
1 : e ∈ P
0 : otherwise

s t

a

b

3 2

1

24

R

Remark

If S ⊆ E contains at least one
edge from every s, t-cut, then S
contains an s, t-path.

An IP for Shortest Paths

Variables: We have one binary variable
xe for each edge e ∈ E. We want:

xe =

{
1 : e ∈ P
0 : otherwise

Constraints: We have one constraint for
each s, t-cut δ(U), forcing P to have an
edge from δ(S).

s t

a

b

3 2

1

24

R

Remark

If S ⊆ E contains at least one
edge from every s, t-cut, then S
contains an s, t-path.

An IP for Shortest Paths

Variables: We have one binary variable
xe for each edge e ∈ E. We want:

xe =

{
1 : e ∈ P
0 : otherwise

Constraints: We have one constraint for
each s, t-cut δ(U), forcing P to have an
edge from δ(S).∑

(xe : e ∈ δ(U)) ≥ 1 (1)

for all s, t-cuts δ(U).

s t

a

b

3 2

1

24

R

Remark

If S ⊆ E contains at least one
edge from every s, t-cut, then S
contains an s, t-path.

An IP for Shortest Paths

Variables: We have one binary variable
xe for each edge e ∈ E. We want:

xe =

{
1 : e ∈ P
0 : otherwise

Constraints: We have one constraint for
each s, t-cut δ(U), forcing P to have an
edge from δ(S).∑

(xe : e ∈ δ(U)) ≥ 1 (1)

for all s, t-cuts δ(U).

Objective:
∑

(cexe : e ∈ E)

s t

a

b

3 2

1

24

R

Remark

If S ⊆ E contains at least one
edge from every s, t-cut, then S
contains an s, t-path.

An IP for Shortest Paths

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(U)) ≥ 1 (U ⊆ V, s ∈ U, t 6∈ U)

xe ≥ 0, xe integer (e ∈ E)

An IP for Shortest Paths

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(U)) ≥ 1 (U ⊆ V, s ∈ U, t 6∈ U)

xe ≥ 0, xe integer (e ∈ E)

min (3, 4, 1, 2, 2)x

s.t.



sa sb ab at bt

{s} 1 1 0 0 0

{s, a} 0 1 1 1 0

{s, b} 1 0 1 0 1

{s, a, b} 0 0 0 1 1

x ≥ 1

x ≥ 0 x integer

s t

a

b

3 2

1

24

An IP for Shortest Paths

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(U)) ≥ 1 (U ⊆ V, s ∈ U, t 6∈ U)

xe ≥ 0, xe integer (e ∈ E)

An IP for Shortest Paths

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(U)) ≥ 1 (U ⊆ V, s ∈ U, t 6∈ U)

xe ≥ 0, xe integer (e ∈ E)

Suppose: ce > 0 for all e ∈ E

An IP for Shortest Paths

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(U)) ≥ 1 (U ⊆ V, s ∈ U, t 6∈ U)

xe ≥ 0, xe integer (e ∈ E)

Suppose: ce > 0 for all e ∈ E
Then: In an optimal solution, xe ≤ 1 for all e ∈ E. Why?

An IP for Shortest Paths

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(U)) ≥ 1 (U ⊆ V, s ∈ U, t 6∈ U)

xe ≥ 0, xe integer (e ∈ E)

Suppose: ce > 0 for all e ∈ E
Then: In an optimal solution, xe ≤ 1 for all e ∈ E. Why?

Suppose xe > 1.

An IP for Shortest Paths

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(U)) ≥ 1 (U ⊆ V, s ∈ U, t 6∈ U)

xe ≥ 0, xe integer (e ∈ E)

Suppose: ce > 0 for all e ∈ E
Then: In an optimal solution, xe ≤ 1 for all e ∈ E. Why?

Suppose xe > 1.
Then let xe = 1. This is cheaper and maintains feasibility!

An IP for Shortest Paths

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(U)) ≥ 1 (U ⊆ V, s ∈ U, t 6∈ U)

xe ≥ 0, xe integer (e ∈ E)

Suppose: ce > 0 for all e ∈ E
Then: In an optimal solution, xe ≤ 1 for all e ∈ E. Why?

Suppose xe > 1.
Then let xe = 1. This is cheaper and maintains feasibility!

For a binary solution x, define

Sx = {e ∈ E : xe = 1}.

An IP for Shortest Paths

Note: If x is feasible for an IP, then Sx

satisfies the remark, but Sx may contain
more than just an s, t-path!

s t

a

b

3 2

1

24

Remark

If S ⊆ E contains at least one
edge from every s, t-cut, then S
contains an s, t-path.

An IP for Shortest Paths

Note: If x is feasible for an IP, then Sx

satisfies the remark, but Sx may contain
more than just an s, t-path!

E.g., xe = 1 for all blue edges in the
figure and xe = 0 otherwise.

s t

a

b

3 2

1

24

Remark

If S ⊆ E contains at least one
edge from every s, t-cut, then S
contains an s, t-path.

An IP for Shortest Paths

Note: If x is feasible for an IP, then Sx

satisfies the remark, but Sx may contain
more than just an s, t-path!

E.g., xe = 1 for all blue edges in the
figure and xe = 0 otherwise. Then,

Sx = {sa, ab, at}

s t

a

b

3 2

1

24

Remark

If S ⊆ E contains at least one
edge from every s, t-cut, then S
contains an s, t-path.

An IP for Shortest Paths

Note: If x is feasible for an IP, then Sx

satisfies the remark, but Sx may contain
more than just an s, t-path!

E.g., xe = 1 for all blue edges in the
figure and xe = 0 otherwise. Then,

Sx = {sa, ab, at}

Note: x cannot be optimal for the IP!

s t

a

b

3 2

1

24

Remark

If S ⊆ E contains at least one
edge from every s, t-cut, then S
contains an s, t-path.

An IP for Shortest Paths

Note: If x is feasible for an IP, then Sx

satisfies the remark, but Sx may contain
more than just an s, t-path!

E.g., xe = 1 for all blue edges in the
figure and xe = 0 otherwise. Then,

Sx = {sa, ab, at}

Note: x cannot be optimal for the IP!

Why?

s t

a

b

3 2

1

24

Remark

If S ⊆ E contains at least one
edge from every s, t-cut, then S
contains an s, t-path.

An IP for Shortest Paths

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(U)) ≥ 1 (U ⊆ V, s ∈ U, t 6∈ U)

xe ≥ 0, xe integer (e ∈ E)

Remark

If x is an optimal solution for the above IP and ce > 0 for all e ∈ E, then
Sx contains the edges of a shortest s, t-path.

Recap

• Given G = (V,E) and U ⊆ V , we define

δ(U) = {uv ∈ E : u ∈ U, v 6∈ U}.

• δ(U) is an s, t-cut if s ∈ U and t 6∈ U .

• If S ⊆ E intersects every s, t-cut δ(U), then S contains an s, t-path.

• Feasible solutions to the shortest path LP correspond to edge-sets
that intersect every s, t-cut;

optimal solutions are minimal in this
respect if ce > 0 for all e ∈ E.

Recap

• Given G = (V,E) and U ⊆ V , we define

δ(U) = {uv ∈ E : u ∈ U, v 6∈ U}.

• δ(U) is an s, t-cut if s ∈ U and t 6∈ U .

• If S ⊆ E intersects every s, t-cut δ(U), then S contains an s, t-path.

• Feasible solutions to the shortest path LP correspond to edge-sets
that intersect every s, t-cut;

optimal solutions are minimal in this
respect if ce > 0 for all e ∈ E.

Recap

• Given G = (V,E) and U ⊆ V , we define

δ(U) = {uv ∈ E : u ∈ U, v 6∈ U}.

• δ(U) is an s, t-cut if s ∈ U and t 6∈ U .

• If S ⊆ E intersects every s, t-cut δ(U), then S contains an s, t-path.

• Feasible solutions to the shortest path LP correspond to edge-sets
that intersect every s, t-cut;

optimal solutions are minimal in this
respect if ce > 0 for all e ∈ E.

Recap

• Given G = (V,E) and U ⊆ V , we define

δ(U) = {uv ∈ E : u ∈ U, v 6∈ U}.

• δ(U) is an s, t-cut if s ∈ U and t 6∈ U .

• If S ⊆ E intersects every s, t-cut δ(U), then S contains an s, t-path.

• Feasible solutions to the shortest path LP correspond to edge-sets
that intersect every s, t-cut;

optimal solutions are minimal in this
respect if ce > 0 for all e ∈ E.

Recap

• Given G = (V,E) and U ⊆ V , we define

δ(U) = {uv ∈ E : u ∈ U, v 6∈ U}.

• δ(U) is an s, t-cut if s ∈ U and t 6∈ U .

• If S ⊆ E intersects every s, t-cut δ(U), then S contains an s, t-path.

• Feasible solutions to the shortest path LP correspond to edge-sets
that intersect every s, t-cut; optimal solutions are minimal in this
respect if ce > 0 for all e ∈ E.

CO 250: Introduction to Optimization
Module 1: Formulations (Nonlinear Models)

So far ...

• Linear programs, and

• Integer linear programs.

min cTx

s.t. Ax ≥ b
x ≥ 0

So far ...

• Linear programs, and

• Integer linear programs.

Both have linear/affine constraints.

min cTx

s.t. Ax ≥ b
x ≥ 0

x integer

So far ...

• Linear programs, and

• Integer linear programs.

Both have linear/affine constraints.

Now: Nonlinear generalization!

min cTx

s.t. Ax ≥ b
x ≥ 0

x integer

Nonlinear Programs

A non-linear program (NLP) is of the form

min f(x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0

. . .

gm(x) ≤ 0,

Nonlinear Programs

A non-linear program (NLP) is of the form

min f(x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0

. . .

gm(x) ≤ 0,

where

• x ∈ Rn,

• f : Rn → R, and

• gi : Rn → R.

Nonlinear Programs

A non-linear program (NLP) is of the form

min f(x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0

. . .

gm(x) ≤ 0,

where

• x ∈ Rn,

• f : Rn → R, and

• gi : Rn → R.

Nonlinear Programs

A non-linear program (NLP) is of the form

min f(x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0

. . .

gm(x) ≤ 0,

where

• x ∈ Rn,

• f : Rn → R, and

• gi : Rn → R.

Nonlinear Programs

A non-linear program (NLP) is of the form

min f(x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0

. . .

gm(x) ≤ 0,

where

• x ∈ Rn,

• f : Rn → R, and

• gi : Rn → R.

Note: Linear programs are NLPs!

Example 1: Finding Close Points in an LP

Finding Close Points in an LP

Problem: we are given an LP (P), and an infeasible
point x̄.

min cTx

s.t. x ∈ P

P = {x : Ax ≤ b}

Finding Close Points in an LP

Problem: we are given an LP (P), and an infeasible
point x̄.

Goal: find a point x ∈ P that is as close as
possible to x̄.

min cTx

s.t. x ∈ P

P = {x : Ax ≤ b}

Finding Close Points in an LP

Problem: we are given an LP (P), and an infeasible
point x̄.

Goal: find a point x ∈ P that is as close as
possible to x̄.

e.g.: find a point x ∈ P that minimizes the
Euclidean distance to x̄:

‖x− x̄‖2 =

√√√√ n∑
i=1

(xi − x̄i)2

min cTx

s.t. x ∈ P

P = {x : Ax ≤ b}

Finding Close Points in an LP

Problem: we are given an LP (P), and an infeasible
point x̄.

Goal: find a point x ∈ P that is as close as
possible to x̄.

e.g.: find a point x ∈ P that minimizes the
Euclidean distance to x̄:

‖x− x̄‖2 =

√√√√ n∑
i=1

(xi − x̄i)2

Remark: ‖p‖2 is called the L2-norm of p

min cTx

s.t. x ∈ P

P = {x : Ax ≤ b}

Finding Close Points in an LP

Problem: we are given an LP (P), and an infeasible
point x̄.

Goal: find a point x ∈ P that is as close as
possible to x̄.

e.g.: find a point x ∈ P that minimizes the
Euclidean distance to x̄:

‖x− x̄‖2 =

√√√√ n∑
i=1

(xi − x̄i)2

Remark: ‖p‖2 is called the L2-norm of p

min cTx

s.t. x ∈ P

P = {x : Ax ≤ b}

min ‖x− x̄‖2
s.t. x ∈ P

Example 2: Binary IP via NLP

NLPs and Binary IPs

Suppose we are given a
binary IP (i.e., an integer
program all of whose
variables are binary).

max cTx

s.t. Ax ≤ b
x ≥ 0

xj ∈ {0, 1} (j ∈ {1, . . . , n})

NLPs and Binary IPs

Suppose we are given a
binary IP (i.e., an integer
program all of whose
variables are binary).

Recall: (binary) IPs are
generally hard to solve!

max cTx

s.t. Ax ≤ b
x ≥ 0

xj ∈ {0, 1} (j ∈ {1, . . . , n})

NLPs and Binary IPs

Suppose we are given a
binary IP (i.e., an integer
program all of whose
variables are binary).

Recall: (binary) IPs are
generally hard to solve!

Now: can write any binary IP
as an NLP!

max cTx

s.t. Ax ≤ b
x ≥ 0

xj ∈ {0, 1} (j ∈ {1, . . . , n})

NLPs and Binary IPs

Suppose we are given a
binary IP (i.e., an integer
program all of whose
variables are binary).

Recall: (binary) IPs are
generally hard to solve!

Now: can write any binary IP
as an NLP!

Ideas?

max cTx

s.t. Ax ≤ b
x ≥ 0

xj ∈ {0, 1} (j ∈ {1, . . . , n})

NLPs and Binary IPs

Suppose we are given a
binary IP (i.e., an integer
program all of whose
variables are binary).

Recall: (binary) IPs are
generally hard to solve!

Now: can write any binary IP
as an NLP!

Ideas?

max cTx

s.t. Ax ≤ b
x ≥ 0

xj(1− xj) = 0 (j ∈ [n]) (?)

NLPs and Binary IPs

Suppose we are given a
binary IP (i.e., an integer
program all of whose
variables are binary).

Recall: (binary) IPs are
generally hard to solve!

Now: can write any binary IP
as an NLP!

Ideas?

max cTx

s.t. Ax ≤ b
x ≥ 0

xj(1− xj) = 0 (j ∈ [n]) (?)

Correctness: For j ∈ [n], (?) is holds iff
xj = 0 or xj = 1.

NLPs and Binary IPs

Suppose we are given a
binary IP (i.e., an integer
program all of whose
variables are binary).

Recall: (binary) IPs are
generally hard to solve!

Now: can write any binary IP
as an NLP!

Ideas?

max cTx

s.t. Ax ≤ b
x ≥ 0

xj(1− xj) = 0 (j ∈ [n]) (?)

Correctness: For j ∈ [n], (?) is holds iff
xj = 0 or xj = 1.

Q: Can you change the NLP to express the
fact that xj is any non-negative integer
instead of binary?

NLPs and Binary IPs

Suppose we are given a
binary IP (i.e., an integer
program all of whose
variables are binary).

Recall: (binary) IPs are
generally hard to solve!

Now: can write any binary IP
as an NLP!

Ideas?

max cTx

s.t. Ax ≤ b
x ≥ 0

sin(π xj) = 0 (j ∈ [n]) (∗)

Correctness: For j ∈ [n], (?) is holds iff
xj = 0 or xj = 1.

Q: Can you change the NLP to express the
fact that xj is any non-negative integer
instead of binary?

Correctness: note that sin(π xj) = 0 only
if xj is an integer.

Example 3: Fermat’s Last Theorem

Fermat’s Last Theorem

Conjecture [Fermat, 1637]
There are no integers x, y, z ≥ 1 and n ≥ 3 such
that

xn + yn = zn.

Fermat’s Last Theorem

Conjecture [Fermat, 1637]
There are no integers x, y, z ≥ 1 and n ≥ 3 such
that

xn + yn = zn.

This is false ...

This is false ...

... doh!

Fermat’s Last Theorem

Conjecture [Fermat, 1637]
There are no integers x, y, z ≥ 1 and n ≥ 3 such
that

xn + yn = zn.

Fermat’s Last Theorem

Conjecture [Fermat, 1637]
There are no integers x, y, z ≥ 1 and n ≥ 3 such
that

xn + yn = zn.

In the margins of a copy of a 1670 article of
Diophantus Arithmetica he wrote that he had a
proof that was a bit too large to fit.

Fermat’s Last Theorem

Conjecture [Fermat, 1637]
There are no integers x, y, z ≥ 1 and n ≥ 3 such
that

xn + yn = zn.

In the margins of a copy of a 1670 article of
Diophantus Arithmetica he wrote that he had a
proof that was a bit too large to fit.

Some 358 years later, Sir Andrew Wiles gave the
first accepted proof of the theorem.

Fermat’s Last Theorem

Conjecture [Fermat, 1637]
There are no integers x, y, z ≥ 1 and n ≥ 3 such
that

xn + yn = zn.

In the margins of a copy of a 1670 article of
Diophantus Arithmetica he wrote that he had a
proof that was a bit too large to fit.

Some 358 years later, Sir Andrew Wiles gave the
first accepted proof of the theorem. The proof is
over 150 pages long!

NLP for Fermat’s Last Theorem

min (xx4
1 + xx4

2 − x
x4
3)

2

+ (sinπ x1)2 + (sinπ x2)2 + (sinπ x3)2 + (sinπ x4)2

s.t. xi ≥ 1 (i = 1 . . . 3)

x4 ≥ 3

• The NLP is trivially feasible, and

• the value of any feasible solution is non-negative as its objective is
the sum of squares.

• In fact, the value of a solution (x1, x2, x3, x4) is 0 iff

• xx4
1 + xx4

2 = xx4
3 , and

• sinπ xi = 0, for all i = 1 . . . 3.

NLP for Fermat’s Last Theorem

min (xx4
1 + xx4

2 − x
x4
3)

2

+ (sinπ x1)2 + (sinπ x2)2 + (sinπ x3)2 + (sinπ x4)2

s.t. xi ≥ 1 (i = 1 . . . 3)

x4 ≥ 3

• The NLP is trivially feasible, and

• the value of any feasible solution is non-negative as its objective is
the sum of squares.

• In fact, the value of a solution (x1, x2, x3, x4) is 0 iff

• xx4
1 + xx4

2 = xx4
3 , and

• sinπ xi = 0, for all i = 1 . . . 3.

NLP for Fermat’s Last Theorem

min (xx4
1 + xx4

2 − x
x4
3)

2

+ (sinπ x1)2 + (sinπ x2)2 + (sinπ x3)2 + (sinπ x4)2

s.t. xi ≥ 1 (i = 1 . . . 3)

x4 ≥ 3

• The NLP is trivially feasible, and

• the value of any feasible solution is non-negative as its objective is
the sum of squares.

• In fact, the value of a solution (x1, x2, x3, x4) is 0 iff

• xx4
1 + xx4

2 = xx4
3 , and

• sinπ xi = 0, for all i = 1 . . . 3.

NLP for Fermat’s Last Theorem

min (xx4
1 + xx4

2 − x
x4
3)

2

+ (sinπ x1)2 + (sinπ x2)2 + (sinπ x3)2 + (sinπ x4)2

s.t. xi ≥ 1 (i = 1 . . . 3)

x4 ≥ 3

• The NLP is trivially feasible, and

• the value of any feasible solution is non-negative as its objective is
the sum of squares.

• In fact, the value of a solution (x1, x2, x3, x4) is 0 iff

• xx4
1 + xx4

2 = xx4
3 , and

• sinπ xi = 0, for all i = 1 . . . 3.

NLP for Fermat’s Last Theorem

min (xx4
1 + xx4

2 − x
x4
3)

2

+ (sinπ x1)2 + (sinπ x2)2 + (sinπ x3)2 + (sinπ x4)2

s.t. xi ≥ 1 (i = 1 . . . 3)

x4 ≥ 3

• The NLP is trivially feasible, and

• the value of any feasible solution is non-negative as its objective is
the sum of squares.

• In fact, the value of a solution (x1, x2, x3, x4) is 0 iff

• xx4
1 + xx4

2 = xx4
3 , and

• sinπ xi = 0, for all i = 1 . . . 3.

NLP for Fermat’s Last Theorem

min (xx4
1 + xx4

2 − x
x4
3)

2

+ (sinπ x1)2 + (sinπ x2)2 + (sinπ x3)2 + (sinπ x4)2

s.t. xi ≥ 1 (i = 1 . . . 3)

x4 ≥ 3

• The NLP is trivially feasible, and

• the value of any feasible solution is non-negative as its objective is
the sum of squares.

• In fact, the value of a solution (x1, x2, x3, x4) is 0 iff

• xx4
1 + xx4

2 = xx4
3 , and

• sinπ xi = 0, for all i = 1 . . . 3.

NLP for Fermat’s Last Theorem

min (xx4
1 + xx4

2 − x
x4
3)

2

+ (sinπ x1)2 + (sinπ x2)2 + (sinπ x3)2 + (sinπ x4)2

s.t. xi ≥ 1 (i = 1 . . . 3)

x4 ≥ 3

Remark

Fermat’s Last Theorem is true iff the NLP has optimal value greater than
0.

NLP for Fermat’s Last Theorem

min (xx4
1 + xx4

2 − x
x4
3)

2

+ (sinπ x1)2 + (sinπ x2)2 + (sinπ x3)2 + (sinπ x4)2

s.t. xi ≥ 1 (i = 1 . . . 3)

x4 ≥ 3

Remark

Fermat’s Last Theorem is true iff the NLP has optimal value greater than
0.

Note: well known that there is an infinite sequence of feasible solutions
whose objective value converges to 0!

NLP for Fermat’s Last Theorem

min (xx4
1 + xx4

2 − x
x4
3)

2

+ (sinπ x1)2 + (sinπ x2)2 + (sinπ x3)2 + (sinπ x4)2

s.t. xi ≥ 1 (i = 1 . . . 3)

x4 ≥ 3

Remark

Fermat’s Last Theorem is true iff the NLP has optimal value greater than
0.

Note: well known that there is an infinite sequence of feasible solutions
whose objective value converges to 0!

Proving Fermat’s Last Theorem amounts to showing that the value 0 can
not be attained!

Recap

• Non-linear programs are of the form

min f(x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0

. . .

gm(x) ≤ 0,

where f, g1, . . . , gm are non-linear functions.

• Non-linear programs are strictly more general than integer programs,
and thus likely difficult to solve.

• Some famous questions in Math can easily be reduced to solving
certain NLPs

Recap

• Non-linear programs are of the form

min f(x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0

. . .

gm(x) ≤ 0,

where f, g1, . . . , gm are non-linear functions.

• Non-linear programs are strictly more general than integer programs,
and thus likely difficult to solve.

• Some famous questions in Math can easily be reduced to solving
certain NLPs

Recap

• Non-linear programs are of the form

min f(x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0

. . .

gm(x) ≤ 0,

where f, g1, . . . , gm are non-linear functions.

• Non-linear programs are strictly more general than integer programs,
and thus likely difficult to solve.

• Some famous questions in Math can easily be reduced to solving
certain NLPs

CO 250: Introduction to Optimization
Module 2: Linear programs (Possible outcomes)

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

What does solving an optimization problem mean?

input output
algorithm
(software)

LP or
IP or
NLP

solution

max 2x1 − 3x2

s.t.

x1 + x2 ≤ 1

x1, x2 ≥ 0

x1 = 1,

x2 = 0

Optimal
Solution

Remark

Sometimes the answer is not so straightforward!!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

What does solving an optimization problem mean?

input output
algorithm
(software)

LP or
IP or
NLP

solution

max 2x1 − 3x2

s.t.

x1 + x2 ≤ 1

x1, x2 ≥ 0

x1 = 1,

x2 = 0

Optimal
Solution

Remark

Sometimes the answer is not so straightforward!!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

What does solving an optimization problem mean?

input output
algorithm
(software)

LP or
IP or
NLP

solution

max 2x1 − 3x2

s.t.

x1 + x2 ≤ 1

x1, x2 ≥ 0

x1 = 1,

x2 = 0

Optimal
Solution

Remark

Sometimes the answer is not so straightforward!!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

What does solving an optimization problem mean?

input output
algorithm
(software)

LP or
IP or
NLP

solution

max 2x1 − 3x2

s.t.

x1 + x2 ≤ 1

x1, x2 ≥ 0

x1 = 1,

x2 = 0

Optimal
Solution

Remark

Sometimes the answer is not so straightforward!!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

An assignment of values to each of the variables is a feasible solution if
all the constraints are satisfied.

Definition

An optimization problem is feasible if it has at least one feasible solution.
It is infeasible otherwise.

max x1 − x2

s.t.

4x1 + x2 ≥ 2
2x1 − 3x2 ≤ 4

x1, x2 ≥ 0

x1 = 1

x2 = 3

Feasible solution

Problem is
feasible

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

An assignment of values to each of the variables is a feasible solution if
all the constraints are satisfied.

Definition

An optimization problem is feasible if it has at least one feasible solution.
It is infeasible otherwise.

max x1 − x2

s.t.

4x1 + x2 ≥ 2
2x1 − 3x2 ≤ 4

x1, x2 ≥ 0

x1 = 1

x2 = 3

Feasible solution

Problem is
feasible

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

An assignment of values to each of the variables is a feasible solution if
all the constraints are satisfied.

Definition

An optimization problem is feasible if it has at least one feasible solution.
It is infeasible otherwise.

max x1 − x2

s.t.

4x1 + x2 ≥ 2
2x1 − 3x2 ≤ 4

x1, x2 ≥ 0

x1 = 1

x2 = 3

Feasible solution

Problem is
feasible

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

An assignment of values to each of the variables is a feasible solution if
all the constraints are satisfied.

Definition

An optimization problem is feasible if it has at least one feasible solution.
It is infeasible otherwise.

max x1 − x2

s.t.

4x1 + x2 ≥ 2
2x1 − 3x2 ≤ 4

x1, x2 ≥ 0

x1 = 1

x2 = 3

Feasible solution

Problem is
feasible

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

An assignment of values to each of the variables is a feasible solution if
all the constraints are satisfied.

Definition

An optimization problem is feasible if it has at least one feasible solution.
It is infeasible otherwise.

max x1 − x2

s.t.

4x1 + x2 ≥ 2
2x1 − 3x2 ≤ 4

x1, x2 ≥ 0

x1 = 1

x2 = 3

Feasible solution

Problem is
feasible

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

An assignment of values to each of the variables is a feasible solution if
all the constraints are satisfied.

Definition

An optimization problem is feasible if it has at least one feasible solution.
It is infeasible otherwise.

max x1 − x2

s.t.

4x1 + x2 ≥ 2
2x1 − 3x2 ≤ 4

x1, x2 ≥ 0

x1 = 3

x2 = 0

NOT
feasible solution

But problem is
feasible.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

• For a maximization problem, an optimal solution is a feasible
solution that maximizes the objective function.

• For a minimization problem, an optimal solution is a feasible
solution that minimizes the objective function.

max x1

s.t.

x1 ≤ 1

x2 ≥ 1

x1 = 1, x2 = α optimal for all α ≥ 1.

Remark

An optimization problem can have several optimal solutions.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

• For a maximization problem, an optimal solution is a feasible
solution that maximizes the objective function.

• For a minimization problem, an optimal solution is a feasible
solution that minimizes the objective function.

max x1

s.t.

x1 ≤ 1

x2 ≥ 1

x1 = 1, x2 = α optimal for all α ≥ 1.

Remark

An optimization problem can have several optimal solutions.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

• For a maximization problem, an optimal solution is a feasible
solution that maximizes the objective function.

• For a minimization problem, an optimal solution is a feasible
solution that minimizes the objective function.

max x1

s.t.

x1 ≤ 1

x2 ≥ 1

x1 = 1, x2 = α optimal for all α ≥ 1.

Remark

An optimization problem can have several optimal solutions.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

• For a maximization problem, an optimal solution is a feasible
solution that maximizes the objective function.

• For a minimization problem, an optimal solution is a feasible
solution that minimizes the objective function.

max x1

s.t.

x1 ≤ 1

x2 ≥ 1

x1 = 1, x2 = α optimal for all α ≥ 1.

Remark

An optimization problem can have several optimal solutions.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Question

Does the following linear program have an optimal solution?

max x1

s.t.

x1 ≥ 2
x1 ≤ 1

Infeasible problem, so
no optimal solution

Question

Does every feasible optimization problem have an optimal solution? NO

max x1

s.t.

x1 ≥ 1

Feasible (x1 = 1),
but still no optimal solution!!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Question

Does the following linear program have an optimal solution?

max x1

s.t.

x1 ≥ 2
x1 ≤ 1

Infeasible problem, so
no optimal solution

Question

Does every feasible optimization problem have an optimal solution? NO

max x1

s.t.

x1 ≥ 1

Feasible (x1 = 1),
but still no optimal solution!!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Question

Does the following linear program have an optimal solution?

max x1

s.t.

x1 ≥ 2
x1 ≤ 1

Infeasible problem, so
no optimal solution

Question

Does every feasible optimization problem have an optimal solution?

NO

max x1

s.t.

x1 ≥ 1

Feasible (x1 = 1),
but still no optimal solution!!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Question

Does the following linear program have an optimal solution?

max x1

s.t.

x1 ≥ 2
x1 ≤ 1

Infeasible problem, so
no optimal solution

Question

Does every feasible optimization problem have an optimal solution? NO

max x1

s.t.

x1 ≥ 1

Feasible (x1 = 1),
but still no optimal solution!!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Question

Does the following linear program have an optimal solution?

max x1

s.t.

x1 ≥ 2
x1 ≤ 1

Infeasible problem, so
no optimal solution

Question

Does every feasible optimization problem have an optimal solution? NO

max x1

s.t.

x1 ≥ 1

Feasible (x1 = 1),
but still no optimal solution!!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

• A maximization problem is unbounded if for every value M there
exists a feasible solution with objective value greater than M .

• A minimization problem is unbounded if for every value M there
exists a feasible solution with objective value smaller than M .

We have seen three possible outcomes for an optimization problem:

• It has an optimal solution

• It is infeasible

• It is unbounded

Question

Can anything else happen? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

• A maximization problem is unbounded if for every value M there
exists a feasible solution with objective value greater than M .

• A minimization problem is unbounded if for every value M there
exists a feasible solution with objective value smaller than M .

We have seen three possible outcomes for an optimization problem:

• It has an optimal solution

• It is infeasible

• It is unbounded

Question

Can anything else happen? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

• A maximization problem is unbounded if for every value M there
exists a feasible solution with objective value greater than M .

• A minimization problem is unbounded if for every value M there
exists a feasible solution with objective value smaller than M .

We have seen three possible outcomes for an optimization problem:

• It has an optimal solution

• It is infeasible

• It is unbounded

Question

Can anything else happen? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

• A maximization problem is unbounded if for every value M there
exists a feasible solution with objective value greater than M .

• A minimization problem is unbounded if for every value M there
exists a feasible solution with objective value smaller than M .

We have seen three possible outcomes for an optimization problem:

• It has an optimal solution

• It is infeasible

• It is unbounded

Question

Can anything else happen? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

• A maximization problem is unbounded if for every value M there
exists a feasible solution with objective value greater than M .

• A minimization problem is unbounded if for every value M there
exists a feasible solution with objective value smaller than M .

We have seen three possible outcomes for an optimization problem:

• It has an optimal solution

• It is infeasible

• It is unbounded

Question

Can anything else happen? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

• A maximization problem is unbounded if for every value M there
exists a feasible solution with objective value greater than M .

• A minimization problem is unbounded if for every value M there
exists a feasible solution with objective value smaller than M .

We have seen three possible outcomes for an optimization problem:

• It has an optimal solution

• It is infeasible

• It is unbounded

Question

Can anything else happen? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

• A maximization problem is unbounded if for every value M there
exists a feasible solution with objective value greater than M .

• A minimization problem is unbounded if for every value M there
exists a feasible solution with objective value smaller than M .

We have seen three possible outcomes for an optimization problem:

• It has an optimal solution

• It is infeasible

• It is unbounded

Question

Can anything else happen?

YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Definition

• A maximization problem is unbounded if for every value M there
exists a feasible solution with objective value greater than M .

• A minimization problem is unbounded if for every value M there
exists a feasible solution with objective value smaller than M .

We have seen three possible outcomes for an optimization problem:

• It has an optimal solution

• It is infeasible

• It is unbounded

Question

Can anything else happen? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

max x

s.t.

x < 1

• Feasible: set x = 0.

• Not unbounded: 1 is an upper bound.

• But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution. Let

x′ :=
x+ 1

2
.

Then x′ < 1 feasible. Moreover, x′ > x.

Thus x not optimal, contradiction.

Question

Any other example without strict inequalities? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

max x

s.t.

x < 1

• Feasible: set x = 0.

• Not unbounded: 1 is an upper bound.

• But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution. Let

x′ :=
x+ 1

2
.

Then x′ < 1 feasible. Moreover, x′ > x.

Thus x not optimal, contradiction.

Question

Any other example without strict inequalities? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

max x

s.t.

x < 1

• Feasible: set x = 0.

• Not unbounded: 1 is an upper bound.

• But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution. Let

x′ :=
x+ 1

2
.

Then x′ < 1 feasible. Moreover, x′ > x.

Thus x not optimal, contradiction.

Question

Any other example without strict inequalities? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

max x

s.t.

x < 1

• Feasible: set x = 0.

• Not unbounded: 1 is an upper bound.

• But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution. Let

x′ :=
x+ 1

2
.

Then x′ < 1 feasible. Moreover, x′ > x.

Thus x not optimal, contradiction.

Question

Any other example without strict inequalities? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

max x

s.t.

x < 1

• Feasible: set x = 0.

• Not unbounded: 1 is an upper bound.

• But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution.

Let

x′ :=
x+ 1

2
.

Then x′ < 1 feasible. Moreover, x′ > x.

Thus x not optimal, contradiction.

Question

Any other example without strict inequalities? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

max x

s.t.

x < 1

• Feasible: set x = 0.

• Not unbounded: 1 is an upper bound.

• But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution. Let

x′ :=
x+ 1

2
.

Then x′ < 1 feasible. Moreover, x′ > x.

Thus x not optimal, contradiction.

Question

Any other example without strict inequalities? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

max x

s.t.

x < 1

• Feasible: set x = 0.

• Not unbounded: 1 is an upper bound.

• But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution. Let

x′ :=
x+ 1

2
.

Then x′ < 1 feasible.

Moreover, x′ > x.

Thus x not optimal, contradiction.

Question

Any other example without strict inequalities? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

max x

s.t.

x < 1

• Feasible: set x = 0.

• Not unbounded: 1 is an upper bound.

• But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution. Let

x′ :=
x+ 1

2
.

Then x′ < 1 feasible. Moreover, x′ > x.

Thus x not optimal, contradiction.

Question

Any other example without strict inequalities? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

max x

s.t.

x < 1

• Feasible: set x = 0.

• Not unbounded: 1 is an upper bound.

• But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution. Let

x′ :=
x+ 1

2
.

Then x′ < 1 feasible. Moreover, x′ > x.

Thus x not optimal, contradiction.

Question

Any other example without strict inequalities? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

max x

s.t.

x < 1

• Feasible: set x = 0.

• Not unbounded: 1 is an upper bound.

• But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution. Let

x′ :=
x+ 1

2
.

Then x′ < 1 feasible. Moreover, x′ > x.

Thus x not optimal, contradiction.

Question

Any other example without strict inequalities?

YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

max x

s.t.

x < 1

• Feasible: set x = 0.

• Not unbounded: 1 is an upper bound.

• But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution. Let

x′ :=
x+ 1

2
.

Then x′ < 1 feasible. Moreover, x′ > x.

Thus x not optimal, contradiction.

Question

Any other example without strict inequalities? YES

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

min
1

x
s.t.

x ≥ 1

• Feasible: set x = 1.

• Not unbounded: 0 is a lower bound.

• But no optimal solution!

Exercise

Check this optimization problem has no optimal solution.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

min
1

x
s.t.

x ≥ 1

• Feasible: set x = 1.

• Not unbounded: 0 is a lower bound.

• But no optimal solution!

Exercise

Check this optimization problem has no optimal solution.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

min
1

x
s.t.

x ≥ 1

• Feasible: set x = 1.

• Not unbounded: 0 is a lower bound.

• But no optimal solution!

Exercise

Check this optimization problem has no optimal solution.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

min
1

x
s.t.

x ≥ 1

• Feasible: set x = 1.

• Not unbounded: 0 is a lower bound.

• But no optimal solution!

Exercise

Check this optimization problem has no optimal solution.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Consider,

min
1

x
s.t.

x ≥ 1

• Feasible: set x = 1.

• Not unbounded: 0 is a lower bound.

• But no optimal solution!

Exercise

Check this optimization problem has no optimal solution.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

max x

s.t.

x < 1

Not a linear program
Strict inequality

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

min
1

x
s.t.

x ≥ 1

Not a linear program
Objective function non-linear

Remark

Linear programs are nicer than general optimization problems.

Fundamental theorem of linear programming

For any linear program one of the following holds:

• It has an optimal solution

• It is infeasible

• It is unbounded

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

min
1

x
s.t.

x ≥ 1

Not a linear program
Objective function non-linear

Remark

Linear programs are nicer than general optimization problems.

Fundamental theorem of linear programming

For any linear program one of the following holds:

• It has an optimal solution

• It is infeasible

• It is unbounded

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

min
1

x
s.t.

x ≥ 1

Not a linear program
Objective function non-linear

Remark

Linear programs are nicer than general optimization problems.

Fundamental theorem of linear programming

For any linear program one of the following holds:

• It has an optimal solution

• It is infeasible

• It is unbounded

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

min
1

x
s.t.

x ≥ 1

Not a linear program
Objective function non-linear

Remark

Linear programs are nicer than general optimization problems.

Fundamental theorem of linear programming

For any linear program exactly one of the following holds:

• It has an optimal solution

• It is infeasible

• It is unbounded

We will prove it later in the course.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

min
1

x
s.t.

x ≥ 1

Not a linear program
Objective function non-linear

Remark

Linear programs are nicer than general optimization problems.

Fundamental theorem of linear programming

For any linear program exactly one of the following holds:

• It has an optimal solution

• It is infeasible

• It is unbounded

We will prove it later in the course.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

We can now describe what we mean by solving a linear program,

input output
algorithm
(software)LP ????

LP has an optimal solution

Return an optimal solution x̄

LP is infeasible.

Say the LP is infeasible

LP is unbounded.

Say the LP is unbounded

Remark

Algorithms should justify their answers !!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

We can now describe what we mean by solving a linear program,

input output
algorithm
(software)LP ????

LP has an optimal solution

Return an optimal solution x̄

LP is infeasible.

Say the LP is infeasible

LP is unbounded.

Say the LP is unbounded

Remark

Algorithms should justify their answers !!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

We can now describe what we mean by solving a linear program,

input output
algorithm
(software)LP ????

LP has an optimal solution

Return an optimal solution x̄

LP is infeasible.

Say the LP is infeasible

LP is unbounded.

Say the LP is unbounded

Remark

Algorithms should justify their answers !!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

We can now describe what we mean by solving a linear program,

input output
algorithm
(software)LP ????

LP has an optimal solution

Return an optimal solution x̄

LP is infeasible.

Say the LP is infeasible

LP is unbounded.

Say the LP is unbounded

Remark

Algorithms should justify their answers !!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

We can now describe what we mean by solving a linear program,

input output
algorithm
(software)LP ????

LP has an optimal solution

Return an optimal solution x̄

LP is infeasible.

Say the LP is infeasible

LP is unbounded.

Say the LP is unbounded

Remark

Algorithms should justify their answers !!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

We can now describe what we mean by solving a linear program,

input output
algorithm
(software)LP ????

LP has an optimal solution

Return an optimal solution x̄

LP is infeasible.

Say the LP is infeasible

LP is unbounded.

Say the LP is unbounded

Remark

Algorithms should justify their answers !!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

We can now describe what we mean by solving a linear program,

input output
algorithm
(software)LP ????

LP has an optimal solution

Return an optimal solution x̄

LP is infeasible.

Say the LP is infeasible

LP is unbounded.

Say the LP is unbounded

Remark

Algorithms should justify their answers !!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

We can now describe what we mean by solving a linear program,

input output
algorithm
(software)LP ????

LP has an optimal solution

Return an optimal solution x̄

LP is infeasible.

Say the LP is infeasible

LP is unbounded.

Say the LP is unbounded

Remark

Algorithms should justify their answers !!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

We can now describe what we mean by solving a linear program,

input output
algorithm
(software)LP ????

LP has an optimal solution

Return an optimal solution x̄ + proof that x̄ is optimal.

LP is infeasible.

Return a proof the LP is infeasible.

LP is unbounded.

Return a proof the LP is unbounded.

Remark

Algorithms always need to justify their answers !!!

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Recap

1. Optimization problems can be:

(A) infeasible,
(B) unbounded, or
(C) have an optimal solution.

2. There are optimization where none of (A), (B), (C) hold,

3. For LPs exactly one of (A), (B), (C) holds,

4. By solving an LP we mean
• indicating which of (A), (B), (C) holds,
• if (C) holds give an optimal solution,
• give a proof the answer is correct.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Recap

1. Optimization problems can be:

(A) infeasible,
(B) unbounded, or
(C) have an optimal solution.

2. There are optimization where none of (A), (B), (C) hold,

3. For LPs exactly one of (A), (B), (C) holds,

4. By solving an LP we mean
• indicating which of (A), (B), (C) holds,
• if (C) holds give an optimal solution,
• give a proof the answer is correct.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Recap

1. Optimization problems can be:

(A) infeasible,

(B) unbounded, or
(C) have an optimal solution.

2. There are optimization where none of (A), (B), (C) hold,

3. For LPs exactly one of (A), (B), (C) holds,

4. By solving an LP we mean
• indicating which of (A), (B), (C) holds,
• if (C) holds give an optimal solution,
• give a proof the answer is correct.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Recap

1. Optimization problems can be:

(A) infeasible,
(B) unbounded, or

(C) have an optimal solution.

2. There are optimization where none of (A), (B), (C) hold,

3. For LPs exactly one of (A), (B), (C) holds,

4. By solving an LP we mean
• indicating which of (A), (B), (C) holds,
• if (C) holds give an optimal solution,
• give a proof the answer is correct.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Recap

1. Optimization problems can be:

(A) infeasible,
(B) unbounded, or
(C) have an optimal solution.

2. There are optimization where none of (A), (B), (C) hold,

3. For LPs exactly one of (A), (B), (C) holds,

4. By solving an LP we mean
• indicating which of (A), (B), (C) holds,
• if (C) holds give an optimal solution,
• give a proof the answer is correct.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Recap

1. Optimization problems can be:

(A) infeasible,
(B) unbounded, or
(C) have an optimal solution.

2. There are optimization where none of (A), (B), (C) hold,

3. For LPs exactly one of (A), (B), (C) holds,

4. By solving an LP we mean
• indicating which of (A), (B), (C) holds,
• if (C) holds give an optimal solution,
• give a proof the answer is correct.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Recap

1. Optimization problems can be:

(A) infeasible,
(B) unbounded, or
(C) have an optimal solution.

2. There are optimization where none of (A), (B), (C) hold,

3. For LPs exactly one of (A), (B), (C) holds,

4. By solving an LP we mean
• indicating which of (A), (B), (C) holds,
• if (C) holds give an optimal solution,
• give a proof the answer is correct.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Recap

1. Optimization problems can be:

(A) infeasible,
(B) unbounded, or
(C) have an optimal solution.

2. There are optimization where none of (A), (B), (C) hold,

3. For LPs exactly one of (A), (B), (C) holds,

4. By solving an LP we mean

• indicating which of (A), (B), (C) holds,
• if (C) holds give an optimal solution,
• give a proof the answer is correct.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Recap

1. Optimization problems can be:

(A) infeasible,
(B) unbounded, or
(C) have an optimal solution.

2. There are optimization where none of (A), (B), (C) hold,

3. For LPs exactly one of (A), (B), (C) holds,

4. By solving an LP we mean
• indicating which of (A), (B), (C) holds,

• if (C) holds give an optimal solution,
• give a proof the answer is correct.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Recap

1. Optimization problems can be:

(A) infeasible,
(B) unbounded, or
(C) have an optimal solution.

2. There are optimization where none of (A), (B), (C) hold,

3. For LPs exactly one of (A), (B), (C) holds,

4. By solving an LP we mean
• indicating which of (A), (B), (C) holds,
• if (C) holds give an optimal solution,

• give a proof the answer is correct.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

Recap

1. Optimization problems can be:

(A) infeasible,
(B) unbounded, or
(C) have an optimal solution.

2. There are optimization where none of (A), (B), (C) hold,

3. For LPs exactly one of (A), (B), (C) holds,

4. By solving an LP we mean
• indicating which of (A), (B), (C) holds,
• if (C) holds give an optimal solution,
• give a proof the answer is correct.

CO 250: Introduction to Optimization Module 2: Linear programs (Possible outcomes)

CO 250: Introduction to Optimization
Module 2: Linear Programs (Certificates)

Recap and a Question

Fundamental Theorem of Linear Programming

For any linear program, exactly one of the following holds:

• It is infeasible.

• It has an optimal solution.

• It is unbounded.

Questions

Consider a linear program.

• If it is infeasible, how can we prove it?

• If we have an optimal solution, how can we prove it is optimal?

• If it is unbounded, how can we prove it?

This can be always be done!

Recap and a Question

Fundamental Theorem of Linear Programming

For any linear program, exactly one of the following holds:

• It is infeasible.

• It has an optimal solution.

• It is unbounded.

Questions

Consider a linear program.

• If it is infeasible, how can we prove it?

• If we have an optimal solution, how can we prove it is optimal?

• If it is unbounded, how can we prove it?

This can be always be done!

Recap and a Question

Fundamental Theorem of Linear Programming

For any linear program, exactly one of the following holds:

• It is infeasible.

• It has an optimal solution.

• It is unbounded.

Questions

Consider a linear program.

• If it is infeasible, how can we prove it?

• If we have an optimal solution, how can we prove it is optimal?

• If it is unbounded, how can we prove it?

This can be always be done!

Recap and a Question

Fundamental Theorem of Linear Programming

For any linear program, exactly one of the following holds:

• It is infeasible.

• It has an optimal solution.

• It is unbounded.

Questions

Consider a linear program.

• If it is infeasible, how can we prove it?

• If we have an optimal solution, how can we prove it is optimal?

• If it is unbounded, how can we prove it?

This can be always be done!

Recap and a Question

Fundamental Theorem of Linear Programming

For any linear program, exactly one of the following holds:

• It is infeasible.

• It has an optimal solution.

• It is unbounded.

Questions

Consider a linear program.

• If it is infeasible, how can we prove it?

• If we have an optimal solution, how can we prove it is optimal?

• If it is unbounded, how can we prove it?

This can be always be done!

Recap and a Question

Fundamental Theorem of Linear Programming

For any linear program, exactly one of the following holds:

• It is infeasible.

• It has an optimal solution.

• It is unbounded.

Questions

Consider a linear program.

• If it is infeasible, how can we prove it?

• If we have an optimal solution, how can we prove it is optimal?

• If it is unbounded, how can we prove it?

This can be always be done!

Proving Infeasibility

The following linear program is infeasible:

max (3, 4,−1, 2)Tx

s.t. (
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
x ≥ 0

Question

How can we prove this problem is, in fact, infeasible?

We cannot try all possible assignments of values to x1, x2, x3, and x4.

Proving Infeasibility

The following linear program is infeasible:

max (3, 4,−1, 2)Tx

s.t. (
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
x ≥ 0

Question

How can we prove this problem is, in fact, infeasible?

We cannot try all possible assignments of values to x1, x2, x3, and x4.

Proving Infeasibility

The following linear program is infeasible:

max (3, 4,−1, 2)Tx

s.t. (
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
x ≥ 0

Question

How can we prove this problem is, in fact, infeasible?

We cannot try all possible assignments of values to x1, x2, x3, and x4.

Proving Infeasibility

The following linear program is infeasible:

max (3, 4,−1, 2)Tx

s.t. (
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
x ≥ 0

Question

How can we prove this problem is, in fact, infeasible?

We cannot try all possible assignments of values to x1, x2, x3, and x4.

Claim

There is no solution to (1), (2) and x ≥ 0 where(
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
(1)
(2)

Proof

Construct a new equation:

−1× (1) : (−3 2 6 −7)x = −6
+ 2× (2) : (4 −2 −4 8)x = 4

(1 0 2 1)x = −2 (?)

Suppose there exists x̄ ≥ 0 satisfying (1), (2). Then x̄ satisfies (?):(
1 0 2 1

)
x̄ = −2.

Claim

There is no solution to (1), (2) and x ≥ 0 where(
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
(1)
(2)

Proof

Construct a new equation:

−1× (1) : (−3 2 6 −7)x = −6
+ 2× (2) : (4 −2 −4 8)x = 4

(1 0 2 1)x = −2 (?)

Suppose there exists x̄ ≥ 0 satisfying (1), (2). Then x̄ satisfies (?):(
1 0 2 1

)
x̄ = −2.

Claim

There is no solution to (1), (2) and x ≥ 0 where(
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
(1)
(2)

Proof

Construct a new equation:

−1× (1) : (−3 2 6 −7)x = −6
+ 2× (2) : (4 −2 −4 8)x = 4

(1 0 2 1)x = −2 (?)

Suppose there exists x̄ ≥ 0 satisfying (1), (2).

Then x̄ satisfies (?):(
1 0 2 1

)
x̄ = −2.

Claim

There is no solution to (1), (2) and x ≥ 0 where(
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
(1)
(2)

Proof

Construct a new equation:

−1× (1) : (−3 2 6 −7)x = −6
+ 2× (2) : (4 −2 −4 8)x = 4

(1 0 2 1)x = −2 (?)

Suppose there exists x̄ ≥ 0 satisfying (1), (2). Then x̄ satisfies (?):

(
1 0 2 1

)
x̄ = −2.

Claim

There is no solution to (1), (2) and x ≥ 0 where(
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
(1)
(2)

Proof

Construct a new equation:

−1× (1) : (−3 2 6 −7)x = −6
+ 2× (2) : (4 −2 −4 8)x = 4

(1 0 2 1)x = −2 (?)

Suppose there exists x̄ ≥ 0 satisfying (1), (2). Then x̄ satisfies (?):(
1 0 2 1

)
x̄ = −2.

Claim

There is no solution to (1), (2) and x ≥ 0 where(
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
(1)
(2)

Proof

Construct a new equation:

−1× (1) : (−3 2 6 −7)x = −6
+ 2× (2) : (4 −2 −4 8)x = 4

(1 0 2 1)x = −2 (?)

Suppose there exists x̄ ≥ 0 satisfying (1), (2). Then x̄ satisfies (?):(
1 0 2 1

)︸ ︷︷ ︸
≥0>

x̄︸︷︷︸
≥0

= −2.

Claim

There is no solution to (1), (2) and x ≥ 0 where(
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
(1)
(2)

Proof

Construct a new equation:

−1× (1) : (−3 2 6 −7)x = −6
+ 2× (2) : (4 −2 −4 8)x = 4

(1 0 2 1)x = −2 (?)

Suppose there exists x̄ ≥ 0 satisfying (1), (2). Then x̄ satisfies (?):(
1 0 2 1

)
x̄︸ ︷︷ ︸

≥0

= −2.

Claim

There is no solution to (1), (2) and x ≥ 0 where(
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
(1)
(2)

Proof

Construct a new equation:

−1× (1) : (−3 2 6 −7)x = −6
+ 2× (2) : (4 −2 −4 8)x = 4

(1 0 2 1)x = −2 (?)

Suppose there exists x̄ ≥ 0 satisfying (1), (2). Then x̄ satisfies (?):(
1 0 2 1

)
x̄︸ ︷︷ ︸

≥0

= −2︸︷︷︸
<0

.

Contradiction!

Claim

There is no solution to (1), (2) and x ≥ 0 where(
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
(1)
(2)

Proof

Construct a new equation:

−1× (1) : (−3 2 6 −7)x = −6
+ 2× (2) : (4 −2 −4 8)x = 4

(1 0 2 1)x = −2 (?)

Suppose there exists x̄ ≥ 0 satisfying (1), (2). Then x̄ satisfies (?):(
1 0 2 1

)
x̄︸ ︷︷ ︸

≥0

= −2︸︷︷︸
<0

.

Contradiction!

Repeat using matrix formulations.

Proof

Suppose for a contradiction there is a solution x̄ to x ≥ 0 and(
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)

Construct a new equation:

(−1 2)

(
3 −2 −6 7
2 −1 −2 4

)
x = (−1 2)

(
6
2

)

(1 0 2 1)x = −2 (?)

Since x̄ satisfies the equations it satisfies (?):

(
1 0 2 1

)︸ ︷︷ ︸
≥0>

x̄︸︷︷︸
≥0

= −2︸︷︷︸
<0

.

Contradiction.

Repeat using matrix formulations.

Proof

Suppose for a contradiction there is a solution x̄ to x ≥ 0 and(
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)

Construct a new equation:

(−1 2)

(
3 −2 −6 7
2 −1 −2 4

)
x = (−1 2)

(
6
2

)

(1 0 2 1)x = −2 (?)

Since x̄ satisfies the equations it satisfies (?):

(
1 0 2 1

)︸ ︷︷ ︸
≥0>

x̄︸︷︷︸
≥0

= −2︸︷︷︸
<0

.

Contradiction.

Repeat using matrix formulations.

Proof

Suppose for a contradiction there is a solution x̄ to x ≥ 0 and(
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)

Construct a new equation:

(−1 2)

(
3 −2 −6 7
2 −1 −2 4

)
x = (−1 2)

(
6
2

)

(1 0 2 1)x = −2 (?)

Since x̄ satisfies the equations it satisfies (?):

(
1 0 2 1

)︸ ︷︷ ︸
≥0>

x̄︸︷︷︸
≥0

= −2︸︷︷︸
<0

.

Contradiction.

Repeat using matrix formulations.

Proof

Suppose for a contradiction there is a solution x̄ to x ≥ 0 and(
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)

Construct a new equation:

(−1 2)

(
3 −2 −6 7
2 −1 −2 4

)
x = (−1 2)

(
6
2

)

(1 0 2 1)x = −2 (?)

Since x̄ satisfies the equations it satisfies (?):

(
1 0 2 1

)︸ ︷︷ ︸
≥0>

x̄︸︷︷︸
≥0

= −2︸︷︷︸
<0

.

Contradiction.

Repeat using matrix formulations.

Proof

Suppose for a contradiction there is a solution x̄ to x ≥ 0 and(
3 −2 −6 7
2 −1 −2 4

)
︸ ︷︷ ︸

A

x =

(
6
2

)
︸︷︷︸

b

Construct a new equation:

(−1 2)︸ ︷︷ ︸
yT

(
3 −2 −6 7
2 −1 −2 4

)
x = (−1 2)︸ ︷︷ ︸

yT

(
6
2

)

(1 0 2 1)x = −2 (?)

Since x̄ satisfies the equations it satisfies (?):(
1 0 2 1

)︸ ︷︷ ︸
≥0>

x̄︸︷︷︸
≥0

= −2︸︷︷︸
<0

.

Contradiction.

Ax = b

yTAx = yT b

yTA︸︷︷︸
≥0>

x̄︸︷︷︸
≥0

= yT b︸︷︷︸
<0

This suggests the following result...

Repeat using matrix formulations.

Proof

Suppose for a contradiction there is a solution x̄ to x ≥ 0 and(
3 −2 −6 7
2 −1 −2 4

)
︸ ︷︷ ︸

A

x =

(
6
2

)
︸︷︷︸

b

Construct a new equation:

(−1 2)︸ ︷︷ ︸
yT

(
3 −2 −6 7
2 −1 −2 4

)
x = (−1 2)︸ ︷︷ ︸

yT

(
6
2

)

(1 0 2 1)x = −2 (?)

Since x̄ satisfies the equations it satisfies (?):(
1 0 2 1

)︸ ︷︷ ︸
≥0>

x̄︸︷︷︸
≥0

= −2︸︷︷︸
<0

.

Contradiction.

Ax = b

yTAx = yT b

yTA︸︷︷︸
≥0>

x̄︸︷︷︸
≥0

= yT b︸︷︷︸
<0

This suggests the following result...

Repeat using matrix formulations.

Proof

Suppose for a contradiction there is a solution x̄ to x ≥ 0 and(
3 −2 −6 7
2 −1 −2 4

)
︸ ︷︷ ︸

A

x =

(
6
2

)
︸︷︷︸

b

Construct a new equation:

(−1 2)︸ ︷︷ ︸
yT

(
3 −2 −6 7
2 −1 −2 4

)
x = (−1 2)︸ ︷︷ ︸

yT

(
6
2

)

(1 0 2 1)x = −2 (?)

Since x̄ satisfies the equations it satisfies (?):(
1 0 2 1

)︸ ︷︷ ︸
≥0>

x̄︸︷︷︸
≥0

= −2︸︷︷︸
<0

.

Contradiction.

Ax = b

yTAx = yT b

yTA︸︷︷︸
≥0>

x̄︸︷︷︸
≥0

= yT b︸︷︷︸
<0

This suggests the following result...

Repeat using matrix formulations.

Proof

Suppose for a contradiction there is a solution x̄ to x ≥ 0 and(
3 −2 −6 7
2 −1 −2 4

)
︸ ︷︷ ︸

A

x =

(
6
2

)
︸︷︷︸

b

Construct a new equation:

(−1 2)︸ ︷︷ ︸
yT

(
3 −2 −6 7
2 −1 −2 4

)
x = (−1 2)︸ ︷︷ ︸

yT

(
6
2

)

(1 0 2 1)x = −2 (?)

Since x̄ satisfies the equations it satisfies (?):(
1 0 2 1

)︸ ︷︷ ︸
≥0>

x̄︸︷︷︸
≥0

= −2︸︷︷︸
<0

.

Contradiction.

Ax = b

yTAx = yT b

yTA︸︷︷︸
≥0>

x̄︸︷︷︸
≥0

= yT b︸︷︷︸
<0

This suggests the following result...

Repeat using matrix formulations.

Proof

Suppose for a contradiction there is a solution x̄ to x ≥ 0 and(
3 −2 −6 7
2 −1 −2 4

)
︸ ︷︷ ︸

A

x =

(
6
2

)
︸︷︷︸

b

Construct a new equation:

(−1 2)︸ ︷︷ ︸
yT

(
3 −2 −6 7
2 −1 −2 4

)
x = (−1 2)︸ ︷︷ ︸

yT

(
6
2

)

(1 0 2 1)x = −2 (?)

Since x̄ satisfies the equations it satisfies (?):(
1 0 2 1

)︸ ︷︷ ︸
≥0>

x̄︸︷︷︸
≥0

= −2︸︷︷︸
<0

.

Contradiction.

Ax = b

yTAx = yT b

yTA︸︷︷︸
≥0>

x̄︸︷︷︸
≥0

= yT b︸︷︷︸
<0

This suggests the following result...

Proposition

There is no solution to Ax = b, x ≥ 0, if there exists y where

yTA ≥ 0> and yT b < 0.

Exercise

Give a proof of this proposition.

Question

If no solution to Ax = b, x ≥ 0 can we always prove it in that way?

YES!!!!!

Farkas’ Lemma

If there is no solution to Ax = b, x ≥ 0, then there exists y where

yTA ≥ 0> and yT b < 0.

Proposition

There is no solution to Ax = b, x ≥ 0, if there exists y where

yTA ≥ 0> and yT b < 0.

Exercise

Give a proof of this proposition.

Question

If no solution to Ax = b, x ≥ 0 can we always prove it in that way?

YES!!!!!

Farkas’ Lemma

If there is no solution to Ax = b, x ≥ 0, then there exists y where

yTA ≥ 0> and yT b < 0.

Proposition

There is no solution to Ax = b, x ≥ 0, if there exists y where

yTA ≥ 0> and yT b < 0.

Exercise

Give a proof of this proposition.

Question

If no solution to Ax = b, x ≥ 0 can we always prove it in that way?

YES!!!!!

Farkas’ Lemma

If there is no solution to Ax = b, x ≥ 0, then there exists y where

yTA ≥ 0> and yT b < 0.

Proposition

There is no solution to Ax = b, x ≥ 0, if there exists y where

yTA ≥ 0> and yT b < 0.

Exercise

Give a proof of this proposition.

Question

If no solution to Ax = b, x ≥ 0 can we always prove it in that way?

YES!!!!!

Farkas’ Lemma

If there is no solution to Ax = b, x ≥ 0, then there exists y where

yTA ≥ 0> and yT b < 0.

Proposition

There is no solution to Ax = b, x ≥ 0, if there exists y where

yTA ≥ 0> and yT b < 0.

Exercise

Give a proof of this proposition.

Question

If no solution to Ax = b, x ≥ 0 can we always prove it in that way?

YES!!!!!

Farkas’ Lemma

If there is no solution to Ax = b, x ≥ 0, then there exists y where

yTA ≥ 0> and yT b < 0.

Proving Optimality

max z(x) := (−1− 4 0 0)x + 4

s.t. (
1 3 1 0
−2 6 0 1

)
x =

(
4
5

)
x ≥ 0

Optimal solution:

x̄1 = 0

x̄2 = 0

x̄3 = 4

x̄4 = 5

Question

How can we prove this solution is, in fact, optimal?

We cannot try all possible feasible solutions.

Proving Optimality

max z(x) := (−1− 4 0 0)x + 4

s.t. (
1 3 1 0
−2 6 0 1

)
x =

(
4
5

)
x ≥ 0

Optimal solution:

x̄1 = 0

x̄2 = 0

x̄3 = 4

x̄4 = 5

Question

How can we prove this solution is, in fact, optimal?

We cannot try all possible feasible solutions.

Proving Optimality

max z(x) := (−1− 4 0 0)x + 4

s.t. (
1 3 1 0
−2 6 0 1

)
x =

(
4
5

)
x ≥ 0

Optimal solution:

x̄1 = 0

x̄2 = 0

x̄3 = 4

x̄4 = 5

Question

How can we prove this solution is, in fact, optimal?

We cannot try all possible feasible solutions.

Proving Optimality

max z(x) := (−1− 4 0 0)x + 4

s.t. (
1 3 1 0
−2 6 0 1

)
x =

(
4
5

)
x ≥ 0

Optimal solution:

x̄1 = 0

x̄2 = 0

x̄3 = 4

x̄4 = 5

Question

How can we prove this solution is, in fact, optimal?

We cannot try all possible feasible solutions.

max z(x) := (−1− 4 0 0)x + 4

s.t. (
1 3 1 0
−2 6 0 1

)
x =

(
4
5

)
x ≥ 0

Optimal solution:

x̄1 = 0

x̄2 = 0

x̄3 = 4

x̄4 = 5

Claim

• x̄ is feasible solution of value 4.

(easy)

• 4 is an upper bound.

Proof

Let x′ be an arbitrary feasible solution. Then

z(x′) = (−1− 4 0 0)x′ + 4

max z(x) := (−1− 4 0 0)x + 4

s.t. (
1 3 1 0
−2 6 0 1

)
x =

(
4
5

)
x ≥ 0

Optimal solution:

x̄1 = 0

x̄2 = 0

x̄3 = 4

x̄4 = 5

Claim

• x̄ is feasible solution of value 4. (easy)

• 4 is an upper bound.

Proof

Let x′ be an arbitrary feasible solution. Then

z(x′) = (−1− 4 0 0)x′ + 4

max z(x) := (−1− 4 0 0)x + 4

s.t. (
1 3 1 0
−2 6 0 1

)
x =

(
4
5

)
x ≥ 0

Optimal solution:

x̄1 = 0

x̄2 = 0

x̄3 = 4

x̄4 = 5

Claim

• x̄ is feasible solution of value 4. (easy)

• 4 is an upper bound.

Proof

Let x′ be an arbitrary feasible solution. Then

z(x′) = (−1− 4 0 0)x′ + 4

max z(x) := (−1− 4 0 0)x + 4

s.t. (
1 3 1 0
−2 6 0 1

)
x =

(
4
5

)
x ≥ 0

Optimal solution:

x̄1 = 0

x̄2 = 0

x̄3 = 4

x̄4 = 5

Claim

• x̄ is feasible solution of value 4. (easy)

• 4 is an upper bound.

Proof

Let x′ be an arbitrary feasible solution.

Then

z(x′) = (−1− 4 0 0)x′ + 4

max z(x) := (−1− 4 0 0)x + 4

s.t. (
1 3 1 0
−2 6 0 1

)
x =

(
4
5

)
x ≥ 0

Optimal solution:

x̄1 = 0

x̄2 = 0

x̄3 = 4

x̄4 = 5

Claim

• x̄ is feasible solution of value 4. (easy)

• 4 is an upper bound.

Proof

Let x′ be an arbitrary feasible solution. Then

z(x′) = (−1− 4 0 0)x′ + 4

max z(x) := (−1− 4 0 0)x + 4

s.t. (
1 3 1 0
−2 6 0 1

)
x =

(
4
5

)
x ≥ 0

Optimal solution:

x̄1 = 0

x̄2 = 0

x̄3 = 4

x̄4 = 5

Claim

• x̄ is feasible solution of value 4. (easy)

• 4 is an upper bound.

Proof

Let x′ be an arbitrary feasible solution. Then

z(x′) = (−1− 4 0 0)︸ ︷︷ ︸
≤0

x′︸︷︷︸
≥0

+4

max z(x) := (−1− 4 0 0)x + 4

s.t. (
1 3 1 0
−2 6 0 1

)
x =

(
4
5

)
x ≥ 0

Optimal solution:

x̄1 = 0

x̄2 = 0

x̄3 = 4

x̄4 = 5

Claim

• x̄ is feasible solution of value 4. (easy)

• 4 is an upper bound.

Proof

Let x′ be an arbitrary feasible solution. Then

z(x′) = (−1− 4 0 0)x′︸ ︷︷ ︸
≤0

+4

≤ 4.

max z(x) := (−1− 4 0 0)x + 4

s.t. (
1 3 1 0
−2 6 0 1

)
x =

(
4
5

)
x ≥ 0

Optimal solution:

x̄1 = 0

x̄2 = 0

x̄3 = 4

x̄4 = 5

Claim

• x̄ is feasible solution of value 4. (easy)

• 4 is an upper bound.

Proof

Let x′ be an arbitrary feasible solution. Then

z(x′) = (−1− 4 0 0)x′︸ ︷︷ ︸
≤0

+4 ≤ 4.

Proving Unboudedness

max z := (−1 0 0 1)x

s.t. (
−1 −1 1 0
−2 1 0 1

)
x =

(
2
1

)
x ≥ 0

Problem
is unbounded

Question

How can we prove that this problem is unbounded?

Idea

Construct a family of feasible solutions x(t) for all t ≥ 0 and show that
as t goes to infinity, the value of the objective function goes to infinity.

Proving Unboudedness

max z := (−1 0 0 1)x

s.t. (
−1 −1 1 0
−2 1 0 1

)
x =

(
2
1

)
x ≥ 0

Problem
is unbounded

Question

How can we prove that this problem is unbounded?

Idea

Construct a family of feasible solutions x(t) for all t ≥ 0 and show that
as t goes to infinity, the value of the objective function goes to infinity.

Proving Unboudedness

max z := (−1 0 0 1)x

s.t. (
−1 −1 1 0
−2 1 0 1

)
x =

(
2
1

)
x ≥ 0

Problem
is unbounded

Question

How can we prove that this problem is unbounded?

Idea

Construct a family of feasible solutions x(t) for all t ≥ 0 and show that
as t goes to infinity, the value of the objective function goes to infinity.

max z := (−1 0 0 1)x

s.t. (
−1 −1 1 0
−2 1 0 1

)
x =

(
2
1

)
x ≥ 0

x(t) :=


0
0
2
1

+ t


1
0
1
2



Claim 1

x(t) is feasible for all t ≥ 0.

Claim 2

z →∞ when t→∞.

max z := (−1 0 0 1)x

s.t. (
−1 −1 1 0
−2 1 0 1

)
x =

(
2
1

)
x ≥ 0

x(t) :=


0
0
2
1

+ t


1
0
1
2



Claim 1

x(t) is feasible for all t ≥ 0.

Claim 2

z →∞ when t→∞.

max z := (−1 0 0 1)x

s.t. (
−1 −1 1 0
−2 1 0 1

)
x =

(
2
1

)
x ≥ 0

x(t) :=


0
0
2
1

+ t


1
0
1
2



Claim 1

x(t) is feasible for all t ≥ 0.

Claim 2

z →∞ when t→∞.

max z := (−1 0 0 1)x

s.t. (
−1 −1 1 0
−2 1 0 1

)
x =

(
2
1

)
x ≥ 0

x(t) :=


0
0
2
1

+ t


1
0
1
2



Claim 1

x(t) is feasible for all t ≥ 0.

Claim 2

z →∞ when t→∞.

max z := (−1 0 0 1)x

s.t. (
−1 −1 1 0
−2 1 0 1

)
︸ ︷︷ ︸

A

x =

(
2
1

)
︸︷︷︸

b

x ≥ 0

x(t) :=


0
0
2
1


︸ ︷︷ ︸

x̄

+t


1
0
1
2


︸ ︷︷ ︸

r

Claim 1

x(t) is feasible for all t ≥ 0.

Proof

x(t) = x̄ + tr ≥ 0 for all t ≥ 0 as x̄, r ≥ 0.

Ax(t) = A [x̄ + tr] = Ax̄︸︷︷︸
b

+t Ar︸︷︷︸
0

= b.

max z := (−1 0 0 1)x

s.t. (
−1 −1 1 0
−2 1 0 1

)
︸ ︷︷ ︸

A

x =

(
2
1

)
︸︷︷︸

b

x ≥ 0

x(t) :=


0
0
2
1


︸ ︷︷ ︸

x̄

+t


1
0
1
2


︸ ︷︷ ︸

r

Claim 1

x(t) is feasible for all t ≥ 0.

Proof
x(t) = x̄ + tr ≥ 0 for all t ≥ 0

as x̄, r ≥ 0.

Ax(t) = A [x̄ + tr] = Ax̄︸︷︷︸
b

+t Ar︸︷︷︸
0

= b.

max z := (−1 0 0 1)x

s.t. (
−1 −1 1 0
−2 1 0 1

)
︸ ︷︷ ︸

A

x =

(
2
1

)
︸︷︷︸

b

x ≥ 0

x(t) :=


0
0
2
1


︸ ︷︷ ︸

x̄

+t


1
0
1
2


︸ ︷︷ ︸

r

Claim 1

x(t) is feasible for all t ≥ 0.

Proof
x(t) = x̄ + tr ≥ 0 for all t ≥ 0 as x̄, r ≥ 0.

Ax(t) = A [x̄ + tr] = Ax̄︸︷︷︸
b

+t Ar︸︷︷︸
0

= b.

max z := (−1 0 0 1)x

s.t. (
−1 −1 1 0
−2 1 0 1

)
︸ ︷︷ ︸

A

x =

(
2
1

)
︸︷︷︸

b

x ≥ 0

x(t) :=


0
0
2
1


︸ ︷︷ ︸

x̄

+t


1
0
1
2


︸ ︷︷ ︸

r

Claim 1

x(t) is feasible for all t ≥ 0.

Proof
x(t) = x̄ + tr ≥ 0 for all t ≥ 0 as x̄, r ≥ 0.

Ax(t) =

A [x̄ + tr] = Ax̄︸︷︷︸
b

+t Ar︸︷︷︸
0

= b.

max z := (−1 0 0 1)x

s.t. (
−1 −1 1 0
−2 1 0 1

)
︸ ︷︷ ︸

A

x =

(
2
1

)
︸︷︷︸

b

x ≥ 0

x(t) :=


0
0
2
1


︸ ︷︷ ︸

x̄

+t


1
0
1
2


︸ ︷︷ ︸

r

Claim 1

x(t) is feasible for all t ≥ 0.

Proof
x(t) = x̄ + tr ≥ 0 for all t ≥ 0 as x̄, r ≥ 0.

Ax(t) = A [x̄ + tr] =

Ax̄︸︷︷︸
b

+t Ar︸︷︷︸
0

= b.

max z := (−1 0 0 1)x

s.t. (
−1 −1 1 0
−2 1 0 1

)
︸ ︷︷ ︸

A

x =

(
2
1

)
︸︷︷︸

b

x ≥ 0

x(t) :=


0
0
2
1


︸ ︷︷ ︸

x̄

+t


1
0
1
2


︸ ︷︷ ︸

r

Claim 1

x(t) is feasible for all t ≥ 0.

Proof
x(t) = x̄ + tr ≥ 0 for all t ≥ 0 as x̄, r ≥ 0.

Ax(t) = A [x̄ + tr] = Ax̄︸︷︷︸
b

+t Ar︸︷︷︸
0

=

b.

max z := (−1 0 0 1)x

s.t. (
−1 −1 1 0
−2 1 0 1

)
︸ ︷︷ ︸

A

x =

(
2
1

)
︸︷︷︸

b

x ≥ 0

x(t) :=


0
0
2
1


︸ ︷︷ ︸

x̄

+t


1
0
1
2


︸ ︷︷ ︸

r

Claim 1

x(t) is feasible for all t ≥ 0.

Proof
x(t) = x̄ + tr ≥ 0 for all t ≥ 0 as x̄, r ≥ 0.

Ax(t) = A [x̄ + tr] = Ax̄︸︷︷︸
b

+t Ar︸︷︷︸
0

= b.

max z := (−1 0 0 1)︸ ︷︷ ︸
cT

x

s.t. (
−1 −1 1 0
−2 1 0 1

)
︸ ︷︷ ︸

A

x =

(
2
1

)
︸︷︷︸

b

x ≥ 0

x(t) :=


0
0
2
1


︸ ︷︷ ︸

x̄

+t


1
0
1
2


︸ ︷︷ ︸

r

Claim 2

z →∞ when t→∞.

Proof
z = cTx(t) = cT [x̄ + tr] = cT x̄ + t cT r︸︷︷︸

=1>0

.

max z := (−1 0 0 1)︸ ︷︷ ︸
cT

x

s.t. (
−1 −1 1 0
−2 1 0 1

)
︸ ︷︷ ︸

A

x =

(
2
1

)
︸︷︷︸

b

x ≥ 0

x(t) :=


0
0
2
1


︸ ︷︷ ︸

x̄

+t


1
0
1
2


︸ ︷︷ ︸

r

Claim 2

z →∞ when t→∞.

Proof
z = cTx(t)

= cT [x̄ + tr] = cT x̄ + t cT r︸︷︷︸
=1>0

.

max z := (−1 0 0 1)︸ ︷︷ ︸
cT

x

s.t. (
−1 −1 1 0
−2 1 0 1

)
︸ ︷︷ ︸

A

x =

(
2
1

)
︸︷︷︸

b

x ≥ 0

x(t) :=


0
0
2
1


︸ ︷︷ ︸

x̄

+t


1
0
1
2


︸ ︷︷ ︸

r

Claim 2

z →∞ when t→∞.

Proof
z = cTx(t) = cT [x̄ + tr]

= cT x̄ + t cT r︸︷︷︸
=1>0

.

max z := (−1 0 0 1)︸ ︷︷ ︸
cT

x

s.t. (
−1 −1 1 0
−2 1 0 1

)
︸ ︷︷ ︸

A

x =

(
2
1

)
︸︷︷︸

b

x ≥ 0

x(t) :=


0
0
2
1


︸ ︷︷ ︸

x̄

+t


1
0
1
2


︸ ︷︷ ︸

r

Claim 2

z →∞ when t→∞.

Proof
z = cTx(t) = cT [x̄ + tr] = cT x̄ + t cT r︸︷︷︸

=1>0

.

Exercise

Generalize and prove the following proposition.

Proposition

The linear program,

max{cTx : Ax = b, x ≥ 0}

is unbounded if we can find x̄ and r such that

x̄ ≥ 0, r ≥ 0, Ax̄ = b, Ar = 0 and cT r > 0.

Exercise

Generalize and prove the following proposition.

Proposition

The linear program,

max{cTx : Ax = b, x ≥ 0}

is unbounded if we can find x̄ and r such that

x̄ ≥ 0, r ≥ 0, Ax̄ = b, Ar = 0 and cT r > 0.

Recap

1. For linear programs, exactly one of the following holds. It is

(A) infeasible,
(B) unbounded, or
(C) has an optimal solution.

2. If (A) occurs, there is a short proof of that fact.

3. If (B) occurs, there is a short proof of that fact.

4. For an optimal solution, there is a short proof that it is optimal.

Remark

We have not yet shown you how to find such proofs.

Recap

1. For linear programs, exactly one of the following holds. It is

(A) infeasible,
(B) unbounded, or
(C) has an optimal solution.

2. If (A) occurs, there is a short proof of that fact.

3. If (B) occurs, there is a short proof of that fact.

4. For an optimal solution, there is a short proof that it is optimal.

Remark

We have not yet shown you how to find such proofs.

Recap

1. For linear programs, exactly one of the following holds. It is

(A) infeasible,
(B) unbounded, or
(C) has an optimal solution.

2. If (A) occurs, there is a short proof of that fact.

3. If (B) occurs, there is a short proof of that fact.

4. For an optimal solution, there is a short proof that it is optimal.

Remark

We have not yet shown you how to find such proofs.

Recap

1. For linear programs, exactly one of the following holds. It is

(A) infeasible,
(B) unbounded, or
(C) has an optimal solution.

2. If (A) occurs, there is a short proof of that fact.

3. If (B) occurs, there is a short proof of that fact.

4. For an optimal solution, there is a short proof that it is optimal.

Remark

We have not yet shown you how to find such proofs.

Recap

1. For linear programs, exactly one of the following holds. It is

(A) infeasible,
(B) unbounded, or
(C) has an optimal solution.

2. If (A) occurs, there is a short proof of that fact.

3. If (B) occurs, there is a short proof of that fact.

4. For an optimal solution, there is a short proof that it is optimal.

Remark

We have not yet shown you how to find such proofs.

CO 250: Introduction to Optimization
Module 2: Linear Programs (Standard Equality Forms)

The Key Definition

Definition

A Linear Program (LP) is in Standard Equality Form (SEF) if

1. it is a maximization problem,

2. for every variable xj we have the constraint xj ≥ 0, and

3. all other constraints are equality constraints.

max (1,−2, 4,−4, 0, 0)x+ 3

s.t. 1 5 3 −3 0 −1
2 −1 2 −2 1 0
1 2 −1 1 0 0

x =

5
4
2


x1, x2, x3, x4, x5, x6 ≥ 0

The Key Definition

Definition

A Linear Program (LP) is in Standard Equality Form (SEF) if

1. it is a maximization problem,

2. for every variable xj we have the constraint xj ≥ 0, and

3. all other constraints are equality constraints.

max (1,−2, 4,−4, 0, 0)x+ 3

s.t. 1 5 3 −3 0 −1
2 −1 2 −2 1 0
1 2 −1 1 0 0

x =

5
4
2


x1, x2, x3, x4, x5, x6 ≥ 0

The Key Definition

Definition

A Linear Program (LP) is in Standard Equality Form (SEF) if

1. it is a maximization problem,

2. for every variable xj we have the constraint xj ≥ 0, and

3. all other constraints are equality constraints.

max (1,−2, 4,−4, 0, 0)x+ 3

s.t. 1 5 3 −3 0 −1
2 −1 2 −2 1 0
1 2 −1 1 0 0

x =

5
4
2


x1, x2, x3, x4, x5, x6 ≥ 0

The Key Definition

Definition

A Linear Program (LP) is in Standard Equality Form (SEF) if

1. it is a maximization problem,

2. for every variable xj we have the constraint xj ≥ 0, and

3. all other constraints are equality constraints.

max (1,−2, 4,−4, 0, 0)x+ 3

s.t. 1 5 3 −3 0 −1
2 −1 2 −2 1 0
1 2 −1 1 0 0

x =

5
4
2


x1, x2, x3, x4, x5, x6 ≥ 0

The Key Definition

Definition

A Linear Program (LP) is in Standard Equality Form (SEF) if

1. it is a maximization problem,

2. for every variable xj we have the constraint xj ≥ 0, and

3. all other constraints are equality constraints.

max (1,−2, 4,−4, 0, 0)x+ 3

s.t. 1 5 3 −3 0 −1
2 −1 2 −2 1 0
1 2 −1 1 0 0

x =

5
4
2


x1, x2, x3, x4, x5, x6 ≥ 0

The Key Definition

Definition

A Linear Program (LP) is in Standard Equality Form (SEF) if

1. it is a maximization problem,

2. for every variable xj we have the constraint xj ≥ 0, and

3. all other constraints are equality constraints.

max (1,−2, 4,−4, 0, 0)x+ 3

s.t. 1 5 3 −3 0 −1
2 −1 2 −2 1 0
1 2 −1 1 0 0

x =

5
4
2


x1, x2, x3, x4, x5, x6 ≥ 0

Question

Is the following LP in SEF?

max x1 + x2 + 17

s.t.

x1 − x2 = 0

x1 ≥ 0

NO! There is no constraint x2 ≥ 0. We say x2 is free.

Remarks

• x2 ≥ 0 is implied by the constraints.

• x2 is still free since x2 ≥ 0 is not given explicitly.

Question

Is the following LP in SEF?

max x1 + x2 + 17

s.t.

x1 − x2 = 0

x1 ≥ 0

NO! There is no constraint x2 ≥ 0.

We say x2 is free.

Remarks

• x2 ≥ 0 is implied by the constraints.

• x2 is still free since x2 ≥ 0 is not given explicitly.

Question

Is the following LP in SEF?

max x1 + x2 + 17

s.t.

x1 − x2 = 0

x1 ≥ 0

NO! There is no constraint x2 ≥ 0. We say x2 is free.

Remarks

• x2 ≥ 0 is implied by the constraints.

• x2 is still free since x2 ≥ 0 is not given explicitly.

Question

Is the following LP in SEF?

max x1 + x2 + 17

s.t.

x1 − x2 = 0

x1 ≥ 0

NO! There is no constraint x2 ≥ 0. We say x2 is free.

Remarks

• x2 ≥ 0 is implied by the constraints.

• x2 is still free since x2 ≥ 0 is not given explicitly.

Motivation

We will develop an algorithm called the Simplex that can solve any LP

as long as it is in Standard Equality Form (SEF)

Question

What do we do if the LP is not in SEF?

Idea

1. Find an “equivalent” LP in SEF.

2. Solve the “equivalent” LP using Simplex.

3. Use the sol’n of “equivalent” LP to get the sol’n of the original LP.

Question

What do we mean by equivalent?

Motivation

We will develop an algorithm called the Simplex that can solve any LP

as long as it is in Standard Equality Form (SEF)

Question

What do we do if the LP is not in SEF?

Idea

1. Find an “equivalent” LP in SEF.

2. Solve the “equivalent” LP using Simplex.

3. Use the sol’n of “equivalent” LP to get the sol’n of the original LP.

Question

What do we mean by equivalent?

Motivation

We will develop an algorithm called the Simplex that can solve any LP

as long as it is in Standard Equality Form (SEF)

Question

What do we do if the LP is not in SEF?

Idea

1. Find an “equivalent” LP in SEF.

2. Solve the “equivalent” LP using Simplex.

3. Use the sol’n of “equivalent” LP to get the sol’n of the original LP.

Question

What do we mean by equivalent?

Motivation

We will develop an algorithm called the Simplex that can solve any LP

as long as it is in Standard Equality Form (SEF)

Question

What do we do if the LP is not in SEF?

Idea

1. Find an “equivalent” LP in SEF.

2. Solve the “equivalent” LP using Simplex.

3. Use the sol’n of “equivalent” LP to get the sol’n of the original LP.

Question

What do we mean by equivalent?

Motivation

We will develop an algorithm called the Simplex that can solve any LP

as long as it is in Standard Equality Form (SEF)

Question

What do we do if the LP is not in SEF?

Idea

1. Find an “equivalent” LP in SEF.

2. Solve the “equivalent” LP using Simplex.

3. Use the sol’n of “equivalent” LP to get the sol’n of the original LP.

Question

What do we mean by equivalent?

Motivation

We will develop an algorithm called the Simplex that can solve any LP

as long as it is in Standard Equality Form (SEF)

Question

What do we do if the LP is not in SEF?

Idea

1. Find an “equivalent” LP in SEF.

2. Solve the “equivalent” LP using Simplex.

3. Use the sol’n of “equivalent” LP to get the sol’n of the original LP.

Question

What do we mean by equivalent?

Motivation

We will develop an algorithm called the Simplex that can solve any LP

as long as it is in Standard Equality Form (SEF)

Question

What do we do if the LP is not in SEF?

Idea

1. Find an “equivalent” LP in SEF.

2. Solve the “equivalent” LP using Simplex.

3. Use the sol’n of “equivalent” LP to get the sol’n of the original LP.

Question

What do we mean by equivalent?

Equivalent LPs

Idea

A pair of LPs are equivalent if they behave in the same way.

Definition

Linear programs (P) and (Q) are equivalent if

• (P) infeasible ⇐⇒ (Q) infeasible,

• (P) unbounded ⇐⇒ (Q) unbounded,

• can construct optimal sol’n of (P) from optimal sol’n of (Q),

• can construct optimal sol’n of (Q) from optimal sol’n of (P).

Theorem

Every LP is equivalent to an LP in SEF.

We will illustrate the proof with a series of examples.

Equivalent LPs

Idea

A pair of LPs are equivalent if they behave in the same way.

Definition

Linear programs (P) and (Q) are equivalent if

• (P) infeasible ⇐⇒ (Q) infeasible,

• (P) unbounded ⇐⇒ (Q) unbounded,

• can construct optimal sol’n of (P) from optimal sol’n of (Q),

• can construct optimal sol’n of (Q) from optimal sol’n of (P).

Theorem

Every LP is equivalent to an LP in SEF.

We will illustrate the proof with a series of examples.

Equivalent LPs

Idea

A pair of LPs are equivalent if they behave in the same way.

Definition

Linear programs (P) and (Q) are equivalent if

• (P) infeasible ⇐⇒ (Q) infeasible,

• (P) unbounded ⇐⇒ (Q) unbounded,

• can construct optimal sol’n of (P) from optimal sol’n of (Q),

• can construct optimal sol’n of (Q) from optimal sol’n of (P).

Theorem

Every LP is equivalent to an LP in SEF.

We will illustrate the proof with a series of examples.

Equivalent LPs

Idea

A pair of LPs are equivalent if they behave in the same way.

Definition

Linear programs (P) and (Q) are equivalent if

• (P) infeasible ⇐⇒ (Q) infeasible,

• (P) unbounded ⇐⇒ (Q) unbounded,

• can construct optimal sol’n of (P) from optimal sol’n of (Q),

• can construct optimal sol’n of (Q) from optimal sol’n of (P).

Theorem

Every LP is equivalent to an LP in SEF.

We will illustrate the proof with a series of examples.

Equivalent LPs

Idea

A pair of LPs are equivalent if they behave in the same way.

Definition

Linear programs (P) and (Q) are equivalent if

• (P) infeasible ⇐⇒ (Q) infeasible,

• (P) unbounded ⇐⇒ (Q) unbounded,

• can construct optimal sol’n of (P) from optimal sol’n of (Q),

• can construct optimal sol’n of (Q) from optimal sol’n of (P).

Theorem

Every LP is equivalent to an LP in SEF.

We will illustrate the proof with a series of examples.

Equivalent LPs

Idea

A pair of LPs are equivalent if they behave in the same way.

Definition

Linear programs (P) and (Q) are equivalent if

• (P) infeasible ⇐⇒ (Q) infeasible,

• (P) unbounded ⇐⇒ (Q) unbounded,

• can construct optimal sol’n of (P) from optimal sol’n of (Q),

• can construct optimal sol’n of (Q) from optimal sol’n of (P).

Theorem

Every LP is equivalent to an LP in SEF.

We will illustrate the proof with a series of examples.

Equivalent LPs

Idea

A pair of LPs are equivalent if they behave in the same way.

Definition

Linear programs (P) and (Q) are equivalent if

• (P) infeasible ⇐⇒ (Q) infeasible,

• (P) unbounded ⇐⇒ (Q) unbounded,

• can construct optimal sol’n of (P) from optimal sol’n of (Q),

• can construct optimal sol’n of (Q) from optimal sol’n of (P).

Theorem

Every LP is equivalent to an LP in SEF.

We will illustrate the proof with a series of examples.

Equivalent LPs

Idea

A pair of LPs are equivalent if they behave in the same way.

Definition

Linear programs (P) and (Q) are equivalent if

• (P) infeasible ⇐⇒ (Q) infeasible,

• (P) unbounded ⇐⇒ (Q) unbounded,

• can construct optimal sol’n of (P) from optimal sol’n of (Q),

• can construct optimal sol’n of (Q) from optimal sol’n of (P).

Theorem

Every LP is equivalent to an LP in SEF.

We will illustrate the proof with a series of examples.

Dealing with Minimization

min (1, 2,−4)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =
≤

(
5
4

)
x1, x2 ≥ 0

max −(1, 2,−4)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =
≤

(
5
4

)
x1, x2 ≥ 0

EQUIVALENT!

Dealing with Minimization

min (1, 2,−4)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =
≤

(
5
4

)
x1, x2 ≥ 0

max −(1, 2,−4)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =
≤

(
5
4

)
x1, x2 ≥ 0

EQUIVALENT!

Dealing with Minimization

min (1, 2,−4)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =
≤

(
5
4

)
x1, x2 ≥ 0

max −(1, 2,−4)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =
≤

(
5
4

)
x1, x2 ≥ 0

EQUIVALENT!

Dealing with Minimization

min (1, 2,−4)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =
≤

(
5
4

)
x1, x2 ≥ 0

max −(1, 2,−4)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =
≤

(
5
4

)
x1, x2 ≥ 0

EQUIVALENT!

Replacing an Inequality by an Equality

Suppose an LP has the constraint

x1 − x2 + x4 ≤ 7.

We can replace it by

x1 − x2 + x4 + s = 7, where s ≥ 0.

Suppose an LP has the constraint

x1 − x2 + x4 ≥ 7.

We can replace it by

x1 − x2 + x4 − s = 7, where s ≥ 0.

Replacing an Inequality by an Equality

Suppose an LP has the constraint

x1 − x2 + x4 ≤ 7.

We can replace it by

x1 − x2 + x4 + s = 7, where s ≥ 0.

Suppose an LP has the constraint

x1 − x2 + x4 ≥ 7.

We can replace it by

x1 − x2 + x4 − s = 7, where s ≥ 0.

Replacing an Inequality by an Equality

Suppose an LP has the constraint

x1 − x2 + x4 ≤ 7.

We can replace it by

x1 − x2 + x4 + s = 7, where s ≥ 0.

Suppose an LP has the constraint

x1 − x2 + x4 ≥ 7.

We can replace it by

x1 − x2 + x4 − s = 7, where s ≥ 0.

Replacing an Inequality by an Equality

Suppose an LP has the constraint

x1 − x2 + x4 ≤ 7.

We can replace it by

x1 − x2 + x4 + s = 7, where s ≥ 0.

Suppose an LP has the constraint

x1 − x2 + x4 ≥ 7.

We can replace it by

x1 − x2 + x4 − s = 7, where s ≥ 0.

Replacing an Inequality by an Equality

Suppose an LP has the constraint

x1 − x2 + x4 ≤ 7.

We can replace it by

x1 − x2 + x4 + s = 7, where s ≥ 0.

Suppose an LP has the constraint

x1 − x2 + x4 ≥ 7.

We can replace it by

x1 − x2 + x4 − s = 7, where s ≥ 0.

Replacing an Inequality by an Equality

Suppose an LP has the constraint

x1 − x2 + x4 ≤ 7.

We can replace it by

x1 − x2 + x4 + s = 7, where s ≥ 0.

Suppose an LP has the constraint

x1 − x2 + x4 ≥ 7.

We can replace it by

x1 − x2 + x4 − s = 7, where s ≥ 0.

Replacing an Inequality by an Equality

Suppose an LP has the constraint

x1 − x2 + x4 ≤ 7.

We can replace it by

x1 − x2 + x4 + s = 7, where s ≥ 0.

Suppose an LP has the constraint

x1 − x2 + x4 ≥ 7.

We can replace it by

x1 − x2 + x4 − s = 7, where s ≥ 0.

Free Variables

max z = (1, 2, 3)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =

(
5
4

)
x1, x2 ≥ 0, x3 is free.

Find an equivalent LP without the free variable x3. How?

Idea
Any number is the difference between two non-negative numbers.

Set x3 := a− b where a, b ≥ 0.

Free Variables

max z = (1, 2, 3)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =

(
5
4

)
x1, x2 ≥ 0, x3 is free.

Find an equivalent LP without the free variable x3. How?

Idea
Any number is the difference between two non-negative numbers.

Set x3 := a− b where a, b ≥ 0.

Free Variables

max z = (1, 2, 3)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =

(
5
4

)
x1, x2 ≥ 0, x3 is free.

Find an equivalent LP without the free variable x3. How?

Idea
Any number is the difference between two non-negative numbers.

Set x3 := a− b where a, b ≥ 0.

Free Variables

max z = (1, 2, 3)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =

(
5
4

)
x1, x2 ≥ 0, x3 is free.

Find an equivalent LP without the free variable x3. How?

Idea
Any number is the difference between two non-negative numbers.

Set x3 := a− b where a, b ≥ 0.

Free Variables

max z = (1, 2, 3)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =

(
5
4

)
x1, x2 ≥ 0, x3 is free.

Find an equivalent LP without the free variable x3. How?

Idea
Any number is the difference between two non-negative numbers.

Set x3 := a− b where a, b ≥ 0.

Free Variables – Rewrite the Objective Function

Set x3 := a− b where a, b ≥ 0.

z = (1, 2, 3)(x1, x2, x3)
>

= x1 + 2x2 + 3x3

= x1 + 2x2 + 3(a− b)

= x1 + x2 + 3a− 3b

= (1, 2, 3,−3)(x1, x2, a, b)
>

Free Variables – Rewrite the Objective Function

Set x3 := a− b where a, b ≥ 0.

z = (1, 2, 3)(x1, x2, x3)
>

= x1 + 2x2 + 3x3

= x1 + 2x2 + 3(a− b)

= x1 + x2 + 3a− 3b

= (1, 2, 3,−3)(x1, x2, a, b)
>

Free Variables – Rewrite the Objective Function

Set x3 := a− b where a, b ≥ 0.

z = (1, 2, 3)(x1, x2, x3)
>

= x1 + 2x2 + 3x3

= x1 + 2x2 + 3(a− b)

= x1 + x2 + 3a− 3b

= (1, 2, 3,−3)(x1, x2, a, b)
>

Free Variables – Rewrite the Objective Function

Set x3 := a− b where a, b ≥ 0.

z = (1, 2, 3)(x1, x2, x3)
>

= x1 + 2x2 + 3x3

= x1 + 2x2 + 3(a− b)

= x1 + x2 + 3a− 3b

= (1, 2, 3,−3)(x1, x2, a, b)
>

Free Variables – Rewrite the Objective Function

Set x3 := a− b where a, b ≥ 0.

z = (1, 2, 3)(x1, x2, x3)
>

= x1 + 2x2 + 3x3

= x1 + 2x2 + 3(a− b)

= x1 + x2 + 3a− 3b

= (1, 2, 3,−3)(x1, x2, a, b)
>

Free Variables – Rewrite the Objective Function

Set x3 := a− b where a, b ≥ 0.

z = (1, 2, 3)(x1, x2, x3)
>

= x1 + 2x2 + 3x3

= x1 + 2x2 + 3(a− b)

= x1 + x2 + 3a− 3b

= (1, 2, 3,−3)(x1, x2, a, b)
>

Free Variables – Rewrite the Constraints

Set x3 := a− b where a, b ≥ 0.

(
5
4

)
=

(
1 5 3
2 −1 2

)x1

x2

x3


= x1

(
1
2

)
+ x2

(
5
−1

)
+ x3

(
3
2

)
= x1

(
1
2

)
+ x2

(
5
−1

)
+ (a− b)

(
3
2

)
= x1

(
1
2

)
+ x2

(
5
−1

)
+ a

(
3
2

)
+ b

(
−3
−2

)

=

(
1 5 3 −3
2 −1 2 −2

)
x1

x2

a
b



Free Variables – Rewrite the Constraints

Set x3 := a− b where a, b ≥ 0.

(
5
4

)
=

(
1 5 3
2 −1 2

)x1

x2

x3



= x1

(
1
2

)
+ x2

(
5
−1

)
+ x3

(
3
2

)
= x1

(
1
2

)
+ x2

(
5
−1

)
+ (a− b)

(
3
2

)
= x1

(
1
2

)
+ x2

(
5
−1

)
+ a

(
3
2

)
+ b

(
−3
−2

)

=

(
1 5 3 −3
2 −1 2 −2

)
x1

x2

a
b



Free Variables – Rewrite the Constraints

Set x3 := a− b where a, b ≥ 0.

(
5
4

)
=

(
1 5 3
2 −1 2

)x1

x2

x3


= x1

(
1
2

)
+ x2

(
5
−1

)
+ x3

(
3
2

)

= x1

(
1
2

)
+ x2

(
5
−1

)
+ (a− b)

(
3
2

)
= x1

(
1
2

)
+ x2

(
5
−1

)
+ a

(
3
2

)
+ b

(
−3
−2

)

=

(
1 5 3 −3
2 −1 2 −2

)
x1

x2

a
b



Free Variables – Rewrite the Constraints

Set x3 := a− b where a, b ≥ 0.

(
5
4

)
=

(
1 5 3
2 −1 2

)x1

x2

x3


= x1

(
1
2

)
+ x2

(
5
−1

)
+ x3

(
3
2

)
= x1

(
1
2

)
+ x2

(
5
−1

)
+ (a− b)

(
3
2

)

= x1

(
1
2

)
+ x2

(
5
−1

)
+ a

(
3
2

)
+ b

(
−3
−2

)

=

(
1 5 3 −3
2 −1 2 −2

)
x1

x2

a
b



Free Variables – Rewrite the Constraints

Set x3 := a− b where a, b ≥ 0.

(
5
4

)
=

(
1 5 3
2 −1 2

)x1

x2

x3


= x1

(
1
2

)
+ x2

(
5
−1

)
+ x3

(
3
2

)
= x1

(
1
2

)
+ x2

(
5
−1

)
+ (a− b)

(
3
2

)
= x1

(
1
2

)
+ x2

(
5
−1

)
+ a

(
3
2

)
+ b

(
−3
−2

)

=

(
1 5 3 −3
2 −1 2 −2

)
x1

x2

a
b



Free Variables – Rewrite the Constraints

Set x3 := a− b where a, b ≥ 0.

(
5
4

)
=

(
1 5 3
2 −1 2

)x1

x2

x3


= x1

(
1
2

)
+ x2

(
5
−1

)
+ x3

(
3
2

)
= x1

(
1
2

)
+ x2

(
5
−1

)
+ (a− b)

(
3
2

)
= x1

(
1
2

)
+ x2

(
5
−1

)
+ a

(
3
2

)
+ b

(
−3
−2

)

=

(
1 5 3 −3
2 −1 2 −2

)
x1

x2

a
b



max z = (1, 2, 3)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =

(
5
4

)
x1, x2 ≥ 0, x3 is free.

max z = (1, 2, 3,−3)(x1, x2, a, b)
>

s.t.

(
1 5 3 −3
2 −1 2 −2

)
x1

x2

a
b

 =

(
5
4

)

x1, x2, a, b ≥ 0

EQUIVALENT!

max z = (1, 2, 3)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =

(
5
4

)
x1, x2 ≥ 0, x3 is free.

max z = (1, 2, 3,−3)(x1, x2, a, b)
>

s.t.

(
1 5 3 −3
2 −1 2 −2

)
x1

x2

a
b

 =

(
5
4

)

x1, x2, a, b ≥ 0

EQUIVALENT!

max z = (1, 2, 3)(x1, x2, x3)
>

s.t. (
1 5 3
2 −1 2

)x1

x2

x3

 =

(
5
4

)
x1, x2 ≥ 0, x3 is free.

max z = (1, 2, 3,−3)(x1, x2, a, b)
>

s.t.

(
1 5 3 −3
2 −1 2 −2

)
x1

x2

a
b

 =

(
5
4

)

x1, x2, a, b ≥ 0

EQUIVALENT!

Generalize and Consequences

We have shown, for an LP, how to

• change min to max,

• replace inequalities by equalities, and

• get rid of free variables.

Exercise

1. Generalize to arbitrary LPs.

2. Show each step yields an equivalent LP.

Theorem

Every LP is equivalent to an LP in SEF.

Generalize and Consequences

We have shown, for an LP, how to

• change min to max,

• replace inequalities by equalities, and

• get rid of free variables.

Exercise

1. Generalize to arbitrary LPs.

2. Show each step yields an equivalent LP.

Theorem

Every LP is equivalent to an LP in SEF.

Generalize and Consequences

We have shown, for an LP, how to

• change min to max,

• replace inequalities by equalities, and

• get rid of free variables.

Exercise

1. Generalize to arbitrary LPs.

2. Show each step yields an equivalent LP.

Theorem

Every LP is equivalent to an LP in SEF.

Generalize and Consequences

We have shown, for an LP, how to

• change min to max,

• replace inequalities by equalities, and

• get rid of free variables.

Exercise

1. Generalize to arbitrary LPs.

2. Show each step yields an equivalent LP.

Theorem

Every LP is equivalent to an LP in SEF.

Generalize and Consequences

We have shown, for an LP, how to

• change min to max,

• replace inequalities by equalities, and

• get rid of free variables.

Exercise

1. Generalize to arbitrary LPs.

2. Show each step yields an equivalent LP.

Theorem

Every LP is equivalent to an LP in SEF.

Generalize and Consequences

We have shown, for an LP, how to

• change min to max,

• replace inequalities by equalities, and

• get rid of free variables.

Exercise

1. Generalize to arbitrary LPs.

2. Show each step yields an equivalent LP.

Theorem

Every LP is equivalent to an LP in SEF.

Generalize and Consequences

We have shown, for an LP, how to

• change min to max,

• replace inequalities by equalities, and

• get rid of free variables.

Exercise

1. Generalize to arbitrary LPs.

2. Show each step yields an equivalent LP.

Theorem

Every LP is equivalent to an LP in SEF.

Recap

1. We defined what it means for an LP to be in SEF.

2. We defined what it means for two LPs to be equivalent.

3. We showed how to convert any LP into an equivalent LP in SEF.

4. To solve any LP, it suffices to know how to solve LPs in SEF.

Recap

1. We defined what it means for an LP to be in SEF.

2. We defined what it means for two LPs to be equivalent.

3. We showed how to convert any LP into an equivalent LP in SEF.

4. To solve any LP, it suffices to know how to solve LPs in SEF.

Recap

1. We defined what it means for an LP to be in SEF.

2. We defined what it means for two LPs to be equivalent.

3. We showed how to convert any LP into an equivalent LP in SEF.

4. To solve any LP, it suffices to know how to solve LPs in SEF.

Recap

1. We defined what it means for an LP to be in SEF.

2. We defined what it means for two LPs to be equivalent.

3. We showed how to convert any LP into an equivalent LP in SEF.

4. To solve any LP, it suffices to know how to solve LPs in SEF.

Recap

1. We defined what it means for an LP to be in SEF.

2. We defined what it means for two LPs to be equivalent.

3. We showed how to convert any LP into an equivalent LP in SEF.

4. To solve any LP, it suffices to know how to solve LPs in SEF.

CO 250: Introduction to Optimization
Module 2: Linear Programs (Simplex – A First Attempt)

A Naive Strategy for Solving an LP

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, stop.

Step 3. If LP is unbounded, stop.

Step 4. Find a “better” feasible solution.

Many details missing!

Questions
• How do we find a feasible solution?

• How do we find a “better” solution?

• Will this ever terminate?

The simplex algorithm works along these lines.

In this lecture: A first attempt at this algorithm.

A Naive Strategy for Solving an LP

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, stop.

Step 3. If LP is unbounded, stop.

Step 4. Find a “better” feasible solution.

Many details missing!

Questions
• How do we find a feasible solution?

• How do we find a “better” solution?

• Will this ever terminate?

The simplex algorithm works along these lines.

In this lecture: A first attempt at this algorithm.

A Naive Strategy for Solving an LP

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, stop.

Step 3. If LP is unbounded, stop.

Step 4. Find a “better” feasible solution.

Many details missing!

Questions
• How do we find a feasible solution?

• How do we find a “better” solution?

• Will this ever terminate?

The simplex algorithm works along these lines.

In this lecture: A first attempt at this algorithm.

A Naive Strategy for Solving an LP

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, stop.

Step 3. If LP is unbounded, stop.

Step 4. Find a “better” feasible solution.

Many details missing!

Questions
• How do we find a feasible solution?

• How do we find a “better” solution?

• Will this ever terminate?

The simplex algorithm works along these lines.

In this lecture: A first attempt at this algorithm.

A Naive Strategy for Solving an LP

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, stop.

Step 3. If LP is unbounded, stop.

Step 4. Find a “better” feasible solution.

Many details missing!

Questions
• How do we find a feasible solution?

• How do we find a “better” solution?

• Will this ever terminate?

The simplex algorithm works along these lines.

In this lecture: A first attempt at this algorithm.

A Naive Strategy for Solving an LP

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, stop.

Step 3. If LP is unbounded, stop.

Step 4. Find a “better” feasible solution.

Many details missing!

Questions
• How do we find a feasible solution?

• How do we find a “better” solution?

• Will this ever terminate?

The simplex algorithm works along these lines.

In this lecture: A first attempt at this algorithm.

A Naive Strategy for Solving an LP

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, stop.

Step 3. If LP is unbounded, stop.

Step 4. Find a “better” feasible solution.

Many details missing!

Questions
• How do we find a feasible solution?

• How do we find a “better” solution?

• Will this ever terminate?

The simplex algorithm works along these lines.

In this lecture: A first attempt at this algorithm.

A Naive Strategy for Solving an LP

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, stop.

Step 3. If LP is unbounded, stop.

Step 4. Find a “better” feasible solution.

Many details missing!

Questions
• How do we find a feasible solution?

• How do we find a “better” solution?

• Will this ever terminate?

The simplex algorithm works along these lines.

In this lecture: A first attempt at this algorithm.

A Naive Strategy for Solving an LP

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, stop.

Step 3. If LP is unbounded, stop.

Step 4. Find a “better” feasible solution.

Many details missing!

Questions
• How do we find a feasible solution?

• How do we find a “better” solution?

• Will this ever terminate?

The simplex algorithm works along these lines.

In this lecture: A first attempt at this algorithm.

A Naive Strategy for Solving an LP

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, stop.

Step 3. If LP is unbounded, stop.

Step 4. Find a “better” feasible solution.

Many details missing!

Questions
• How do we find a feasible solution?

• How do we find a “better” solution?

• Will this ever terminate?

The simplex algorithm works along these lines.

In this lecture: A first attempt at this algorithm.

A Naive Strategy for Solving an LP

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, stop.

Step 3. If LP is unbounded, stop.

Step 4. Find a “better” feasible solution.

Many details missing!

Questions
• How do we find a feasible solution?

• How do we find a “better” solution?

• Will this ever terminate?

The simplex algorithm works along these lines.

In this lecture: A first attempt at this algorithm.

A Naive Strategy for Solving an LP

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, stop.

Step 3. If LP is unbounded, stop.

Step 4. Find a “better” feasible solution.

Many details missing!

Questions
• How do we find a feasible solution?

• How do we find a “better” solution?

• Will this ever terminate?

The simplex algorithm works along these lines.

In this lecture: A first attempt at this algorithm.

A First Example

Consider
max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

Remarks
• We have a feasible solution: x1 = 0, x2 = 0, x3 = 2, and x4 = 1.

• The objective function is z = 4x1 + 3x2 + 7.

Question

The feasible solution has objective value: 4× 0 + 3× 0 + 7 = 7.

• Can we find a feasible solution with value larger than 7?

YES!

A First Example

Consider
max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

Remarks
• We have a feasible solution: x1 = 0, x2 = 0, x3 = 2, and x4 = 1.

• The objective function is z = 4x1 + 3x2 + 7.

Question

The feasible solution has objective value: 4× 0 + 3× 0 + 7 = 7.

• Can we find a feasible solution with value larger than 7?

YES!

A First Example

Consider
max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

Remarks
• We have a feasible solution: x1 = 0, x2 = 0, x3 = 2, and x4 = 1.

• The objective function is z = 4x1 + 3x2 + 7.

Question

The feasible solution has objective value: 4× 0 + 3× 0 + 7 = 7.

• Can we find a feasible solution with value larger than 7?

YES!

A First Example

Consider
max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

Remarks
• We have a feasible solution: x1 = 0, x2 = 0, x3 = 2, and x4 = 1.

• The objective function is z = 4x1 + 3x2 + 7.

Question

The feasible solution has objective value: 4× 0 + 3× 0 + 7 = 7.

• Can we find a feasible solution with value larger than 7?

YES!

A First Example

Consider
max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

Remarks
• We have a feasible solution: x1 = 0, x2 = 0, x3 = 2, and x4 = 1.

• The objective function is z = 4x1 + 3x2 + 7.

Question

The feasible solution has objective value: 4× 0 + 3× 0 + 7 = 7.

• Can we find a feasible solution with value larger than 7?

YES!

A First Example

Consider
max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

Remarks
• We have a feasible solution: x1 = 0, x2 = 0, x3 = 2, and x4 = 1.

• The objective function is z = 4x1 + 3x2 + 7.

Question

The feasible solution has objective value: 4× 0 + 3× 0 + 7 = 7.

• Can we find a feasible solution with value larger than 7?

YES!

A First Example

Consider
max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

Remarks
• We have a feasible solution: x1 = 0, x2 = 0, x3 = 2, and x4 = 1.

• The objective function is z = 4x1 + 3x2 + 7.

Question

The feasible solution has objective value: 4× 0 + 3× 0 + 7 = 7.

• Can we find a feasible solution with value larger than 7?

YES!

A First Example

Consider
max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

Remarks
• We have a feasible solution: x1 = 0, x2 = 0, x3 = 2, and x4 = 1.

• The objective function is z = 4x1 + 3x2 + 7.

Idea
Increase x1 as much as possible, and keep x2 unchanged, i.e.,

x1 = t for some t ≥ 0 as large as possible

x2 = 0

A First Example

Consider
max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

Remarks
• We have a feasible solution: x1 = 0, x2 = 0, x3 = 2, and x4 = 1.

• The objective function is z = 4x1 + 3x2 + 7.

Idea
Increase x1 as much as possible, and keep x2 unchanged, i.e.,

x1 = t for some t ≥ 0 as large as possible

x2 = 0

A First Example

Consider
max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

Remarks
• We have a feasible solution: x1 = 0, x2 = 0, x3 = 2, and x4 = 1.

• The objective function is z = 4x1 + 3x2 + 7.

Idea
Increase x1 as much as possible, and keep x2 unchanged, i.e.,

x1 = t for some t ≥ 0 as large as possible

x2 = 0

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0

x3 = ?

x4 = ?

Choose t ≥ 0 as large as possible.

It needs to satisfy

1. the equality constraints, and

2. the non-negativity constraints.

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0

x3 = ?

x4 = ?

Choose t ≥ 0 as large as possible.

It needs to satisfy

1. the equality constraints, and

2. the non-negativity constraints.

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0

x3 = ?

x4 = ?

Choose t ≥ 0 as large as possible.

It needs to satisfy

1. the equality constraints, and

2. the non-negativity constraints.

Satisfying the Equality Constraints

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0

x3 = ?

x4 = ?

(
2
1

)
=

(
3 2 1 0
1 1 0 1

)
x

= x1

(
3
1

)
+ x2

(
2
1

)
+ x3

(
1
0

)
+ x4

(
0
1

)
= t

(
3
1

)
+ 0

(
2
1

)
+

(
x3

0

)
+

(
0
x4

)
= t

(
3
1

)
+

(
x3

x4

)

(
x3

x4

)
=

(
2
1

)
− t

(
3
1

)

Remark
Equality constraints hold for any choice of t.

Satisfying the Equality Constraints

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0

x3 = ?

x4 = ?(
2
1

)
=

(
3 2 1 0
1 1 0 1

)
x

= x1

(
3
1

)
+ x2

(
2
1

)
+ x3

(
1
0

)
+ x4

(
0
1

)
= t

(
3
1

)
+ 0

(
2
1

)
+

(
x3

0

)
+

(
0
x4

)
= t

(
3
1

)
+

(
x3

x4

)

(
x3

x4

)
=

(
2
1

)
− t

(
3
1

)

Remark
Equality constraints hold for any choice of t.

Satisfying the Equality Constraints

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0

x3 = ?

x4 = ?(
2
1

)
=

(
3 2 1 0
1 1 0 1

)
x

= x1

(
3
1

)
+ x2

(
2
1

)
+ x3

(
1
0

)
+ x4

(
0
1

)

= t

(
3
1

)
+ 0

(
2
1

)
+

(
x3

0

)
+

(
0
x4

)
= t

(
3
1

)
+

(
x3

x4

)

(
x3

x4

)
=

(
2
1

)
− t

(
3
1

)

Remark
Equality constraints hold for any choice of t.

Satisfying the Equality Constraints

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0

x3 = ?

x4 = ?(
2
1

)
=

(
3 2 1 0
1 1 0 1

)
x

= x1

(
3
1

)
+ x2

(
2
1

)
+ x3

(
1
0

)
+ x4

(
0
1

)
= t

(
3
1

)
+ 0

(
2
1

)
+

(
x3

0

)
+

(
0
x4

)

= t

(
3
1

)
+

(
x3

x4

)

(
x3

x4

)
=

(
2
1

)
− t

(
3
1

)

Remark
Equality constraints hold for any choice of t.

Satisfying the Equality Constraints

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0

x3 = ?

x4 = ?(
2
1

)
=

(
3 2 1 0
1 1 0 1

)
x

= x1

(
3
1

)
+ x2

(
2
1

)
+ x3

(
1
0

)
+ x4

(
0
1

)
= t

(
3
1

)
+ 0

(
2
1

)
+

(
x3

0

)
+

(
0
x4

)
= t

(
3
1

)
+

(
x3

x4

)

(
x3

x4

)
=

(
2
1

)
− t

(
3
1

)

Remark
Equality constraints hold for any choice of t.

Satisfying the Equality Constraints

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0

x3 = ?

x4 = ?(
2
1

)
=

(
3 2 1 0
1 1 0 1

)
x

= x1

(
3
1

)
+ x2

(
2
1

)
+ x3

(
1
0

)
+ x4

(
0
1

)
= t

(
3
1

)
+ 0

(
2
1

)
+

(
x3

0

)
+

(
0
x4

)
= t

(
3
1

)
+

(
x3

x4

)

(
x3

x4

)
=

(
2
1

)
− t

(
3
1

)

Remark
Equality constraints hold for any choice of t.

Satisfying the Equality Constraints

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0

x3 = ?

x4 = ?(
2
1

)
=

(
3 2 1 0
1 1 0 1

)
x

= x1

(
3
1

)
+ x2

(
2
1

)
+ x3

(
1
0

)
+ x4

(
0
1

)
= t

(
3
1

)
+ 0

(
2
1

)
+

(
x3

0

)
+

(
0
x4

)
= t

(
3
1

)
+

(
x3

x4

)

(
x3

x4

)
=

(
2
1

)
− t

(
3
1

)

Remark
Equality constraints hold for any choice of t.

Satisfying the Non-Negativity Constraints

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0(
x3

x4

)
=

(
2
1

)
− t

(
3
1

)
Choose t ≥ 0 as large as possible.

x1 = t ≥ 0 X

x2 = 0 X

x3 = 2− 3t ≥ 0 t ≤ 2
3

x4 = 1− t ≥ 0 t ≤ 1

Thus, the largest possible t is min
{
1, 2

3

}
= 2

3 . The new solution is

x = (t, 0, 2− 3t, 1− t)> =

(
2

3
, 0, 0,

1

3

)>

Satisfying the Non-Negativity Constraints

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0(
x3

x4

)
=

(
2
1

)
− t

(
3
1

)
Choose t ≥ 0 as large as possible.

x1 = t ≥ 0 X

x2 = 0 X

x3 = 2− 3t ≥ 0 t ≤ 2
3

x4 = 1− t ≥ 0 t ≤ 1

Thus, the largest possible t is min
{
1, 2

3

}
= 2

3 . The new solution is

x = (t, 0, 2− 3t, 1− t)> =

(
2

3
, 0, 0,

1

3

)>

Satisfying the Non-Negativity Constraints

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0(
x3

x4

)
=

(
2
1

)
− t

(
3
1

)
Choose t ≥ 0 as large as possible.

x1 = t ≥ 0 X

x2 = 0 X

x3 = 2− 3t ≥ 0 t ≤ 2
3

x4 = 1− t ≥ 0 t ≤ 1

Thus, the largest possible t is min
{
1, 2

3

}
= 2

3 . The new solution is

x = (t, 0, 2− 3t, 1− t)> =

(
2

3
, 0, 0,

1

3

)>

Satisfying the Non-Negativity Constraints

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0(
x3

x4

)
=

(
2
1

)
− t

(
3
1

)
Choose t ≥ 0 as large as possible.

x1 = t ≥ 0 X

x2 = 0 X

x3 = 2− 3t ≥ 0 t ≤ 2
3

x4 = 1− t ≥ 0 t ≤ 1

Thus, the largest possible t is min
{
1, 2

3

}
= 2

3 . The new solution is

x = (t, 0, 2− 3t, 1− t)> =

(
2

3
, 0, 0,

1

3

)>

Satisfying the Non-Negativity Constraints

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0(
x3

x4

)
=

(
2
1

)
− t

(
3
1

)
Choose t ≥ 0 as large as possible.

x1 = t ≥ 0 X

x2 = 0 X

x3 = 2− 3t ≥ 0 t ≤ 2
3

x4 = 1− t ≥ 0 t ≤ 1

Thus, the largest possible t is min
{
1, 2

3

}
= 2

3 . The new solution is

x = (t, 0, 2− 3t, 1− t)> =

(
2

3
, 0, 0,

1

3

)>

Satisfying the Non-Negativity Constraints

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0(
x3

x4

)
=

(
2
1

)
− t

(
3
1

)
Choose t ≥ 0 as large as possible.

x1 = t ≥ 0 X

x2 = 0 X

x3 = 2− 3t ≥ 0 t ≤ 2
3

x4 = 1− t ≥ 0 t ≤ 1

Thus, the largest possible t is min
{
1, 2

3

}
= 2

3 .

The new solution is

x = (t, 0, 2− 3t, 1− t)> =

(
2

3
, 0, 0,

1

3

)>

Satisfying the Non-Negativity Constraints

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 = t

x2 = 0(
x3

x4

)
=

(
2
1

)
− t

(
3
1

)
Choose t ≥ 0 as large as possible.

x1 = t ≥ 0 X

x2 = 0 X

x3 = 2− 3t ≥ 0 t ≤ 2
3

x4 = 1− t ≥ 0 t ≤ 1

Thus, the largest possible t is min
{
1, 2

3

}
= 2

3 . The new solution is

x = (t, 0, 2− 3t, 1− t)> =

(
2

3
, 0, 0,

1

3

)>

Repeating the Argument?

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 =
2

3

x2 = 0

x3 = 0

x4 =
1

3

Question

Is the new solution optimal? NO!

Question

Can we use the same trick to get a better solution? NO!

What made it work the first time around?

Repeating the Argument?

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 =
2

3

x2 = 0

x3 = 0

x4 =
1

3

Question

Is the new solution optimal?

NO!

Question

Can we use the same trick to get a better solution? NO!

What made it work the first time around?

Repeating the Argument?

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 =
2

3

x2 = 0

x3 = 0

x4 =
1

3

Question

Is the new solution optimal? NO!

Question

Can we use the same trick to get a better solution? NO!

What made it work the first time around?

Repeating the Argument?

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 =
2

3

x2 = 0

x3 = 0

x4 =
1

3

Question

Is the new solution optimal? NO!

Question

Can we use the same trick to get a better solution?

NO!

What made it work the first time around?

Repeating the Argument?

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 =
2

3

x2 = 0

x3 = 0

x4 =
1

3

Question

Is the new solution optimal? NO!

Question

Can we use the same trick to get a better solution? NO!

What made it work the first time around?

Repeating the Argument?

max (4, 3, 0, 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1 =
2

3

x2 = 0

x3 = 0

x4 =
1

3

Question

Is the new solution optimal? NO!

Question

Can we use the same trick to get a better solution? NO!

What made it work the first time around?

Remark

The LP needs to be in “canonical” form.

max (4 3 0 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1= 0

x2= 0

x3 = 2

x4 = 1

Revised strategy:

Step 1. Find a feasible solution, x.

Step 2. Rewrite LP so that it is in “canonical” form.

Step 3. If x is optimal, stop.

Step 4. If LP is unbounded, stop.

Step 5. Find a “better” feasible solution.

Remark

The LP needs to be in “canonical” form.

max (4 3 0 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1= 0

x2= 0

x3 = 2

x4 = 1

Revised strategy:

Step 1. Find a feasible solution, x.

Step 2. Rewrite LP so that it is in “canonical” form.

Step 3. If x is optimal, stop.

Step 4. If LP is unbounded, stop.

Step 5. Find a “better” feasible solution.

Remark

The LP needs to be in “canonical” form.

max (4 3 0 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1= 0

x2= 0

x3 = 2

x4 = 1

Revised strategy:

Step 1. Find a feasible solution, x.

Step 2. Rewrite LP so that it is in “canonical” form.

Step 3. If x is optimal, stop.

Step 4. If LP is unbounded, stop.

Step 5. Find a “better” feasible solution.

Remark

The LP needs to be in “canonical” form.

max (4 3 0 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1= 0

x2= 0

x3 = 2

x4 = 1

Revised strategy:

Step 1. Find a feasible solution, x.

Step 2. Rewrite LP so that it is in “canonical” form.

Step 3. If x is optimal, stop.

Step 4. If LP is unbounded, stop.

Step 5. Find a “better” feasible solution.

Remark

The LP needs to be in “canonical” form.

max (4 3 0 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1= 0

x2= 0

x3 = 2

x4 = 1

Revised strategy:

Step 1. Find a feasible solution, x.

Step 2. Rewrite LP so that it is in “canonical” form.

Step 3. If x is optimal, stop.

Step 4. If LP is unbounded, stop.

Step 5. Find a “better” feasible solution.

Remark

The LP needs to be in “canonical” form.

max (4 3 0 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1= 0

x2= 0

x3 = 2

x4 = 1

Revised strategy:

Step 1. Find a feasible solution, x.

Step 2. Rewrite LP so that it is in “canonical” form.

Step 3. If x is optimal, stop.

Step 4. If LP is unbounded, stop.

Step 5. Find a “better” feasible solution.

Remark

The LP needs to be in “canonical” form.

max (4 3 0 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1= 0

x2= 0

x3 = 2

x4 = 1

Revised strategy:

Step 1. Find a feasible solution, x.

Step 2. Rewrite LP so that it is in “canonical” form.

Step 3. If x is optimal, stop.

Step 4. If LP is unbounded, stop.

Step 5. Find a “better” feasible solution.

Remark

The LP needs to be in “canonical” form.

max (4 3 0 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1= 0

x2= 0

x3 = 2

x4 = 1

Revised strategy:

Step 1. Find a feasible solution, x.

Step 2. Rewrite LP so that it is in “canonical” form.

Step 3. If x is optimal, stop.

Step 4. If LP is unbounded, stop.

Step 5. Find a “better” feasible solution.

Remark

The LP needs to be in “canonical” form.

max (4 3 0 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1= 0

x2= 0

x3 = 2

x4 = 1

Revised strategy:

Step 1. Find a feasible solution, x.

Step 2. Rewrite LP so that it is in “canonical” form.

Step 3. If x is optimal, stop.

Step 4. If LP is unbounded, stop.

Step 5. Find a “better” feasible solution.

Remark

The LP needs to be in “canonical” form.

max (4 3 0 0)x+ 7

s.t. (
3 2 1 0
1 1 0 1

)
x =

(
2
1

)
x1, x2, x3, x4 ≥ 0

x1= 0

x2= 0

x3 = 2

x4 = 1

Revised strategy:

Step 1. Find a feasible solution, x.

Step 2. Rewrite LP so that it is in “canonical” form.

Step 3. If x is optimal, stop.

Step 4. If LP is unbounded, stop.

Step 5. Find a “better” feasible solution.

From Here to a Complete Algorithm

(1) Define what we mean by “canonical” form.

(2) Prove that we can always rewrite LPs in canonical form.

algorithm known as the simplex.

First on “To do list”:

• Define basis and basic solutions.

• Define canonical forms.

From Here to a Complete Algorithm

(1) Define what we mean by “canonical” form.

(2) Prove that we can always rewrite LPs in canonical form.

algorithm known as the simplex.

First on “To do list”:

• Define basis and basic solutions.

• Define canonical forms.

From Here to a Complete Algorithm

(1) Define what we mean by “canonical” form.

(2) Prove that we can always rewrite LPs in canonical form.

algorithm known as the simplex.

First on “To do list”:

• Define basis and basic solutions.

• Define canonical forms.

From Here to a Complete Algorithm

(1) Define what we mean by “canonical” form.

(2) Prove that we can always rewrite LPs in canonical form.

algorithm known as the simplex.

First on “To do list”:

• Define basis and basic solutions.

• Define canonical forms.

From Here to a Complete Algorithm

(1) Define what we mean by “canonical” form.

(2) Prove that we can always rewrite LPs in canonical form.

algorithm known as the simplex.

First on “To do list”:

• Define basis and basic solutions.

• Define canonical forms.

From Here to a Complete Algorithm

(1) Define what we mean by “canonical” form.

(2) Prove that we can always rewrite LPs in canonical form.

algorithm known as the simplex.

First on “To do list”:

• Define basis and basic solutions.

• Define canonical forms.

CO 250: Introduction to Optimization
Module 2: Linear Programs (Basis)

Notation

Consider

=
− −

−
−

Notation

Consider

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Notation

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Notation

Let B be a subset of column indices.
Then B is a column sub-matrix of indexed by set B.

B = , , B =
−

Notation

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Notation

Let B be a subset of column indices.

Then B is a column sub-matrix of indexed by set B.

B = , , B =
−

Notation

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Notation

Let B be a subset of column indices.
Then AB is a column sub-matrix of A indexed by set B.

B = , , B =
−

Notation

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Notation

Let B be a subset of column indices.
Then AB is a column sub-matrix of A indexed by set B.

B = {1, 2, 3}

B =
−

Notation

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Notation

Let B be a subset of column indices.
Then AB is a column sub-matrix of A indexed by set B.

B = {1, 2, 3} AB =





1 2 −1
0 1 0
0 0 1





Notation

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Notation

Let B be a subset of column indices.
Then AB is a column sub-matrix of A indexed by set B.

B = , , B =
−

Notation

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Notation

Let B be a subset of column indices.
Then AB is a column sub-matrix of A indexed by set B.

B = {1, 3, 4}

B =
−

Notation

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Notation

Let B be a subset of column indices.
Then AB is a column sub-matrix of A indexed by set B.

B = {1, 3, 4} AB =





1 −1 1
0 0 1
0 1 1





Notation

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Notation

Let B be a subset of column indices.
Then AB is a column sub-matrix of A indexed by set B.

B = {5} =
−
−
−

Notation

j denotes column j of .

Notation

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Notation

Let B be a subset of column indices.
Then AB is a column sub-matrix of A indexed by set B.

B = {5}

{5} =
−
−
−

Notation

j denotes column j of .

Notation

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Notation

Let B be a subset of column indices.
Then AB is a column sub-matrix of A indexed by set B.

B = {5} A{5} =





−1
−1
−1





Notation

j denotes column j of .

Notation

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Notation

Let B be a subset of column indices.
Then AB is a column sub-matrix of A indexed by set B.

B = {5} A{5} =





−1
−1
−1





Notation

Aj denotes column j of A.

Notation

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Notation

Let B be a subset of column indices.
Then AB is a column sub-matrix of A indexed by set B.

B = {5} A5 =





−1
−1
−1





Notation

Aj denotes column j of A.

Basis

Consider

=
− −

−
−

Definition

Let B be a subset of column indices. B is a basis if

(1) B is a square matrix,

(2) B is non-singular (columns are independent).

Is B = , , a basis? B =
−

YES

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices. B is a basis if

(1) B is a square matrix,

(2) B is non-singular (columns are independent).

Is B = , , a basis? B =
−

YES

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices.

B is a basis if

(1) B is a square matrix,

(2) B is non-singular (columns are independent).

Is B = , , a basis? B =
−

YES

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices. B is a basis if

(1) B is a square matrix,

(2) B is non-singular (columns are independent).

Is B = , , a basis? B =
−

YES

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices. B is a basis if

(1) AB is a square matrix,

(2) B is non-singular (columns are independent).

Is B = , , a basis? B =
−

YES

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices. B is a basis if

(1) AB is a square matrix,

(2) AB is non-singular (columns are independent).

Is B = , , a basis? B =
−

YES

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices. B is a basis if

(1) AB is a square matrix,

(2) AB is non-singular (columns are independent).

Is B = {1, 2, 3} a basis?

B =
−

YES

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices. B is a basis if

(1) AB is a square matrix,

(2) AB is non-singular (columns are independent).

Is B = {1, 2, 3} a basis? AB =





1 2 −1
0 1 0
0 0 1





YES

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices. B is a basis if

(1) AB is a square matrix,

(2) AB is non-singular (columns are independent).

Is B = {1, 2, 3} a basis? AB =





1 2 −1
0 1 0
0 0 1



 YES

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices. B is a basis if

(1) AB is a square matrix,

(2) AB is non-singular (columns are independent).

Is B = , a basis? B =
−
−
−

NO

B is not square

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices. B is a basis if

(1) AB is a square matrix,

(2) AB is non-singular (columns are independent).

Is B = {1, 5} a basis?

B =
−
−
−

NO

B is not square

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices. B is a basis if

(1) AB is a square matrix,

(2) AB is non-singular (columns are independent).

Is B = {1, 5} a basis? AB =





1 −1
0 −1
0 −1





NO

B is not square

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices. B is a basis if

(1) AB is a square matrix,

(2) AB is non-singular (columns are independent).

Is B = {1, 5} a basis? AB =





1 −1
0 −1
0 −1




NO

AB is not square

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices. B is a basis if

(1) AB is a square matrix,

(2) AB is non-singular (columns are independent).

Is B = , , a basis? B =
− NO

columns of B are
dependent

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices. B is a basis if

(1) AB is a square matrix,

(2) AB is non-singular (columns are independent).

Is B = {2, 3, 4} a basis?

B =
− NO

columns of B are
dependent

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices. B is a basis if

(1) AB is a square matrix,

(2) AB is non-singular (columns are independent).

Is B = {2, 3, 4} a basis? AB =





2 −1 1
1 0 1
0 1 1





NO
columns of B are

dependent

Basis

Consider
1 2 3 4 5

A =





1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





Definition

Let B be a subset of column indices. B is a basis if

(1) AB is a square matrix,

(2) AB is non-singular (columns are independent).

Is B = {2, 3, 4} a basis? AB =





2 −1 1
1 0 1
0 1 1





NO
columns of AB are

dependent

Question

Does every matrix have a basis?

NO.

=
−

− − − − −

The rows of are dependent!
There are no independent columns.

Theorem

Max number of independent columns =
Max number of independent rows.

Remark

Let be a matrix with independent rows. Then B is a basis if and only
if B is a maximal set of independent columns of .

Question

Does every matrix have a basis? NO.

=
−

− − − − −

The rows of are dependent!
There are no independent columns.

Theorem

Max number of independent columns =
Max number of independent rows.

Remark

Let be a matrix with independent rows. Then B is a basis if and only
if B is a maximal set of independent columns of .

Question

Does every matrix have a basis? NO.

A =





1 −1 1 2 0
2 3 0 1 1
−3 −2 −1 −3 −1





The rows of are dependent!
There are no independent columns.

Theorem

Max number of independent columns =
Max number of independent rows.

Remark

Let be a matrix with independent rows. Then B is a basis if and only
if B is a maximal set of independent columns of .

Question

Does every matrix have a basis? NO.

A =





1 −1 1 2 0
2 3 0 1 1
−3 −2 −1 −3 −1





The rows of A are dependent!

There are no independent columns.

Theorem

Max number of independent columns =
Max number of independent rows.

Remark

Let be a matrix with independent rows. Then B is a basis if and only
if B is a maximal set of independent columns of .

Question

Does every matrix have a basis? NO.

A =





1 −1 1 2 0
2 3 0 1 1
−3 −2 −1 −3 −1





The rows of A are dependent!
There are no 3 independent columns.

Theorem

Max number of independent columns =
Max number of independent rows.

Remark

Let be a matrix with independent rows. Then B is a basis if and only
if B is a maximal set of independent columns of .

Question

Does every matrix have a basis? NO.

A =





1 −1 1 2 0
2 3 0 1 1
−3 −2 −1 −3 −1





The rows of A are dependent!
There are no 3 independent columns.

Theorem

Max number of independent columns =
Max number of independent rows.

Remark

Let be a matrix with independent rows. Then B is a basis if and only
if B is a maximal set of independent columns of .

Question

Does every matrix have a basis? NO.

A =





1 −1 1 2 0
2 3 0 1 1
−3 −2 −1 −3 −1





The rows of A are dependent!
There are no 3 independent columns.

Theorem

Max number of independent columns =
Max number of independent rows.

Remark

Let A be a matrix with independent rows. Then B is a basis if and only
if B is a maximal set of independent columns of A.

Basic Solutions

− −
−
−

A

x =

b

Definition

Let B be a basis of .

• if j ∈ B then xj is a basic variable,

• if j ∈ B then xj is a non-basic variable.

Example

Basis B = , , . Then

• x1, x2, x4 are the basic variables, and

• x3, x5 are the non-basic variables.

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

Let B be a basis of .

• if j ∈ B then xj is a basic variable,

• if j ∈ B then xj is a non-basic variable.

Example

Basis B = , , . Then

• x1, x2, x4 are the basic variables, and

• x3, x5 are the non-basic variables.

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

Let B be a basis of A.

• if j ∈ B then xj is a basic variable,

• if j ∈ B then xj is a non-basic variable.

Example

Basis B = , , . Then

• x1, x2, x4 are the basic variables, and

• x3, x5 are the non-basic variables.

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

Let B be a basis of A.

• if j ∈ B then xj is a basic variable,

• if j ∈ B then xj is a non-basic variable.

Example

Basis B = , , . Then

• x1, x2, x4 are the basic variables, and

• x3, x5 are the non-basic variables.

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

Let B be a basis of A.

• if j ∈ B then xj is a basic variable,

• if j /∈ B then xj is a non-basic variable.

Example

Basis B = , , . Then

• x1, x2, x4 are the basic variables, and

• x3, x5 are the non-basic variables.

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

Let B be a basis of A.

• if j ∈ B then xj is a basic variable,

• if j /∈ B then xj is a non-basic variable.

Example

Basis B = {1, 2, 4}.

Then

• x1, x2, x4 are the basic variables, and

• x3, x5 are the non-basic variables.

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

Let B be a basis of A.

• if j ∈ B then xj is a basic variable,

• if j /∈ B then xj is a non-basic variable.

Example

Basis B = {1, 2, 4}. Then

• x1, x2, x4 are the basic variables,

and

• x3, x5 are the non-basic variables.

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

Let B be a basis of A.

• if j ∈ B then xj is a basic variable,

• if j /∈ B then xj is a non-basic variable.

Example

Basis B = {1, 2, 4}. Then

• x1, x2, x4 are the basic variables, and

• x3, x5 are the non-basic variables.

Basic Solutions

− −
−
−

A

x =

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = whenever j ∈ B.

x = : basic sol’n for B = , ,
(1) Ax = b X

(2) x4 = x5 = X

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = whenever j ∈ B.

x = : basic sol’n for B = , ,
(1) Ax = b X

(2) x4 = x5 = X

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = whenever j ∈ B.

x = : basic sol’n for B = , ,
(1) Ax = b X

(2) x4 = x5 = X

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = whenever j ∈ B.

x = : basic sol’n for B = , ,
(1) Ax = b X

(2) x4 = x5 = X

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = 0 whenever j /∈ B.

x = : basic sol’n for B = , ,
(1) Ax = b X

(2) x4 = x5 = X

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = 0 whenever j /∈ B.

x =









1
1
1
0
0









: basic sol’n for B = {1, 2, 3}

(1) Ax = b X

(2) x4 = x5 = X

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = 0 whenever j /∈ B.

x =









1
1
1
0
0









: basic sol’n for B = {1, 2, 3}
(1) Ax = b

X

(2) x4 = x5 = X

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = 0 whenever j /∈ B.

x =









1
1
1
0
0









: basic sol’n for B = {1, 2, 3}
(1) Ax = b X

(2) x4 = x5 = X

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = 0 whenever j /∈ B.

x =









1
1
1
0
0









: basic sol’n for B = {1, 2, 3}
(1) Ax = b X

(2) x4 = x5 = 0

X

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = 0 whenever j /∈ B.

x =









1
1
1
0
0









: basic sol’n for B = {1, 2, 3}
(1) Ax = b X

(2) x4 = x5 = 0 X

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

=





2
1
1





︸ ︷︷ ︸

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = 0 whenever j /∈ B.

x = : basic sol’n for B = , ,
(1) Ax = b X

(2) x2 = x5 = X

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

=





2
1
1





︸ ︷︷ ︸

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = 0 whenever j /∈ B.

x =









1
0
0
1
0









: basic sol’n for B = {1, 3, 4}

(1) Ax = b X

(2) x2 = x5 = X

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

=





2
1
1





︸ ︷︷ ︸

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = 0 whenever j /∈ B.

x =









1
0
0
1
0









: basic sol’n for B = {1, 3, 4}
(1) Ax = b

X

(2) x2 = x5 = X

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

=





2
1
1





︸ ︷︷ ︸

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = 0 whenever j /∈ B.

x =









1
0
0
1
0









: basic sol’n for B = {1, 3, 4}
(1) Ax = b X

(2) x2 = x5 = X

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

=





2
1
1





︸ ︷︷ ︸

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = 0 whenever j /∈ B.

x =









1
0
0
1
0









: basic sol’n for B = {1, 3, 4}
(1) Ax = b X

(2) x2 = x5 = 0

X

Basic Solutions

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

=





2
1
1





︸ ︷︷ ︸

b

Definition

x is a basic solution for basis B if

(1) Ax = b, and

(2) xj = 0 whenever j /∈ B.

x =









1
0
0
1
0









: basic sol’n for B = {1, 3, 4}
(1) Ax = b X

(2) x2 = x5 = 0 X

1 2 3 4
(
1 0 1 −1
0 1 1 1

)

︸ ︷︷ ︸

A

x =

(
2
2

)

︸︷︷︸

b

Problem

Find a basic solution x for the basis B = , ?

(
2
2

)

=

(
1 0 1 −1
0 1 1 1

)

x

= x1

(
1
0

)

+ x2

=0

(
1
0

)

+ x3

=0

(
1
1

)

+ x4

(
−1
1

)

=

(
1 −1
0 1

)(
x1

x4

)

(
x1

x4

)

=

(
1 −1
0 1

)−1 (
2
2

)

=

(
1 1
0 1

)(
2
2

)

=

(
4
2

)

Thus, the basic solution is x = (4, 0, 0, 2)⊤.

Question

Did we have a choice for a basic solution x given B = {1, 4}?

NO!

1 2 3 4
(
1 0 1 −1
0 1 1 1

)

︸ ︷︷ ︸

A

x =

(
2
2

)

︸︷︷︸

b

Problem

Find a basic solution x for the basis B = {1, 4}?

(
2
2

)

=

(
1 0 1 −1
0 1 1 1

)

x

= x1

(
1
0

)

+ x2

=0

(
1
0

)

+ x3

=0

(
1
1

)

+ x4

(
−1
1

)

=

(
1 −1
0 1

)(
x1

x4

)

(
x1

x4

)

=

(
1 −1
0 1

)−1 (
2
2

)

=

(
1 1
0 1

)(
2
2

)

=

(
4
2

)

Thus, the basic solution is x = (4, 0, 0, 2)⊤.

Question

Did we have a choice for a basic solution x given B = {1, 4}?

NO!

1 2 3 4
(
1 0 1 −1
0 1 1 1

)

︸ ︷︷ ︸

A

x =

(
2
2

)

︸︷︷︸

b

Problem

Find a basic solution x for the basis B = {1, 4}?

(
2
2

)

=

(
1 0 1 −1
0 1 1 1

)

x

= x1

(
1
0

)

+ x2

=0

(
1
0

)

+ x3

=0

(
1
1

)

+ x4

(
−1
1

)

=

(
1 −1
0 1

)(
x1

x4

)

(
x1

x4

)

=

(
1 −1
0 1

)−1 (
2
2

)

=

(
1 1
0 1

)(
2
2

)

=

(
4
2

)

Thus, the basic solution is x = (4, 0, 0, 2)⊤.

Question

Did we have a choice for a basic solution x given B = {1, 4}?

NO!

1 2 3 4
(
1 0 1 −1
0 1 1 1

)

︸ ︷︷ ︸

A

x =

(
2
2

)

︸︷︷︸

b

Problem

Find a basic solution x for the basis B = {1, 4}?

(
2
2

)

=

(
1 0 1 −1
0 1 1 1

)

x

= x1

(
1
0

)

+ x2
︸︷︷︸
=0

(
1
0

)

+ x3
︸︷︷︸
=0

(
1
1

)

+ x4

(
−1
1

)

=

(
1 −1
0 1

)(
x1

x4

)

(
x1

x4

)

=

(
1 −1
0 1

)−1 (
2
2

)

=

(
1 1
0 1

)(
2
2

)

=

(
4
2

)

Thus, the basic solution is x = (4, 0, 0, 2)⊤.

Question

Did we have a choice for a basic solution x given B = {1, 4}?

NO!

1 2 3 4
(
1 0 1 −1
0 1 1 1

)

︸ ︷︷ ︸

A

x =

(
2
2

)

︸︷︷︸

b

Problem

Find a basic solution x for the basis B = {1, 4}?

(
2
2

)

=

(
1 0 1 −1
0 1 1 1

)

x

= x1

(
1
0

)

+ x2
︸︷︷︸
=0

(
1
0

)

+ x3
︸︷︷︸
=0

(
1
1

)

+ x4

(
−1
1

)

=

(
1 −1
0 1

)(
x1

x4

)

(
x1

x4

)

=

(
1 −1
0 1

)−1 (
2
2

)

=

(
1 1
0 1

)(
2
2

)

=

(
4
2

)

Thus, the basic solution is x = (4, 0, 0, 2)⊤.

Question

Did we have a choice for a basic solution x given B = {1, 4}?

NO!

1 2 3 4
(
1 0 1 −1
0 1 1 1

)

︸ ︷︷ ︸

A

x =

(
2
2

)

︸︷︷︸

b

Problem

Find a basic solution x for the basis B = {1, 4}?

(
2
2

)

=

(
1 0 1 −1
0 1 1 1

)

x

= x1

(
1
0

)

+ x2
︸︷︷︸
=0

(
1
0

)

+ x3
︸︷︷︸
=0

(
1
1

)

+ x4

(
−1
1

)

=

(
1 −1
0 1

)(
x1

x4

)

(
x1

x4

)

=

(
1 −1
0 1

)−1 (
2
2

)

=

(
1 1
0 1

)(
2
2

)

=

(
4
2

)

Thus, the basic solution is x = (4, 0, 0, 2)⊤.

Question

Did we have a choice for a basic solution x given B = {1, 4}?

NO!

1 2 3 4
(
1 0 1 −1
0 1 1 1

)

︸ ︷︷ ︸

A

x =

(
2
2

)

︸︷︷︸

b

Problem

Find a basic solution x for the basis B = {1, 4}?

(
2
2

)

=

(
1 0 1 −1
0 1 1 1

)

x

= x1

(
1
0

)

+ x2
︸︷︷︸
=0

(
1
0

)

+ x3
︸︷︷︸
=0

(
1
1

)

+ x4

(
−1
1

)

=

(
1 −1
0 1

)(
x1

x4

)

(
x1

x4

)

=

(
1 −1
0 1

)−1 (
2
2

)

=

(
1 1
0 1

)(
2
2

)

=

(
4
2

)

Thus, the basic solution is x = (4, 0, 0, 2)⊤.

Question

Did we have a choice for a basic solution x given B = {1, 4}?

NO!

1 2 3 4
(
1 0 1 −1
0 1 1 1

)

︸ ︷︷ ︸

A

x =

(
2
2

)

︸︷︷︸

b

Problem

Find a basic solution x for the basis B = {1, 4}?

(
2
2

)

=

(
1 0 1 −1
0 1 1 1

)

x

= x1

(
1
0

)

+ x2
︸︷︷︸
=0

(
1
0

)

+ x3
︸︷︷︸
=0

(
1
1

)

+ x4

(
−1
1

)

=

(
1 −1
0 1

)(
x1

x4

)

(
x1

x4

)

=

(
1 −1
0 1

)−1 (
2
2

)

=

(
1 1
0 1

)(
2
2

)

=

(
4
2

)

Thus, the basic solution is x = (4, 0, 0, 2)⊤.

Question

Did we have a choice for a basic solution x given B = {1, 4}?

NO!

1 2 3 4
(
1 0 1 −1
0 1 1 1

)

︸ ︷︷ ︸

A

x =

(
2
2

)

︸︷︷︸

b

Problem

Find a basic solution x for the basis B = {1, 4}?

(
2
2

)

=

(
1 0 1 −1
0 1 1 1

)

x

= x1

(
1
0

)

+ x2
︸︷︷︸
=0

(
1
0

)

+ x3
︸︷︷︸
=0

(
1
1

)

+ x4

(
−1
1

)

=

(
1 −1
0 1

)(
x1

x4

)

(
x1

x4

)

=

(
1 −1
0 1

)−1 (
2
2

)

=

(
1 1
0 1

)(
2
2

)

=

(
4
2

)

Thus, the basic solution is x = (4, 0, 0, 2)⊤.

Question

Did we have a choice for a basic solution x given B = {1, 4}?

NO!

1 2 3 4
(
1 0 1 −1
0 1 1 1

)

︸ ︷︷ ︸

A

x =

(
2
2

)

︸︷︷︸

b

Problem

Find a basic solution x for the basis B = {1, 4}?

(
2
2

)

=

(
1 0 1 −1
0 1 1 1

)

x

= x1

(
1
0

)

+ x2
︸︷︷︸
=0

(
1
0

)

+ x3
︸︷︷︸
=0

(
1
1

)

+ x4

(
−1
1

)

=

(
1 −1
0 1

)(
x1

x4

)

(
x1

x4

)

=

(
1 −1
0 1

)−1 (
2
2

)

=

(
1 1
0 1

)(
2
2

)

=

(
4
2

)

Thus, the basic solution is x = (4, 0, 0, 2)⊤.

Question

Did we have a choice for a basic solution x given B = {1, 4}?

NO!

1 2 3 4
(
1 0 1 −1
0 1 1 1

)

︸ ︷︷ ︸

A

x =

(
2
2

)

︸︷︷︸

b

Problem

Find a basic solution x for the basis B = {1, 4}?

(
2
2

)

=

(
1 0 1 −1
0 1 1 1

)

x

= x1

(
1
0

)

+ x2
︸︷︷︸
=0

(
1
0

)

+ x3
︸︷︷︸
=0

(
1
1

)

+ x4

(
−1
1

)

=

(
1 −1
0 1

)(
x1

x4

)

(
x1

x4

)

=

(
1 −1
0 1

)−1 (
2
2

)

=

(
1 1
0 1

)(
2
2

)

=

(
4
2

)

Thus, the basic solution is x = (4, 0, 0, 2)⊤.

Question

Did we have a choice for a basic solution x given B = {1, 4}? NO!

Basic Solutions – Uniqueness

Proposition

Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.

Before we proceed with the proof, let’s look at some conventions.

− −
−
−

A

x =

b
F r B = , , ,

B = and xB =
x1

x2

x4

(basic variables)

columns of B and elements of xB are rdered by B!

Basic Solutions – Uniqueness

Proposition

Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.

Before we proceed with the proof, let’s look at some conventions.

− −
−
−

A

x =

b
F r B = , , ,

B = and xB =
x1

x2

x4

(basic variables)

columns of B and elements of xB are rdered by B!

Basic Solutions – Uniqueness

Proposition

Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.

Before we proceed with the proof, let’s look at some conventions.

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b

F r B = , , ,

B = and xB =
x1

x2

x4

(basic variables)

columns of B and elements of xB are rdered by B!

Basic Solutions – Uniqueness

Proposition

Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.

Before we proceed with the proof, let’s look at some conventions.

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b
For B = {1, 2, 4},

B = and xB =
x1

x2

x4

(basic variables)

columns of B and elements of xB are rdered by B!

Basic Solutions – Uniqueness

Proposition

Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.

Before we proceed with the proof, let’s look at some conventions.

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b
For B = {1, 2, 4},

AB =





1 2 1
0 1 1
0 0 1



 and xB =





x1

x2

x4



 (basic variables)

columns of B and elements of xB are rdered by B!

Basic Solutions – Uniqueness

Proposition

Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.

Before we proceed with the proof, let’s look at some conventions.

1 2 3 4 5




1 2 −1 1 −1
0 1 0 1 −1
0 0 1 1 −1





︸ ︷︷ ︸

A

x =





2
1
1





︸ ︷︷ ︸

b
For B = {1, 2, 4},

AB =





1 2 1
0 1 1
0 0 1



 and xB =





x1

x2

x4



 (basic variables)

columns of AB and elements of xB are ordered by B!

Basic Solutions – Uniqueness

Proposition

Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.

Proof

b =Ax

=
∑

j

jxj

=
∑

j∈B

jxj +
∑

j /∈B

j xj

=0

=
∑

j∈B

jxj = BxB

Since B is a basis, it implies B is non-singular, i.e., −1

B exists.

Hence, xB = −1

B b.

Basic Solutions – Uniqueness

Proposition

Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.

Proof

b =Ax

=
∑

j

jxj

=
∑

j∈B

jxj +
∑

j /∈B

j xj

=0

=
∑

j∈B

jxj = BxB

Since B is a basis, it implies B is non-singular, i.e., −1

B exists.

Hence, xB = −1

B b.

Basic Solutions – Uniqueness

Proposition

Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.

Proof

b =Ax =
∑

j

Ajxj

=
∑

j∈B

jxj +
∑

j /∈B

j xj

=0

=
∑

j∈B

jxj = BxB

Since B is a basis, it implies B is non-singular, i.e., −1

B exists.

Hence, xB = −1

B b.

Basic Solutions – Uniqueness

Proposition

Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.

Proof

b =Ax =
∑

j

Ajxj

=
∑

j∈B

Ajxj +
∑

j /∈B

Aj xj
︸︷︷︸
=0

=
∑

j∈B

jxj = BxB

Since B is a basis, it implies B is non-singular, i.e., −1

B exists.

Hence, xB = −1

B b.

Basic Solutions – Uniqueness

Proposition

Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.

Proof

b =Ax =
∑

j

Ajxj

=
∑

j∈B

Ajxj +
∑

j /∈B

Aj xj
︸︷︷︸
=0

=
∑

j∈B

Ajxj = ABxB

Since B is a basis, it implies B is non-singular, i.e., −1

B exists.

Hence, xB = −1

B b.

Basic Solutions – Uniqueness

Proposition

Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.

Proof

b =Ax =
∑

j

Ajxj

=
∑

j∈B

Ajxj +
∑

j /∈B

Aj xj
︸︷︷︸
=0

=
∑

j∈B

Ajxj = ABxB

Since B is a basis, it implies AB is non-singular, i.e., A−1

B exists.

Hence, xB = −1

B b.

Basic Solutions – Uniqueness

Proposition

Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.

Proof

b =Ax =
∑

j

Ajxj

=
∑

j∈B

Ajxj +
∑

j /∈B

Aj xj
︸︷︷︸
=0

=
∑

j∈B

Ajxj = ABxB

Since B is a basis, it implies AB is non-singular, i.e., A−1

B exists.

Hence, xB = A−1

B b.

When Is a Vector Basic?

Definition

Consider Ax = b with independent rows.
Vector x is a basic solution if it is a basic solution for some basis B.

(

−

)

A

x =

()

b

Question

Is x = (0, , , , 3)⊤ basic? YES!

Is x basic for B = , ?
(1) Ax = b X

(2) x1 = x2 = x4 = X

When Is a Vector Basic?

Definition

Consider Ax = b with independent rows.

Vector x is a basic solution if it is a basic solution for some basis B.

(

−

)

A

x =

()

b

Question

Is x = (0, , , , 3)⊤ basic? YES!

Is x basic for B = , ?
(1) Ax = b X

(2) x1 = x2 = x4 = X

When Is a Vector Basic?

Definition

Consider Ax = b with independent rows.
Vector x is a basic solution if it is a basic solution for some basis B.

(

−

)

A

x =

()

b

Question

Is x = (0, , , , 3)⊤ basic? YES!

Is x basic for B = , ?
(1) Ax = b X

(2) x1 = x2 = x4 = X

When Is a Vector Basic?

Definition

Consider Ax = b with independent rows.
Vector x is a basic solution if it is a basic solution for some basis B.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, , , , 3)⊤ basic? YES!

Is x basic for B = , ?
(1) Ax = b X

(2) x1 = x2 = x4 = X

When Is a Vector Basic?

Definition

Consider Ax = b with independent rows.
Vector x is a basic solution if it is a basic solution for some basis B.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 0, 3, 0, 3)⊤ basic?

YES!

Is x basic for B = , ?
(1) Ax = b X

(2) x1 = x2 = x4 = X

When Is a Vector Basic?

Definition

Consider Ax = b with independent rows.
Vector x is a basic solution if it is a basic solution for some basis B.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 0, 3, 0, 3)⊤ basic? YES!

Is x basic for B = , ?
(1) Ax = b X

(2) x1 = x2 = x4 = X

When Is a Vector Basic?

Definition

Consider Ax = b with independent rows.
Vector x is a basic solution if it is a basic solution for some basis B.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 0, 3, 0, 3)⊤ basic? YES!

Is x basic for B = {3, 5}?

(1) Ax = b X

(2) x1 = x2 = x4 = X

When Is a Vector Basic?

Definition

Consider Ax = b with independent rows.
Vector x is a basic solution if it is a basic solution for some basis B.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 0, 3, 0, 3)⊤ basic? YES!

Is x basic for B = {3, 5}?
(1) Ax = b

X

(2) x1 = x2 = x4 = X

When Is a Vector Basic?

Definition

Consider Ax = b with independent rows.
Vector x is a basic solution if it is a basic solution for some basis B.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 0, 3, 0, 3)⊤ basic? YES!

Is x basic for B = {3, 5}?
(1) Ax = b X

(2) x1 = x2 = x4 = X

When Is a Vector Basic?

Definition

Consider Ax = b with independent rows.
Vector x is a basic solution if it is a basic solution for some basis B.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 0, 3, 0, 3)⊤ basic? YES!

Is x basic for B = {3, 5}?
(1) Ax = b X

(2) x1 = x2 = x4 = 0

X

When Is a Vector Basic?

Definition

Consider Ax = b with independent rows.
Vector x is a basic solution if it is a basic solution for some basis B.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 0, 3, 0, 3)⊤ basic? YES!

Is x basic for B = {3, 5}?
(1) Ax = b X

(2) x1 = x2 = x4 = 0 X

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, , , , 0)⊤ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = = implies ∈ B.

• x4 = = implies ∈ B.

Thus,

{2,4} =

()

is a column submatrix of B . But the columns of {2,4} are dependent,
so B is singular and B is not a basis, a contradiction.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic?

NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = = implies ∈ B.

• x4 = = implies ∈ B.

Thus,

{2,4} =

()

is a column submatrix of B . But the columns of {2,4} are dependent,
so B is singular and B is not a basis, a contradiction.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = = implies ∈ B.

• x4 = = implies ∈ B.

Thus,

{2,4} =

()

is a column submatrix of B . But the columns of {2,4} are dependent,
so B is singular and B is not a basis, a contradiction.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = = implies ∈ B.

• x4 = = implies ∈ B.

Thus,

{2,4} =

()

is a column submatrix of B . But the columns of {2,4} are dependent,
so B is singular and B is not a basis, a contradiction.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = 1 6= 0 implies 2 ∈ B.

• x4 = = implies ∈ B.

Thus,

{2,4} =

()

is a column submatrix of B . But the columns of {2,4} are dependent,
so B is singular and B is not a basis, a contradiction.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = 1 6= 0 implies 2 ∈ B.

• x4 = 1 6= 0 implies 4 ∈ B.

Thus,

{2,4} =

()

is a column submatrix of B . But the columns of {2,4} are dependent,
so B is singular and B is not a basis, a contradiction.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = 1 6= 0 implies 2 ∈ B.

• x4 = 1 6= 0 implies 4 ∈ B.

Thus,

A{2,4} =

(
2 4
1 2

)

is a column submatrix of AB .

But the columns of {2,4} are dependent,
so B is singular and B is not a basis, a contradiction.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = 1 6= 0 implies 2 ∈ B.

• x4 = 1 6= 0 implies 4 ∈ B.

Thus,

A{2,4} =

(
2 4
1 2

)

is a column submatrix of AB . But the columns of A{2,4} are dependent,

so B is singular and B is not a basis, a contradiction.

1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = 1 6= 0 implies 2 ∈ B.

• x4 = 1 6= 0 implies 4 ∈ B.

Thus,

A{2,4} =

(
2 4
1 2

)

is a column submatrix of AB . But the columns of A{2,4} are dependent,
so AB is singular and B is not a basis, a contradiction.

Multiple Bases for a Basic Solution

1 2 3 4 5
(
3 2 0 1 1
1 0 1 1 2

)

︸ ︷︷ ︸

A

x =

(
0
0

)

︸︷︷︸

b

Note: x = (0, , , , 0)⊤ is a basic solution for

• basis B = , ,

• basis B′ = , ,

• basis B′′ = , ,

Remark

A basic solution can be the basic solution for more than one basis.

Multiple Bases for a Basic Solution

1 2 3 4 5
(
3 2 0 1 1
1 0 1 1 2

)

︸ ︷︷ ︸

A

x =

(
0
0

)

︸︷︷︸

b

Note: x = (0, 0, 0, 0, 0)⊤ is a basic solution for

• basis B = , ,

• basis B′ = , ,

• basis B′′ = , ,

Remark

A basic solution can be the basic solution for more than one basis.

Multiple Bases for a Basic Solution

1 2 3 4 5
(
3 2 0 1 1
1 0 1 1 2

)

︸ ︷︷ ︸

A

x =

(
0
0

)

︸︷︷︸

b

Note: x = (0, 0, 0, 0, 0)⊤ is a basic solution for

• basis B = {1, 2},

• basis B′ = , ,

• basis B′′ = , ,

Remark

A basic solution can be the basic solution for more than one basis.

Multiple Bases for a Basic Solution

1 2 3 4 5
(
3 2 0 1 1
1 0 1 1 2

)

︸ ︷︷ ︸

A

x =

(
0
0

)

︸︷︷︸

b

Note: x = (0, 0, 0, 0, 0)⊤ is a basic solution for

• basis B = {1, 2},

• basis B′ = {1, 3},

• basis B′′ = , ,

Remark

A basic solution can be the basic solution for more than one basis.

Multiple Bases for a Basic Solution

1 2 3 4 5
(
3 2 0 1 1
1 0 1 1 2

)

︸ ︷︷ ︸

A

x =

(
0
0

)

︸︷︷︸

b

Note: x = (0, 0, 0, 0, 0)⊤ is a basic solution for

• basis B = {1, 2},

• basis B′ = {1, 3},

• basis B′′ = {2, 4},

Remark

A basic solution can be the basic solution for more than one basis.

Multiple Bases for a Basic Solution

1 2 3 4 5
(
3 2 0 1 1
1 0 1 1 2

)

︸ ︷︷ ︸

A

x =

(
0
0

)

︸︷︷︸

b

Note: x = (0, 0, 0, 0, 0)⊤ is a basic solution for

• basis B = {1, 2},

• basis B′ = {1, 3},

• basis B′′ = {2, 4},

Remark

A basic solution can be the basic solution for more than one basis.

1 2 3 4 5
(
3 2 0 1 1
1 0 1 1 2

)

︸ ︷︷ ︸

A

x =

(
0
0

)

︸︷︷︸

b

Note: x = (0, 0, 0, 0, 0)⊤ is a basic solution for

• basis B = {1, 2},

• basis B′ = {1, 3},

• basis B′′ = {2, 4},

Remark

A basic solution can be the basic solution for more than one basis.

1 2 3 4 5
(
3 2 0 1 1
1 0 1 1 2

)

︸ ︷︷ ︸

A

x =

(
0
0

)

︸︷︷︸

b

Note: x = (0, 0, 0, 0, 0)⊤ is a basic solution for

• basis B = {1, 2},

• basis B′ = {1, 3},

• basis B′′ = {2, 4},

Remark

A basic solution can be the basic solution for more than one basis.

B

B0

B00

x

Relation to LPs

Problem in SEF:
max c⊤x : Ax = b, x ≥ 0 (P)

Remark

If the rows of are dependent, then either

• there is no solution to Ax = b; (P) is infeasible, OR

• a constraint of Ax = b can be removed
without changing the solutions.

Remark

We may assume, when solving (P), that rows of are independent.

Definition

A basic solution x of Ax = b is feasible if x ≥ , i.e., if it is feasible
for (P).

Relation to LPs

Problem in SEF:
max{c⊤x : Ax = b, x ≥ 0} (P)

Remark

If the rows of are dependent, then either

• there is no solution to Ax = b; (P) is infeasible, OR

• a constraint of Ax = b can be removed
without changing the solutions.

Remark

We may assume, when solving (P), that rows of are independent.

Definition

A basic solution x of Ax = b is feasible if x ≥ , i.e., if it is feasible
for (P).

Relation to LPs

Problem in SEF:
max{c⊤x : Ax = b, x ≥ 0} (P)

Remark

If the rows of A are dependent, then either

• there is no solution to Ax = b; (P) is infeasible, OR

• a constraint of Ax = b can be removed
without changing the solutions.

Remark

We may assume, when solving (P), that rows of are independent.

Definition

A basic solution x of Ax = b is feasible if x ≥ , i.e., if it is feasible
for (P).

Relation to LPs

Problem in SEF:
max{c⊤x : Ax = b, x ≥ 0} (P)

Remark

If the rows of A are dependent, then either

• there is no solution to Ax = b; (P) is infeasible,

OR

• a constraint of Ax = b can be removed
without changing the solutions.

Remark

We may assume, when solving (P), that rows of are independent.

Definition

A basic solution x of Ax = b is feasible if x ≥ , i.e., if it is feasible
for (P).

Relation to LPs

Problem in SEF:
max{c⊤x : Ax = b, x ≥ 0} (P)

Remark

If the rows of A are dependent, then either

• there is no solution to Ax = b; (P) is infeasible, OR

• a constraint of Ax = b can be removed
without changing the solutions.

Remark

We may assume, when solving (P), that rows of are independent.

Definition

A basic solution x of Ax = b is feasible if x ≥ , i.e., if it is feasible
for (P).

Relation to LPs

Problem in SEF:
max{c⊤x : Ax = b, x ≥ 0} (P)

Remark

If the rows of A are dependent, then either

• there is no solution to Ax = b; (P) is infeasible, OR

• a constraint of Ax = b can be removed
without changing the solutions.

Remark

We may assume, when solving (P), that rows of are independent.

Definition

A basic solution x of Ax = b is feasible if x ≥ , i.e., if it is feasible
for (P).

Relation to LPs

Problem in SEF:
max{c⊤x : Ax = b, x ≥ 0} (P)

Remark

If the rows of A are dependent, then either

• there is no solution to Ax = b; (P) is infeasible, OR

• a constraint of Ax = b can be removed
without changing the solutions.

Remark

We may assume, when solving (P), that rows of A are independent.

Definition

A basic solution x of Ax = b is feasible if x ≥ , i.e., if it is feasible
for (P).

Relation to LPs

Problem in SEF:
max{c⊤x : Ax = b, x ≥ 0} (P)

Remark

If the rows of A are dependent, then either

• there is no solution to Ax = b; (P) is infeasible, OR

• a constraint of Ax = b can be removed
without changing the solutions.

Remark

We may assume, when solving (P), that rows of A are independent.

Definition

A basic solution x of Ax = b is feasible if x ≥ 0, i.e., if it is feasible
for (P).

Consider the system
Ax = b

where the rows of A are independent.

Recap

(1) B is a basis if B is a square, non-singular matrix.

(2) a solution x to Ax = b, is basic for B, if xj = when j ∈ B.

(3) x is basic if it is basic for some basis B.

(4) Each basis has a unique associated basic solution.

(5) Several bases can have the same basic solution.

(6) A basic solution is feasible if it is non-negative.

Consider the system
Ax = b

where the rows of A are independent.

Recap

(1) B is a basis if AB is a square, non-singular matrix.

(2) a solution x to Ax = b, is basic for B, if xj = when j ∈ B.

(3) x is basic if it is basic for some basis B.

(4) Each basis has a unique associated basic solution.

(5) Several bases can have the same basic solution.

(6) A basic solution is feasible if it is non-negative.

Consider the system
Ax = b

where the rows of A are independent.

Recap

(1) B is a basis if AB is a square, non-singular matrix.

(2) a solution x to Ax = b, is basic for B, if xj = 0 when j /∈ B.

(3) x is basic if it is basic for some basis B.

(4) Each basis has a unique associated basic solution.

(5) Several bases can have the same basic solution.

(6) A basic solution is feasible if it is non-negative.

Consider the system
Ax = b

where the rows of A are independent.

Recap

(1) B is a basis if AB is a square, non-singular matrix.

(2) a solution x to Ax = b, is basic for B, if xj = 0 when j /∈ B.

(3) x is basic if it is basic for some basis B.

(4) Each basis has a unique associated basic solution.

(5) Several bases can have the same basic solution.

(6) A basic solution is feasible if it is non-negative.

Consider the system
Ax = b

where the rows of A are independent.

Recap

(1) B is a basis if AB is a square, non-singular matrix.

(2) a solution x to Ax = b, is basic for B, if xj = 0 when j /∈ B.

(3) x is basic if it is basic for some basis B.

(4) Each basis has a unique associated basic solution.

(5) Several bases can have the same basic solution.

(6) A basic solution is feasible if it is non-negative.

Consider the system
Ax = b

where the rows of A are independent.

Recap

(1) B is a basis if AB is a square, non-singular matrix.

(2) a solution x to Ax = b, is basic for B, if xj = 0 when j /∈ B.

(3) x is basic if it is basic for some basis B.

(4) Each basis has a unique associated basic solution.

(5) Several bases can have the same basic solution.

(6) A basic solution is feasible if it is non-negative.

Consider the system
Ax = b

where the rows of A are independent.

Recap

(1) B is a basis if AB is a square, non-singular matrix.

(2) a solution x to Ax = b, is basic for B, if xj = 0 when j /∈ B.

(3) x is basic if it is basic for some basis B.

(4) Each basis has a unique associated basic solution.

(5) Several bases can have the same basic solution.

(6) A basic solution is feasible if it is non-negative.

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

CO 250: Introduction to Optimization
Module 2: Linear Programs (Canonical Forms)

Consider
max

{
c>x : Ax = b, x ≥ 0

}
(P)

Definition

Let B be a basis of A. Then (P) is in canonical form for B if

(P1) AB = I, and

(P2) cj = 0 for all j ∈ B.

max (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

Canonical form for
B = {1, 2}

Consider
max

{
c>x : Ax = b, x ≥ 0

}
(P)

Definition

Let B be a basis of A. Then (P) is in canonical form for B if

(P1) AB = I, and

(P2) cj = 0 for all j ∈ B.

max (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

Canonical form for
B = {1, 2}

Consider
max

{
c>x : Ax = b, x ≥ 0

}
(P)

Definition

Let B be a basis of A. Then (P) is in canonical form for B if

(P1) AB = I, and

(P2) cj = 0 for all j ∈ B.

max (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

Canonical form for
B = {1, 2}

Consider
max

{
c>x : Ax = b, x ≥ 0

}
(P)

Definition

Let B be a basis of A. Then (P) is in canonical form for B if

(P1) AB = I, and

(P2) cj = 0 for all j ∈ B.

max (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

Canonical form for
B = {1, 2}

Consider
max

{
c>x : Ax = b, x ≥ 0

}
(P)

Definition

Let B be a basis of A. Then (P) is in canonical form for B if

(P1) AB = I, and

(P2) cj = 0 for all j ∈ B.

max (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

Canonical form for
B = {1, 2}

Consider
max

{
c>x : Ax = b, x ≥ 0

}
(P)

Definition

Let B be a basis of A. Then (P) is in canonical form for B if

(P1) AB = I, and

(P2) cj = 0 for all j ∈ B.

max (−2 0 0 6)x + 2

s.t. (
−1 1 0 3
1 0 1 −1

)
x =

(
1
1

)
x1, x2, x3, x4 ≥ 0

Canonical form for
B = {2, 3}

Consider
max

{
c>x : Ax = b, x ≥ 0

}
(P)

Idea

For any basis B we can “rewrite” (P) so that it is in canonical form for a
basis B and such that the resulting LP behaves the same as (P).

More formally, we will show the following:

Proposition

For any basis B, there exists (P’) in canonical form for B such that

(1) (P) and (P’) have the same feasible region, and

(2) feasible solutions have the same objective value for (P) and (P’).

Consider
max

{
c>x : Ax = b, x ≥ 0

}
(P)

Idea

For any basis B we can “rewrite” (P) so that it is in canonical form for a
basis B and such that the resulting LP behaves the same as (P).

More formally, we will show the following:

Proposition

For any basis B, there exists (P’) in canonical form for B such that

(1) (P) and (P’) have the same feasible region, and

(2) feasible solutions have the same objective value for (P) and (P’).

Consider
max

{
c>x : Ax = b, x ≥ 0

}
(P)

Idea

For any basis B we can “rewrite” (P) so that it is in canonical form for a
basis B and such that the resulting LP behaves the same as (P).

More formally, we will show the following:

Proposition

For any basis B, there exists (P’) in canonical form for B such that

(1) (P) and (P’) have the same feasible region, and

(2) feasible solutions have the same objective value for (P) and (P’).

Consider
max

{
c>x : Ax = b, x ≥ 0

}
(P)

Idea

For any basis B we can “rewrite” (P) so that it is in canonical form for a
basis B and such that the resulting LP behaves the same as (P).

More formally, we will show the following:

Proposition

For any basis B, there exists (P’) in canonical form for B such that

(1) (P) and (P’) have the same feasible region, and

(2) feasible solutions have the same objective value for (P) and (P’).

Consider
max

{
c>x : Ax = b, x ≥ 0

}
(P)

Idea

For any basis B we can “rewrite” (P) so that it is in canonical form for a
basis B and such that the resulting LP behaves the same as (P).

More formally, we will show the following:

Proposition

For any basis B, there exists (P’) in canonical form for B such that

(1) (P) and (P’) have the same feasible region, and

(2) feasible solutions have the same objective value for (P) and (P’).

Consider
max

{
c>x : Ax = b, x ≥ 0

}
(P)

Idea

For any basis B we can “rewrite” (P) so that it is in canonical form for a
basis B and such that the resulting LP behaves the same as (P).

More formally, we will show the following:

Proposition

For any basis B, there exists (P’) in canonical form for B such that

(1) (P) and (P’) have the same feasible region, and

(2) feasible solutions have the same objective value for (P) and (P’).

Proposition

For any basis B, there exists (P’) in canonical form for B such that

(1) (P) and (P’) have the same feasible region, and

(2) feasible solutions have the same objective value for (P) and (P’).

max (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

max (−2 0 0 6)x + 2

s.t. (
−1 1 0 3
1 0 1 −1

)
x =

(
1
1

)
x1, x2, x3, x4 ≥ 0

Example

(1) x̄ = (1, 2, 0, 0)> is feasible for both LPs.

(2)
(0 0 2 4)x̄ = 2 × 0 + 4 × 0 = 0

(−2 0 0 6)x̄ +2 = −2 × 1 + 6 × 0 + 2 = 0

Proposition

For any basis B, there exists (P’) in canonical form for B such that

(1) (P) and (P’) have the same feasible region, and

(2) feasible solutions have the same objective value for (P) and (P’).

max (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

max (−2 0 0 6)x + 2

s.t. (
−1 1 0 3
1 0 1 −1

)
x =

(
1
1

)
x1, x2, x3, x4 ≥ 0

Example

(1) x̄ = (1, 2, 0, 0)> is feasible for both LPs.

(2)
(0 0 2 4)x̄ = 2 × 0 + 4 × 0 = 0

(−2 0 0 6)x̄ +2 = −2 × 1 + 6 × 0 + 2 = 0

Proposition

For any basis B, there exists (P’) in canonical form for B such that

(1) (P) and (P’) have the same feasible region, and

(2) feasible solutions have the same objective value for (P) and (P’).

max (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

max (−2 0 0 6)x + 2

s.t. (
−1 1 0 3
1 0 1 −1

)
x =

(
1
1

)
x1, x2, x3, x4 ≥ 0

Example

(1) x̄ = (1, 2, 0, 0)> is feasible for both LPs.

(2)
(0 0 2 4)x̄ = 2 × 0 + 4 × 0 = 0

(−2 0 0 6)x̄ +2 = −2 × 1 + 6 × 0 + 2 = 0

Proposition

For any basis B, there exists (P’) in canonical form for B such that

(1) (P) and (P’) have the same feasible region, and

(2) feasible solutions have the same objective value for (P) and (P’).

max (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

max (−2 0 0 6)x + 2

s.t. (
−1 1 0 3
1 0 1 −1

)
x =

(
1
1

)
x1, x2, x3, x4 ≥ 0

Example

(1) x̄ = (1, 2, 0, 0)> is feasible for both LPs.

(2)
(0 0 2 4)x̄ = 2 × 0 + 4 × 0 = 0

(−2 0 0 6)x̄ +2 = −2 × 1 + 6 × 0 + 2 = 0

Proposition

For any basis B, there exists (P’) in canonical form for B such that

(1) (P) and (P’) have the same feasible region, and

(2) feasible solutions have the same objective value for (P) and (P’).

max (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

max (−2 0 0 6)x + 2

s.t. (
−1 1 0 3
1 0 1 −1

)
x =

(
1
1

)
x1, x2, x3, x4 ≥ 0

Example

(1) x̄ = (1, 2, 0, 0)> is feasible for both LPs.

(2)
(0 0 2 4)x̄ = 2 × 0 + 4 × 0 = 0

(−2 0 0 6)x̄ +2 = −2 × 1 + 6 × 0 + 2 = 0

Illustration with an Example

max (0 0 2 4)︸ ︷︷ ︸
c

x

s.t. (
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

x1, x2, x3, x4 ≥ 0

(P)

Question

How do we rewrite (P) in canonical form for basis B = {2, 3}?

(P1) Replace Ax = b by A′x = b′ with A′{2,3} = I.

(P2) Replace c>x by c̄>x + z̄ where c̄2 = c̄3 = 0 and z̄ is a constant.

Illustration with an Example

max (0 0 2 4)︸ ︷︷ ︸
c

x

s.t. (
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

x1, x2, x3, x4 ≥ 0

(P)

Question

How do we rewrite (P) in canonical form for basis B = {2, 3}?

(P1) Replace Ax = b by A′x = b′ with A′{2,3} = I.

(P2) Replace c>x by c̄>x + z̄ where c̄2 = c̄3 = 0 and z̄ is a constant.

Illustration with an Example

max (0 0 2 4)︸ ︷︷ ︸
c

x

s.t. (
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

x1, x2, x3, x4 ≥ 0

(P)

Question

How do we rewrite (P) in canonical form for basis B = {2, 3}?

(P1) Replace Ax = b by A′x = b′ with A′{2,3} = I.

(P2) Replace c>x by c̄>x + z̄ where c̄2 = c̄3 = 0 and z̄ is a constant.

Illustration with an Example

max (0 0 2 4)︸ ︷︷ ︸
c

x

s.t. (
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

x1, x2, x3, x4 ≥ 0

(P)

Question

How do we rewrite (P) in canonical form for basis B = {2, 3}?

(P1) Replace Ax = b by A′x = b′ with A′{2,3} = I.

(P2) Replace c>x by c̄>x + z̄ where c̄2 = c̄3 = 0 and z̄ is a constant.

Illustration with an Example

max (0 0 2 4)︸ ︷︷ ︸
c

x

s.t. (
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

x1, x2, x3, x4 ≥ 0

(P)

Question

How do we rewrite (P) in canonical form for basis B = {2, 3}?

(P1) Replace Ax = b by A′x = b′ with A′{2,3} = I.

(P2) Replace c>x by c̄>x + z̄ where c̄2 = c̄3 = 0 and z̄ is a constant.

Rewriting Constraints – Example

(
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

(P1) Replace Ax = b by A′x = b′ with A′{2,3} = I.(
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)

(
0 1
1 1

)−1(
1 0 1 −1
0 1 1 2

)
x =

(
0 1
1 1

)−1(
1
2

)

(
−1 1 0 3
1 0 1 −1

)
x =

(
1
1

)

Rewriting Constraints – Example

(
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

(P1) Replace Ax = b by A′x = b′ with A′{2,3} = I.(
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)

(
0 1
1 1

)−1(
1 0 1 −1
0 1 1 2

)
x =

(
0 1
1 1

)−1(
1
2

)

(
−1 1 0 3
1 0 1 −1

)
x =

(
1
1

)

Rewriting Constraints – Example

(
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

(P1) Replace Ax = b by A′x = b′ with A′{2,3} = I.

(
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)

(
0 1
1 1

)−1(
1 0 1 −1
0 1 1 2

)
x =

(
0 1
1 1

)−1(
1
2

)

(
−1 1 0 3
1 0 1 −1

)
x =

(
1
1

)

Rewriting Constraints – Example

(
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

(P1) Replace Ax = b by A′x = b′ with A′{2,3} = I.(
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)

(
0 1
1 1

)−1(
1 0 1 −1
0 1 1 2

)
x =

(
0 1
1 1

)−1(
1
2

)

(
−1 1 0 3
1 0 1 −1

)
x =

(
1
1

)

Rewriting Constraints – Example

(
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

(P1) Replace Ax = b by A′x = b′ with A′{2,3} = I.(
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)

(
0 1
1 1

)−1(
1 0 1 −1
0 1 1 2

)
x =

(
0 1
1 1

)−1(
1
2

)

(
−1 1 0 3
1 0 1 −1

)
x =

(
1
1

)

Rewriting Constraints – Example

(
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

(P1) Replace Ax = b by A′x = b′ with A′{2,3} = I.(
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)

(
0 1
1 1

)−1(
1 0 1 −1
0 1 1 2

)
x =

(
0 1
1 1

)−1(
1
2

)

(
−1 1 0 3
1 0 1 −1

)
x =

(
1
1

)

Rewriting Constraints – General

Consider the system Ax = b with basis B of A.

(P1) Replace Ax = b by A′x = b′ with A′B = I for some basis B.

Ax = b

A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b︸ ︷︷ ︸
b′

Remarks

• A′B = I.

• Ax = b and A′x = b′ have the same set of solutions.

Rewriting Constraints – General

Consider the system Ax = b with basis B of A.

(P1) Replace Ax = b by A′x = b′ with A′B = I for some basis B.

Ax = b

A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b︸ ︷︷ ︸
b′

Remarks

• A′B = I.

• Ax = b and A′x = b′ have the same set of solutions.

Rewriting Constraints – General

Consider the system Ax = b with basis B of A.

(P1) Replace Ax = b by A′x = b′ with A′B = I for some basis B.

Ax = b

A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b︸ ︷︷ ︸
b′

Remarks

• A′B = I.

• Ax = b and A′x = b′ have the same set of solutions.

Rewriting Constraints – General

Consider the system Ax = b with basis B of A.

(P1) Replace Ax = b by A′x = b′ with A′B = I for some basis B.

Ax = b

A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b︸ ︷︷ ︸
b′

Remarks

• A′B = I.

• Ax = b and A′x = b′ have the same set of solutions.

Rewriting Constraints – General

Consider the system Ax = b with basis B of A.

(P1) Replace Ax = b by A′x = b′ with A′B = I for some basis B.

Ax = b

A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b︸ ︷︷ ︸
b′

Remarks

• A′B = I.

• Ax = b and A′x = b′ have the same set of solutions.

Rewriting Constraints – General

Consider the system Ax = b with basis B of A.

(P1) Replace Ax = b by A′x = b′ with A′B = I for some basis B.

Ax = b

A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b︸ ︷︷ ︸
b′

Remarks

• A′B = I.

• Ax = b and A′x = b′ have the same set of solutions.

Rewriting Constraints – General

Consider the system Ax = b with basis B of A.

(P1) Replace Ax = b by A′x = b′ with A′B = I for some basis B.

Ax = b

A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b︸ ︷︷ ︸
b′

Remarks

• A′B = I.

• Ax = b and A′x = b′ have the same set of solutions.

Rewriting the Objective Function – Example

max z = (0 0 2 4)︸ ︷︷ ︸
c>

x

s.t. (
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

x1, x2, x3, x4 ≥ 0

(P2) Replace c>x by c̄>x + z̄ where c̄2 = c̄3 = 0 and z̄ is a constant.

Step 1. Construct a new objective function by
• multiplying constraint 1 by y1,
• multiplying constraint 2 by y2, and
• adding the resulting constraints to the objective function.

Step 2. Choose y1, y2 to get c̄2 = c̄3 = 0.

Rewriting the Objective Function – Example

max z = (0 0 2 4)︸ ︷︷ ︸
c>

x

s.t. (
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

x1, x2, x3, x4 ≥ 0

(P2) Replace c>x by c̄>x + z̄ where c̄2 = c̄3 = 0 and z̄ is a constant.

Step 1. Construct a new objective function by
• multiplying constraint 1 by y1,
• multiplying constraint 2 by y2, and
• adding the resulting constraints to the objective function.

Step 2. Choose y1, y2 to get c̄2 = c̄3 = 0.

Rewriting the Objective Function – Example

max z = (0 0 2 4)︸ ︷︷ ︸
c>

x

s.t. (
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

x1, x2, x3, x4 ≥ 0

(P2) Replace c>x by c̄>x + z̄ where c̄2 = c̄3 = 0 and z̄ is a constant.

Step 1. Construct a new objective function by
• multiplying constraint 1 by y1,
• multiplying constraint 2 by y2, and
• adding the resulting constraints to the objective function.

Step 2. Choose y1, y2 to get c̄2 = c̄3 = 0.

Rewriting the Objective Function – Example

max z = (0 0 2 4)︸ ︷︷ ︸
c>

x

s.t. (
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

x1, x2, x3, x4 ≥ 0

(P2) Replace c>x by c̄>x + z̄ where c̄2 = c̄3 = 0 and z̄ is a constant.

Step 1. Construct a new objective function by

• multiplying constraint 1 by y1,
• multiplying constraint 2 by y2, and
• adding the resulting constraints to the objective function.

Step 2. Choose y1, y2 to get c̄2 = c̄3 = 0.

Rewriting the Objective Function – Example

max z = (0 0 2 4)︸ ︷︷ ︸
c>

x

s.t. (
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

x1, x2, x3, x4 ≥ 0

(P2) Replace c>x by c̄>x + z̄ where c̄2 = c̄3 = 0 and z̄ is a constant.

Step 1. Construct a new objective function by
• multiplying constraint 1 by y1,

• multiplying constraint 2 by y2, and
• adding the resulting constraints to the objective function.

Step 2. Choose y1, y2 to get c̄2 = c̄3 = 0.

Rewriting the Objective Function – Example

max z = (0 0 2 4)︸ ︷︷ ︸
c>

x

s.t. (
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

x1, x2, x3, x4 ≥ 0

(P2) Replace c>x by c̄>x + z̄ where c̄2 = c̄3 = 0 and z̄ is a constant.

Step 1. Construct a new objective function by
• multiplying constraint 1 by y1,
• multiplying constraint 2 by y2, and

• adding the resulting constraints to the objective function.

Step 2. Choose y1, y2 to get c̄2 = c̄3 = 0.

Rewriting the Objective Function – Example

max z = (0 0 2 4)︸ ︷︷ ︸
c>

x

s.t. (
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

x1, x2, x3, x4 ≥ 0

(P2) Replace c>x by c̄>x + z̄ where c̄2 = c̄3 = 0 and z̄ is a constant.

Step 1. Construct a new objective function by
• multiplying constraint 1 by y1,
• multiplying constraint 2 by y2, and
• adding the resulting constraints to the objective function.

Step 2. Choose y1, y2 to get c̄2 = c̄3 = 0.

Rewriting the Objective Function – Example

max z = (0 0 2 4)︸ ︷︷ ︸
c>

x

s.t. (
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

x1, x2, x3, x4 ≥ 0

(P2) Replace c>x by c̄>x + z̄ where c̄2 = c̄3 = 0 and z̄ is a constant.

Step 1. Construct a new objective function by
• multiplying constraint 1 by y1,
• multiplying constraint 2 by y2, and
• adding the resulting constraints to the objective function.

Step 2. Choose y1, y2 to get c̄2 = c̄3 = 0.

max z = (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

(
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)

max z = (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

(y1, y2)

(
1 0 1 −1
0 1 1 2

)
x = (y1, y2)

(
1
2

)

max z = (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

0 = −(y1 y2)

(
1 0 1 −1
0 1 1 2

)
x + (y1 y2)

(
1
2

)

z = (0 0 2 4)x

z =

[
(0 0 2 4) − (y1 y2)

(
1 0 1 −1
0 1 1 2

)]
x + (y1 y2)

(
1
2

)

Remark
For any choice of y1, y2 and any feasible solution x,

objective value of x for old objective function =

objective value of x for new objective function

max z = (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

0 = −(y1 y2)

(
1 0 1 −1
0 1 1 2

)
x + (y1 y2)

(
1
2

)
z = (0 0 2 4)x

z =

[
(0 0 2 4) − (y1 y2)

(
1 0 1 −1
0 1 1 2

)]
x + (y1 y2)

(
1
2

)

Remark
For any choice of y1, y2 and any feasible solution x,

objective value of x for old objective function =

objective value of x for new objective function

max z = (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

0 = −(y1 y2)

(
1 0 1 −1
0 1 1 2

)
x + (y1 y2)

(
1
2

)
z = (0 0 2 4)x

z =

[
(0 0 2 4) − (y1 y2)

(
1 0 1 −1
0 1 1 2

)]
x + (y1 y2)

(
1
2

)

Remark
For any choice of y1, y2 and any feasible solution x,

objective value of x for old objective function =

objective value of x for new objective function

max z = (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

0 = −(y1 y2)

(
1 0 1 −1
0 1 1 2

)
x + (y1 y2)

(
1
2

)
z = (0 0 2 4)x

z =

[
(0 0 2 4) − (y1 y2)

(
1 0 1 −1
0 1 1 2

)]
x + (y1 y2)

(
1
2

)

Remark
For any choice of y1, y2 and any feasible solution x,

objective value of x for old objective function =

objective value of x for new objective function

max z = (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

0 = −(y1 y2)

(
1 0 1 −1
0 1 1 2

)
x + (y1 y2)

(
1
2

)
z = (0 0 2 4)x

z =

[
(0 0 2 4) − (y1 y2)

(
1 0 1 −1
0 1 1 2

)]
x + (y1 y2)

(
1
2

)

Remark
For any choice of y1, y2 and any feasible solution x,

objective value of x for old objective function =

objective value of x for new objective function

max z = (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

0 = −(y1 y2)

(
1 0 1 −1
0 1 1 2

)
x + (y1 y2)

(
1
2

)
z = (0 0 2 4)x

z =

[
(0 0 2 4) − (y1 y2)

(
1 0 1 −1
0 1 1 2

)]
x + (y1 y2)

(
1
2

)

Remark
For any choice of y1, y2 and any feasible solution x,

objective value of x for old objective function =

objective value of x for new objective function

z =

[
(0 0 2 4)− (y1 y2)

(
1 0 1 −1
0 1 1 2

)]
︸ ︷︷ ︸

c̄>

x + (y1 y2)

(
1
2

)
︸ ︷︷ ︸

z̄

Question

How do we choose y1, y2 such that c̄2 = c̄3 = 0?

(0 0) = c̄>B = (0 2)− (y1 y2)

(
0 1
1 1

)

(y1 y2)

(
0 1
1 1

)
= (0 2)

(
0 1
1 1

)>(
y1

y2

)
=

(
0 1
1 1

)(
y1

y2

)
=

(
0
2

)
(
y1

y2

)
=

(
0 1
1 1

)−1(
0
2

)
=

(
2
0

)

z =

[
(0 0 2 4)− (y1 y2)

(
1 0 1 −1
0 1 1 2

)]
︸ ︷︷ ︸

c̄>

x + (y1 y2)

(
1
2

)
︸ ︷︷ ︸

z̄

Question

How do we choose y1, y2 such that c̄2 = c̄3 = 0?

(0 0) = c̄>B = (0 2)− (y1 y2)

(
0 1
1 1

)

(y1 y2)

(
0 1
1 1

)
= (0 2)

(
0 1
1 1

)>(
y1

y2

)
=

(
0 1
1 1

)(
y1

y2

)
=

(
0
2

)
(
y1

y2

)
=

(
0 1
1 1

)−1(
0
2

)
=

(
2
0

)

z =

[
(0 0 2 4)− (y1 y2)

(
1 0 1 −1
0 1 1 2

)]
︸ ︷︷ ︸

c̄>

x + (y1 y2)

(
1
2

)
︸ ︷︷ ︸

z̄

Question

How do we choose y1, y2 such that c̄2 = c̄3 = 0?

(0 0) = c̄>B = (0 2)− (y1 y2)

(
0 1
1 1

)

(y1 y2)

(
0 1
1 1

)
= (0 2)

(
0 1
1 1

)>(
y1

y2

)
=

(
0 1
1 1

)(
y1

y2

)
=

(
0
2

)
(
y1

y2

)
=

(
0 1
1 1

)−1(
0
2

)
=

(
2
0

)

z =

[
(0 0 2 4)− (y1 y2)

(
1 0 1 −1
0 1 1 2

)]
︸ ︷︷ ︸

c̄>

x + (y1 y2)

(
1
2

)
︸ ︷︷ ︸

z̄

Question

How do we choose y1, y2 such that c̄2 = c̄3 = 0?

(0 0) = c̄>B = (0 2)− (y1 y2)

(
0 1
1 1

)

(y1 y2)

(
0 1
1 1

)
= (0 2)

(
0 1
1 1

)>(
y1

y2

)
=

(
0 1
1 1

)(
y1

y2

)
=

(
0
2

)
(
y1

y2

)
=

(
0 1
1 1

)−1(
0
2

)
=

(
2
0

)

z =

[
(0 0 2 4)− (y1 y2)

(
1 0 1 −1
0 1 1 2

)]
︸ ︷︷ ︸

c̄>

x + (y1 y2)

(
1
2

)
︸ ︷︷ ︸

z̄

Question

How do we choose y1, y2 such that c̄2 = c̄3 = 0?

(0 0) = c̄>B = (0 2)− (y1 y2)

(
0 1
1 1

)

(y1 y2)

(
0 1
1 1

)
= (0 2)

(
0 1
1 1

)>(
y1

y2

)
=

(
0 1
1 1

)(
y1

y2

)
=

(
0
2

)

(
y1

y2

)
=

(
0 1
1 1

)−1(
0
2

)
=

(
2
0

)

z =

[
(0 0 2 4)− (y1 y2)

(
1 0 1 −1
0 1 1 2

)]
︸ ︷︷ ︸

c̄>

x + (y1 y2)

(
1
2

)
︸ ︷︷ ︸

z̄

Question

How do we choose y1, y2 such that c̄2 = c̄3 = 0?

(0 0) = c̄>B = (0 2)− (y1 y2)

(
0 1
1 1

)

(y1 y2)

(
0 1
1 1

)
= (0 2)

(
0 1
1 1

)>(
y1

y2

)
=

(
0 1
1 1

)(
y1

y2

)
=

(
0
2

)
(
y1

y2

)
=

(
0 1
1 1

)−1(
0
2

)
=

(
2
0

)

z =

[
(0 0 2 4)− (y1 y2)

(
1 0 1 −1
0 1 1 2

)]
︸ ︷︷ ︸

c̄>

x + (y1 y2)

(
1
2

)
︸ ︷︷ ︸

z̄

Question

How do we choose y1, y2 such that c̄B = 0 for B = {2, 3}?

Choose (
y1

y2

)
=

(
2
0

)

z =

[
(0 0 2 4)− (2 0)

(
1 0 1 −1
0 1 1 2

)]
x + (2 0)

(
1
2

)

z = (−2 0 0 6)x + 2

z =

[
(0 0 2 4)− (y1 y2)

(
1 0 1 −1
0 1 1 2

)]
︸ ︷︷ ︸

c̄>

x + (y1 y2)

(
1
2

)
︸ ︷︷ ︸

z̄

Question

How do we choose y1, y2 such that c̄B = 0 for B = {2, 3}?

Choose (
y1

y2

)
=

(
2
0

)

z =

[
(0 0 2 4)− (2 0)

(
1 0 1 −1
0 1 1 2

)]
x + (2 0)

(
1
2

)

z = (−2 0 0 6)x + 2

z =

[
(0 0 2 4)− (y1 y2)

(
1 0 1 −1
0 1 1 2

)]
︸ ︷︷ ︸

c̄>

x + (y1 y2)

(
1
2

)
︸ ︷︷ ︸

z̄

Question

How do we choose y1, y2 such that c̄B = 0 for B = {2, 3}?

Choose (
y1

y2

)
=

(
2
0

)

z =

[
(0 0 2 4)− (2 0)

(
1 0 1 −1
0 1 1 2

)]
x + (2 0)

(
1
2

)

z = (−2 0 0 6)x + 2

Rewriting the Objective Function – General

max z = c>x

s.t.

Ax = b

x ≥ 0

(P2) Replace c>x by c̄>x + z̄ with c̄B = 0 (z̄ constant) for some basis B.

y>Ax = y>b

Rewriting the Objective Function – General

max z = c>x

s.t.

Ax = b

x ≥ 0

(P2) Replace c>x by c̄>x + z̄ with c̄B = 0 (z̄ constant) for some basis B.

y>Ax = y>b

Rewriting the Objective Function – General

max z = c>x

s.t.

Ax = b

x ≥ 0

(P2) Replace c>x by c̄>x + z̄ with c̄B = 0 (z̄ constant) for some basis B.

y>Ax = y>b

Rewriting the Objective Function – General

max z = c>x

s.t.

Ax = b

x ≥ 0

(P2) Replace c>x by c̄>x + z̄ with c̄B = 0 (z̄ constant) for some basis B.

0 = −y>Ax + y>b

z = c>x

z =
[
c> − y>A

]
x + y>b

Remark
For any choice of y and any feasible solution x,

objective value of x for old objective function =

objective value of x for new objective function

Rewriting the Objective Function – General

max z = c>x

s.t.

Ax = b

x ≥ 0

(P2) Replace c>x by c̄>x + z̄ with c̄B = 0 (z̄ constant) for some basis B.

0 = −y>Ax + y>b

z = c>x

z =
[
c> − y>A

]
x + y>b

Remark
For any choice of y and any feasible solution x,

objective value of x for old objective function =

objective value of x for new objective function

Rewriting the Objective Function – General

max z = c>x

s.t.

Ax = b

x ≥ 0

(P2) Replace c>x by c̄>x + z̄ with c̄B = 0 (z̄ constant) for some basis B.

0 = −y>Ax + y>b

z = c>x

z =
[
c> − y>A

]
x + y>b

Remark
For any choice of y and any feasible solution x,

objective value of x for old objective function =

objective value of x for new objective function

Rewriting the Objective Function – General

max z = c>x

s.t.

Ax = b

x ≥ 0

(P2) Replace c>x by c̄>x + z̄ with c̄B = 0 (z̄ constant) for some basis B.

0 = −y>Ax + y>b

z = c>x

z =
[
c> − y>A

]
x + y>b

Remark
For any choice of y and any feasible solution x,

objective value of x for old objective function =

objective value of x for new objective function

Rewriting the Objective Function – General

max z = c>x

s.t.

Ax = b

x ≥ 0

(P2) Replace c>x by c̄>x + z̄ with c̄B = 0 (z̄ constant) for some basis B.

0 = −y>Ax + y>b

z = c>x

z =
[
c> − y>A

]
x + y>b

Remark
For any choice of y and any feasible solution x,

objective value of x for old objective function =

objective value of x for new objective function

z =
[
c> − y>A

]︸ ︷︷ ︸
c̄>

x + y>b︸︷︷︸
z̄

Question

How do we choose y such that c̄B = 0 for a basis B?

0> = c̄>B = c>B − y>AB

y>AB = c>B

A>By = cB

y =
(
A>B
)−1

cB

Remark

For any non-singular matrix M ,

(M>)−1 = (M−1)> =: M−>

z =
[
c> − y>A

]︸ ︷︷ ︸
c̄>

x + y>b︸︷︷︸
z̄

Question

How do we choose y such that c̄B = 0 for a basis B?

0> = c̄>B = c>B − y>AB

y>AB = c>B

A>By = cB

y =
(
A>B
)−1

cB

Remark

For any non-singular matrix M ,

(M>)−1 = (M−1)> =: M−>

z =
[
c> − y>A

]︸ ︷︷ ︸
c̄>

x + y>b︸︷︷︸
z̄

Question

How do we choose y such that c̄B = 0 for a basis B?

0> = c̄>B

= c>B − y>AB

y>AB = c>B

A>By = cB

y =
(
A>B
)−1

cB

Remark

For any non-singular matrix M ,

(M>)−1 = (M−1)> =: M−>

z =
[
c> − y>A

]︸ ︷︷ ︸
c̄>

x + y>b︸︷︷︸
z̄

Question

How do we choose y such that c̄B = 0 for a basis B?

0> = c̄>B = c>B − y>AB

y>AB = c>B

A>By = cB

y =
(
A>B
)−1

cB

Remark

For any non-singular matrix M ,

(M>)−1 = (M−1)> =: M−>

z =
[
c> − y>A

]︸ ︷︷ ︸
c̄>

x + y>b︸︷︷︸
z̄

Question

How do we choose y such that c̄B = 0 for a basis B?

0> = c̄>B = c>B − y>AB

y>AB = c>B

A>By = cB

y =
(
A>B
)−1

cB

Remark

For any non-singular matrix M ,

(M>)−1 = (M−1)> =: M−>

z =
[
c> − y>A

]︸ ︷︷ ︸
c̄>

x + y>b︸︷︷︸
z̄

Question

How do we choose y such that c̄B = 0 for a basis B?

0> = c̄>B = c>B − y>AB

y>AB = c>B

A>By = cB

y =
(
A>B
)−1

cB

Remark

For any non-singular matrix M ,

(M>)−1 = (M−1)> =: M−>

z =
[
c> − y>A

]︸ ︷︷ ︸
c̄>

x + y>b︸︷︷︸
z̄

Question

How do we choose y such that c̄B = 0 for a basis B?

0> = c̄>B = c>B − y>AB

y>AB = c>B

A>By = cB

y =
(
A>B
)−1

cB

Remark

For any non-singular matrix M ,

(M>)−1 = (M−1)> =: M−>

z =
[
c> − y>A

]︸ ︷︷ ︸
c̄>

x + y>b︸︷︷︸
z̄

Question

How do we choose y such that c̄B = 0 for a basis B?

0> = c̄>B = c>B − y>AB

y>AB = c>B

A>By = cB

y =
(
A>B
)−1

cB

Remark

For any non-singular matrix M ,

(M>)−1 = (M−1)> =: M−>

z =
[
c> − y>A

]︸ ︷︷ ︸
c̄>

x + y>b︸︷︷︸
z̄

Question

How do we choose y such that c̄B = 0 for a basis B?

0> = c̄>B = c>B − y>AB

y>AB = c>B

A>By = cB

y =
(
A>B
)−1

cB = A−>B cB

Remark

For any non-singular matrix M ,

(M>)−1 = (M−1)> =: M−>

Recap

Proposition

Let B be a basis of A,

max c>x

s.t.

Ax = b

x ≥ 0

(P)

max
[
c> − y>A

]
︸ ︷︷ ︸

c̄

x + y>b

s.t.

A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b

x ≥ 0

(P’)

where y = A−>B cB . Then

(1) (P’) is in canonical form for basis B, i.e., c̄B = 0 and A′B = I.

(2) (P) and (P’) have the same feasible region.

(3) Feasible solutions have the same objective value for (P) and (P’).

Recap

Proposition

Let B be a basis of A,

max c>x

s.t.

Ax = b

x ≥ 0

(P)

max
[
c> − y>A

]
︸ ︷︷ ︸

c̄

x + y>b

s.t.

A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b

x ≥ 0

(P’)

where y = A−>B cB . Then

(1) (P’) is in canonical form for basis B, i.e., c̄B = 0 and A′B = I.

(2) (P) and (P’) have the same feasible region.

(3) Feasible solutions have the same objective value for (P) and (P’).

Recap

Proposition

Let B be a basis of A,

max c>x

s.t.

Ax = b

x ≥ 0

(P)

max
[
c> − y>A

]
︸ ︷︷ ︸

c̄

x + y>b

s.t.

A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b

x ≥ 0

(P’)

where y = A−>B cB .

Then

(1) (P’) is in canonical form for basis B, i.e., c̄B = 0 and A′B = I.

(2) (P) and (P’) have the same feasible region.

(3) Feasible solutions have the same objective value for (P) and (P’).

Recap

Proposition

Let B be a basis of A,

max c>x

s.t.

Ax = b

x ≥ 0

(P)

max
[
c> − y>A

]
︸ ︷︷ ︸

c̄

x + y>b

s.t.

A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b

x ≥ 0

(P’)

where y = A−>B cB . Then

(1) (P’) is in canonical form for basis B, i.e., c̄B = 0 and A′B = I.

(2) (P) and (P’) have the same feasible region.

(3) Feasible solutions have the same objective value for (P) and (P’).

Recap

Proposition

Let B be a basis of A,

max c>x

s.t.

Ax = b

x ≥ 0

(P)

max
[
c> − y>A

]
︸ ︷︷ ︸

c̄

x + y>b

s.t.

A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b

x ≥ 0

(P’)

where y = A−>B cB . Then

(1) (P’) is in canonical form for basis B, i.e., c̄B = 0 and A′B = I.

(2) (P) and (P’) have the same feasible region.

(3) Feasible solutions have the same objective value for (P) and (P’).

Recap

Proposition

Let B be a basis of A,

max c>x

s.t.

Ax = b

x ≥ 0

(P)

max
[
c> − y>A

]
︸ ︷︷ ︸

c̄

x + y>b

s.t.

A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b

x ≥ 0

(P’)

where y = A−>B cB . Then

(1) (P’) is in canonical form for basis B, i.e., c̄B = 0 and A′B = I.

(2) (P) and (P’) have the same feasible region.

(3) Feasible solutions have the same objective value for (P) and (P’).

CO 250: Introduction to Optimization
Module 2: Linear Programs (Formalizing the Simplex)

Finding an Optimal Solution

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

Consider B = , .

• B is square and non-singular B is a basis

• B = I and cB = LP is in canonical form for B

• x = (2, , , 5)⊤ is a the basic solution for B.

• x ≥ x is feasible, i.e., B is feasible

Finding an Optimal Solution

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

Consider B = {1, 4}.

• B is square and non-singular B is a basis

• B = I and cB = LP is in canonical form for B

• x = (2, , , 5)⊤ is a the basic solution for B.

• x ≥ x is feasible, i.e., B is feasible

Finding an Optimal Solution

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

Consider B = {1, 4}.

• AB is square and non-singular

B is a basis

• B = I and cB = LP is in canonical form for B

• x = (2, , , 5)⊤ is a the basic solution for B.

• x ≥ x is feasible, i.e., B is feasible

Finding an Optimal Solution

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

Consider B = {1, 4}.

• AB is square and non-singular B is a basis

• B = I and cB = LP is in canonical form for B

• x = (2, , , 5)⊤ is a the basic solution for B.

• x ≥ x is feasible, i.e., B is feasible

Finding an Optimal Solution

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

Consider B = {1, 4}.

• AB is square and non-singular B is a basis

• AB = I and cB = 0

LP is in canonical form for B

• x = (2, , , 5)⊤ is a the basic solution for B.

• x ≥ x is feasible, i.e., B is feasible

Finding an Optimal Solution

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

Consider B = {1, 4}.

• AB is square and non-singular B is a basis

• AB = I and cB = 0 LP is in canonical form for B

• x = (2, , , 5)⊤ is a the basic solution for B.

• x ≥ x is feasible, i.e., B is feasible

Finding an Optimal Solution

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

Consider B = {1, 4}.

• AB is square and non-singular B is a basis

• AB = I and cB = 0 LP is in canonical form for B

• x̄ = (2, 0, 0, 5)⊤ is a the basic solution for B.

• x ≥ x is feasible, i.e., B is feasible

Finding an Optimal Solution

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

Consider B = {1, 4}.

• AB is square and non-singular B is a basis

• AB = I and cB = 0 LP is in canonical form for B

• x̄ = (2, 0, 0, 5)⊤ is a the basic solution for B.

• x̄ ≥ 0

x is feasible, i.e., B is feasible

Finding an Optimal Solution

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

Consider B = {1, 4}.

• AB is square and non-singular B is a basis

• AB = I and cB = 0 LP is in canonical form for B

• x̄ = (2, 0, 0, 5)⊤ is a the basic solution for B.

• x̄ ≥ 0 x̄ is feasible, i.e., B is feasible

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = , is a feasible basis

Canonical form for B

(2, , , 5)⊤ is a basic solution

Question

How do we find a better feasible solution?

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a feasible basis

Canonical form for B

(2, 0, 0, 5)⊤ is a basic solution

Question

How do we find a better feasible solution?

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a feasible basis

Canonical form for B

(2, 0, 0, 5)⊤ is a basic solution

Question

How do we find a better feasible solution?

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a feasible basis

Canonical form for B

(2, 0, 0, 5)⊤ is a basic solution

Idea

Pick k /∈ B such that ck > 0.

Set xk = t ≥ as large as possible.

Keep all other non-basic variables at .

Pick k = . Set x2 = t ≥ .

Keep x3 = .

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a feasible basis

Canonical form for B

(2, 0, 0, 5)⊤ is a basic solution

Idea

Pick k /∈ B such that ck > 0.

Set xk = t ≥ 0 as large as possible.

Keep all other non-basic variables at .

Pick k = . Set x2 = t ≥ .

Keep x3 = .

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a feasible basis

Canonical form for B

(2, 0, 0, 5)⊤ is a basic solution

Idea

Pick k /∈ B such that ck > 0.

Set xk = t ≥ 0 as large as possible.

Keep all other non-basic variables at 0.

Pick k = . Set x2 = t ≥ .

Keep x3 = .

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a feasible basis

Canonical form for B

(2, 0, 0, 5)⊤ is a basic solution

Idea

Pick k /∈ B such that ck > 0.

Set xk = t ≥ 0 as large as possible.

Keep all other non-basic variables at 0.

Pick k = 2. Set x2 = t ≥ 0.

Keep x3 = .

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a feasible basis

Canonical form for B

(2, 0, 0, 5)⊤ is a basic solution

Idea

Pick k /∈ B such that ck > 0.

Set xk = t ≥ 0 as large as possible.

Keep all other non-basic variables at 0.

Pick k = 2. Set x2 = t ≥ 0.

Keep x3 = 0.

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a basis

x2 = t ≥ 0, x3 = 0

Idea

Choose basic variables such that Ax = b holds.

(
2
5

)

=

(
1 1 2 0
0 1 1 1

)

x

= x1

(
1
0

)

+ x2

(
1
1

)

+ x3

(
2
1

)

+ x4

(
0
1

)

=

(
x1

0

)

+ t

(
1
1

)

+ 0

(
2
1

)

+

(
0
x4

)

= t

(
1
1

)

+

(
x1

x4

)

(
x1

x4

)

x

=

(
2
5

)

b

−t

(
1
1

)

A2

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a basis

x2 = t ≥ 0, x3 = 0

Idea

Choose basic variables such that Ax = b holds.

(
2
5

)

=

(
1 1 2 0
0 1 1 1

)

x

= x1

(
1
0

)

+ x2

(
1
1

)

+ x3

(
2
1

)

+ x4

(
0
1

)

=

(
x1

0

)

+ t

(
1
1

)

+ 0

(
2
1

)

+

(
0
x4

)

= t

(
1
1

)

+

(
x1

x4

)

(
x1

x4

)

x

=

(
2
5

)

b

−t

(
1
1

)

A2

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a basis

x2 = t ≥ 0, x3 = 0

Idea

Choose basic variables such that Ax = b holds.

(
2
5

)

=

(
1 1 2 0
0 1 1 1

)

x

= x1

(
1
0

)

+ x2

(
1
1

)

+ x3

(
2
1

)

+ x4

(
0
1

)

=

(
x1

0

)

+ t

(
1
1

)

+ 0

(
2
1

)

+

(
0
x4

)

= t

(
1
1

)

+

(
x1

x4

)

(
x1

x4

)

x

=

(
2
5

)

b

−t

(
1
1

)

A2

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a basis

x2 = t ≥ 0, x3 = 0

Idea

Choose basic variables such that Ax = b holds.

(
2
5

)

=

(
1 1 2 0
0 1 1 1

)

x

= x1

(
1
0

)

+ x2

(
1
1

)

+ x3

(
2
1

)

+ x4

(
0
1

)

=

(
x1

0

)

+ t

(
1
1

)

+ 0

(
2
1

)

+

(
0
x4

)

= t

(
1
1

)

+

(
x1

x4

)

(
x1

x4

)

x

=

(
2
5

)

b

−t

(
1
1

)

A2

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a basis

x2 = t ≥ 0, x3 = 0

Idea

Choose basic variables such that Ax = b holds.

(
2
5

)

=

(
1 1 2 0
0 1 1 1

)

x

= x1

(
1
0

)

+ x2

(
1
1

)

+ x3

(
2
1

)

+ x4

(
0
1

)

=

(
x1

0

)

+ t

(
1
1

)

+ 0

(
2
1

)

+

(
0
x4

)

= t

(
1
1

)

+

(
x1

x4

)

(
x1

x4

)

x

=

(
2
5

)

b

−t

(
1
1

)

A2

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a basis

x2 = t ≥ 0, x3 = 0

Idea

Choose basic variables such that Ax = b holds.

(
2
5

)

=

(
1 1 2 0
0 1 1 1

)

x

= x1

(
1
0

)

+ x2

(
1
1

)

+ x3

(
2
1

)

+ x4

(
0
1

)

=

(
x1

0

)

+ t

(
1
1

)

+ 0

(
2
1

)

+

(
0
x4

)

= t

(
1
1

)

+

(
x1

x4

)

(
x1

x4

)

x

=

(
2
5

)

b

−t

(
1
1

)

A2

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a basis

x2 = t ≥ 0, x3 = 0

Idea

Choose basic variables such that Ax = b holds.

(
2
5

)

=

(
1 1 2 0
0 1 1 1

)

x

= x1

(
1
0

)

+ x2

(
1
1

)

+ x3

(
2
1

)

+ x4

(
0
1

)

=

(
x1

0

)

+ t

(
1
1

)

+ 0

(
2
1

)

+

(
0
x4

)

= t

(
1
1

)

+

(
x1

x4

)

(
x1

x4

)

︸ ︷︷ ︸
xB

=

(
2
5

)

︸︷︷︸
b

−t

(
1
1

)

︸︷︷︸
A2

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a basis

x2 = t ≥ 0, x3 = 0
(
x1

x4

)

︸ ︷︷ ︸
xB

=

(
2
5

)

︸︷︷︸
b

−t

(
1
1

)

︸︷︷︸
A2

Choose t ≥ as large as possible.

Basic variables must remain non-negative.

x1 = − t ≥ t ≤ 2

1

x4 = − t ≥ t ≤ 5

1

Thus, the largest possible t = min
{

2

1
, 5

1

}
.

The new feasible solution is x = (0, , , 3)⊤. It has value > .

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a basis

x2 = t ≥ 0, x3 = 0
(
x1

x4

)

︸ ︷︷ ︸
xB

=

(
2
5

)

︸︷︷︸
b

−t

(
1
1

)

︸︷︷︸
A2

Choose t ≥ 0 as large as possible.

Basic variables must remain non-negative.

x1 = − t ≥ t ≤ 2

1

x4 = − t ≥ t ≤ 5

1

Thus, the largest possible t = min
{

2

1
, 5

1

}
.

The new feasible solution is x = (0, , , 3)⊤. It has value > .

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a basis

x2 = t ≥ 0, x3 = 0
(
x1

x4

)

︸ ︷︷ ︸
xB

=

(
2
5

)

︸︷︷︸
b

−t

(
1
1

)

︸︷︷︸
A2

Choose t ≥ 0 as large as possible.

Basic variables must remain non-negative.

x1 = − t ≥ t ≤ 2

1

x4 = − t ≥ t ≤ 5

1

Thus, the largest possible t = min
{

2

1
, 5

1

}
.

The new feasible solution is x = (0, , , 3)⊤. It has value > .

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a basis

x2 = t ≥ 0, x3 = 0
(
x1

x4

)

︸ ︷︷ ︸
xB

=

(
2
5

)

︸︷︷︸
b

−t

(
1
1

)

︸︷︷︸
A2

Choose t ≥ 0 as large as possible.

Basic variables must remain non-negative.

x1 = 2− t ≥ 0 t ≤ 2

1

x4 = − t ≥ t ≤ 5

1

Thus, the largest possible t = min
{

2

1
, 5

1

}
.

The new feasible solution is x = (0, , , 3)⊤. It has value > .

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a basis

x2 = t ≥ 0, x3 = 0
(
x1

x4

)

︸ ︷︷ ︸
xB

=

(
2
5

)

︸︷︷︸
b

−t

(
1
1

)

︸︷︷︸
A2

Choose t ≥ 0 as large as possible.

Basic variables must remain non-negative.

x1 = 2− t ≥ 0 t ≤ 2

1

x4 = 5− t ≥ 0 t ≤ 5

1

Thus, the largest possible t = min
{

2

1
, 5

1

}
.

The new feasible solution is x = (0, , , 3)⊤. It has value > .

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a basis

x2 = t ≥ 0, x3 = 0
(
x1

x4

)

︸ ︷︷ ︸
xB

=

(
2
5

)

︸︷︷︸
b

−t

(
1
1

)

︸︷︷︸
A2

Choose t ≥ 0 as large as possible.

Basic variables must remain non-negative.

x1 = 2− t ≥ 0 t ≤ 2

1

x4 = 5− t ≥ 0 t ≤ 5

1

Thus, the largest possible t = min
{

2

1
, 5

1

}
.

The new feasible solution is x = (0, , , 3)⊤. It has value > .

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a basis

x2 = t ≥ 0, x3 = 0
(
x1

x4

)

︸ ︷︷ ︸
xB

=

(
2
5

)

︸︷︷︸
b

−t

(
1
1

)

︸︷︷︸
A2

Choose t ≥ 0 as large as possible.

Basic variables must remain non-negative.

x1 = 2− t ≥ 0 t ≤ 2

1

x4 = 5− t ≥ 0 t ≤ 5

1

Thus, the largest possible t = min
{

2

1
, 5

1

}
.

The new feasible solution is x = (0, 2, 0, 3)⊤. It has value 2 > 0.

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

Remark

The new feasible solution x = (0, , , 3)⊤ is a basic solution.

Question

F r what basis B is x = (0, , , 3)⊤ a basic solution?

x2 = ∈ B
x4 = ∈ B

As |B| = , B = , .

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

Remark

The new feasible solution x = (0, 2, 0, 3)⊤ is a basic solution.

Question

F r what basis B is x = (0, , , 3)⊤ a basic solution?

x2 = ∈ B
x4 = ∈ B

As |B| = , B = , .

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

Remark

The new feasible solution x = (0, 2, 0, 3)⊤ is a basic solution.

Question

For what basis B is x = (0, 2, 0, 3)⊤ a basic solution?

x2 = ∈ B
x4 = ∈ B

As |B| = , B = , .

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

Remark

The new feasible solution x = (0, 2, 0, 3)⊤ is a basic solution.

Question

For what basis B is x = (0, 2, 0, 3)⊤ a basic solution?

x2 6= 0 2 ∈ B

x4 = ∈ B

As |B| = , B = , .

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

Remark

The new feasible solution x = (0, 2, 0, 3)⊤ is a basic solution.

Question

For what basis B is x = (0, 2, 0, 3)⊤ a basic solution?

x2 6= 0 2 ∈ B
x4 6= 0 4 ∈ B

As |B| = , B = , .

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

Remark

The new feasible solution x = (0, 2, 0, 3)⊤ is a basic solution.

Question

For what basis B is x = (0, 2, 0, 3)⊤ a basic solution?

x2 6= 0 2 ∈ B
x4 6= 0 4 ∈ B

As |B| = 2, B = {2, 4}.

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

, is a feasible basis

Canonical form for ,

max (−1 0 1 0)x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

x =

(
2
3

)

x1, x2, x3, x4 ≥ 0

NEW

, is a feasible basis

Canonical form for ,

Remark

We only need to know how to from the OLD basis to a NEW basis!
• entered the basis.

• left the basis.
WHY?

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

max (−1 0 1 0)x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

x =

(
2
3

)

x1, x2, x3, x4 ≥ 0

NEW

, is a feasible basis

Canonical form for ,

Remark

We only need to know how to from the OLD basis to a NEW basis!
• entered the basis.

• left the basis.
WHY?

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

max (−1 0 1 0)x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

x =

(
2
3

)

x1, x2, x3, x4 ≥ 0

NEW

, is a feasible basis

Canonical form for ,

Remark

We only need to know how to from the OLD basis to a NEW basis!
• entered the basis.

• left the basis.
WHY?

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

max (−1 0 1 0)x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

x =

(
2
3

)

x1, x2, x3, x4 ≥ 0

NEW

{2, 4} is a feasible basis

Canonical form for {2, 4}

Remark

We only need to know how to from the OLD basis to a NEW basis!
• entered the basis.

• left the basis.

WHY?

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

max (−1 0 1 0)x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

x =

(
2
3

)

x1, x2, x3, x4 ≥ 0

NEW

{2, 4} is a feasible basis

Canonical form for {2, 4}

Remark

We only need to know how to from the OLD basis to a NEW basis!
• entered the basis.

• left the basis.
WHY?

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

max (−1 0 1 0)x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

x =

(
2
3

)

x1, x2, x3, x4 ≥ 0

NEW

{2, 4} is a feasible basis

Canonical form for {2, 4}

Remark

We only need to know how to go from the OLD basis to a NEW basis!

• entered the basis.

• left the basis.
WHY?

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

max (−1 0 1 0)x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

x =

(
2
3

)

x1, x2, x3, x4 ≥ 0

NEW

{2, 4} is a feasible basis

Canonical form for {2, 4}

Remark

We only need to know how to go from the OLD basis to a NEW basis!
• 2 entered the basis.

• left the basis.
WHY?

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

max (−1 0 1 0)x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

x =

(
2
3

)

x1, x2, x3, x4 ≥ 0

NEW

{2, 4} is a feasible basis

Canonical form for {2, 4}

Remark

We only need to know how to go from the OLD basis to a NEW basis!
• 2 entered the basis.

• 1 left the basis.

WHY?

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

max (−1 0 1 0)x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

x =

(
2
3

)

x1, x2, x3, x4 ≥ 0

NEW

{2, 4} is a feasible basis

Canonical form for {2, 4}

Remark

We only need to know how to go from the OLD basis to a NEW basis!
• 2 entered the basis.

• 1 left the basis.
WHY?

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

Pick ∈ B and set x2 = t ≥ .

enters the basis

Set

(
x1

x4

)

=

()

− t

()

and t = min
{

2

1
, 5

1

}
= .

x1 = and leaves the basis

The NEW basis is , .

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

Pick 2 /∈ B and set x2 = t ≥ 0.

enters the basis

Set

(
x1

x4

)

=

()

− t

()

and t = min
{

2

1
, 5

1

}
= .

x1 = and leaves the basis

The NEW basis is , .

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

Pick 2 /∈ B and set x2 = t ≥ 0.

2 enters the basis

Set

(
x1

x4

)

=

()

− t

()

and t = min
{

2

1
, 5

1

}
= .

x1 = and leaves the basis

The NEW basis is , .

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

Pick 2 /∈ B and set x2 = t ≥ 0.

2 enters the basis

Set

(
x1

x4

)

=

(
2
5

)

− t

(
1
1

)

and

t = min
{

2

1
, 5

1

}
= .

x1 = and leaves the basis

The NEW basis is , .

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

Pick 2 /∈ B and set x2 = t ≥ 0.

2 enters the basis

Set

(
x1

x4

)

=

(
2
5

)

− t

(
1
1

)

and t = min
{

2

1
, 5

1

}
= 2.

x1 = and leaves the basis

The NEW basis is , .

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

Pick 2 /∈ B and set x2 = t ≥ 0.

2 enters the basis

Set

(
x1

x4

)

=

(
2
5

)

− t

(
1
1

)

and t = min
{

2

1
, 5

1

}
= 2.

x1 = 0 and 1 leaves the basis

The NEW basis is , .

max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

Pick 2 /∈ B and set x2 = t ≥ 0.

2 enters the basis

Set

(
x1

x4

)

=

(
2
5

)

− t

(
1
1

)

and t = min
{

2

1
, 5

1

}
= 2.

x1 = 0 and 1 leaves the basis

The NEW basis is {2, 4}.

Example – Continued

max (−1 0 1 0)

c

x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

A

x =

(
2
3

)

b

x1, x2, x3, x4 ≥ 0

B = , is a feasible basis

Canonical form for B

Pick k ∈ B such that ck > and set xk = t:

x3 = t enters the basis

Pick xB = b− tAk:
(
x2

x4

)

=

()

− t

(

−

)

t = min
{

2

2
,−
}
= thus x2 = leaves the basis

The NEW basis is B = , .

Example – Continued

max (−1 0 1 0)
︸ ︷︷ ︸

c

x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

︸ ︷︷ ︸
A

x =

(
2
3

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {2, 4} is a feasible basis

Canonical form for B

Pick k ∈ B such that ck > and set xk = t:

x3 = t enters the basis

Pick xB = b− tAk:
(
x2

x4

)

=

()

− t

(

−

)

t = min
{

2

2
,−
}
= thus x2 = leaves the basis

The NEW basis is B = , .

Example – Continued

max (−1 0 1 0)
︸ ︷︷ ︸

c

x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

︸ ︷︷ ︸
A

x =

(
2
3

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {2, 4} is a feasible basis

Canonical form for B

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t enters the basis

Pick xB = b− tAk:
(
x2

x4

)

=

()

− t

(

−

)

t = min
{

2

2
,−
}
= thus x2 = leaves the basis

The NEW basis is B = , .

Example – Continued

max (−1 0 1 0)
︸ ︷︷ ︸

c

x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

︸ ︷︷ ︸
A

x =

(
2
3

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {2, 4} is a feasible basis

Canonical form for B

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t

enters the basis

Pick xB = b− tAk:
(
x2

x4

)

=

()

− t

(

−

)

t = min
{

2

2
,−
}
= thus x2 = leaves the basis

The NEW basis is B = , .

Example – Continued

max (−1 0 1 0)
︸ ︷︷ ︸

c

x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

︸ ︷︷ ︸
A

x =

(
2
3

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {2, 4} is a feasible basis

Canonical form for B

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t 3 enters the basis

Pick xB = b− tAk:
(
x2

x4

)

=

()

− t

(

−

)

t = min
{

2

2
,−
}
= thus x2 = leaves the basis

The NEW basis is B = , .

Example – Continued

max (−1 0 1 0)
︸ ︷︷ ︸

c

x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

︸ ︷︷ ︸
A

x =

(
2
3

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {2, 4} is a feasible basis

Canonical form for B

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t 3 enters the basis

Pick xB = b− tAk:

(
x2

x4

)

=

()

− t

(

−

)

t = min
{

2

2
,−
}
= thus x2 = leaves the basis

The NEW basis is B = , .

Example – Continued

max (−1 0 1 0)
︸ ︷︷ ︸

c

x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

︸ ︷︷ ︸
A

x =

(
2
3

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {2, 4} is a feasible basis

Canonical form for B

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t 3 enters the basis

Pick xB = b− tAk:
(
x2

x4

)

=

(
2
3

)

− t

(
2
−1

)

t = min
{

2

2
,−
}
= thus x2 = leaves the basis

The NEW basis is B = , .

Example – Continued

max (−1 0 1 0)
︸ ︷︷ ︸

c

x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

︸ ︷︷ ︸
A

x =

(
2
3

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {2, 4} is a feasible basis

Canonical form for B

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t 3 enters the basis

Pick xB = b− tAk:
(
x2

x4

)

=

(
2
3

)

− t

(
2
−1

)

t = min
{

2

2
,−
}
= 2 thus x2 = 0

leaves the basis

The NEW basis is B = , .

Example – Continued

max (−1 0 1 0)
︸ ︷︷ ︸

c

x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

︸ ︷︷ ︸
A

x =

(
2
3

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {2, 4} is a feasible basis

Canonical form for B

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t 3 enters the basis

Pick xB = b− tAk:
(
x2

x4

)

=

(
2
3

)

− t

(
2
−1

)

t = min
{

2

2
,−
}
= 2 thus x2 = 0 2 leaves the basis

The NEW basis is B = , .

Example – Continued

max (−1 0 1 0)
︸ ︷︷ ︸

c

x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

︸ ︷︷ ︸
A

x =

(
2
3

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {2, 4} is a feasible basis

Canonical form for B

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t 3 enters the basis

Pick xB = b− tAk:
(
x2

x4

)

=

(
2
3

)

− t

(
2
−1

)

t = min
{

2

2
,−
}
= 2 thus x2 = 0 2 leaves the basis

The NEW basis is B = {3, 4}.

max (−1.5 − 0.5 0 0)
︸ ︷︷ ︸

c

x+ 3

s.t.
(

0.5 0.5 1 0
−0.5 0.5 0 1

)

︸ ︷︷ ︸
A

x =

(
1
4

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = , is a feasible basis

Canonical form for B

(0, , , 4)⊤ is a basic
solution

Pick k ∈ B such that ck > and set xk = t: ???

Claim

(0, , , 4)⊤ has value . It is optimal because is an upper bound.

Proof

Let x be a feasible solution. Then

(− . , . , , 0)

≤0

x

≥0

+3 ≤ .

max (−1.5 − 0.5 0 0)
︸ ︷︷ ︸

c

x+ 3

s.t.
(

0.5 0.5 1 0
−0.5 0.5 0 1

)

︸ ︷︷ ︸
A

x =

(
1
4

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {3, 4} is a feasible basis

Canonical form for B

(0, 0, 1, 4)⊤ is a basic
solution

Pick k ∈ B such that ck > and set xk = t: ???

Claim

(0, , , 4)⊤ has value . It is optimal because is an upper bound.

Proof

Let x be a feasible solution. Then

(− . , . , , 0)

≤0

x

≥0

+3 ≤ .

max (−1.5 − 0.5 0 0)
︸ ︷︷ ︸

c

x+ 3

s.t.
(

0.5 0.5 1 0
−0.5 0.5 0 1

)

︸ ︷︷ ︸
A

x =

(
1
4

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {3, 4} is a feasible basis

Canonical form for B

(0, 0, 1, 4)⊤ is a basic
solution

Pick k /∈ B such that ck > 0 and set xk = t: ???

Claim

(0, , , 4)⊤ has value . It is optimal because is an upper bound.

Proof

Let x be a feasible solution. Then

(− . , . , , 0)

≤0

x

≥0

+3 ≤ .

max (−1.5 − 0.5 0 0)
︸ ︷︷ ︸

c

x+ 3

s.t.
(

0.5 0.5 1 0
−0.5 0.5 0 1

)

︸ ︷︷ ︸
A

x =

(
1
4

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {3, 4} is a feasible basis

Canonical form for B

(0, 0, 1, 4)⊤ is a basic
solution

Pick k /∈ B such that ck > 0 and set xk = t: ???

Claim

(0, 0, 1, 4)⊤ has value 3. It is optimal because 3 is an upper bound.

Proof

Let x be a feasible solution. Then

(− . , . , , 0)

≤0

x

≥0

+3 ≤ .

max (−1.5 − 0.5 0 0)
︸ ︷︷ ︸

c

x+ 3

s.t.
(

0.5 0.5 1 0
−0.5 0.5 0 1

)

︸ ︷︷ ︸
A

x =

(
1
4

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {3, 4} is a feasible basis

Canonical form for B

(0, 0, 1, 4)⊤ is a basic
solution

Pick k /∈ B such that ck > 0 and set xk = t: ???

Claim

(0, 0, 1, 4)⊤ has value 3. It is optimal because 3 is an upper bound.

Proof

Let x be a feasible solution. Then

(− . , . , , 0)

≤0

x

≥0

+3 ≤ .

max (−1.5 − 0.5 0 0)
︸ ︷︷ ︸

c

x+ 3

s.t.
(

0.5 0.5 1 0
−0.5 0.5 0 1

)

︸ ︷︷ ︸
A

x =

(
1
4

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {3, 4} is a feasible basis

Canonical form for B

(0, 0, 1, 4)⊤ is a basic
solution

Pick k /∈ B such that ck > 0 and set xk = t: ???

Claim

(0, 0, 1, 4)⊤ has value 3. It is optimal because 3 is an upper bound.

Proof

Let x be a feasible solution.

Then

(− . , . , , 0)

≤0

x

≥0

+3 ≤ .

max (−1.5 − 0.5 0 0)
︸ ︷︷ ︸

c

x+ 3

s.t.
(

0.5 0.5 1 0
−0.5 0.5 0 1

)

︸ ︷︷ ︸
A

x =

(
1
4

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {3, 4} is a feasible basis

Canonical form for B

(0, 0, 1, 4)⊤ is a basic
solution

Pick k /∈ B such that ck > 0 and set xk = t: ???

Claim

(0, 0, 1, 4)⊤ has value 3. It is optimal because 3 is an upper bound.

Proof

Let x be a feasible solution. Then

(−1.5, 0.5, 0, 0)
︸ ︷︷ ︸

≤0

x
︸︷︷︸

≥0

+3

≤ .

max (−1.5 − 0.5 0 0)
︸ ︷︷ ︸

c

x+ 3

s.t.
(

0.5 0.5 1 0
−0.5 0.5 0 1

)

︸ ︷︷ ︸
A

x =

(
1
4

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {3, 4} is a feasible basis

Canonical form for B

(0, 0, 1, 4)⊤ is a basic
solution

Pick k /∈ B such that ck > 0 and set xk = t: ???

Claim

(0, 0, 1, 4)⊤ has value 3. It is optimal because 3 is an upper bound.

Proof

Let x be a feasible solution. Then

(−1.5, 0.5, 0, 0)
︸ ︷︷ ︸

≤0

x
︸︷︷︸

≥0

+3 ≤ 3.

Another Example

max (0 − 4 3 0 0)x

s.t.




1 −2 1 0 0
0 5 −3 1 0
0 4 −2 0 1



x =





1
1
2





x1, x2, x3, x4 ≥ 0

, , is a feasible basis

Canonical form for , ,

Pick k ∈ B such that ck > and set xk = t:

x3 = t enters the basis

Pick xB = b− tAk:

x1

x4

x5

= − t −
−

t = min
{

1

1
,−,−

}
= thus x1 = leaves the basis

The NEW basis is B = , , .

Another Example

max (0 − 4 3 0 0)x

s.t.




1 −2 1 0 0
0 5 −3 1 0
0 4 −2 0 1



x =





1
1
2





x1, x2, x3, x4 ≥ 0

{1, 4, 5} is a feasible basis

Canonical form for {1, 4, 5}

Pick k ∈ B such that ck > and set xk = t:

x3 = t enters the basis

Pick xB = b− tAk:

x1

x4

x5

= − t −
−

t = min
{

1

1
,−,−

}
= thus x1 = leaves the basis

The NEW basis is B = , , .

Another Example

max (0 − 4 3 0 0)x

s.t.




1 −2 1 0 0
0 5 −3 1 0
0 4 −2 0 1



x =





1
1
2





x1, x2, x3, x4 ≥ 0

{1, 4, 5} is a feasible basis

Canonical form for {1, 4, 5}

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t enters the basis

Pick xB = b− tAk:

x1

x4

x5

= − t −
−

t = min
{

1

1
,−,−

}
= thus x1 = leaves the basis

The NEW basis is B = , , .

Another Example

max (0 − 4 3 0 0)x

s.t.




1 −2 1 0 0
0 5 −3 1 0
0 4 −2 0 1



x =





1
1
2





x1, x2, x3, x4 ≥ 0

{1, 4, 5} is a feasible basis

Canonical form for {1, 4, 5}

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t

enters the basis

Pick xB = b− tAk:

x1

x4

x5

= − t −
−

t = min
{

1

1
,−,−

}
= thus x1 = leaves the basis

The NEW basis is B = , , .

Another Example

max (0 − 4 3 0 0)x

s.t.




1 −2 1 0 0
0 5 −3 1 0
0 4 −2 0 1



x =





1
1
2





x1, x2, x3, x4 ≥ 0

{1, 4, 5} is a feasible basis

Canonical form for {1, 4, 5}

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t 3 enters the basis

Pick xB = b− tAk:

x1

x4

x5

= − t −
−

t = min
{

1

1
,−,−

}
= thus x1 = leaves the basis

The NEW basis is B = , , .

Another Example

max (0 − 4 3 0 0)x

s.t.




1 −2 1 0 0
0 5 −3 1 0
0 4 −2 0 1



x =





1
1
2





x1, x2, x3, x4 ≥ 0

{1, 4, 5} is a feasible basis

Canonical form for {1, 4, 5}

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t 3 enters the basis

Pick xB = b− tAk:

x1

x4

x5

= − t −
−

t = min
{

1

1
,−,−

}
= thus x1 = leaves the basis

The NEW basis is B = , , .

Another Example

max (0 − 4 3 0 0)x

s.t.




1 −2 1 0 0
0 5 −3 1 0
0 4 −2 0 1



x =





1
1
2





x1, x2, x3, x4 ≥ 0

{1, 4, 5} is a feasible basis

Canonical form for {1, 4, 5}

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t 3 enters the basis

Pick xB = b− tAk:




x1

x4

x5



 =





1
1
2



− t





1
−3
−2





t = min
{

1

1
,−,−

}
= thus x1 = leaves the basis

The NEW basis is B = , , .

Another Example

max (0 − 4 3 0 0)x

s.t.




1 −2 1 0 0
0 5 −3 1 0
0 4 −2 0 1



x =





1
1
2





x1, x2, x3, x4 ≥ 0

{1, 4, 5} is a feasible basis

Canonical form for {1, 4, 5}

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t 3 enters the basis

Pick xB = b− tAk:




x1

x4

x5



 =





1
1
2



− t





1
−3
−2





t = min
{

1

1
,−,−

}
= 1

thus x1 = leaves the basis

The NEW basis is B = , , .

Another Example

max (0 − 4 3 0 0)x

s.t.




1 −2 1 0 0
0 5 −3 1 0
0 4 −2 0 1



x =





1
1
2





x1, x2, x3, x4 ≥ 0

{1, 4, 5} is a feasible basis

Canonical form for {1, 4, 5}

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t 3 enters the basis

Pick xB = b− tAk:




x1

x4

x5



 =





1
1
2



− t





1
−3
−2





t = min
{

1

1
,−,−

}
= 1 thus x1 = 0

leaves the basis

The NEW basis is B = , , .

Another Example

max (0 − 4 3 0 0)x

s.t.




1 −2 1 0 0
0 5 −3 1 0
0 4 −2 0 1



x =





1
1
2





x1, x2, x3, x4 ≥ 0

{1, 4, 5} is a feasible basis

Canonical form for {1, 4, 5}

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t 3 enters the basis

Pick xB = b− tAk:




x1

x4

x5



 =





1
1
2



− t





1
−3
−2





t = min
{

1

1
,−,−

}
= 1 thus x1 = 0 1 leaves the basis

The NEW basis is B = , , .

Another Example

max (0 − 4 3 0 0)x

s.t.




1 −2 1 0 0
0 5 −3 1 0
0 4 −2 0 1



x =





1
1
2





x1, x2, x3, x4 ≥ 0

{1, 4, 5} is a feasible basis

Canonical form for {1, 4, 5}

Pick k /∈ B such that ck > 0 and set xk = t:

x3 = t 3 enters the basis

Pick xB = b− tAk:




x1

x4

x5



 =





1
1
2



− t





1
−3
−2





t = min
{

1

1
,−,−

}
= 1 thus x1 = 0 1 leaves the basis

The NEW basis is B = {3, 4, 5}.

max (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

, , is a feasible basis

Canonical form for , ,

Pick k ∈ B such that ck > and set xk = t:

x2 = t enters the basis

Pick xB = b− tAk:

x3

x4

x5

= − t
−
− Choose t =???

Claim

The linear program is unbounded.

max (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

{3, 4, 5} is a feasible basis

Canonical form for {3, 4, 5}

Pick k ∈ B such that ck > and set xk = t:

x2 = t enters the basis

Pick xB = b− tAk:

x3

x4

x5

= − t
−
− Choose t =???

Claim

The linear program is unbounded.

max (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

{3, 4, 5} is a feasible basis

Canonical form for {3, 4, 5}

Pick k /∈ B such that ck > 0 and set xk = t:

x2 = t enters the basis

Pick xB = b− tAk:

x3

x4

x5

= − t
−
− Choose t =???

Claim

The linear program is unbounded.

max (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

{3, 4, 5} is a feasible basis

Canonical form for {3, 4, 5}

Pick k /∈ B such that ck > 0 and set xk = t:

x2 = t

enters the basis

Pick xB = b− tAk:

x3

x4

x5

= − t
−
− Choose t =???

Claim

The linear program is unbounded.

max (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

{3, 4, 5} is a feasible basis

Canonical form for {3, 4, 5}

Pick k /∈ B such that ck > 0 and set xk = t:

x2 = t 2 enters the basis

Pick xB = b− tAk:

x3

x4

x5

= − t
−
− Choose t =???

Claim

The linear program is unbounded.

max (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

{3, 4, 5} is a feasible basis

Canonical form for {3, 4, 5}

Pick k /∈ B such that ck > 0 and set xk = t:

x2 = t 2 enters the basis

Pick xB = b− tAk:




x3

x4

x5



 =





1
4
4



− t





−2
−1
0





Choose t =???

Claim

The linear program is unbounded.

max (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

{3, 4, 5} is a feasible basis

Canonical form for {3, 4, 5}

Pick k /∈ B such that ck > 0 and set xk = t:

x2 = t 2 enters the basis

Pick xB = b− tAk:




x3

x4

x5



 =





1
4
4



− t





−2
−1
0



 Choose t =???

Claim

The linear program is unbounded.

max (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

{3, 4, 5} is a feasible basis

Canonical form for {3, 4, 5}

Pick k /∈ B such that ck > 0 and set xk = t:

x2 = t 2 enters the basis

Pick xB = b− tAk:




x3

x4

x5



 =





1
4
4



− t





−2
−1
0



 Choose t =???

Claim

The linear program is unbounded.

max z = (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

x2 = t

x1 = 0
(
x3

x4

x5

)

=

(
1
4
4

)

− t

(
−2
−1
0

)

Claim

The linear program is unbounded.

Proof

x(t) =

0
t

1 + 2t
4 + t

4

=









0
0
1
4
4









x̄

+t









0
1
2
1
0









r

• x(t) is feasible for all t ≥ .

• z when t .
(x, r: certificate of unboundedness.)

max z = (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

x2 = t

x1 = 0
(
x3

x4

x5

)

=

(
1
4
4

)

− t

(
−2
−1
0

)

Claim

The linear program is unbounded.

Proof

x(t) =

0
t

1 + 2t
4 + t

4

=









0
0
1
4
4









x̄

+t









0
1
2
1
0









r

• x(t) is feasible for all t ≥ .

• z when t .
(x, r: certificate of unboundedness.)

max z = (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

x2 = t

x1 = 0
(
x3

x4

x5

)

=

(
1
4
4

)

− t

(
−2
−1
0

)

Claim

The linear program is unbounded.

Proof

x(t) =

0
t

1 + 2t
4 + t

4

=









0
0
1
4
4









x̄

+t









0
1
2
1
0









r

• x(t) is feasible for all t ≥ .

• z when t .
(x, r: certificate of unboundedness.)

max z = (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

x2 = t

x1 = 0
(
x3

x4

x5

)

=

(
1
4
4

)

− t

(
−2
−1
0

)

Claim

The linear program is unbounded.

Proof

x(t) =








0
t

1 + 2t
4 + t

4








=









0
0
1
4
4









x̄

+t









0
1
2
1
0









r

• x(t) is feasible for all t ≥ .

• z when t .
(x, r: certificate of unboundedness.)

max z = (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

x2 = t

x1 = 0
(
x3

x4

x5

)

=

(
1
4
4

)

− t

(
−2
−1
0

)

Claim

The linear program is unbounded.

Proof

x(t) =








0
t

1 + 2t
4 + t

4








=









0
0
1
4
4









︸ ︷︷ ︸

=x̄

+t









0
1
2
1
0









︸ ︷︷ ︸

=r

• x(t) is feasible for all t ≥ .

• z when t .
(x, r: certificate of unboundedness.)

max z = (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

x2 = t

x1 = 0
(
x3

x4

x5

)

=

(
1
4
4

)

− t

(
−2
−1
0

)

Claim

The linear program is unbounded.

Proof

x(t) =








0
t

1 + 2t
4 + t

4








=









0
0
1
4
4









︸ ︷︷ ︸

=x̄

+t









0
1
2
1
0









︸ ︷︷ ︸

=r

• x(t) is feasible for all t ≥ 0.

• z when t .
(x, r: certificate of unboundedness.)

max z = (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

x2 = t

x1 = 0
(
x3

x4

x5

)

=

(
1
4
4

)

− t

(
−2
−1
0

)

Claim

The linear program is unbounded.

Proof

x(t) =








0
t

1 + 2t
4 + t

4








=









0
0
1
4
4









︸ ︷︷ ︸

=x̄

+t









0
1
2
1
0









︸ ︷︷ ︸

=r

• x(t) is feasible for all t ≥ 0.

• z → ∞ when t → ∞.

(x, r: certificate of unboundedness.)

max z = (−3 2 0 0 0)x+ 3

s.t.




1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1



x =





1
4
4





x1, x2, x3, x4 ≥ 0

x2 = t

x1 = 0
(
x3

x4

x5

)

=

(
1
4
4

)

− t

(
−2
−1
0

)

Claim

The linear program is unbounded.

Proof

x(t) =








0
t

1 + 2t
4 + t

4








=









0
0
1
4
4









︸ ︷︷ ︸

=x̄

+t









0
1
2
1
0









︸ ︷︷ ︸

=r

• x(t) is feasible for all t ≥ 0.

• z → ∞ when t → ∞.
(x̄, r: certificate of unboundedness.)

The Simplex Algorithm

max c⊤x

s.t.

Ax = b

x ≥

Input: a feasible basis B.

Output: an optimal solution OR it detects that the LP is unbounded.

Step 1. Rewrite in canonical form for the basis B.

Step 2. Find a better basis B r get required outcome.

The Simplex Algorithm

max c⊤x

s.t.

Ax = b

x ≥ 0

Input: a feasible basis B.

Output: an optimal solution OR it detects that the LP is unbounded.

Step 1. Rewrite in canonical form for the basis B.

Step 2. Find a better basis B r get required outcome.

The Simplex Algorithm

max c⊤x

s.t.

Ax = b

x ≥ 0

Input:

a feasible basis B.

Output: an optimal solution OR it detects that the LP is unbounded.

Step 1. Rewrite in canonical form for the basis B.

Step 2. Find a better basis B r get required outcome.

The Simplex Algorithm

max c⊤x

s.t.

Ax = b

x ≥ 0

Input: a feasible basis B.

Output: an optimal solution OR it detects that the LP is unbounded.

Step 1. Rewrite in canonical form for the basis B.

Step 2. Find a better basis B r get required outcome.

The Simplex Algorithm

max c⊤x

s.t.

Ax = b

x ≥ 0

Input: a feasible basis B.

Output:

an optimal solution OR it detects that the LP is unbounded.

Step 1. Rewrite in canonical form for the basis B.

Step 2. Find a better basis B r get required outcome.

The Simplex Algorithm

max c⊤x

s.t.

Ax = b

x ≥ 0

Input: a feasible basis B.

Output: an optimal solution OR

it detects that the LP is unbounded.

Step 1. Rewrite in canonical form for the basis B.

Step 2. Find a better basis B r get required outcome.

The Simplex Algorithm

max c⊤x

s.t.

Ax = b

x ≥ 0

Input: a feasible basis B.

Output: an optimal solution OR it detects that the LP is unbounded.

Step 1. Rewrite in canonical form for the basis B.

Step 2. Find a better basis B r get required outcome.

The Simplex Algorithm

max c⊤x

s.t.

Ax = b

x ≥ 0

Input: a feasible basis B.

Output: an optimal solution OR it detects that the LP is unbounded.

Step 1. Rewrite in canonical form for the basis B.

Step 2. Find a better basis B r get required outcome.

The Simplex Algorithm

max c⊤x

s.t.

Ax = b

x ≥ 0

Input: a feasible basis B.

Output: an optimal solution OR it detects that the LP is unbounded.

Step 1. Rewrite in canonical form for the basis B.

Step 2. Find a better basis B or get required outcome.

The Simplex Algorithm

max c⊤x

s.t.

Ax = b

x ≥ 0

Input: a feasible basis B.

Output: an optimal solution OR it detects that the LP is unbounded.

Step 1. Rewrite in canonical form for the basis B.

Step 2. Find a better basis B or get required outcome.

Trying to Find a Better Basis

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = j ∈ B

Canonical form for B

x is a basic solution

If cN ≤ , then STOP. The basic solution x is optimal.

Pick k ∈ B such that ck > and set xk = t.

Pick xB = b− tAk.

If k ≤ , then STOP. The LP is unbounded.

Choose t = min
{

bi
Aik

: for all i such that ik >
}

.

Let xr be a basic variable forced to .

The new basis is obtained by having k enter and r leave.

Trying to Find a Better Basis

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis,

N = j ∈ B

Canonical form for B

x is a basic solution

If cN ≤ , then STOP. The basic solution x is optimal.

Pick k ∈ B such that ck > and set xk = t.

Pick xB = b− tAk.

If k ≤ , then STOP. The LP is unbounded.

Choose t = min
{

bi
Aik

: for all i such that ik >
}

.

Let xr be a basic variable forced to .

The new basis is obtained by having k enter and r leave.

Trying to Find a Better Basis

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x is a basic solution

If cN ≤ , then STOP. The basic solution x is optimal.

Pick k ∈ B such that ck > and set xk = t.

Pick xB = b− tAk.

If k ≤ , then STOP. The LP is unbounded.

Choose t = min
{

bi
Aik

: for all i such that ik >
}

.

Let xr be a basic variable forced to .

The new basis is obtained by having k enter and r leave.

Trying to Find a Better Basis

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x is a basic solution

If cN ≤ , then STOP. The basic solution x is optimal.

Pick k ∈ B such that ck > and set xk = t.

Pick xB = b− tAk.

If k ≤ , then STOP. The LP is unbounded.

Choose t = min
{

bi
Aik

: for all i such that ik >
}

.

Let xr be a basic variable forced to .

The new basis is obtained by having k enter and r leave.

Trying to Find a Better Basis

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ is a basic solution

If cN ≤ , then STOP. The basic solution x is optimal.

Pick k ∈ B such that ck > and set xk = t.

Pick xB = b− tAk.

If k ≤ , then STOP. The LP is unbounded.

Choose t = min
{

bi
Aik

: for all i such that ik >
}

.

Let xr be a basic variable forced to .

The new basis is obtained by having k enter and r leave.

Trying to Find a Better Basis

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ is a basic solution

If cN ≤ 0, then STOP. The basic solution x̄ is optimal.

Pick k ∈ B such that ck > and set xk = t.

Pick xB = b− tAk.

If k ≤ , then STOP. The LP is unbounded.

Choose t = min
{

bi
Aik

: for all i such that ik >
}

.

Let xr be a basic variable forced to .

The new basis is obtained by having k enter and r leave.

Trying to Find a Better Basis

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ is a basic solution

If cN ≤ 0, then STOP. The basic solution x̄ is optimal.

Pick k /∈ B such that ck > 0 and set xk = t.

Pick xB = b− tAk.

If k ≤ , then STOP. The LP is unbounded.

Choose t = min
{

bi
Aik

: for all i such that ik >
}

.

Let xr be a basic variable forced to .

The new basis is obtained by having k enter and r leave.

Trying to Find a Better Basis

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ is a basic solution

If cN ≤ 0, then STOP. The basic solution x̄ is optimal.

Pick k /∈ B such that ck > 0 and set xk = t.

Pick xB = b− tAk.

If k ≤ , then STOP. The LP is unbounded.

Choose t = min
{

bi
Aik

: for all i such that ik >
}

.

Let xr be a basic variable forced to .

The new basis is obtained by having k enter and r leave.

Trying to Find a Better Basis

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ is a basic solution

If cN ≤ 0, then STOP. The basic solution x̄ is optimal.

Pick k /∈ B such that ck > 0 and set xk = t.

Pick xB = b− tAk.

If Ak ≤ 0, then STOP. The LP is unbounded.

Choose t = min
{

bi
Aik

: for all i such that ik >
}

.

Let xr be a basic variable forced to .

The new basis is obtained by having k enter and r leave.

Trying to Find a Better Basis

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ is a basic solution

If cN ≤ 0, then STOP. The basic solution x̄ is optimal.

Pick k /∈ B such that ck > 0 and set xk = t.

Pick xB = b− tAk.

If Ak ≤ 0, then STOP. The LP is unbounded.

Choose t = min
{

bi
Aik

: for all i such that Aik > 0
}

.

Let xr be a basic variable forced to .

The new basis is obtained by having k enter and r leave.

Trying to Find a Better Basis

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ is a basic solution

If cN ≤ 0, then STOP. The basic solution x̄ is optimal.

Pick k /∈ B such that ck > 0 and set xk = t.

Pick xB = b− tAk.

If Ak ≤ 0, then STOP. The LP is unbounded.

Choose t = min
{

bi
Aik

: for all i such that Aik > 0
}

.

Let xr be a basic variable forced to 0.

The new basis is obtained by having k enter and r leave.

Trying to Find a Better Basis

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ is a basic solution

If cN ≤ 0, then STOP. The basic solution x̄ is optimal.

Pick k /∈ B such that ck > 0 and set xk = t.

Pick xB = b− tAk.

If Ak ≤ 0, then STOP. The LP is unbounded.

Choose t = min
{

bi
Aik

: for all i such that Aik > 0
}

.

Let xr be a basic variable forced to 0.

The new basis is obtained by having k enter and r leave.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If cN ≤ 0, then STOP. The basic solution x̄ is optimal.

Proof

xB = b, xN = .

x has value z = c⊤NxN + z = z.

Let x be a feasible solution.

z = c⊤N

≤0

xN

≥0

+z ≤ z.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If cN ≤ 0, then STOP. The basic solution x̄ is optimal.

Proof

xB = b, xN = .

x has value z = c⊤NxN + z = z.

Let x be a feasible solution.

z = c⊤N

≤0

xN

≥0

+z ≤ z.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If cN ≤ 0, then STOP. The basic solution x̄ is optimal.

Proof

x̄B = b, x̄N = 0.

x has value z = c⊤NxN + z = z.

Let x be a feasible solution.

z = c⊤N

≤0

xN

≥0

+z ≤ z.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If cN ≤ 0, then STOP. The basic solution x̄ is optimal.

Proof

x̄B = b, x̄N = 0.

x̄ has value z = c⊤N x̄N + z̄ = z̄.

Let x be a feasible solution.

z = c⊤N

≤0

xN

≥0

+z ≤ z.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If cN ≤ 0, then STOP. The basic solution x̄ is optimal.

Proof

x̄B = b, x̄N = 0.

x̄ has value z = c⊤N x̄N + z̄ = z̄.

Let x be a feasible solution.

z =

c⊤N

≤0

xN

≥0

+z ≤ z.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If cN ≤ 0, then STOP. The basic solution x̄ is optimal.

Proof

x̄B = b, x̄N = 0.

x̄ has value z = c⊤N x̄N + z̄ = z̄.

Let x be a feasible solution.

z = c⊤N
︸︷︷︸

≤0

xN
︸︷︷︸

≥0

+z̄

≤ z.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If cN ≤ 0, then STOP. The basic solution x̄ is optimal.

Proof

x̄B = b, x̄N = 0.

x̄ has value z = c⊤N x̄N + z̄ = z̄.

Let x be a feasible solution.

z = c⊤N
︸︷︷︸

≤0

xN
︸︷︷︸

≥0

+z̄ ≤ z̄.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If Ak ≤ 0, then STOP. The LP is unbounded.

Proof

x is feasible for all t ≥ :

xk = t ≥ , all other non-basic variables have value zero.

xB = b− tAk = b

≥0

− t

≥0

k

≤0

≥

z when t :

z =
∑

j∈N cjxj + z = ckxk + z = ck

>0

t+ x.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If Ak ≤ 0, then STOP. The LP is unbounded.

Proof

x is feasible for all t ≥ :

xk = t ≥ , all other non-basic variables have value zero.

xB = b− tAk = b

≥0

− t

≥0

k

≤0

≥

z when t :

z =
∑

j∈N cjxj + z = ckxk + z = ck

>0

t+ x.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If Ak ≤ 0, then STOP. The LP is unbounded.

Proof

x is feasible for all t ≥ 0:

xk = t ≥ , all other non-basic variables have value zero.

xB = b− tAk = b

≥0

− t

≥0

k

≤0

≥

z when t :

z =
∑

j∈N cjxj + z = ckxk + z = ck

>0

t+ x.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If Ak ≤ 0, then STOP. The LP is unbounded.

Proof

x is feasible for all t ≥ 0:

xk = t ≥ 0,

all other non-basic variables have value zero.

xB = b− tAk = b

≥0

− t

≥0

k

≤0

≥

z when t :

z =
∑

j∈N cjxj + z = ckxk + z = ck

>0

t+ x.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If Ak ≤ 0, then STOP. The LP is unbounded.

Proof

x is feasible for all t ≥ 0:

xk = t ≥ 0, all other non-basic variables have value zero.

xB = b− tAk = b

≥0

− t

≥0

k

≤0

≥

z when t :

z =
∑

j∈N cjxj + z = ckxk + z = ck

>0

t+ x.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If Ak ≤ 0, then STOP. The LP is unbounded.

Proof

x is feasible for all t ≥ 0:

xk = t ≥ 0, all other non-basic variables have value zero.

xB = b− tAk =

b

≥0

− t

≥0

k

≤0

≥

z when t :

z =
∑

j∈N cjxj + z = ckxk + z = ck

>0

t+ x.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If Ak ≤ 0, then STOP. The LP is unbounded.

Proof

x is feasible for all t ≥ 0:

xk = t ≥ 0, all other non-basic variables have value zero.

xB = b− tAk = b
︸︷︷︸

≥0

− t
︸︷︷︸

≥0

Ak
︸︷︷︸

≤0

≥

z when t :

z =
∑

j∈N cjxj + z = ckxk + z = ck

>0

t+ x.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If Ak ≤ 0, then STOP. The LP is unbounded.

Proof

x is feasible for all t ≥ 0:

xk = t ≥ 0, all other non-basic variables have value zero.

xB = b− tAk = b
︸︷︷︸

≥0

− t
︸︷︷︸

≥0

Ak
︸︷︷︸

≤0

≥ 0

z when t :

z =
∑

j∈N cjxj + z = ckxk + z = ck

>0

t+ x.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If Ak ≤ 0, then STOP. The LP is unbounded.

Proof

x is feasible for all t ≥ 0:

xk = t ≥ 0, all other non-basic variables have value zero.

xB = b− tAk = b
︸︷︷︸

≥0

− t
︸︷︷︸

≥0

Ak
︸︷︷︸

≤0

≥ 0

z → ∞ when t → ∞:

z =
∑

j∈N cjxj + z = ckxk + z = ck

>0

t+ x.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If Ak ≤ 0, then STOP. The LP is unbounded.

Proof

x is feasible for all t ≥ 0:

xk = t ≥ 0, all other non-basic variables have value zero.

xB = b− tAk = b
︸︷︷︸

≥0

− t
︸︷︷︸

≥0

Ak
︸︷︷︸

≤0

≥ 0

z → ∞ when t → ∞:

z =
∑

j∈N cjxj + z̄

= ckxk + z = ck

>0

t+ x.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If Ak ≤ 0, then STOP. The LP is unbounded.

Proof

x is feasible for all t ≥ 0:

xk = t ≥ 0, all other non-basic variables have value zero.

xB = b− tAk = b
︸︷︷︸

≥0

− t
︸︷︷︸

≥0

Ak
︸︷︷︸

≤0

≥ 0

z → ∞ when t → ∞:

z =
∑

j∈N cjxj + z̄ = ckxk + z̄

= ck

>0

t+ x.

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = {j /∈ B}

Canonical form for B

x̄ basic solution

If Ak ≤ 0, then STOP. The LP is unbounded.

Proof

x is feasible for all t ≥ 0:

xk = t ≥ 0, all other non-basic variables have value zero.

xB = b− tAk = b
︸︷︷︸

≥0

− t
︸︷︷︸

≥0

Ak
︸︷︷︸

≤0

≥ 0

z → ∞ when t → ∞:

z =
∑

j∈N cjxj + z̄ = ckxk + z̄ = ck
︸︷︷︸
>0

t+ x̄.

Proposition

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

• If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem: Start with a feasible basis B1,

B1 B2 B3 . . . Bk−1 Bk = B1

Cycling

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Proposition

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

• If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem: Start with a feasible basis B1,

B1 B2 B3 . . . Bk−1 Bk = B1

Cycling

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Proposition

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

• If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem: Start with a feasible basis B1,

B1 B2 B3 . . . Bk−1 Bk = B1

Cycling

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Proposition

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

• If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem: Start with a feasible basis B1,

B1 B2 B3 . . . Bk−1 Bk = B1

Cycling

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Proposition

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

• If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED!

IT MAY NOT TERMINATE!

Potential problem: Start with a feasible basis B1,

B1 B2 B3 . . . Bk−1 Bk = B1

Cycling

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Proposition

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

• If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem: Start with a feasible basis B1,

B1 B2 B3 . . . Bk−1 Bk = B1

Cycling

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Proposition

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

• If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem:

Start with a feasible basis B1,

B1 B2 B3 . . . Bk−1 Bk = B1

Cycling

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Proposition

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

• If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem: Start with a feasible basis B1,

B1 B2 B3 . . . Bk−1 Bk = B1

Cycling

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Proposition

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

• If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem: Start with a feasible basis B1,

B1 B2

B3 . . . Bk−1 Bk = B1

Cycling

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Proposition

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

• If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem: Start with a feasible basis B1,

B1 B2 B3

. . . Bk−1 Bk = B1

Cycling

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Proposition

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

• If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem: Start with a feasible basis B1,

B1 B2 B3 . . . Bk−1

Bk = B1

Cycling

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Proposition

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

• If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem: Start with a feasible basis B1,

B1 B2 B3 . . . Bk−1 Bk = B1

Cycling

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Proposition

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

• If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem: Start with a feasible basis B1,

B1 B2 B3 . . . Bk−1 Bk = B1
︸ ︷︷ ︸

Cycling

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Proposition

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

• If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem: Start with a feasible basis B1,

B1 B2 B3 . . . Bk−1 Bk = B1
︸ ︷︷ ︸

Cycling

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Bland’s rule

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Definition

Bland’s rule is as follows:

• If we have a choice for the element entering the basis,
pick the smallest one.

• If we have a choice for the element leaving the basis,
pick the smallest one.

Let us see an example...

Bland’s rule

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Definition

Bland’s rule is as follows:

• If we have a choice for the element entering the basis,
pick the smallest one.

• If we have a choice for the element leaving the basis,
pick the smallest one.

Let us see an example...

Bland’s rule

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Definition

Bland’s rule is as follows:

• If we have a choice for the element entering the basis,

pick the smallest one.

• If we have a choice for the element leaving the basis,
pick the smallest one.

Let us see an example...

Bland’s rule

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Definition

Bland’s rule is as follows:

• If we have a choice for the element entering the basis,
pick the smallest one.

• If we have a choice for the element leaving the basis,
pick the smallest one.

Let us see an example...

Bland’s rule

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Definition

Bland’s rule is as follows:

• If we have a choice for the element entering the basis,
pick the smallest one.

• If we have a choice for the element leaving the basis,

pick the smallest one.

Let us see an example...

Bland’s rule

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Definition

Bland’s rule is as follows:

• If we have a choice for the element entering the basis,
pick the smallest one.

• If we have a choice for the element leaving the basis,
pick the smallest one.

Let us see an example...

Bland’s rule

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Definition

Bland’s rule is as follows:

• If we have a choice for the element entering the basis,
pick the smallest one.

• If we have a choice for the element leaving the basis,
pick the smallest one.

Let us see an example...

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k ∈ B such that ck > and set xk = t:

Choices k = OR k = .

Bland’s rule says pick k = (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

()

− t

()

and t = min
{

6

2
, 12

4

}
=

Pick r ∈ B such that xr = :

Choices r = OR r = .

Bland’s rule says pick r = (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = OR k = .

Bland’s rule says pick k = (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

()

− t

()

and t = min
{

6

2
, 12

4

}
=

Pick r ∈ B such that xr = :

Choices r = OR r = .

Bland’s rule says pick r = (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = 3

OR k = .

Bland’s rule says pick k = (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

()

− t

()

and t = min
{

6

2
, 12

4

}
=

Pick r ∈ B such that xr = :

Choices r = OR r = .

Bland’s rule says pick r = (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = 3 OR

k = .

Bland’s rule says pick k = (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

()

− t

()

and t = min
{

6

2
, 12

4

}
=

Pick r ∈ B such that xr = :

Choices r = OR r = .

Bland’s rule says pick r = (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = 3 OR k = 4.

Bland’s rule says pick k = (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

()

− t

()

and t = min
{

6

2
, 12

4

}
=

Pick r ∈ B such that xr = :

Choices r = OR r = .

Bland’s rule says pick r = (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = 3 OR k = 4.

Bland’s rule says

pick k = (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

()

− t

()

and t = min
{

6

2
, 12

4

}
=

Pick r ∈ B such that xr = :

Choices r = OR r = .

Bland’s rule says pick r = (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = 3 OR k = 4.

Bland’s rule says pick k = 3 (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

()

− t

()

and t = min
{

6

2
, 12

4

}
=

Pick r ∈ B such that xr = :

Choices r = OR r = .

Bland’s rule says pick r = (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = 3 OR k = 4.

Bland’s rule says pick k = 3 (entering element).

Pick xB = b− tAk:

(
x1

x2

)

=

()

− t

()

and t = min
{

6

2
, 12

4

}
=

Pick r ∈ B such that xr = :

Choices r = OR r = .

Bland’s rule says pick r = (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = 3 OR k = 4.

Bland’s rule says pick k = 3 (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

(
6
12

)

− t

(
2
4

)

and t = min
{

6

2
, 12

4

}
=

Pick r ∈ B such that xr = :

Choices r = OR r = .

Bland’s rule says pick r = (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = 3 OR k = 4.

Bland’s rule says pick k = 3 (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

(
6
12

)

− t

(
2
4

)

and t = min
{

6

2
, 12

4

}
= 3

Pick r ∈ B such that xr = :

Choices r = OR r = .

Bland’s rule says pick r = (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = 3 OR k = 4.

Bland’s rule says pick k = 3 (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

(
6
12

)

− t

(
2
4

)

and t = min
{

6

2
, 12

4

}
= 3

Pick r ∈ B such that xr = 0:

Choices r = OR r = .

Bland’s rule says pick r = (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = 3 OR k = 4.

Bland’s rule says pick k = 3 (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

(
6
12

)

− t

(
2
4

)

and t = min
{

6

2
, 12

4

}
= 3

Pick r ∈ B such that xr = 0:

Choices r = 1

OR r = .

Bland’s rule says pick r = (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = 3 OR k = 4.

Bland’s rule says pick k = 3 (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

(
6
12

)

− t

(
2
4

)

and t = min
{

6

2
, 12

4

}
= 3

Pick r ∈ B such that xr = 0:

Choices r = 1 OR

r = .

Bland’s rule says pick r = (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = 3 OR k = 4.

Bland’s rule says pick k = 3 (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

(
6
12

)

− t

(
2
4

)

and t = min
{

6

2
, 12

4

}
= 3

Pick r ∈ B such that xr = 0:

Choices r = 1 OR r = 2.

Bland’s rule says pick r = (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = 3 OR k = 4.

Bland’s rule says pick k = 3 (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

(
6
12

)

− t

(
2
4

)

and t = min
{

6

2
, 12

4

}
= 3

Pick r ∈ B such that xr = 0:

Choices r = 1 OR r = 2.

Bland’s rule says

pick r = (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = 3 OR k = 4.

Bland’s rule says pick k = 3 (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

(
6
12

)

− t

(
2
4

)

and t = min
{

6

2
, 12

4

}
= 3

Pick r ∈ B such that xr = 0:

Choices r = 1 OR r = 2.

Bland’s rule says pick r = 1 (leaving element).

The NEW basis is B = , .

max (0 0 2 3)x

s.t.
(
1 0 2 −1
0 1 4 6

)

x =

(
6
12

)

x1, x2, x3, x4 ≥ 0

{1, 2} is a feasible basis

Canonical form for {1, 2}

Pick k /∈ B such that ck > 0 and set xk = t:

Choices k = 3 OR k = 4.

Bland’s rule says pick k = 3 (entering element).

Pick xB = b− tAk:
(
x1

x2

)

=

(
6
12

)

− t

(
2
4

)

and t = min
{

6

2
, 12

4

}
= 3

Pick r ∈ B such that xr = 0:

Choices r = 1 OR r = 2.

Bland’s rule says pick r = 1 (leaving element).

The NEW basis is B = {3, 4}.

Recap

• We have seen a formal description of the Simplex algorithm.

• We showed that if the algorithm terminates, then it is correct.

• We defined Bland’s rule and asserted, without pr of, that Simplex
terminates as long as we are usin Bland’s rule.

• T get started, we need to get a feasible basis.

T do: Find a procedure to find a feasible basis.

Recap

• We have seen a formal description of the Simplex algorithm.

• We showed that if the algorithm terminates, then it is correct.

• We defined Bland’s rule and asserted, without pr of, that Simplex
terminates as long as we are usin Bland’s rule.

• T get started, we need to get a feasible basis.

T do: Find a procedure to find a feasible basis.

Recap

• We have seen a formal description of the Simplex algorithm.

• We showed that if the algorithm terminates, then it is correct.

• We defined Bland’s rule and asserted, without pr of, that Simplex
terminates as long as we are usin Bland’s rule.

• T get started, we need to get a feasible basis.

T do: Find a procedure to find a feasible basis.

Recap

• We have seen a formal description of the Simplex algorithm.

• We showed that if the algorithm terminates, then it is correct.

• We defined Bland’s rule and asserted, without proof, that Simplex
terminates as long as we are using Bland’s rule.

• T get started, we need to get a feasible basis.

T do: Find a procedure to find a feasible basis.

Recap

• We have seen a formal description of the Simplex algorithm.

• We showed that if the algorithm terminates, then it is correct.

• We defined Bland’s rule and asserted, without proof, that Simplex
terminates as long as we are using Bland’s rule.

• To get started, we need to get a feasible basis.

T do: Find a procedure to find a feasible basis.

Recap

• We have seen a formal description of the Simplex algorithm.

• We showed that if the algorithm terminates, then it is correct.

• We defined Bland’s rule and asserted, without proof, that Simplex
terminates as long as we are using Bland’s rule.

• To get started, we need to get a feasible basis.

To do: Find a procedure to find a feasible basis.

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

CO 250: Introduction to Optimization
Module 2: Linear Programs (Finding a Feasible Solution)

The Problem

Consider
max

{

c⊤x : Ax = b, x ≥ 0
}

.

T run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

An easier question,

Question

How do we find a feasible solution?

These tw questions are equivalent.

Exercise

There is an algorithm that, given a feasible solution, finds a feasible basis.

We will focus on the second question.

The Problem

Consider
max

{

c⊤x : Ax = b, x ≥ 0
}

.

To run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

An easier question,

Question

How do we find a feasible solution?

These tw questions are equivalent.

Exercise

There is an algorithm that, given a feasible solution, finds a feasible basis.

We will focus on the second question.

The Problem

Consider
max

{

c⊤x : Ax = b, x ≥ 0
}

.

To run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

An easier question,

Question

How do we find a feasible solution?

These tw questions are equivalent.

Exercise

There is an algorithm that, given a feasible solution, finds a feasible basis.

We will focus on the second question.

The Problem

Consider
max

{

c⊤x : Ax = b, x ≥ 0
}

.

To run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

An easier question,

Question

How do we find a feasible solution?

These tw questions are equivalent.

Exercise

There is an algorithm that, given a feasible solution, finds a feasible basis.

We will focus on the second question.

The Problem

Consider
max

{

c⊤x : Ax = b, x ≥ 0
}

.

To run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

An easier question,

Question

How do we find a feasible solution?

These tw questions are equivalent.

Exercise

There is an algorithm that, given a feasible solution, finds a feasible basis.

We will focus on the second question.

The Problem

Consider
max

{

c⊤x : Ax = b, x ≥ 0
}

.

To run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

An easier question,

Question

How do we find a feasible solution?

These two questions are equivalent.

Exercise

There is an algorithm that, given a feasible solution, finds a feasible basis.

We will focus on the second question.

The Problem

Consider
max

{

c⊤x : Ax = b, x ≥ 0
}

.

To run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

An easier question,

Question

How do we find a feasible solution?

These two questions are equivalent.

Exercise

There is an algorithm that, given a feasible solution, finds a feasible basis.

We will focus on the second question.

The Problem

Consider
max

{

c⊤x : Ax = b, x ≥ 0
}

.

To run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

An easier question,

Question

How do we find a feasible solution?

These two questions are equivalent.

Exercise

There is an algorithm that, given a feasible solution, finds a feasible basis.

We will focus on the second question.

The Key Idea

max
{

c⊤x : Ax = b, x ≥
}

Algorithm

Input: A, b, c, and a feasible solution

Output: Optimal solution/detect LP unbounded.

OK
Simplex +
exercise

Algorithm

Input: A, b, c.

Output: Feasible solution/detect there is none.

HOW?

We will show that...

Proposition

We can use Algorithm to get Algorithm .

The Key Idea

max
{

c⊤x : Ax = b, x ≥ 0
}

Algorithm

Input: A, b, c, and a feasible solution

Output: Optimal solution/detect LP unbounded.

OK
Simplex +
exercise

Algorithm

Input: A, b, c.

Output: Feasible solution/detect there is none.

HOW?

We will show that...

Proposition

We can use Algorithm to get Algorithm .

The Key Idea

max
{

c⊤x : Ax = b, x ≥ 0
}

Algorithm 1

Input: A, b, c, and a feasible solution

Output: Optimal solution/detect LP unbounded.

OK
Simplex +
exercise

Algorithm

Input: A, b, c.

Output: Feasible solution/detect there is none.

HOW?

We will show that...

Proposition

We can use Algorithm to get Algorithm .

The Key Idea

max
{

c⊤x : Ax = b, x ≥ 0
}

Algorithm 1

Input: A, b, c, and a feasible solution

Output: Optimal solution/detect LP unbounded.

OK
Simplex +
exercise

Algorithm

Input: A, b, c.

Output: Feasible solution/detect there is none.

HOW?

We will show that...

Proposition

We can use Algorithm to get Algorithm .

The Key Idea

max
{

c⊤x : Ax = b, x ≥ 0
}

Algorithm 1

Input: A, b, c, and a feasible solution

Output: Optimal solution/detect LP unbounded.

OK
Simplex +
exercise

Algorithm 2

Input: A, b, c.

Output: Feasible solution/detect there is none.

HOW?

We will show that...

Proposition

We can use Algorithm to get Algorithm .

The Key Idea

max
{

c⊤x : Ax = b, x ≥ 0
}

Algorithm 1

Input: A, b, c, and a feasible solution

Output: Optimal solution/detect LP unbounded.

OK
Simplex +
exercise

Algorithm 2

Input: A, b, c.

Output: Feasible solution/detect there is none.

HOW?

We will show that...

Proposition

We can use Algorithm to get Algorithm .

The Key Idea

max
{

c⊤x : Ax = b, x ≥ 0
}

Algorithm 1

Input: A, b, c, and a feasible solution

Output: Optimal solution/detect LP unbounded.

OK
Simplex +
exercise

Algorithm 2

Input: A, b, c.

Output: Feasible solution/detect there is none.

HOW?

We will show that...

Proposition

We can use Algorithm to get Algorithm .

The Key Idea

max
{

c⊤x : Ax = b, x ≥ 0
}

Algorithm 1

Input: A, b, c, and a feasible solution

Output: Optimal solution/detect LP unbounded.

OK
Simplex +
exercise

Algorithm 2

Input: A, b, c.

Output: Feasible solution/detect there is none.

HOW?

We will show that...

Proposition

We can use Algorithm 1 to get Algorithm 2.

A First Example

Problem: Find a feasible solution/detect none exist for

max (1, 2,−1, 3)x

s.t.
(

1 5 2 1
−2 −9 0 3

)

x =

(
7

−13

)

x ≥ 0

Remark

It does not depend on the objective function.

A First Example

Problem: Find a feasible solution/detect none exist for

max (1, 2,−1, 3)x

s.t.
(

1 5 2 1
−2 −9 0 3

)

x =

(
7

−13

)

x ≥ 0

Remark

It does not depend on the objective function.

A First Example

Problem: Find a feasible solution/detect none exist for

max (1, 2,−1, 3)x

s.t.
(

1 5 2 1
−2 −9 0 3

)

x =

(
7

−13

)

x ≥ 0

Remark

It does not depend on the objective function.

Problem: Find a feasible solution/detect none exist for

(

1 5 2 1
−2 −9 0 3

)

x =

(

7
−13

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative.

(

−

)

x =

()

Problem: Find a feasible solution/detect none exist for

(

1 5 2 1
−2 −9 0 3

)

x =

(

7
−13

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative.

(

−

)

x =

()

Problem: Find a feasible solution/detect none exist for

(

1 5 2 1
−2 −9 0 3

)

x =

(

7
−13

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative.

(

1 5 2 1
2 9 0 −3

)

x =

(

7
13

)

Problem: Find a feasible solution/detect none exist for

(

1 5 2 1
2 9 0 −3

)

x =

(

7
13

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min x5 + x6

s.t.
(
1 5 2 1 1 0
2 9 0 −3 0 1

)

x =

(
7
13

)

x ≥ 0

x5, x6 are the

auxiliary variables

Remark

The auxiliary problem is

• feasible, since (0, , , , , 13)⊤ is a solution, and

• bounded, as is the lower bound.

Therefore, the auxiliary problem has an optimal solution.

Problem: Find a feasible solution/detect none exist for

(

1 5 2 1
2 9 0 −3

)

x =

(

7
13

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min x5 + x6

s.t.
(
1 5 2 1 1 0
2 9 0 −3 0 1

)

x =

(
7
13

)

x ≥ 0

x5, x6 are the

auxiliary variables

Remark

The auxiliary problem is

• feasible, since (0, , , , , 13)⊤ is a solution, and

• bounded, as is the lower bound.

Therefore, the auxiliary problem has an optimal solution.

Problem: Find a feasible solution/detect none exist for

(

1 5 2 1
2 9 0 −3

)

x =

(

7
13

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min x5 + x6

s.t.
(
1 5 2 1 1 0
2 9 0 −3 0 1

)

x =

(
7
13

)

x ≥ 0

x5, x6 are the

auxiliary variables

Remark

The auxiliary problem is

• feasible, since (0, , , , , 13)⊤ is a solution, and

• bounded, as is the lower bound.

Therefore, the auxiliary problem has an optimal solution.

Problem: Find a feasible solution/detect none exist for

(

1 5 2 1
2 9 0 −3

)

x =

(

7
13

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min x5 + x6

s.t.
(
1 5 2 1 1 0
2 9 0 −3 0 1

)

x =

(
7
13

)

x ≥ 0

x5, x6 are the

auxiliary variables

Remark

The auxiliary problem is

• feasible, since (0, , , , , 13)⊤ is a solution, and

• bounded, as is the lower bound.

Therefore, the auxiliary problem has an optimal solution.

Problem: Find a feasible solution/detect none exist for

(

1 5 2 1
2 9 0 −3

)

x =

(

7
13

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min x5 + x6

s.t.
(
1 5 2 1 1 0
2 9 0 −3 0 1

)

x =

(
7
13

)

x ≥ 0

x5, x6 are the

auxiliary variables

Remark

The auxiliary problem is

• feasible, since (0, , , , , 13)⊤ is a solution, and

• bounded, as is the lower bound.

Therefore, the auxiliary problem has an optimal solution.

Problem: Find a feasible solution/detect none exist for

(

1 5 2 1
2 9 0 −3

)

x =

(

7
13

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min x5 + x6

s.t.
(
1 5 2 1 1 0
2 9 0 −3 0 1

)

x =

(
7
13

)

x ≥ 0

x5, x6 are the

auxiliary variables

Remark

The auxiliary problem is

• feasible, since (0, 0, 0, 0, 7, 13)⊤ is a solution, and

• bounded, as is the lower bound.

Therefore, the auxiliary problem has an optimal solution.

Problem: Find a feasible solution/detect none exist for

(

1 5 2 1
2 9 0 −3

)

x =

(

7
13

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min x5 + x6

s.t.
(
1 5 2 1 1 0
2 9 0 −3 0 1

)

x =

(
7
13

)

x ≥ 0

x5, x6 are the

auxiliary variables

Remark

The auxiliary problem is

• feasible, since (0, 0, 0, 0, 7, 13)⊤ is a solution, and

• bounded, as 0 is the lower bound.

Therefore, the auxiliary problem has an optimal solution.

Problem: Find a feasible solution/detect none exist for

(

1 5 2 1
2 9 0 −3

)

x =

(

7
13

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min x5 + x6

s.t.
(
1 5 2 1 1 0
2 9 0 −3 0 1

)

x =

(
7
13

)

x ≥ 0

x5, x6 are the

auxiliary variables

Remark

The auxiliary problem is

• feasible, since (0, 0, 0, 0, 7, 13)⊤ is a solution, and

• bounded, as 0 is the lower bound.

Therefore, the auxiliary problem has an optimal solution.

Problem: Find a feasible solution/detect none exist for

(

1 5 2 1
2 9 0 −3

)

x =

(

7
13

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min x5 + x6

s.t.
(
1 5 2 1 1 0
2 9 0 −3 0 1

)

x =

(
7
13

)

x ≥ 0

x5, x6 are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

(2, , , , ,)⊤ is an optimal solution to the auxiliary problem,

since x5 = x6 = .

Therefore, (2, , , 0)⊤ is a feasible solution to ().

Problem: Find a feasible solution/detect none exist for

(

1 5 2 1
2 9 0 −3

)

x =

(

7
13

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min x5 + x6

s.t.
(
1 5 2 1 1 0
2 9 0 −3 0 1

)

x =

(
7
13

)

x ≥ 0

x5, x6 are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

(2, 1, 0, 0, 0, 0)⊤ is an optimal solution to the auxiliary problem,

since x5 = x6 = .

Therefore, (2, , , 0)⊤ is a feasible solution to ().

Problem: Find a feasible solution/detect none exist for

(

1 5 2 1
2 9 0 −3

)

x =

(

7
13

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min x5 + x6

s.t.
(
1 5 2 1 1 0
2 9 0 −3 0 1

)

x =

(
7
13

)

x ≥ 0

x5, x6 are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

(2, 1, 0, 0, 0, 0)⊤ is an optimal solution to the auxiliary problem,

since x5 = x6 = 0.

Therefore, (2, , , 0)⊤ is a feasible solution to ().

Problem: Find a feasible solution/detect none exist for

(

1 5 2 1
2 9 0 −3

)

x =

(

7
13

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min x5 + x6

s.t.
(
1 5 2 1 1 0
2 9 0 −3 0 1

)

x =

(
7
13

)

x ≥ 0

x5, x6 are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

(2, 1, 0, 0, 0, 0)⊤ is an optimal solution to the auxiliary problem,

since x5 = x6 = 0.

Therefore, (2, 1, 0, 0)⊤ is a feasible solution to (⋆).

A Second Example

Problem: Find a feasible solution/detect none exist for

(

−

)

x =

()

and x ≥ ()

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

x4, x5 are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm .

(0, , , ,)⊤ is an optimal solution to the auxiliary problem.

However, (0, , 1)⊤ is NOT a solution to ().

A Second Example

Problem: Find a feasible solution/detect none exist for

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

x4, x5 are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm .

(0, , , ,)⊤ is an optimal solution to the auxiliary problem.

However, (0, , 1)⊤ is NOT a solution to ().

A Second Example

Problem: Find a feasible solution/detect none exist for

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative.

OK

Step 2. Construct the auxiliary problem.

min = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

x4, x5 are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm .

(0, , , ,)⊤ is an optimal solution to the auxiliary problem.

However, (0, , 1)⊤ is NOT a solution to ().

A Second Example

Problem: Find a feasible solution/detect none exist for

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

x4, x5 are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm .

(0, , , ,)⊤ is an optimal solution to the auxiliary problem.

However, (0, , 1)⊤ is NOT a solution to ().

A Second Example

Problem: Find a feasible solution/detect none exist for

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

x4, x5 are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm .

(0, , , ,)⊤ is an optimal solution to the auxiliary problem.

However, (0, , 1)⊤ is NOT a solution to ().

A Second Example

Problem: Find a feasible solution/detect none exist for

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min z = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

x4, x5 are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm .

(0, , , ,)⊤ is an optimal solution to the auxiliary problem.

However, (0, , 1)⊤ is NOT a solution to ().

A Second Example

Problem: Find a feasible solution/detect none exist for

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min z = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

x4, x5 are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm .

(0, , , ,)⊤ is an optimal solution to the auxiliary problem.

However, (0, , 1)⊤ is NOT a solution to ().

A Second Example

Problem: Find a feasible solution/detect none exist for

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min z = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

x4, x5 are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

(0, , , ,)⊤ is an optimal solution to the auxiliary problem.

However, (0, , 1)⊤ is NOT a solution to ().

A Second Example

Problem: Find a feasible solution/detect none exist for

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min z = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

x4, x5 are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

(0, 0, 1, 0, 3)⊤ is an optimal solution to the auxiliary problem.

However, (0, , 1)⊤ is NOT a solution to ().

A Second Example

Problem: Find a feasible solution/detect none exist for

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min z = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

x4, x5 are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

(0, 0, 1, 0, 3)⊤ is an optimal solution to the auxiliary problem.

However, (0, 0, 1)⊤ is NOT a solution to (⋆).

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

min z = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

the auxiliary problem

optimal solution (0, 0, 1, 0, 3)⊤

optimal value = + = .

Claim

() does not have a solution.

Proof

Suppose, for a contradiction, () has a solution x′

1, x
′

2, x
′

3.

Then, (x′

1, x
′

2, x
′

3, ,)⊤ is a feasible solution to the auxiliary problem,

but that solution has of value . This is a contradiction.

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

min z = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

the auxiliary problem

optimal solution (0, 0, 1, 0, 3)⊤

optimal value = 0 + 3 = 3.

Claim

() does not have a solution.

Proof

Suppose, for a contradiction, () has a solution x′

1, x
′

2, x
′

3.

Then, (x′

1, x
′

2, x
′

3, ,)⊤ is a feasible solution to the auxiliary problem,

but that solution has of value . This is a contradiction.

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

min z = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

the auxiliary problem

optimal solution (0, 0, 1, 0, 3)⊤

optimal value = 0 + 3 = 3.

Claim

(⋆) does not have a solution.

Proof

Suppose, for a contradiction, () has a solution x′

1, x
′

2, x
′

3.

Then, (x′

1, x
′

2, x
′

3, ,)⊤ is a feasible solution to the auxiliary problem,

but that solution has of value . This is a contradiction.

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

min z = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

the auxiliary problem

optimal solution (0, 0, 1, 0, 3)⊤

optimal value = 0 + 3 = 3.

Claim

(⋆) does not have a solution.

Proof

Suppose, for a contradiction, () has a solution x′

1, x
′

2, x
′

3.

Then, (x′

1, x
′

2, x
′

3, ,)⊤ is a feasible solution to the auxiliary problem,

but that solution has of value . This is a contradiction.

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

min z = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

the auxiliary problem

optimal solution (0, 0, 1, 0, 3)⊤

optimal value = 0 + 3 = 3.

Claim

(⋆) does not have a solution.

Proof

Suppose, for a contradiction, (⋆) has a solution x′

1, x
′

2, x
′

3.

Then, (x′

1, x
′

2, x
′

3, ,)⊤ is a feasible solution to the auxiliary problem,

but that solution has of value . This is a contradiction.

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

min z = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

the auxiliary problem

optimal solution (0, 0, 1, 0, 3)⊤

optimal value = 0 + 3 = 3.

Claim

(⋆) does not have a solution.

Proof

Suppose, for a contradiction, (⋆) has a solution x′

1, x
′

2, x
′

3.

Then, (x′

1, x
′

2, x
′

3, 0, 0)
⊤ is a feasible solution to the auxiliary problem,

but that solution has of value . This is a contradiction.

(

5 1 1
−1 1 2

)

x =

(

1
5

)

and x ≥ 0 (⋆)

min z = x4 + x5

s.t.
(

5 1 1 1 0
−1 1 2 0 1

)

x =

(
1
5

)

x ≥ 0

the auxiliary problem

optimal solution (0, 0, 1, 0, 3)⊤

optimal value = 0 + 3 = 3.

Claim

(⋆) does not have a solution.

Proof

Suppose, for a contradiction, (⋆) has a solution x′

1, x
′

2, x
′

3.

Then, (x′

1, x
′

2, x
′

3, 0, 0)
⊤ is a feasible solution to the auxiliary problem,

but that solution has of value 0. This is a contradiction.

Formalize

Problem: Find a feasible solution/detect none exist for

Ax = b and x ≥ ()

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem (× n matrix).

min = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

xn+1, . . . , xn m are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm .

(x1, . . . , xn, xn+1, . . . , xn+m)⊤ is an optimal solution to the auxiliary problem.

Proposition

= 0, then (x1, . . . , xn)
⊤ is a solution to (⋆).

Formalize

Problem: Find a feasible solution/detect none exist for

Ax = b and x ≥ 0 (⋆)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem (× n matrix).

min = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

xn+1, . . . , xn m are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm .

(x1, . . . , xn, xn+1, . . . , xn+m)⊤ is an optimal solution to the auxiliary problem.

Proposition

= 0, then (x1, . . . , xn)
⊤ is a solution to (⋆).

Formalize

Problem: Find a feasible solution/detect none exist for

Ax = b and x ≥ 0 (⋆)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem (× n matrix).

min = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

xn+1, . . . , xn m are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm .

(x1, . . . , xn, xn+1, . . . , xn+m)⊤ is an optimal solution to the auxiliary problem.

Proposition

= 0, then (x1, . . . , xn)
⊤ is a solution to (⋆).

Formalize

Problem: Find a feasible solution/detect none exist for

Ax = b and x ≥ 0 (⋆)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem (A m× n matrix).

min = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

xn+1, . . . , xn m are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm .

(x1, . . . , xn, xn+1, . . . , xn+m)⊤ is an optimal solution to the auxiliary problem.

Proposition

= 0, then (x1, . . . , xn)
⊤ is a solution to (⋆).

Formalize

Problem: Find a feasible solution/detect none exist for

Ax = b and x ≥ 0 (⋆)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem (A m× n matrix).

min z = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

xn+1, . . . , xn m are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm .

(x1, . . . , xn, xn+1, . . . , xn+m)⊤ is an optimal solution to the auxiliary problem.

Proposition

= 0, then (x1, . . . , xn)
⊤ is a solution to (⋆).

Formalize

Problem: Find a feasible solution/detect none exist for

Ax = b and x ≥ 0 (⋆)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem (A m× n matrix).

min z = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

xn+1, . . . , xn+m are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm .

(x1, . . . , xn, xn+1, . . . , xn+m)⊤ is an optimal solution to the auxiliary problem.

Proposition

= 0, then (x1, . . . , xn)
⊤ is a solution to (⋆).

Formalize

Problem: Find a feasible solution/detect none exist for

Ax = b and x ≥ 0 (⋆)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem (A m× n matrix).

min z = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

xn+1, . . . , xn+m are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

(x1, . . . , xn, xn+1, . . . , xn+m)⊤ is an optimal solution to the auxiliary problem.

Proposition

= 0, then (x1, . . . , xn)
⊤ is a solution to (⋆).

Formalize

Problem: Find a feasible solution/detect none exist for

Ax = b and x ≥ 0 (⋆)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem (A m× n matrix).

min z = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

xn+1, . . . , xn+m are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

(x1, . . . , xn, xn+1, . . . , xn+m)⊤ is an optimal solution to the auxiliary problem.

Proposition

= 0, then (x1, . . . , xn)
⊤ is a solution to (⋆).

Formalize

Problem: Find a feasible solution/detect none exist for

Ax = b and x ≥ 0 (⋆)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem (A m× n matrix).

min z = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

xn+1, . . . , xn+m are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

(x1, . . . , xn, xn+1, . . . , xn+m)⊤ is an optimal solution to the auxiliary problem.

Proposition

If z = 0, then (x1, . . . , xn)
⊤ is a solution to (⋆).

Problem: Find a feasible solution/detect none exist for

Ax = b and x ≥ 0 (⋆)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem (A m× n matrix).

min z = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

xn+1, . . . , xn+m are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

(x1, . . . , xn, xn+1, . . . , xn+m)⊤ is an optimal solution to the auxiliary problem.

Proposition

If z = 0, then (x1, . . . , xn)
⊤ is a solution to (⋆).

Proof

When = 0, we must have xn+1 = . . . = xn+m = 0.

Problem: Find a feasible solution/detect none exist for

Ax = b and x ≥ 0 (⋆)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem (A m× n matrix).

min z = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

xn+1, . . . , xn+m are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

(x1, . . . , xn, xn+1, . . . , xn+m)⊤ is an optimal solution to the auxiliary problem.

Proposition

If z = 0, then (x1, . . . , xn)
⊤ is a solution to (⋆).

Proof
When z = 0, we must have xn+1 = . . . = xn+m = 0.

Problem: Find a feasible solution/detect none exist for

Ax = b and x ≥ 0 (⋆)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem (A m× n matrix).

min z = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

xn+1, . . . , xn+m are the

auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

(x1, . . . , xn, xn+1, . . . , xn+m)⊤ is an optimal solution to the auxiliary problem.

Proposition

When z > 0, then (⋆) has no solution.

Ax = b and x ≥ 0 (⋆)

min z = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

the auxiliary problem

optimal solution
(x1, . . . , xn, xn+1, . . . , xn+m)⊤

Proposition

When z > 0, then (⋆) has no solution.

Proof

Suppose, for a contradiction, () has a solution x′

1, . . . , x
′

n
.

Then (x′

1, . . . , x
′

n, 0, . . . , 0)
⊤ is a feasible solution to the auxiliary problem,

but that solution has of value 0. This is a contradiction.

Ax = b and x ≥ 0 (⋆)

min z = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

the auxiliary problem

optimal solution
(x1, . . . , xn, xn+1, . . . , xn+m)⊤

Proposition

When z > 0, then (⋆) has no solution.

Proof

Suppose, for a contradiction, () has a solution x′

1, . . . , x
′

n
.

Then (x′

1, . . . , x
′

n, 0, . . . , 0)
⊤ is a feasible solution to the auxiliary problem,

but that solution has of value 0. This is a contradiction.

Ax = b and x ≥ 0 (⋆)

min z = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

the auxiliary problem

optimal solution
(x1, . . . , xn, xn+1, . . . , xn+m)⊤

Proposition

When z > 0, then (⋆) has no solution.

Proof

Suppose, for a contradiction, (⋆) has a solution x′

1, . . . , x
′

n
.

Then (x′

1, . . . , x
′

n, 0, . . . , 0)
⊤ is a feasible solution to the auxiliary problem,

but that solution has of value 0. This is a contradiction.

Ax = b and x ≥ 0 (⋆)

min z = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

the auxiliary problem

optimal solution
(x1, . . . , xn, xn+1, . . . , xn+m)⊤

Proposition

When z > 0, then (⋆) has no solution.

Proof

Suppose, for a contradiction, (⋆) has a solution x′

1, . . . , x
′

n
.

Then (x′

1, . . . , x
′

n, 0, . . . , 0)
⊤ is a feasible solution to the auxiliary problem,

but that solution has of value 0. This is a contradiction.

Ax = b and x ≥ 0 (⋆)

min z = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

the auxiliary problem

optimal solution
(x1, . . . , xn, xn+1, . . . , xn+m)⊤

Proposition

When z > 0, then (⋆) has no solution.

Proof

Suppose, for a contradiction, (⋆) has a solution x′

1, . . . , x
′

n
.

Then (x′

1, . . . , x
′

n, 0, . . . , 0)
⊤ is a feasible solution to the auxiliary problem,

but that solution has of value 0.

This is a contradiction.

Ax = b and x ≥ 0 (⋆)

min z = xn+1 + . . .+ xn+m

s.t.
(

A I
)
x = b

x ≥ 0

the auxiliary problem

optimal solution
(x1, . . . , xn, xn+1, . . . , xn+m)⊤

Proposition

When z > 0, then (⋆) has no solution.

Proof

Suppose, for a contradiction, (⋆) has a solution x′

1, . . . , x
′

n
.

Then (x′

1, . . . , x
′

n, 0, . . . , 0)
⊤ is a feasible solution to the auxiliary problem,

but that solution has of value 0. This is a contradiction.

The 2-Phase Method

T solve
max

{

c⊤x : Ax = b, x ≥
}

,

we proceed in tw phases:

Phase 1. Find a feasible solution/detect none exist.

Phase 2. Given that feasible solution:
find an optimal solution/detect LP unbounded.

Example

Solve the following LP,

max (1, 1, 1)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
4
4

)

x ≥ 0

The 2-Phase Method

To solve
max

{

c⊤x : Ax = b, x ≥ 0
}

,

we proceed in tw phases:

Phase 1. Find a feasible solution/detect none exist.

Phase 2. Given that feasible solution:
find an optimal solution/detect LP unbounded.

Example

Solve the following LP,

max (1, 1, 1)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
4
4

)

x ≥ 0

The 2-Phase Method

To solve
max

{

c⊤x : Ax = b, x ≥ 0
}

,

we proceed in two phases:

Phase 1. Find a feasible solution/detect none exist.

Phase 2. Given that feasible solution:
find an optimal solution/detect LP unbounded.

Example

Solve the following LP,

max (1, 1, 1)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
4
4

)

x ≥ 0

The 2-Phase Method

To solve
max

{

c⊤x : Ax = b, x ≥ 0
}

,

we proceed in two phases:

Phase 1. Find a feasible solution/detect none exist.

Phase 2. Given that feasible solution:
find an optimal solution/detect LP unbounded.

Example

Solve the following LP,

max (1, 1, 1)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
4
4

)

x ≥ 0

The 2-Phase Method

To solve
max

{

c⊤x : Ax = b, x ≥ 0
}

,

we proceed in two phases:

Phase 1. Find a feasible solution/detect none exist.

Phase 2. Given that feasible solution:
find an optimal solution/detect LP unbounded.

Example

Solve the following LP,

max (1, 1, 1)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
4
4

)

x ≥ 0

The 2-Phase Method

To solve
max

{

c⊤x : Ax = b, x ≥ 0
}

,

we proceed in two phases:

Phase 1. Find a feasible solution/detect none exist.

Phase 2. Given that feasible solution:
find an optimal solution/detect LP unbounded.

Example

Solve the following LP,

max (1, 1, 1)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
4
4

)

x ≥ 0

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min = x4 + x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

NOT in SEF

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative.

OK

Step 2. Construct the auxiliary problem.

min = x4 + x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

NOT in SEF

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min = x4 + x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

NOT in SEF

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min = x4 + x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

NOT in SEF

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min z = x4 + x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

NOT in SEF

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min z = x4 + x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

NOT in SEF

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = −x4−x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = ,

NOT in canonical form

T rewrite B = , in canonical form, you can

• use the formulae, OR

• notice B = I and rewrite the objective function as follows...

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = −x4−x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = ,

NOT in canonical form

T rewrite B = , in canonical form, you can

• use the formulae, OR

• notice B = I and rewrite the objective function as follows...

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = −x4−x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = {4, 5}

NOT in canonical form

T rewrite B = , in canonical form, you can

• use the formulae, OR

• notice B = I and rewrite the objective function as follows...

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = −x4−x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = {4, 5}

NOT in canonical form

T rewrite B = , in canonical form, you can

• use the formulae, OR

• notice B = I and rewrite the objective function as follows...

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = −x4−x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = {4, 5}

NOT in canonical form

To rewrite B = {4, 5} in canonical form, you can

• use the formulae, OR

• notice B = I and rewrite the objective function as follows...

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = −x4−x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = {4, 5}

NOT in canonical form

To rewrite B = {4, 5} in canonical form, you can

• use the formulae, OR

• notice B = I and rewrite the objective function as follows...

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = −x4−x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = {4, 5}

NOT in canonical form

To rewrite B = {4, 5} in canonical form, you can

• use the formulae, OR

• notice AB = I and rewrite the objective function as follows...

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = −x4−x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = {4, 5}

NOT in canonical form

z = (0 0 0 −1 −1)x

= (1 −)x −

= (1 −)x −

z = (2)x −

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = −x4−x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = {4, 5}

NOT in canonical form

z = (0 0 0 −1 −1)x

0 = (1 2 −1 1 0)x − 4

= (1 −)x −

z = (2)x −

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = −x4−x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = {4, 5}

NOT in canonical form

z = (0 0 0 −1 −1)x

0 = (1 2 −1 1 0)x − 4

0 = (1 −1 1 0 1)x − 4

z = (2)x −

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = −x4−x5

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = {4, 5}

NOT in canonical form

z = (0 0 0 −1 −1)x

0 = (1 2 −1 1 0)x − 4

0 = (1 −1 1 0 1)x − 4

z = (2 1 0 0 0)x − 8

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = (2 1 0 0 0)− 8

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = {4, 5}

canonical form for B

Step 3. Solve the auxiliary problem using Simplex, starting from B.

B = , is an optimal basis with the basic solution (4, , , ,)⊤.

z = implies that (4, , 0)⊤ is a feasible solution for ().

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = (2 1 0 0 0)− 8

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = {4, 5}

canonical form for B

Step 3. Solve the auxiliary problem using Simplex, starting from B.

B = , is an optimal basis with the basic solution (4, , , ,)⊤.

z = implies that (4, , 0)⊤ is a feasible solution for ().

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = (2 1 0 0 0)− 8

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = {4, 5}

canonical form for B

Step 3. Solve the auxiliary problem using Simplex, starting from B.

B = , is an optimal basis with the basic solution (4, , , ,)⊤.

z = implies that (4, , 0)⊤ is a feasible solution for ().

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = (2 1 0 0 0)− 8

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = {4, 5}

canonical form for B

Step 3. Solve the auxiliary problem using Simplex, starting from B.

B = {1, 4} is an optimal basis with the basic solution (4, 0, 0, 0, 0)⊤.

z = implies that (4, , 0)⊤ is a feasible solution for ().

Phase 1. Find a feasible solution/detect none exist for

(

1 2 −1
1 −1 1

)

x =

(

4
4

)

and x ≥ 0 (⋆)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

max z = (2 1 0 0 0)− 8

s.t.
(
1 2 −1 1 0
1 −1 1 0 1

)

x =

(
4
4

)

x ≥ 0

In SEF

feasible basis B = {4, 5}

canonical form for B

Step 3. Solve the auxiliary problem using Simplex, starting from B.

B = {1, 4} is an optimal basis with the basic solution (4, 0, 0, 0, 0)⊤.

z = 0 implies that (4, 0, 0)⊤ is a feasible solution for (⋆).

Phase 1. (4, 0, 0)⊤ is a feasible solution for

max (2,−1, 2)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
1
3

)

x ≥ 0

Remark
(4, 0, 0)⊤ is a basic solution.

Exercise
Show that this will always be the case!

Phase 1. (4, 0, 0)⊤ is a feasible solution for

max (2,−1, 2)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
1
3

)

x ≥ 0

Remark
(4, 0, 0)⊤ is a basic solution.

Exercise
Show that this will always be the case!

Phase 1. (4, 0, 0)⊤ is a feasible solution for

max (2,−1, 2)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
1
3

)

x ≥ 0

Remark
(4, 0, 0)⊤ is a basic solution.

Exercise
Show that this will always be the case!

Phase 1. (4, 0, 0)⊤ is a feasible solution for

max (2,−1, 2)x

s.t.
(
1 2 −1
1 −1 1

)

︸ ︷︷ ︸
A

x =

(
1
3

)

x ≥ 0

Question

For what basis, B, is x = (4, 0, 0)⊤ a basic solution?

x1 = 0 1 ∈ B

Cardinality of maximal set of independent columns of A =
Cardinality of maximal set of independent rows of A = 2

Thus, or some i ∈ {2, 3}, columns 1 and i of A are independent.

In this case, we can pick i = 2. In particular, B = {1, 2} is a basis.

Phase 1. (4, 0, 0)⊤ is a feasible solution for

max (2,−1, 2)x

s.t.
(
1 2 −1
1 −1 1

)

︸ ︷︷ ︸
A

x =

(
1
3

)

x ≥ 0

Question

For what basis, B, is x = (4, 0, 0)⊤ a basic solution?

x1 = 0 1 ∈ B

Cardinality of maximal set of independent columns of A =
Cardinality of maximal set of independent rows of A = 2

Thus, or some i ∈ {2, 3}, columns 1 and i of A are independent.

In this case, we can pick i = 2. In particular, B = {1, 2} is a basis.

Phase 1. (4, 0, 0)⊤ is a feasible solution for

max (2,−1, 2)x

s.t.
(
1 2 −1
1 −1 1

)

︸ ︷︷ ︸
A

x =

(
1
3

)

x ≥ 0

Question

For what basis, B, is x = (4, 0, 0)⊤ a basic solution?

x1 6= 0

1 ∈ B

Cardinality of maximal set of independent columns of A =
Cardinality of maximal set of independent rows of A = 2

Thus, or some i ∈ {2, 3}, columns 1 and i of A are independent.

In this case, we can pick i = 2. In particular, B = {1, 2} is a basis.

Phase 1. (4, 0, 0)⊤ is a feasible solution for

max (2,−1, 2)x

s.t.
(
1 2 −1
1 −1 1

)

︸ ︷︷ ︸
A

x =

(
1
3

)

x ≥ 0

Question

For what basis, B, is x = (4, 0, 0)⊤ a basic solution?

x1 6= 0 1 ∈ B

Cardinality of maximal set of independent columns of A =
Cardinality of maximal set of independent rows of A = 2

Thus, or some i ∈ {2, 3}, columns 1 and i of A are independent.

In this case, we can pick i = 2. In particular, B = {1, 2} is a basis.

Phase 1. (4, 0, 0)⊤ is a feasible solution for

max (2,−1, 2)x

s.t.
(
1 2 −1
1 −1 1

)

︸ ︷︷ ︸
A

x =

(
1
3

)

x ≥ 0

Question

For what basis, B, is x = (4, 0, 0)⊤ a basic solution?

x1 6= 0 1 ∈ B

Cardinality of maximal set of independent columns of A =
Cardinality of maximal set of independent rows of A = 2

Thus, or some i ∈ {2, 3}, columns 1 and i of A are independent.

In this case, we can pick i = 2. In particular, B = {1, 2} is a basis.

Phase 1. (4, 0, 0)⊤ is a feasible solution for

max (2,−1, 2)x

s.t.
(
1 2 −1
1 −1 1

)

︸ ︷︷ ︸
A

x =

(
1
3

)

x ≥ 0

Question

For what basis, B, is x = (4, 0, 0)⊤ a basic solution?

x1 6= 0 1 ∈ B

Cardinality of maximal set of independent columns of A =
Cardinality of maximal set of independent rows of A = 2

Thus, for some i ∈ {2, 3}, columns 1 and i of A are independent.

In this case, we can pick i = 2. In particular, B = {1, 2} is a basis.

Phase 1. (4, 0, 0)⊤ is a feasible solution for

max (2,−1, 2)x

s.t.
(
1 2 −1
1 −1 1

)

︸ ︷︷ ︸
A

x =

(
1
3

)

x ≥ 0

Question

For what basis, B, is x = (4, 0, 0)⊤ a basic solution?

x1 6= 0 1 ∈ B

Cardinality of maximal set of independent columns of A =
Cardinality of maximal set of independent rows of A = 2

Thus, for some i ∈ {2, 3}, columns 1 and i of A are independent.

In this case, we can pick i = 2.

In particular, B = {1, 2} is a basis.

Phase 1. (4, 0, 0)⊤ is a feasible solution for

max (2,−1, 2)x

s.t.
(
1 2 −1
1 −1 1

)

︸ ︷︷ ︸
A

x =

(
1
3

)

x ≥ 0

Question

For what basis, B, is x = (4, 0, 0)⊤ a basic solution?

x1 6= 0 1 ∈ B

Cardinality of maximal set of independent columns of A =
Cardinality of maximal set of independent rows of A = 2

Thus, for some i ∈ {2, 3}, columns 1 and i of A are independent.

In this case, we can pick i = 2. In particular, B = {1, 2} is a basis.

Phase 2. Find an optimal solution/detect LP unbounded.

max (1, 1, 1)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
4
4

)

x ≥ 0

B = {1, 2} is a feasible basis (from Phase 1).

We can now solve the problem using Simplex, starting from B.

x = (0, 8, 12)⊤ is an optimal solution.

Phase 2. Find an optimal solution/detect LP unbounded.

max (1, 1, 1)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
4
4

)

x ≥ 0

B = {1, 2} is a feasible basis (from Phase 1).

We can now solve the problem using Simplex, starting from B.

x = (0, 8, 12)⊤ is an optimal solution.

Phase 2. Find an optimal solution/detect LP unbounded.

max (1, 1, 1)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
4
4

)

x ≥ 0

B = {1, 2} is a feasible basis (from Phase 1).

We can now solve the problem using Simplex, starting from B.

x = (0, 8, 12)⊤ is an optimal solution.

Consequences

Theorem
max

{

c⊤x : Ax = b, x ≥
}

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, r

(C) it has an optimal solution that is basic.

Proof

Run 2-Phase method with Simplex using Bland’s rule.
(Recall that Bland’s rule ensures that Simplex terminates.)

Consequences

Theorem
max

{

c⊤x : Ax = b, x ≥ 0
}

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, r

(C) it has an optimal solution that is basic.

Proof

Run 2-Phase method with Simplex using Bland’s rule.
(Recall that Bland’s rule ensures that Simplex terminates.)

Consequences

Theorem
max

{

c⊤x : Ax = b, x ≥ 0
}

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, r

(C) it has an optimal solution that is basic.

Proof

Run 2-Phase method with Simplex using Bland’s rule.
(Recall that Bland’s rule ensures that Simplex terminates.)

Consequences

Theorem
max

{

c⊤x : Ax = b, x ≥ 0
}

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, r

(C) it has an optimal solution that is basic.

Proof

Run 2-Phase method with Simplex using Bland’s rule.
(Recall that Bland’s rule ensures that Simplex terminates.)

Consequences

Theorem
max

{

c⊤x : Ax = b, x ≥ 0
}

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution that is basic.

Proof

Run 2-Phase method with Simplex using Bland’s rule.
(Recall that Bland’s rule ensures that Simplex terminates.)

Consequences

Theorem
max

{

c⊤x : Ax = b, x ≥ 0
}

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution

that is basic.

Proof

Run 2-Phase method with Simplex using Bland’s rule.
(Recall that Bland’s rule ensures that Simplex terminates.)

Consequences

Theorem
max

{

c⊤x : Ax = b, x ≥ 0
}

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution that is basic.

Proof

Run 2-Phase method with Simplex using Bland’s rule.
(Recall that Bland’s rule ensures that Simplex terminates.)

Consequences

Theorem
max

{

c⊤x : Ax = b, x ≥ 0
}

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution that is basic.

Proof

Run 2-Phase method with Simplex using Bland’s rule.
(Recall that Bland’s rule ensures that Simplex terminates.)

Consequences

Theorem
max

{

c⊤x : Ax = b, x ≥ 0
}

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution that is basic.

Proof

Run 2-Phase method with Simplex using Bland’s rule.

(Recall that Bland’s rule ensures that Simplex terminates.)

Consequences

Theorem
max

{

c⊤x : Ax = b, x ≥ 0
}

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution that is basic.

Proof

Run 2-Phase method with Simplex using Bland’s rule.
(Recall that Bland’s rule ensures that Simplex terminates.)

Theorem
max

{

c⊤x : Ax = b, x ≥ 0
}

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution that is basic.

Remark

A finite number of basis implies a finite number of basic solutions.

If a LP has at least tw feasible solutions and one optimal solution,

feasible solutions

infinite set

basic solutions

finite set

optimal soluti

Theorem
max

{

c⊤x : Ax = b, x ≥ 0
}

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution that is basic.

Remark

A finite number of basis implies a finite number of basic solutions.

If a LP has at least tw feasible solutions and one optimal solution,

feasible solutions

infinite set

basic solutions

finite set

optimal soluti

Theorem
max

{

c⊤x : Ax = b, x ≥ 0
}

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution that is basic.

Remark

A finite number of basis implies a finite number of basic solutions.

If a LP has at least two feasible solutions and one optimal solution,

feasible solutions

infinite set

basic solutions

finite set

optimal soluti

Theorem
max

{

c⊤x : Ax = b, x ≥ 0
}

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution that is basic.

Remark

A finite number of basis implies a finite number of basic solutions.

If a LP has at least two feasible solutions and one optimal solution,

feasible solutions

infinite set

basic solutions

finite set

optimal solution

Fundamental Theorem of Linear Programming

Consider an arbitrary LP. Exactly one of the following holds:

(A) it is infeasible,

(B) it is unbounded, r

(C) it has an optimal solution.

Proof

Convert the LP into an equivalent LP in SEF.

Apply the previous theorem.

Fundamental Theorem of Linear Programming

Consider an arbitrary LP.

Exactly one of the following holds:

(A) it is infeasible,

(B) it is unbounded, r

(C) it has an optimal solution.

Proof

Convert the LP into an equivalent LP in SEF.

Apply the previous theorem.

Fundamental Theorem of Linear Programming

Consider an arbitrary LP. Exactly one of the following holds:

(A) it is infeasible,

(B) it is unbounded, r

(C) it has an optimal solution.

Proof

Convert the LP into an equivalent LP in SEF.

Apply the previous theorem.

Fundamental Theorem of Linear Programming

Consider an arbitrary LP. Exactly one of the following holds:

(A) it is infeasible,

(B) it is unbounded, r

(C) it has an optimal solution.

Proof

Convert the LP into an equivalent LP in SEF.

Apply the previous theorem.

Fundamental Theorem of Linear Programming

Consider an arbitrary LP. Exactly one of the following holds:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution.

Proof

Convert the LP into an equivalent LP in SEF.

Apply the previous theorem.

Fundamental Theorem of Linear Programming

Consider an arbitrary LP. Exactly one of the following holds:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution.

Proof

Convert the LP into an equivalent LP in SEF.

Apply the previous theorem.

Fundamental Theorem of Linear Programming

Consider an arbitrary LP. Exactly one of the following holds:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution.

Proof

Convert the LP into an equivalent LP in SEF.

Apply the previous theorem.

Fundamental Theorem of Linear Programming

Consider an arbitrary LP. Exactly one of the following holds:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution.

Proof

Convert the LP into an equivalent LP in SEF.

Apply the previous theorem.

Fundamental Theorem of Linear Programming

Consider an arbitrary LP. Exactly one of the following holds:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution.

Proof

Convert the LP into an equivalent LP in SEF.

Apply the previous theorem.

Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation

Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation

Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation

Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation

Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation

Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation

Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation

Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation
Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

CO 250: Introduction to Optimization
Module 2: Linear Programs (Extreme Points)

Extreme Points

Consider the following convex set:

Extreme Points

Extreme Points

Consider the following convex set:

Extreme Points

Extreme Points

Consider the following convex set:

Extreme Points

Question

How might we formally describe the “extreme points”?

Extreme Points

Consider the following convex set:

Extreme Points

Question

How might we formally describe the “extreme points”?

Towards a Definition of Extreme Points

Definition

Point x ∈ ℜn is properly contained in the line segment L if

• x ∈ L and

• x is distinct from the endpoints of L.

x is not contained in L.

Towards a Definition of Extreme Points

Definition

Point x ∈ ℜn is properly contained in the line segment L if

• x ∈ L and

• x is distinct from the endpoints of L.

x is not contained in L.

Towards a Definition of Extreme Points

Definition

Point x ∈ ℜn is properly contained in the line segment L if

• x ∈ L and

• x is distinct from the endpoints of L.

x is not contained in L.

Towards a Definition of Extreme Points

Definition

Point x ∈ ℜn is properly contained in the line segment L if

• x ∈ L and

• x is distinct from the endpoints of L.

x is not contained in L.

Towards a Definition of Extreme Points

Definition

Point x ∈ ℜn is properly contained in the line segment L if

• x ∈ L and

• x is distinct from the endpoints of L.

x̄

L x̄ is not contained in L.

Towards a Definition of Extreme Points

Definition

Point x ∈ ℜn is properly contained in the line segment L if

• x ∈ L and

• x is distinct from the endpoints of L.

x̄

L

x̄ is contained in L,

but NOT properly.

Towards a Definition of Extreme Points

Definition

Point x ∈ ℜn is properly contained in the line segment L if

• x ∈ L and

• x is distinct from the endpoints of L.

x̄

L x̄ is properly contained in L.

Definition

Let S be a convex set and x ∈ S. Then x is NOT an extreme point if
there exists a line segment L ⊆ S where L properly contains x.

Towards a Definition of Extreme Points

Definition

Point x ∈ ℜn is properly contained in the line segment L if

• x ∈ L and

• x is distinct from the endpoints of L.

x̄

L x̄ is properly contained in L.

Definition

Let S be a convex set and x̄ ∈ S.

Then x is NOT an extreme point if
there exists a line segment L ⊆ S where L properly contains x.

Towards a Definition of Extreme Points

Definition

Point x ∈ ℜn is properly contained in the line segment L if

• x ∈ L and

• x is distinct from the endpoints of L.

x̄

L x̄ is properly contained in L.

Definition

Let S be a convex set and x̄ ∈ S. Then x̄ is NOT an extreme point if

there exists a line segment L ⊆ S where L properly contains x.

Towards a Definition of Extreme Points

Definition

Point x ∈ ℜn is properly contained in the line segment L if

• x ∈ L and

• x is distinct from the endpoints of L.

x̄

L x̄ is properly contained in L.

Definition

Let S be a convex set and x̄ ∈ S. Then x̄ is NOT an extreme point if
there exists a line segment L ⊆ S where L properly contains x̄.

Extreme Points - Examples

Definition

Let S be a convex set and x̄ ∈ S. Then x̄ is NOT an extreme point if
there exists a line segment L ⊆ S where L properly contains x̄.

Not an extreme point

Extreme Points - Examples

Definition

Let S be a convex set and x̄ ∈ S. Then x̄ is NOT an extreme point if
there exists a line segment L ⊆ S where L properly contains x̄.

Not an extreme point

Extreme Points - Examples

Definition

Let S be a convex set and x̄ ∈ S. Then x̄ is NOT an extreme point if
there exists a line segment L ⊆ S where L properly contains x̄.

Not an extreme point

Extreme Points - Examples

Definition

Let S be a convex set and x̄ ∈ S. Then x̄ is NOT an extreme point if
there exists a line segment L ⊆ S where L properly contains x̄.

Not an extreme point

Extreme Points - Examples

Definition

Let S be a convex set and x̄ ∈ S. Then x̄ is NOT an extreme point if
there exists a line segment L ⊆ S where L properly contains x̄.

Not an extreme point

Extreme Points - Examples

Definition

Let S be a convex set and x̄ ∈ S. Then x̄ is NOT an extreme point if
there exists a line segment L ⊆ S where L properly contains x̄.

Not an extreme point

Extreme Points - Examples

Definition

Let S be a convex set and x̄ ∈ S. Then x̄ is NOT an extreme point if
there exists a line segment L ⊆ S where L properly contains x̄.

Not an extreme point

Extreme Points - Examples

Definition

Let S be a convex set and x̄ ∈ S. Then x̄ is NOT an extreme point if
there exists a line segment L ⊆ S where L properly contains x̄.

An extreme point

Extreme Points - Examples

Definition

Let S be a convex set and x̄ ∈ S. Then x̄ is NOT an extreme point if
there exists a line segment L ⊆ S where L properly contains x̄.

An extreme point

Extreme Points - Examples

Definition

Let S be a convex set and x̄ ∈ S. Then x̄ is NOT an extreme point if
there exists a line segment L ⊆ S where L properly contains x̄.

An extreme point

Question

What are the extreme points in the following figure?

Question

What are the extreme points in the following figure?

Question

What are the extreme points in the following figure?

Question

What are the extreme points in the following figure?

Question

What are the extreme points in the following figure?

Question

What are the extreme points in the following figure?

Remark

A convex set may have an infinite number of extreme points.

Question

What are the extreme points in the following figure?

Remark

A convex set may have an infinite number of extreme points.

Question

What are the extreme points in the following figure?

Halfspace

No extreme points !!!

Question

What are the extreme points in the following figure?

Halfspace

No extreme points !!!

Remark

A convex set may have NO extreme points.

Question

What are the extreme points in the following figure?

Halfspace

No extreme points !!!

Remark

A convex set may have NO extreme points.

This Lecture

Goals:

1. Characterize the extreme points in a polyhedron.

2. Characterize an extreme point for LP in Standard Equality F rm.

3. Gain a geometric understanding of the Simplex algorithm.

This Lecture

Goals:

1. Characterize the extreme points in a polyhedron.

2. Characterize an extreme point for LP in Standard Equality F rm.

3. Gain a geometric understanding of the Simplex algorithm.

This Lecture

Goals:

1. Characterize the extreme points in a polyhedron.

2. Characterize an extreme point for LP in Standard Equality F rm.

3. Gain a geometric understanding of the Simplex algorithm.

This Lecture

Goals:

1. Characterize the extreme points in a polyhedron.

2. Characterize an extreme point for LP in Standard Equality Form.

3. Gain a geometric understanding of the Simplex algorithm.

This Lecture

Goals:

1. Characterize the extreme points in a polyhedron.

2. Characterize an extreme point for LP in Standard Equality Form.

3. Gain a geometric understanding of the Simplex algorithm.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)f

g
P =






x :





1 1
1 0
0 1



x ≤





3
2
2





(1)
(2)
(3)







Question

What do the extreme points

f = (1, 2)⊤ and g = (2, 1)⊤

have in common?

Each satisfy n = “independent” constraints with equality!

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)f

g
P =






x :





1 1
1 0
0 1



x ≤





3
2
2





(1)
(2)
(3)







Question

What do the extreme points

f = (1, 2)⊤ and g = (2, 1)⊤

have in common?

Each satisfy n = “independent” constraints with equality!

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)f

g
P =






x :





1 1
1 0
0 1



x ≤





3
2
2





(1)
(2)
(3)







Question

What do the extreme points

f = (1, 2)⊤ and g = (2, 1)⊤

have in common?

Each satisfy n = 2 “independent” constraints with equality!

Definition

Let P = {x : Ax ≤ b} be a polyhedron and let x ∈ P .

• A constraint is tight for x if it is satisfied with equality, and

• the set of all tight constraints is denoted Ax ≤ b.

P =







x :





1 1
1 0
0 1





A

x ≤





3
2
2





b

(1)
(2)
(3)







Consider f :

Here (1) and (3) are tight.

()

Ā

x ≤

()

b̄

.

Definition

Let P = {x : Ax ≤ b} be a polyhedron and let x ∈ P .

• A constraint is tight for x if it is satisfied with equality, and

• the set of all tight constraints is denoted Ax ≤ b.

P =







x :





1 1
1 0
0 1





A

x ≤





3
2
2





b

(1)
(2)
(3)







Consider f :

Here (1) and (3) are tight.

()

Ā

x ≤

()

b̄

.

Definition

Let P = {x : Ax ≤ b} be a polyhedron and let x ∈ P .

• A constraint is tight for x if it is satisfied with equality, and

• the set of all tight constraints is denoted Āx ≤ b̄.

P =







x :





1 1
1 0
0 1





A

x ≤





3
2
2





b

(1)
(2)
(3)







Consider f :

Here (1) and (3) are tight.

()

Ā

x ≤

()

b̄

.

Definition

Let P = {x : Ax ≤ b} be a polyhedron and let x ∈ P .

• A constraint is tight for x if it is satisfied with equality, and

• the set of all tight constraints is denoted Āx ≤ b̄.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)f

P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider f :

Here (1) and (3) are tight.

()

Ā

x ≤

()

b̄

.

Definition

Let P = {x : Ax ≤ b} be a polyhedron and let x ∈ P .

• A constraint is tight for x if it is satisfied with equality, and

• the set of all tight constraints is denoted Āx ≤ b̄.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)f

P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider f :

Here (1) and (3) are tight.

()

Ā

x ≤

()

b̄

.

Definition

Let P = {x : Ax ≤ b} be a polyhedron and let x ∈ P .

• A constraint is tight for x if it is satisfied with equality, and

• the set of all tight constraints is denoted Āx ≤ b̄.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)f

P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider f :

Here (1) and (3) are tight.

()

Ā

x ≤

()

b̄

.

Definition

Let P = {x : Ax ≤ b} be a polyhedron and let x ∈ P .

• A constraint is tight for x if it is satisfied with equality, and

• the set of all tight constraints is denoted Āx ≤ b̄.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)f

P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider f :

Here (1) and (3) are tight.

(
1 1
0 1

)

︸ ︷︷ ︸

Ā

x ≤

(
3
2

)

︸︷︷︸

b̄

.

Definition

Let P = {x : Ax ≤ b} be a polyhedron and let x ∈ P .

• A constraint is tight for x if it is satisfied with equality, and

• the set of all tight constraints is denoted Āx ≤ b̄.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)

g
P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider g:

Here (1) and (2) are tight.

()

Ā

x ≤

()

b̄

.

Definition

Let P = {x : Ax ≤ b} be a polyhedron and let x ∈ P .

• A constraint is tight for x if it is satisfied with equality, and

• the set of all tight constraints is denoted Āx ≤ b̄.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)

g
P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider g:

Here (1) and (2) are tight.

()

Ā

x ≤

()

b̄

.

Definition

Let P = {x : Ax ≤ b} be a polyhedron and let x ∈ P .

• A constraint is tight for x if it is satisfied with equality, and

• the set of all tight constraints is denoted Āx ≤ b̄.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)

g
P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider g:

Here (1) and (2) are tight.

(
1 1
1 0

)

︸ ︷︷ ︸

Ā

x ≤

(
3
2

)

︸︷︷︸

b̄

.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

P =







x :





1 1
1 0
0 1





A

x ≤





3
2
2





b

(1)
(2)
(3)







Consider f :

=

()

so, since rank() = , f is an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)f

P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider f :

=

()

so, since rank() = , f is an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)f

P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider f :

=

()

so, since rank() = , f is an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)f

P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider f :

Ā =

(
1 1
0 1

)

so, since rank() = , f is an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)f

P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider f :

Ā =

(
1 1
0 1

)

so, since rank(Ā) = 2 , f is an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)

g
P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider g:

=

()

so, since rank() = , g is an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)

g
P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider g:

=

()

so, since rank() = , g is an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)

g
P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider g:

Ā =

(
1 1
1 0

)

so, since rank() = , g is an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)

g
P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider g:

Ā =

(
1 1
1 0

)

so, since rank(Ā) = 2 , g is an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)

h

P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider h:

=
()

so, since rank() < , h is NOT an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)

h

P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider h:

=
()

so, since rank() < , h is NOT an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)

h

P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider h:

Ā =
(
1 0

)

so, since rank() < , h is NOT an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)

h

P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider h:

Ā =
(
1 0

)
so, since rank(Ā) < 2 , h is NOT an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Is the following true?

Let = x ∈ ℜn : Ax ≤ b be a polyhedron and let x ∈ .

1. If rank() = n, then x is an extreme point.

2. If rank() < n, then x is NOT an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Is the following true?

Let = x ∈ ℜn : Ax ≤ b be a polyhedron and let x ∈ .

1. If rank() = n, then x is an extreme point.

2. If rank() < n, then x is NOT an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Is the following true?

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Is the following true? NO!

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Is the following true? NO!

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

P

P =







x :

(
1 1
−1 1

)

A

x ≤

(
0
0

)

b







=

(
1 1
−1 −1

)

has n = rows, but

(
0
0

)

is NOT extreme.

Is the following true? NO!

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

x1

x2

(
0
0

)

P

P =







x :

(
1 1
−1 1

)

︸ ︷︷ ︸
A

x ≤

(
0
0

)

︸︷︷︸
b







=

(
1 1
−1 −1

)

has n = rows, but

(
0
0

)

is NOT extreme.

Is the following true? NO!

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

x1

x2

(
0
0

)

P

P =







x :

(
1 1
−1 1

)

︸ ︷︷ ︸
A

x ≤

(
0
0

)

︸︷︷︸
b







Ā =

(
1 1
−1 −1

)

has n = 2 rows, but

(
0
0

)

is NOT extreme.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Let’s prove part (1).

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Let’s prove part (1).

Remark

Let a, b, c ∈ ℜ, and

suppose

a = b+ c and b ≤ a, c ≤ a.

Then a = b = c.

Proof

a = 1
2 b + 1

2 c

Remark

Let a, b, c ∈ ℜ, and suppose

a =
1

2
b+

1

2
c and b ≤ a, c ≤ a.

Then a = b = c.

Proof

a = 1
2 b + 1

2 c

Remark

Let a, b, c ∈ ℜ, and suppose

a =
1

2
b+

1

2
c and b ≤ a, c ≤ a.

Then a = b = c.

Proof

a = 1
2 b + 1

2 c

Remark

Let a, b, c ∈ ℜ, and suppose

a =
1

2
b+

1

2
c and b ≤ a, c ≤ a.

Then a = b = c.

Proof

a = 1
2 b + 1

2 c

Remark

Let a, b, c ∈ ℜ, and suppose

a =
1

2
b+

1

2
c and b ≤ a, c ≤ a.

Then a = b = c.

Proof

a = 1
2 b
︸︷︷︸

≤a

+ 1
2 c
︸︷︷︸

≤a

≤ 1
2a+ 1

2a = a.

Thus, equality holds throughout b = a and c = a.

Remark

Let a, b, c ∈ ℜ, and suppose

a =
1

2
b+

1

2
c and b ≤ a, c ≤ a.

Then a = b = c.

Proof

a = 1
2 b
︸︷︷︸

≤a

+ 1
2 c
︸︷︷︸

≤a

≤ 1
2a+ 1

2a = a.

Thus, equality holds throughout b = a and c = a.

Remark

Let a, b, c ∈ ℜ, and suppose

a =
1

2
b+

1

2
c and b ≤ a, c ≤ a.

Then a = b = c.

Proof

a = 1
2 b
︸︷︷︸

≤a

+ 1
2 c
︸︷︷︸

≤a

≤ 1
2a+ 1

2a = a.

Thus, equality holds throughout

b = a and c = a.

Remark

Let a, b, c ∈ ℜ, and suppose

a =
1

2
b+

1

2
c and b ≤ a, c ≤ a.

Then a = b = c.

Proof

a = 1
2 b
︸︷︷︸

≤a

+ 1
2 c
︸︷︷︸

≤a

≤ 1
2a+ 1

2a = a.

Thus, equality holds throughout ⇒ b = a and c = a.

Remark

Let a, b, c ∈ ℜ,

and let λ where < λ < . Suppose

a = λb+ (1− λ)c and b ≤ a, c ≤ a.

Then a = b = c.

Exercise

Prove the previous remark.

Remark

Let a, b, c ∈ ℜ, and let λ where 0 < λ < 1.

Suppose

a = λb+ (1− λ)c and b ≤ a, c ≤ a.

Then a = b = c.

Exercise

Prove the previous remark.

Remark

Let a, b, c ∈ ℜ, and let λ where 0 < λ < 1. Suppose

a = λb+ (1− λ)c and b ≤ a, c ≤ a.

Then a = b = c.

Exercise

Prove the previous remark.

Remark

Let a, b, c ∈ ℜ, and let λ where 0 < λ < 1. Suppose

a = λb+ (1− λ)c and b ≤ a, c ≤ a.

Then a = b = c.

Exercise

Prove the previous remark.

Remark

Let a, b, c ∈ ℜ, and let λ where 0 < λ < 1. Suppose

a = λb+ (1− λ)c and b ≤ a, c ≤ a.

Then a = b = c.

Exercise

Prove the previous remark.

Remark

Let a, b, c ∈ ℜn

, and let λ where < λ < . Suppose

a = λb+ (1− λ)c and b ≤ a, c ≤ a.

Then a = b = c.

Exercise

Prove the previous remark.

Remark

Let a, b, c ∈ ℜn , and let λ where 0 < λ < 1. Suppose

a = λb+ (1− λ)c and b ≤ a, c ≤ a.

Then a = b = c.

Exercise

Prove the previous remark.

Remark

Let a, b, c ∈ ℜn , and let λ where 0 < λ < 1. Suppose

a = λb+ (1− λ)c and b ≤ a, c ≤ a.

Then a = b = c.

Exercise

Prove the previous remark.

Remark

Let a, b, c ∈ ℜn , and let λ where 0 < λ < 1. Suppose

a = λb+ (1− λ)c and b ≤ a, c ≤ a.

Then a = b = c.

Exercise

Prove the previous remark.

Remark

Let a, b, c ∈ ℜn , and let λ where 0 < λ < 1. Suppose

a = λb+ (1− λ)c and b ≤ a, c ≤ a.

Then a = b = c.

Exercise

Prove the previous remark.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x is not an extreme point.

x is properly contained in a line segment with endpoints x(1), x(2) ∈ .

x = x(1), x(2) ∈ and for some λ, < λ < , x = λx(1) + (1− λ)x(2).

b = x =
(

λx(1) + (1− λ)x(2)
)

= λAx(1) + (1− λ)Ax(2).

Ax(1) ≤ b and Ax(2) ≤ b.

Previous remark implies that b = Ax(1) = Ax(2).

However, since rank() = n, x(1) = x(2). This is a contradiction.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x̄ is not an extreme point.

x is properly contained in a line segment with endpoints x(1), x(2) ∈ .

x = x(1), x(2) ∈ and for some λ, < λ < , x = λx(1) + (1− λ)x(2).

b = x =
(

λx(1) + (1− λ)x(2)
)

= λAx(1) + (1− λ)Ax(2).

Ax(1) ≤ b and Ax(2) ≤ b.

Previous remark implies that b = Ax(1) = Ax(2).

However, since rank() = n, x(1) = x(2). This is a contradiction.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x̄ is not an extreme point.

x̄ is properly contained in a line segment with endpoints x(1), x(2) ∈ P .

x = x(1), x(2) ∈ and for some λ, < λ < , x = λx(1) + (1− λ)x(2).

b = x =
(

λx(1) + (1− λ)x(2)
)

= λAx(1) + (1− λ)Ax(2).

Ax(1) ≤ b and Ax(2) ≤ b.

Previous remark implies that b = Ax(1) = Ax(2).

However, since rank() = n, x(1) = x(2). This is a contradiction.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x̄ is not an extreme point.

x̄ is properly contained in a line segment with endpoints x(1), x(2) ∈ P .

x̄ 6= x(1), x(2) ∈ P

and for some λ, < λ < , x = λx(1) + (1− λ)x(2).

b = x =
(

λx(1) + (1− λ)x(2)
)

= λAx(1) + (1− λ)Ax(2).

Ax(1) ≤ b and Ax(2) ≤ b.

Previous remark implies that b = Ax(1) = Ax(2).

However, since rank() = n, x(1) = x(2). This is a contradiction.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x̄ is not an extreme point.

x̄ is properly contained in a line segment with endpoints x(1), x(2) ∈ P .

x̄ 6= x(1), x(2) ∈ P and for some λ, 0 < λ < 1,

x = λx(1) + (1− λ)x(2).

b = x =
(

λx(1) + (1− λ)x(2)
)

= λAx(1) + (1− λ)Ax(2).

Ax(1) ≤ b and Ax(2) ≤ b.

Previous remark implies that b = Ax(1) = Ax(2).

However, since rank() = n, x(1) = x(2). This is a contradiction.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x̄ is not an extreme point.

x̄ is properly contained in a line segment with endpoints x(1), x(2) ∈ P .

x̄ 6= x(1), x(2) ∈ P and for some λ, 0 < λ < 1, x̄ = λx(1) + (1− λ)x(2).

b = x =
(

λx(1) + (1− λ)x(2)
)

= λAx(1) + (1− λ)Ax(2).

Ax(1) ≤ b and Ax(2) ≤ b.

Previous remark implies that b = Ax(1) = Ax(2).

However, since rank() = n, x(1) = x(2). This is a contradiction.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x̄ is not an extreme point.

x̄ is properly contained in a line segment with endpoints x(1), x(2) ∈ P .

x̄ 6= x(1), x(2) ∈ P and for some λ, 0 < λ < 1, x̄ = λx(1) + (1− λ)x(2).

b̄ = Āx̄

=
(

λx(1) + (1− λ)x(2)
)

= λAx(1) + (1− λ)Ax(2).

Ax(1) ≤ b and Ax(2) ≤ b.

Previous remark implies that b = Ax(1) = Ax(2).

However, since rank() = n, x(1) = x(2). This is a contradiction.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x̄ is not an extreme point.

x̄ is properly contained in a line segment with endpoints x(1), x(2) ∈ P .

x̄ 6= x(1), x(2) ∈ P and for some λ, 0 < λ < 1, x̄ = λx(1) + (1− λ)x(2).

b̄ = Āx̄ = Ā
(

λx(1) + (1− λ)x(2)
)

= λAx(1) + (1− λ)Ax(2).

Ax(1) ≤ b and Ax(2) ≤ b.

Previous remark implies that b = Ax(1) = Ax(2).

However, since rank() = n, x(1) = x(2). This is a contradiction.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x̄ is not an extreme point.

x̄ is properly contained in a line segment with endpoints x(1), x(2) ∈ P .

x̄ 6= x(1), x(2) ∈ P and for some λ, 0 < λ < 1, x̄ = λx(1) + (1− λ)x(2).

b̄ = Āx̄ = Ā
(

λx(1) + (1− λ)x(2)
)

= λĀx(1) + (1− λ)Āx(2).

Ax(1) ≤ b and Ax(2) ≤ b.

Previous remark implies that b = Ax(1) = Ax(2).

However, since rank() = n, x(1) = x(2). This is a contradiction.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x̄ is not an extreme point.

x̄ is properly contained in a line segment with endpoints x(1), x(2) ∈ P .

x̄ 6= x(1), x(2) ∈ P and for some λ, 0 < λ < 1, x̄ = λx(1) + (1− λ)x(2).

b̄ = Āx̄ = Ā
(

λx(1) + (1− λ)x(2)
)

= λĀx(1) + (1− λ)Āx(2).

Āx(1) ≤ b̄ and Āx(2) ≤ b̄.

Previous remark implies that b = Ax(1) = Ax(2).

However, since rank() = n, x(1) = x(2). This is a contradiction.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x̄ is not an extreme point.

x̄ is properly contained in a line segment with endpoints x(1), x(2) ∈ P .

x̄ 6= x(1), x(2) ∈ P and for some λ, 0 < λ < 1, x̄ = λx(1) + (1− λ)x(2).

b̄ = Āx̄ = Ā
(

λx(1) + (1− λ)x(2)
)

= λĀx(1) + (1− λ)Āx(2).

Āx(1) ≤ b̄ and Āx(2) ≤ b̄.

Previous remark implies that b̄ = Āx(1) = Āx(2).

However, since rank() = n, x(1) = x(2). This is a contradiction.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x̄ is not an extreme point.

x̄ is properly contained in a line segment with endpoints x(1), x(2) ∈ P .

x̄ 6= x(1), x(2) ∈ P and for some λ, 0 < λ < 1, x̄ = λx(1) + (1− λ)x(2).

b̄ = Āx̄ = Ā
(

λx(1) + (1− λ)x(2)
)

= λĀx(1) + (1− λ)Āx(2).

Āx(1) ≤ b̄ and Āx(2) ≤ b̄.

Previous remark implies that b̄ = Āx(1) = Āx(2).

However, since rank(Ā) = n, x(1) = x(2).

This is a contradiction.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x̄ is not an extreme point.

x̄ is properly contained in a line segment with endpoints x(1), x(2) ∈ P .

x̄ 6= x(1), x(2) ∈ P and for some λ, 0 < λ < 1, x̄ = λx(1) + (1− λ)x(2).

b̄ = Āx̄ = Ā
(

λx(1) + (1− λ)x(2)
)

= λĀx(1) + (1− λ)Āx(2).

Āx(1) ≤ b̄ and Āx(2) ≤ b̄.

Previous remark implies that b̄ = Āx(1) = Āx(2).

However, since rank(Ā) = n, x(1) = x(2). This is a contradiction.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Proof

Since rank() < n, there exists a non-zero vector d such that Ad = .

Pick a small ǫ > .

x(1) = x+ ǫd

x(2) = x− ǫd

It suffices to prove the following:

(a) x is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ .

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Proof

Since rank() < n, there exists a non-zero vector d such that Ad = .

Pick a small ǫ > .

x(1) = x+ ǫd

x(2) = x− ǫd

It suffices to prove the following:

(a) x is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ .

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > .

x(1) = x+ ǫd

x(2) = x− ǫd

It suffices to prove the following:

(a) x is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ .

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0.

x(1) = x+ ǫd

x(2) = x− ǫd

It suffices to prove the following:

(a) x is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ .

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0.

x(1) = x̄+ ǫd

x(2) = x− ǫd

It suffices to prove the following:

(a) x is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ .

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0.

x(1) = x̄+ ǫd

x(2) = x̄− ǫd

It suffices to prove the following:

(a) x is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ .

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0.

x(1) = x̄+ ǫd

x(2) = x̄− ǫd
x(2)

x(1)
x̄

εd

−εd

It suffices to prove the following:

(a) x is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ .

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0.

x(1) = x̄+ ǫd

x(2) = x̄− ǫd
x(2)

x(1)
x̄

εd

−εd

It suffices to prove the following:

(a) x is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ .

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0.

x(1) = x̄+ ǫd

x(2) = x̄− ǫd
x(2)

x(1)
x̄

εd

−εd

It suffices to prove the following:

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ .

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0.

x(1) = x̄+ ǫd

x(2) = x̄− ǫd
x(2)

x(1)
x̄

εd

−εd

It suffices to prove the following:

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ P .

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

Why?

x(1) + x(2) = (x+ ǫd) + (x− ǫd) = x. X

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

Why?
1

2
x(1) +

1

2
x(2)

= (x+ ǫd) + (x− ǫd) = x. X

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

Why?
1

2
x(1) +

1

2
x(2) =

1

2
(x̄+ ǫd) +

1

2
(x̄− ǫd)

= x. X

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

Why?
1

2
x(1) +

1

2
x(2) =

1

2
(x̄+ ǫd) +

1

2
(x̄− ǫd) = x̄.

X

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

Why?
1

2
x(1) +

1

2
x(2) =

1

2
(x̄+ ǫd) +

1

2
(x̄− ǫd) = x̄. X

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ . (It is sufficient to show this for x(1) only.)

Consider tight constraints Ax ≤ b.

Ax(1) = (x+ ǫd) = x

b̄

+ǫ Ad

0

= b. X

Consider non-tight constraint a⊤x ≤ β.

a⊤x(1) = a⊤(x+ ǫd) = a⊤x

<β

+ǫ a⊤d

??

< β

for a small enough ǫ.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ P . (It is sufficient to show this for x(1) only.)

Consider tight constraints Ax ≤ b.

Ax(1) = (x+ ǫd) = x

b̄

+ǫ Ad

0

= b. X

Consider non-tight constraint a⊤x ≤ β.

a⊤x(1) = a⊤(x+ ǫd) = a⊤x

<β

+ǫ a⊤d

??

< β

for a small enough ǫ.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ P . (It is sufficient to show this for x(1) only.)

Consider tight constraints Āx ≤ b̄.

Ax(1) = (x+ ǫd) = x

b̄

+ǫ Ad

0

= b. X

Consider non-tight constraint a⊤x ≤ β.

a⊤x(1) = a⊤(x+ ǫd) = a⊤x

<β

+ǫ a⊤d

??

< β

for a small enough ǫ.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ P . (It is sufficient to show this for x(1) only.)

Consider tight constraints Āx ≤ b̄.

Āx(1)

= (x+ ǫd) = x

b̄

+ǫ Ad

0

= b. X

Consider non-tight constraint a⊤x ≤ β.

a⊤x(1) = a⊤(x+ ǫd) = a⊤x

<β

+ǫ a⊤d

??

< β

for a small enough ǫ.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ P . (It is sufficient to show this for x(1) only.)

Consider tight constraints Āx ≤ b̄.

Āx(1) = Ā(x̄+ ǫd)

= x

b̄

+ǫ Ad

0

= b. X

Consider non-tight constraint a⊤x ≤ β.

a⊤x(1) = a⊤(x+ ǫd) = a⊤x

<β

+ǫ a⊤d

??

< β

for a small enough ǫ.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ P . (It is sufficient to show this for x(1) only.)

Consider tight constraints Āx ≤ b̄.

Āx(1) = Ā(x̄+ ǫd) = Āx̄
︸︷︷︸

b̄

+ǫ Ād
︸︷︷︸
0

= b. X

Consider non-tight constraint a⊤x ≤ β.

a⊤x(1) = a⊤(x+ ǫd) = a⊤x

<β

+ǫ a⊤d

??

< β

for a small enough ǫ.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ P . (It is sufficient to show this for x(1) only.)

Consider tight constraints Āx ≤ b̄.

Āx(1) = Ā(x̄+ ǫd) = Āx̄
︸︷︷︸

b̄

+ǫ Ād
︸︷︷︸
0

= b̄.

X

Consider non-tight constraint a⊤x ≤ β.

a⊤x(1) = a⊤(x+ ǫd) = a⊤x

<β

+ǫ a⊤d

??

< β

for a small enough ǫ.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ P . (It is sufficient to show this for x(1) only.)

Consider tight constraints Āx ≤ b̄.

Āx(1) = Ā(x̄+ ǫd) = Āx̄
︸︷︷︸

b̄

+ǫ Ād
︸︷︷︸
0

= b̄. X

Consider non-tight constraint a⊤x ≤ β.

a⊤x(1) = a⊤(x+ ǫd) = a⊤x

<β

+ǫ a⊤d

??

< β

for a small enough ǫ.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ P . (It is sufficient to show this for x(1) only.)

Consider tight constraints Āx ≤ b̄.

Āx(1) = Ā(x̄+ ǫd) = Āx̄
︸︷︷︸

b̄

+ǫ Ād
︸︷︷︸
0

= b̄. X

Consider non-tight constraint a⊤x ≤ β.

a⊤x(1) = a⊤(x+ ǫd) = a⊤x

<β

+ǫ a⊤d

??

< β

for a small enough ǫ.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ P . (It is sufficient to show this for x(1) only.)

Consider tight constraints Āx ≤ b̄.

Āx(1) = Ā(x̄+ ǫd) = Āx̄
︸︷︷︸

b̄

+ǫ Ād
︸︷︷︸
0

= b̄. X

Consider non-tight constraint a⊤x ≤ β.

a⊤x(1)

= a⊤(x+ ǫd) = a⊤x

<β

+ǫ a⊤d

??

< β

for a small enough ǫ.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ P . (It is sufficient to show this for x(1) only.)

Consider tight constraints Āx ≤ b̄.

Āx(1) = Ā(x̄+ ǫd) = Āx̄
︸︷︷︸

b̄

+ǫ Ād
︸︷︷︸
0

= b̄. X

Consider non-tight constraint a⊤x ≤ β.

a⊤x(1) = a⊤(x̄+ ǫd)

= a⊤x

<β

+ǫ a⊤d

??

< β

for a small enough ǫ.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ P . (It is sufficient to show this for x(1) only.)

Consider tight constraints Āx ≤ b̄.

Āx(1) = Ā(x̄+ ǫd) = Āx̄
︸︷︷︸

b̄

+ǫ Ād
︸︷︷︸
0

= b̄. X

Consider non-tight constraint a⊤x ≤ β.

a⊤x(1) = a⊤(x̄+ ǫd) = a⊤x̄
︸︷︷︸

<β

+ǫ a⊤d
︸︷︷︸

??

< β

for a small enough ǫ.

Proof

Since rank(Ā) < n, there exists a non-zero vector d such that Ād = 0.

Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ P . (It is sufficient to show this for x(1) only.)

Consider tight constraints Āx ≤ b̄.

Āx(1) = Ā(x̄+ ǫd) = Āx̄
︸︷︷︸

b̄

+ǫ Ād
︸︷︷︸
0

= b̄. X

Consider non-tight constraint a⊤x ≤ β.

a⊤x(1) = a⊤(x̄+ ǫd) = a⊤x̄
︸︷︷︸

<β

+ǫ a⊤d
︸︷︷︸

??

< β

for a small enough ǫ.

Consider

P =

{

x ≥ 0 :

(
1 0 −1
0 1 3

)

=

(
2
4

)}

(
2
4
0

)

is a basic solution

Question

Is (2, , 0)⊤ an extreme p int?

Let’s use our theorem to find an answer.

Theorem

Let = x ∈ ℜn : Ax ≤ b be a polyhedron and let x ∈ .

1. If rank() = n, then x is an extreme point.

2. If rank() < n, then x is NOT an extreme point.

We need to rewrite the constraints in so they are all in the form ≤”.

Consider

P =

{

x ≥ 0 :

(
1 0 −1
0 1 3

)

=

(
2
4

)} (
2
4
0

)

is a basic solution

Question

Is (2, , 0)⊤ an extreme p int?

Let’s use our theorem to find an answer.

Theorem

Let = x ∈ ℜn : Ax ≤ b be a polyhedron and let x ∈ .

1. If rank() = n, then x is an extreme point.

2. If rank() < n, then x is NOT an extreme point.

We need to rewrite the constraints in so they are all in the form ≤”.

Consider

P =

{

x ≥ 0 :

(
1 0 −1
0 1 3

)

=

(
2
4

)} (
2
4
0

)

is a basic solution

Question

Is (2, 4, 0)⊤ an extreme point?

Let’s use our theorem to find an answer.

Theorem

Let = x ∈ ℜn : Ax ≤ b be a polyhedron and let x ∈ .

1. If rank() = n, then x is an extreme point.

2. If rank() < n, then x is NOT an extreme point.

We need to rewrite the constraints in so they are all in the form ≤”.

Consider

P =

{

x ≥ 0 :

(
1 0 −1
0 1 3

)

=

(
2
4

)} (
2
4
0

)

is a basic solution

Question

Is (2, 4, 0)⊤ an extreme point?

Let’s use our theorem to find an answer.

Theorem

Let = x ∈ ℜn : Ax ≤ b be a polyhedron and let x ∈ .

1. If rank() = n, then x is an extreme point.

2. If rank() < n, then x is NOT an extreme point.

We need to rewrite the constraints in so they are all in the form ≤”.

Consider

P =

{

x ≥ 0 :

(
1 0 −1
0 1 3

)

=

(
2
4

)} (
2
4
0

)

is a basic solution

Question

Is (2, 4, 0)⊤ an extreme point?

Let’s use our theorem to find an answer.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

We need to rewrite the constraints in so they are all in the form ≤”.

Consider

P =

{

x ≥ 0 :

(
1 0 −1
0 1 3

)

=

(
2
4

)} (
2
4
0

)

is a basic solution

Question

Is (2, 4, 0)⊤ an extreme point?

Let’s use our theorem to find an answer.

Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

We need to rewrite the constraints in P so they are all in the form “≤”.

Consider

P =

{

x ≥ 0 :

(
1 0 −1
0 1 3

)

=

(
2
4

)} (
2
4
0

)

is a basic solution

Question

Is (2, 4, 0)⊤ an extreme point?

We need to rewrite the constraints in P so they are all in the form “≤”.

= x : Ax ≤ b , where

=

−

−
− −

−
−

−

and b =

−
−

Consider

P =

{

x ≥ 0 :

(
1 0 −1
0 1 3

)

=

(
2
4

)} (
2
4
0

)

is a basic solution

Question

Is (2, 4, 0)⊤ an extreme point?

We need to rewrite the constraints in P so they are all in the form “≤”.

P = {x : Ax ≤ b}, where

A =





















−

−
− −

−
−

−





















and b =





















−
−





















Consider

P =

{

x ≥ 0 :

(
1 0 −1
0 1 3

)

=

(
2
4

)} (
2
4
0

)

is a basic solution

Question

Is (2, 4, 0)⊤ an extreme point?

We need to rewrite the constraints in P so they are all in the form “≤”.

P = {x : Ax ≤ b}, where

A =





















1 0 −1
0 1 3

−
− −

−
−

−





















and b =





















2
4

−
−





















Consider

P =

{

x ≥ 0 :

(
1 0 −1
0 1 3

)

=

(
2
4

)} (
2
4
0

)

is a basic solution

Question

Is (2, 4, 0)⊤ an extreme point?

We need to rewrite the constraints in P so they are all in the form “≤”.

P = {x : Ax ≤ b}, where

A =





















1 0 −1
0 1 3

− 1 0 1
0 −1 −3

−
−

−





















and b =





















2
4

− 2
−4





















Consider

P =

{

x ≥ 0 :

(
1 0 −1
0 1 3

)

=

(
2
4

)} (
2
4
0

)

is a basic solution

Question

Is (2, 4, 0)⊤ an extreme point?

We need to rewrite the constraints in P so they are all in the form “≤”.

P = {x : Ax ≤ b}, where

A =





















1 0 −1
0 1 3

− 1 0 1
0 −1 −3

− 1 0 0
0 −1 0
0 0 −1





















and b =





















2
4

− 2
−4
0
0
0





















For P = {x : Ax ≤ b}, where

A =













1 0 −1
0 1 3

−1 0 1
0 −1 −3

−1 0 0
0 −1 0
0 0 −1













, b =













2
4

−2
−4
0
0
0













and (2, 4, 0)⊤, we have

=

−

−
− −

−

Since rank() = , we know that (2, , 0)⊤ is an extreme point!

This is no accident...

For P = {x : Ax ≤ b}, where

A =













1 0 −1
0 1 3

−1 0 1
0 −1 −3

−1 0 0
0 −1 0
0 0 −1













, b =













2
4

−2
−4
0
0
0













and (2, 4, 0)⊤, we have

Ā =









1 0 −1
0 1 3

−1 0 1
0 −1 −3
0 0 −1









Since rank() = , we know that (2, , 0)⊤ is an extreme point!

This is no accident...

For P = {x : Ax ≤ b}, where

A =













1 0 −1
0 1 3

−1 0 1
0 −1 −3

−1 0 0
0 −1 0
0 0 −1













, b =













2
4

−2
−4
0
0
0













and (2, 4, 0)⊤, we have

Ā =









1 0 −1
0 1 3

−1 0 1
0 −1 −3
0 0 −1









Since rank(Ā) = 3, we know that (2, 4, 0)⊤ is an extreme point!

This is no accident...

For P = {x : Ax ≤ b}, where

A =













1 0 −1
0 1 3

−1 0 1
0 −1 −3

−1 0 0
0 −1 0
0 0 −1













, b =













2
4

−2
−4
0
0
0













and (2, 4, 0)⊤, we have

Ā =









1 0 −1
0 1 3

−1 0 1
0 −1 −3
0 0 −1









Since rank(Ā) = 3, we know that (2, 4, 0)⊤ is an extreme point!

This is no accident...

Theorem

Let P = {x ≥ 0 : Ax = b} where rows of A are independent. The
following are equivalent:

1. x̄ is an extreme point of P .

2. x̄ is a basic feasible solution of P .

Exercise

Prove the previous theorem.

The Simplex algorithm moves from extreme points to extreme points.

Theorem

Let P = {x ≥ 0 : Ax = b} where rows of A are independent. The
following are equivalent:

1. x̄ is an extreme point of P .

2. x̄ is a basic feasible solution of P .

Exercise

Prove the previous theorem.

The Simplex algorithm moves from extreme points to extreme points.

Theorem

Let P = {x ≥ 0 : Ax = b} where rows of A are independent. The
following are equivalent:

1. x̄ is an extreme point of P .

2. x̄ is a basic feasible solution of P .

Exercise

Prove the previous theorem.

The Simplex algorithm moves from extreme points to extreme points.

Theorem

Let P = {x ≥ 0 : Ax = b} where rows of A are independent. The
following are equivalent:

1. x̄ is an extreme point of P .

2. x̄ is a basic feasible solution of P .

Exercise

Prove the previous theorem.

The Simplex algorithm moves from extreme points to extreme points.

Simplex - a Geometric Illustration

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











Solve using Simplex:

• Basis B = , , , basic solution (0, , , , 4)⊤

• Basis B = , , , basic solution (5, , , , 9)⊤

• Basis B = , , , basic solution (4, , , , 6)⊤

• Basis B = , , , basic solution (1, , , , 0)⊤: optimal

Simplex visits extreme points of 1 in rder:

0
0
10
6
4

,

5
0
0
1
9

,

4
2
0
0
6

,

1
5
3
0
0

.

However, we cannot draw a picture of this...

Simplex - a Geometric Illustration

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











Solve using Simplex:

• Basis B = , , , basic solution (0, , , , 4)⊤

• Basis B = , , , basic solution (5, , , , 9)⊤

• Basis B = , , , basic solution (4, , , , 6)⊤

• Basis B = , , , basic solution (1, , , , 0)⊤: optimal

Simplex visits extreme points of 1 in rder:

0
0
10
6
4

,

5
0
0
1
9

,

4
2
0
0
6

,

1
5
3
0
0

.

However, we cannot draw a picture of this...

Simplex - a Geometric Illustration

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











Solve using Simplex:

• Basis B = , , , basic solution (0, , , , 4)⊤

• Basis B = , , , basic solution (5, , , , 9)⊤

• Basis B = , , , basic solution (4, , , , 6)⊤

• Basis B = , , , basic solution (1, , , , 0)⊤: optimal

Simplex visits extreme points of 1 in rder:

0
0
10
6
4

,

5
0
0
1
9

,

4
2
0
0
6

,

1
5
3
0
0

.

However, we cannot draw a picture of this...

Simplex - a Geometric Illustration

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











Solve using Simplex:

• Basis B = , , , basic solution (0, , , , 4)⊤

• Basis B = , , , basic solution (5, , , , 9)⊤

• Basis B = , , , basic solution (4, , , , 6)⊤

• Basis B = , , , basic solution (1, , , , 0)⊤: optimal

Simplex visits extreme points of 1 in rder:

0
0
10
6
4

,

5
0
0
1
9

,

4
2
0
0
6

,

1
5
3
0
0

.

However, we cannot draw a picture of this...

Simplex - a Geometric Illustration

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











Solve using Simplex:

• Basis B = {3, 4, 5}, basic solution (0, 0, 10, 6, 4)⊤

• Basis B = , , , basic solution (5, , , , 9)⊤

• Basis B = , , , basic solution (4, , , , 6)⊤

• Basis B = , , , basic solution (1, , , , 0)⊤: optimal

Simplex visits extreme points of 1 in rder:

0
0
10
6
4

,

5
0
0
1
9

,

4
2
0
0
6

,

1
5
3
0
0

.

However, we cannot draw a picture of this...

Simplex - a Geometric Illustration

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











Solve using Simplex:

• Basis B = {3, 4, 5}, basic solution (0, 0, 10, 6, 4)⊤

• Basis B = {1, 4, 5}, basic solution (5, 0, 0, 1, 9)⊤

• Basis B = , , , basic solution (4, , , , 6)⊤

• Basis B = , , , basic solution (1, , , , 0)⊤: optimal

Simplex visits extreme points of 1 in rder:

0
0
10
6
4

,

5
0
0
1
9

,

4
2
0
0
6

,

1
5
3
0
0

.

However, we cannot draw a picture of this...

Simplex - a Geometric Illustration

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











Solve using Simplex:

• Basis B = {3, 4, 5}, basic solution (0, 0, 10, 6, 4)⊤

• Basis B = {1, 4, 5}, basic solution (5, 0, 0, 1, 9)⊤

• Basis B = {1, 2, 5}, basic solution (4, 2, 0, 0, 6)⊤

• Basis B = , , , basic solution (1, , , , 0)⊤: optimal

Simplex visits extreme points of 1 in rder:

0
0
10
6
4

,

5
0
0
1
9

,

4
2
0
0
6

,

1
5
3
0
0

.

However, we cannot draw a picture of this...

Simplex - a Geometric Illustration

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











Solve using Simplex:

• Basis B = {3, 4, 5}, basic solution (0, 0, 10, 6, 4)⊤

• Basis B = {1, 4, 5}, basic solution (5, 0, 0, 1, 9)⊤

• Basis B = {1, 2, 5}, basic solution (4, 2, 0, 0, 6)⊤

• Basis B = {1, 2, 3}, basic solution (1, 5, 3, 0, 0)⊤:

optimal

Simplex visits extreme points of 1 in rder:

0
0
10
6
4

,

5
0
0
1
9

,

4
2
0
0
6

,

1
5
3
0
0

.

However, we cannot draw a picture of this...

Simplex - a Geometric Illustration

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











Solve using Simplex:

• Basis B = {3, 4, 5}, basic solution (0, 0, 10, 6, 4)⊤

• Basis B = {1, 4, 5}, basic solution (5, 0, 0, 1, 9)⊤

• Basis B = {1, 2, 5}, basic solution (4, 2, 0, 0, 6)⊤

• Basis B = {1, 2, 3}, basic solution (1, 5, 3, 0, 0)⊤: optimal

Simplex visits extreme points of 1 in rder:

0
0
10
6
4

,

5
0
0
1
9

,

4
2
0
0
6

,

1
5
3
0
0

.

However, we cannot draw a picture of this...

Simplex - a Geometric Illustration

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











Solve using Simplex:

• Basis B = {3, 4, 5}, basic solution (0, 0, 10, 6, 4)⊤

• Basis B = {1, 4, 5}, basic solution (5, 0, 0, 1, 9)⊤

• Basis B = {1, 2, 5}, basic solution (4, 2, 0, 0, 6)⊤

• Basis B = {1, 2, 3}, basic solution (1, 5, 3, 0, 0)⊤: optimal

Simplex visits extreme points of P1 in order:

0
0
10
6
4

,

5
0
0
1
9

,

4
2
0
0
6

,

1
5
3
0
0

.

However, we cannot draw a picture of this...

Simplex - a Geometric Illustration

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











Solve using Simplex:

• Basis B = {3, 4, 5}, basic solution (0, 0, 10, 6, 4)⊤

• Basis B = {1, 4, 5}, basic solution (5, 0, 0, 1, 9)⊤

• Basis B = {1, 2, 5}, basic solution (4, 2, 0, 0, 6)⊤

• Basis B = {1, 2, 3}, basic solution (1, 5, 3, 0, 0)⊤: optimal

Simplex visits extreme points of P1 in order:








0
0
10
6
4








,

5
0
0
1
9

,

4
2
0
0
6

,

1
5
3
0
0

.

However, we cannot draw a picture of this...

Simplex - a Geometric Illustration

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











Solve using Simplex:

• Basis B = {3, 4, 5}, basic solution (0, 0, 10, 6, 4)⊤

• Basis B = {1, 4, 5}, basic solution (5, 0, 0, 1, 9)⊤

• Basis B = {1, 2, 5}, basic solution (4, 2, 0, 0, 6)⊤

• Basis B = {1, 2, 3}, basic solution (1, 5, 3, 0, 0)⊤: optimal

Simplex visits extreme points of P1 in order:








0
0
10
6
4








,








5
0
0
1
9








,

4
2
0
0
6

,

1
5
3
0
0

.

However, we cannot draw a picture of this...

Simplex - a Geometric Illustration

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











Solve using Simplex:

• Basis B = {3, 4, 5}, basic solution (0, 0, 10, 6, 4)⊤

• Basis B = {1, 4, 5}, basic solution (5, 0, 0, 1, 9)⊤

• Basis B = {1, 2, 5}, basic solution (4, 2, 0, 0, 6)⊤

• Basis B = {1, 2, 3}, basic solution (1, 5, 3, 0, 0)⊤: optimal

Simplex visits extreme points of P1 in order:








0
0
10
6
4








,








5
0
0
1
9








,








4
2
0
0
6








,

1
5
3
0
0

.

However, we cannot draw a picture of this...

Simplex - a Geometric Illustration

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











Solve using Simplex:

• Basis B = {3, 4, 5}, basic solution (0, 0, 10, 6, 4)⊤

• Basis B = {1, 4, 5}, basic solution (5, 0, 0, 1, 9)⊤

• Basis B = {1, 2, 5}, basic solution (4, 2, 0, 0, 6)⊤

• Basis B = {1, 2, 3}, basic solution (1, 5, 3, 0, 0)⊤: optimal

Simplex visits extreme points of P1 in order:








0
0
10
6
4








,








5
0
0
1
9








,








4
2
0
0
6








,








1
5
3
0
0








.

However, we cannot draw a picture of this...

Simplex - a Geometric Illustration

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











Solve using Simplex:

• Basis B = {3, 4, 5}, basic solution (0, 0, 10, 6, 4)⊤

• Basis B = {1, 4, 5}, basic solution (5, 0, 0, 1, 9)⊤

• Basis B = {1, 2, 5}, basic solution (4, 2, 0, 0, 6)⊤

• Basis B = {1, 2, 3}, basic solution (1, 5, 3, 0, 0)⊤: optimal

Simplex visits extreme points of P1 in order:








0
0
10
6
4








,








5
0
0
1
9








,








4
2
0
0
6








,








1
5
3
0
0








.

However, we cannot draw a picture of this...

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











is obtained by adding slack variables to

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Remark
(0, 0, 10, 6, 4)⊤ extreme point of P1 ⇒ (0, 0)⊤ extreme point of P2,

(5, 0, 0, 1, 9)⊤ extreme point of P1 ⇒ (5, 0)⊤ extreme point of P2,

(4, 2, 0, 0, 6)⊤ extreme point of P1 ⇒ (4, 2)⊤ extreme point of P2,

(1, 5, 3, 0, 0)⊤ extreme point of P1 ⇒ (1, 5)⊤ extreme point of P2.

Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











is obtained by adding slack variables to

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Remark
(0, 0, 10, 6, 4)⊤ extreme point of P1 ⇒ (0, 0)⊤ extreme point of P2,

(5, 0, 0, 1, 9)⊤ extreme point of P1 ⇒ (5, 0)⊤ extreme point of P2,

(4, 2, 0, 0, 6)⊤ extreme point of P1 ⇒ (4, 2)⊤ extreme point of P2,

(1, 5, 3, 0, 0)⊤ extreme point of P1 ⇒ (1, 5)⊤ extreme point of P2.

Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











is obtained by adding slack variables to

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Remark
(0, 0, 10, 6, 4)⊤ extreme point of P1 ⇒ (0, 0)⊤ extreme point of P2,

(5, 0, 0, 1, 9)⊤ extreme point of P1 ⇒ (5, 0)⊤ extreme point of P2,

(4, 2, 0, 0, 6)⊤ extreme point of P1 ⇒ (4, 2)⊤ extreme point of P2,

(1, 5, 3, 0, 0)⊤ extreme point of P1 ⇒ (1, 5)⊤ extreme point of P2.

Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











is obtained by adding slack variables to

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Remark
(0, 0, 10, 6, 4)⊤ extreme point of P1 ⇒ (0, 0)⊤ extreme point of P2,

(5, 0, 0, 1, 9)⊤ extreme point of P1 ⇒ (5, 0)⊤ extreme point of P2,

(4, 2, 0, 0, 6)⊤ extreme point of P1 ⇒ (4, 2)⊤ extreme point of P2,

(1, 5, 3, 0, 0)⊤ extreme point of P1 ⇒ (1, 5)⊤ extreme point of P2.

Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











is obtained by adding slack variables to

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Remark
(0, 0, 10, 6, 4)⊤ extreme point of P1 ⇒ (0, 0)⊤ extreme point of P2,

(5, 0, 0, 1, 9)⊤ extreme point of P1 ⇒ (5, 0)⊤ extreme point of P2,

(4, 2, 0, 0, 6)⊤ extreme point of P1 ⇒ (4, 2)⊤ extreme point of P2,

(1, 5, 3, 0, 0)⊤ extreme point of P1 ⇒ (1, 5)⊤ extreme point of P2.

Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











is obtained by adding slack variables to

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Remark
(0, 0, 10, 6, 4)⊤ extreme point of P1 ⇒ (0, 0)⊤ extreme point of P2,

(5, 0, 0, 1, 9)⊤ extreme point of P1 ⇒ (5, 0)⊤ extreme point of P2,

(4, 2, 0, 0, 6)⊤ extreme point of P1 ⇒ (4, 2)⊤ extreme point of P2,

(1, 5, 3, 0, 0)⊤ extreme point of P1 ⇒ (1, 5)⊤ extreme point of P2.

Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











is obtained by adding slack variables to

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Remark
(0, 0, 10, 6, 4)⊤ extreme point of P1 ⇒ (0, 0)⊤ extreme point of P2,

(5, 0, 0, 1, 9)⊤ extreme point of P1 ⇒ (5, 0)⊤ extreme point of P2,

(4, 2, 0, 0, 6)⊤ extreme point of P1 ⇒ (4, 2)⊤ extreme point of P2,

(1, 5, 3, 0, 0)⊤ extreme point of P1 ⇒ (1, 5)⊤ extreme point of P2.

Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











is obtained by adding slack variables to

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Remark
(0, 0, 10, 6, 4)⊤ extreme point of P1 ⇒ (0, 0)⊤ extreme point of P2,

(5, 0, 0, 1, 9)⊤ extreme point of P1 ⇒ (5, 0)⊤ extreme point of P2,

(4, 2, 0, 0, 6)⊤ extreme point of P1 ⇒ (4, 2)⊤ extreme point of P2,

(1, 5, 3, 0, 0)⊤ extreme point of P1 ⇒ (1, 5)⊤ extreme point of P2.

Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











is obtained by adding slack variables to

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Remark
(0, 0, 10, 6, 4)⊤ extreme point of P1 ⇒ (0, 0)⊤ extreme point of P2,

(5, 0, 0, 1, 9)⊤ extreme point of P1 ⇒ (5, 0)⊤ extreme point of P2,

(4, 2, 0, 0, 6)⊤ extreme point of P1 ⇒ (4, 2)⊤ extreme point of P2,

(1, 5, 3, 0, 0)⊤ extreme point of P1 ⇒ (1, 5)⊤ extreme point of P2.

Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

max (2, 3, 0, 0, 0)x
s.t.

x ∈ P1

P1 =






x ≥ 0 :





2 1 1 0 0
1 1 0 1 0
−1 1 0 0 1



x =





10
6
4











is obtained by adding slack variables to

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Remark
(0, 0, 10, 6, 4)⊤ extreme point of P1 ⇒ (0, 0)⊤ extreme point of P2,

(5, 0, 0, 1, 9)⊤ extreme point of P1 ⇒ (5, 0)⊤ extreme point of P2,

(4, 2, 0, 0, 6)⊤ extreme point of P1 ⇒ (4, 2)⊤ extreme point of P2,

(1, 5, 3, 0, 0)⊤ extreme point of P1 ⇒ (1, 5)⊤ extreme point of P2.

Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

0

2

4

6

2 4 6−2−4

x1

x2 (1)
(2)

(3)

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

0

2

4

6

2 4 6−2−4

x1

x2 (1)
(2)

(3)

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

0

2

4

6

2 4 6−2−4

x1

x2 (1)
(2)

(3)

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

0

2

4

6

2 4 6−2−4

x1

x2 (1)
(2)

(3)

max (2, 3)x
s.t.

x ∈ P2

P2 =






x ≥ 0 :





2 1
1 1
−1 1



x ≤





10
6
4











Simplex visits extreme points of P2 in order:

(
0
0

)

,

(
5
0

)

,

(
4
2

)

,

(
1
5

)

.

0

2

4

6

2 4 6−2−4

x1

x2 (1)
(2)

(3)

Recap

• We defined extreme points of convex sets.

• We characterized extreme points in polyhedra.

• We saw that extreme points = basic solutions for problems in SEF.

• We showed that the Simplex algorithm moves from extreme point to
extreme point.

Recap

• We defined extreme points of convex sets.

• We characterized extreme points in polyhedra.

• We saw that extreme points = basic solutions for problems in SEF.

• We showed that the Simplex algorithm moves from extreme point to
extreme point.

Recap

• We defined extreme points of convex sets.

• We characterized extreme points in polyhedra.

• We saw that extreme points = basic solutions for problems in SEF.

• We showed that the Simplex algorithm moves from extreme point to
extreme point.

Recap

• We defined extreme points of convex sets.

• We characterized extreme points in polyhedra.

• We saw that extreme points = basic solutions for problems in SEF.

• We showed that the Simplex algorithm moves from extreme point to
extreme point.

Recap

• We defined extreme points of convex sets.

• We characterized extreme points in polyhedra.

• We saw that extreme points = basic solutions for problems in SEF.

• We showed that the Simplex algorithm moves from extreme point to
extreme point.

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

CO 250: Introduction to Optimization
Module 3: Duality through examples

Recap: Shortest Paths

In an instance of the shortest path
problem, we are given

• a graph G = (V,E), a
non-negative length ce for each
edge e ∈ E, and

• a pair of vertices s and t in V .

s

a b

c d

t

3

4

1
21

2

3

4

Recap: Shortest Paths

In an instance of the shortest path
problem, we are given

• a graph G = (V,E), a
non-negative length ce for each
edge e ∈ E, and

• a pair of vertices s and t in V .

Our goal is to compute an s, t-path
P of smallest total length.

s

a b

c d

t

3

4

1
21

2

3

4

Recap: Shortest Paths

In an instance of the shortest path
problem, we are given

• a graph G = (V,E), a
non-negative length ce for each
edge e ∈ E, and

• a pair of vertices s and t in V .

Our goal is to compute an s, t-path
P of smallest total length.

Recall: an s, t-path is a sequence

P := u1u2, u2u3, . . . , uk−1uk

where

• uiui+1 ∈ E for all i, and

• u1 = s, uk = t, and ui 6= uj for
all i 6= j.

s

a b

c d

t

3

4

1
21

2

3

4

Recap: Shortest Paths

In an instance of the shortest path
problem, we are given

• a graph G = (V,E), a
non-negative length ce for each
edge e ∈ E, and

• a pair of vertices s and t in V .

Our goal is to compute an s, t-path
P of smallest total length.

Recall: an s, t-path is a sequence

P := u1u2, u2u3, . . . , uk−1uk

where

• uiui+1 ∈ E for all i, and

• u1 = s, uk = t, and ui 6= uj for
all i 6= j.

s

a b

c d

t

3

4

1
21

2

3

4

Its length is given by

c(P) = cu1u2
+ cu2u3

+ . . .+ cuk−1uk

In the example, we see by inspection
that

P = sa, ac, cb, bt

is a shortest path and that its length
is 9.

Question

1. Given a shortest-path instance
and a candidate shortest
s, t-path P , is there a short
proof of its optimality?

2. How can we find a shortest
s, t-path?

s

a b

c d

t

3

4

1
21

2

3

4

In the example, we see by inspection
that

P = sa, ac, cb, bt

is a shortest path and that its length
is 9.

Question

1. Given a shortest-path instance
and a candidate shortest
s, t-path P , is there a short
proof of its optimality?

2. How can we find a shortest
s, t-path?

s

a b

c d

t

3

4

1
21

2

3

4

In the example, we see by inspection
that

P = sa, ac, cb, bt

is a shortest path and that its length
is 9.

Question

1. Given a shortest-path instance
and a candidate shortest
s, t-path P , is there a short
proof of its optimality?

2. How can we find a shortest
s, t-path?

s

a b

c d

t

3

4

1
21

2

3

4

In the example, we see by inspection
that

P = sa, ac, cb, bt

is a shortest path and that its length
is 9.

Question

1. Given a shortest-path instance
and a candidate shortest
s, t-path P , is there a short
proof of its optimality?

2. How can we find a shortest
s, t-path?

s

a b

c d

t

3

4

1
21

2

3

4

We will answer both questions in
this module. This lecture focus on
question 1.

Shortest Paths: Finding an Intuitive Lower Bound

Cardinality Case

To make our lives easier, we will first
consider the cardinality special case
of the shortest path problem.

s

a b

d

c

g

h

ij

t

Cardinality Case

To make our lives easier, we will first
consider the cardinality special case
of the shortest path problem.

We consider shortest path instances
where...

• each edge e ∈ E has length 1,
and

• we are therefore looking for an
s, t-path with the smallest
number of edges.

s

a b

d

c

g

h

ij

t

Cardinality Case

To make our lives easier, we will first
consider the cardinality special case
of the shortest path problem.

We consider shortest path instances
where...

• each edge e ∈ E has length 1,
and

• we are therefore looking for an
s, t-path with the smallest
number of edges.

s

a b

d

c

g

h

ij

t

Cardinality Case

To make our lives easier, we will first
consider the cardinality special case
of the shortest path problem.

We consider shortest path instances
where...

• each edge e ∈ E has length 1,
and

• we are therefore looking for an
s, t-path with the smallest
number of edges.

s

a b

d

c

g

h

ij

t

Example: In the diagram above, one
easily sees that

P = sj, ji, ig, gt

is a shortest s, t-path.

How can we prove this fact?

Cardinality Case

To make our lives easier, we will first
consider the cardinality special case
of the shortest path problem.

We consider shortest path instances
where...

• each edge e ∈ E has length 1,
and

• we are therefore looking for an
s, t-path with the smallest
number of edges.

s

a b

d

c

g

h

ij

t

Example: In the diagram above, one
easily sees that

P = sj, ji, ig, gt

is a shortest s, t-path.

How can we prove this fact?
−→The answer lies in s,t-cuts!

s, t-cuts

Definition

For U ⊆ V , we define

δ(U) = {uv ∈ E : u ∈ U, v 6∈ U}

and call it an s, t-cut if s ∈ U , and
t 6∈ U .

Recall:

• If P is an s, t-path and δ(U) an
s, t-cut, then P contains an
edge of δ(U).

• If S ⊆ E contains an edge from
every s, t-cut, then S contains
an s, t-path.

Example

Let U = {s, a, j}. It follows that

δ(U) = {ab, ah, ji}

is an s, t-cut.

s, t-cuts

Definition

For U ⊆ V , we define

δ(U) = {uv ∈ E : u ∈ U, v 6∈ U}

and call it an s, t-cut if s ∈ U , and
t 6∈ U .

Recall:

• If P is an s, t-path and δ(U) an
s, t-cut, then P contains an
edge of δ(U).

• If S ⊆ E contains an edge from
every s, t-cut, then S contains
an s, t-path.

Example

Let U = {s, a, j}. It follows that

δ(U) = {ab, ah, ji}

is an s, t-cut.

s

a b

d

c

g

h

ij

t

s, t-cuts

Definition

For U ⊆ V , we define

δ(U) = {uv ∈ E : u ∈ U, v 6∈ U}

and call it an s, t-cut if s ∈ U , and
t 6∈ U .

Recall:

• If P is an s, t-path and δ(U) an
s, t-cut, then P contains an
edge of δ(U).

• If S ⊆ E contains an edge from
every s, t-cut, then S contains
an s, t-path.

Example

Let U = {s, a, j}. It follows that

δ(U) = {ab, ah, ji}

is an s, t-cut.

s

a b

d

c

g

h

ij

t

s, t-cuts

Definition

For U ⊆ V , we define

δ(U) = {uv ∈ E : u ∈ U, v 6∈ U}

and call it an s, t-cut if s ∈ U , and
t 6∈ U .

Recall:

• If P is an s, t-path and δ(U) an
s, t-cut, then P contains an
edge of δ(U).

• If S ⊆ E contains an edge from
every s, t-cut, then S contains
an s, t-path.

Example

Let U = {s, a, j}. It follows that

δ(U) = {ab, ah, ji}

is an s, t-cut.

s

a b

d

c

g

h

ij

t

From Cuts to Lower-Bounds

The example on the right shows 4
s, t-cuts, δ(U1), δ(U2), δ(U3), δ(U4).

s

a b

d

c

g

h

ij

t

�(U1) �(U4)

�(U3)�(U2)

δ(U1) = {sa, sj}
δ(U2) = {ab, ah, ji}
δ(U3) = {bc, hc, ig}
δ(U4) = {dt, gt}

From Cuts to Lower-Bounds

The example on the right shows 4
s, t-cuts, δ(U1), δ(U2), δ(U3), δ(U4).

Two important notes:

(1) δ(Ui) ∩ δ(Uj) = ∅ for i 6= j and

(2) an s, t-path must contain an
edge from δ(Ui) for all i.

s

a b

d

c

g

h

ij

t

�(U1) �(U4)

�(U3)�(U2)

δ(U1) = {sa, sj}
δ(U2) = {ab, ah, ji}
δ(U3) = {bc, hc, ig}
δ(U4) = {dt, gt}

From Cuts to Lower-Bounds

The example on the right shows 4
s, t-cuts, δ(U1), δ(U2), δ(U3), δ(U4).

Two important notes:

(1) δ(Ui) ∩ δ(Uj) = ∅ for i 6= j and

(2) an s, t-path must contain an
edge from δ(Ui) for all i.

s

a b

d

c

g

h

ij

t

�(U1) �(U4)

�(U3)�(U2)

δ(U1) = {sa, sj}
δ(U2) = {ab, ah, ji}
δ(U3) = {bc, hc, ig}
δ(U4) = {dt, gt}

From Cuts to Lower-Bounds

The example on the right shows 4
s, t-cuts, δ(U1), δ(U2), δ(U3), δ(U4).

Two important notes:

(1) δ(Ui) ∩ δ(Uj) = ∅ for i 6= j and

(2) an s, t-path must contain an
edge from δ(Ui) for all i.

−→ Every s, t-path must have at
least 4 edges.

s

a b

d

c

g

h

ij

t

�(U1) �(U4)

�(U3)�(U2)

δ(U1) = {sa, sj}
δ(U2) = {ab, ah, ji}
δ(U3) = {bc, hc, ig}
δ(U4) = {dt, gt}

From Cuts to Lower-Bounds

The example on the right shows 4
s, t-cuts, δ(U1), δ(U2), δ(U3), δ(U4).

Two important notes:

(1) δ(Ui) ∩ δ(Uj) = ∅ for i 6= j and

(2) an s, t-path must contain an
edge from δ(Ui) for all i.

−→ Every s, t-path must have at
least 4 edges.
−→ sj, ji, ig, gt is a shortest
s, t-path!

s

a b

d

c

g

h

ij

t

�(U1) �(U4)

�(U3)�(U2)

δ(U1) = {sa, sj}
δ(U2) = {ab, ah, ji}
δ(U3) = {bc, hc, ig}
δ(U4) = {dt, gt}

From Cuts to Lower-Bounds

Question

Notice: hi is not in any of the
δ(Ui). Does this mean that hi is not
on any shortest s, t-path?

s

a b

d

c

g

h

ij

t

�(U1) �(U4)

�(U3)�(U2)

δ(U1) = {sa, sj}
δ(U2) = {ab, ah, ji}
δ(U3) = {bc, hc, ig}
δ(U4) = {dt, gt}

From Cuts to Lower-Bounds

Question

Notice: hi is not in any of the
δ(Ui). Does this mean that hi is not
on any shortest s, t-path?

Yes!

An s, t-path that contains hi must
also contain an edge from each of
the s, t-cuts δ(Ui).

s

a b

d

c

g

h

ij

t

�(U1) �(U4)

�(U3)�(U2)

δ(U1) = {sa, sj}
δ(U2) = {ab, ah, ji}
δ(U3) = {bc, hc, ig}
δ(U4) = {dt, gt}

From Cuts to Lower-Bounds

Question

Notice: hi is not in any of the
δ(Ui). Does this mean that hi is not
on any shortest s, t-path?

Yes!

An s, t-path that contains hi must
also contain an edge from each of
the s, t-cuts δ(Ui). −→ It must
contain at least 5 edges!

s

a b

d

c

g

h

ij

t

�(U1) �(U4)

�(U3)�(U2)

δ(U1) = {sa, sj}
δ(U2) = {ab, ah, ji}
δ(U3) = {bc, hc, ig}
δ(U4) = {dt, gt}

Back to the General Case

In general instances, we assign a
non-negative width yU to every
s, t-cut δ(U).

Definition

A width assignment
{yU : δ(U) s, t-cut} is feasible if,

s

a b

c d

t

3

4

1
21

2

3

4

Using math: y is feasible if for all e∑
(yU : δ(U) s, t-cut and e ∈ E) ≤ ce

Back to the General Case

In general instances, we assign a
non-negative width yU to every
s, t-cut δ(U).

Definition

A width assignment
{yU : δ(U) s, t-cut} is feasible if,

s

a b

c d

t

3

4

1
21

2

3

4

Using math: y is feasible if for all e∑
(yU : δ(U) s, t-cut and e ∈ E) ≤ ce

Back to the General Case

In general instances, we assign a
non-negative width yU to every
s, t-cut δ(U).

Definition

A width assignment
{yU : δ(U) s, t-cut} is feasible if,
for every edge e ∈ E,

s

a b

c d

t

3

4

1
21

2

3

4

Using math: y is feasible if for all e∑
(yU : δ(U) s, t-cut and e ∈ E) ≤ ce

Back to the General Case

In general instances, we assign a
non-negative width yU to every
s, t-cut δ(U).

Definition

A width assignment
{yU : δ(U) s, t-cut} is feasible if,
for every edge e ∈ E, the total
width of all cuts containing e is no
more than ce.

s

a b

c d

t

3

4

1
21

2

3

4

Using math: y is feasible if for all e∑
(yU : δ(U) s, t-cut and e ∈ E) ≤ ce

Back to the General Case

In general instances, we assign a
non-negative width yU to every
s, t-cut δ(U).

Definition

A width assignment
{yU : δ(U) s, t-cut} is feasible if,
for every edge e ∈ E, the total
width of all cuts containing e is no
more than ce.

s

a b

c d

t

3

4

1
21

2

3

4

Using math: y is feasible if for all e∑
(yU : δ(U) s, t-cut and e ∈ E) ≤ ce

Back to the General Case

Consider the example on the right
with 4 s, t-cuts.

s

a b

c d

t
3

1

4
3

2

1

4

2

U1 = {s}
U2 = {s, a}
U3 = {s, a, c}
U4 = {s, a, b, c, d}

Back to the General Case

Consider the example on the right
with 4 s, t-cuts.

The width assignment

yU1
= 3

yU2
= 1

yU3
= 2

yU4
= 1

is easily checked to be feasible.

s

a b

c d

t
3

1

4
3

2

1

4

2

U1 = {s}
U2 = {s, a}
U3 = {s, a, c}
U4 = {s, a, b, c, d}

Back to the General Case

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).

s

a b

c d

t
3

1

4
3

2

1

4

2

U1 = {s}
U2 = {s, a}
U3 = {s, a, c}
U4 = {s, a, b, c, d}

Back to the General Case

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).

Example:

yU1
+ yU2

+ yU3
+ yU4

= 7

s

a b

c d

t
3

1

4
3

2

1

4

2

U1 = {s}
U2 = {s, a}
U3 = {s, a, c}
U4 = {s, a, b, c, d}

Back to the General Case

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).

Example:

yU1
+ yU2

+ yU3
+ yU4

= 7

−→ Path sa, ac, cb, bt is a shortest
path!

s

a b

c d

t
3

1

4
3

2

1

4

2

U1 = {s}
U2 = {s, a}
U3 = {s, a, c}
U4 = {s, a, b, c, d}

Back to the General Case

Proposition

If y is a feasible width
assignment, then any
s, t-path must have length at
least∑

(yU : U s, t-cut).

Example:

yU1
+ yU2

+ yU3
+ yU4

= 7

−→ Path sa, ac, cb, bt is a
shortest path!

Proof: Consider an s, t-path P . It follows
that

c(P) =
∑

(ce : e ∈ P)

≥
∑(∑

(yU : e ∈ δ(U)) : e ∈ P
)

≥
∑

(yU : δ(U) s, t-cut)

where the first inequality follows from the
feasibility of y.

Back to the General Case

Proposition

If y is a feasible width
assignment, then any
s, t-path must have length at
least∑

(yU : U s, t-cut).

Example:

yU1
+ yU2

+ yU3
+ yU4

= 7

−→ Path sa, ac, cb, bt is a
shortest path!

Proof: Consider an s, t-path P . It follows
that

c(P) =
∑

(ce : e ∈ P)

≥
∑(∑

(yU : e ∈ δ(U)) : e ∈ P
)

≥
∑

(yU : δ(U) s, t-cut)

where the first inequality follows from the
feasibility of y.

Back to the General Case

Proposition

If y is a feasible width
assignment, then any
s, t-path must have length at
least∑

(yU : U s, t-cut).

Example:

yU1
+ yU2

+ yU3
+ yU4

= 7

−→ Path sa, ac, cb, bt is a
shortest path!

Proof: Consider an s, t-path P . It follows
that

c(P) =
∑

(ce : e ∈ P)

≥
∑(∑

(yU : e ∈ δ(U)) : e ∈ P
)

≥
∑

(yU : δ(U) s, t-cut)

where the first inequality follows from the
feasibility of y.

Note: if δ(U) is an s, t-cut, then P contains
at least one edge from δ(U).

Back to the General Case

Proposition

If y is a feasible width
assignment, then any
s, t-path must have length at
least∑

(yU : U s, t-cut).

Example:

yU1
+ yU2

+ yU3
+ yU4

= 7

−→ Path sa, ac, cb, bt is a
shortest path!

Proof: Consider an s, t-path P . It follows
that

c(P) =
∑

(ce : e ∈ P)

≥
∑(∑

(yU : e ∈ δ(U)) : e ∈ P
)

≥
∑

(yU : δ(U) s, t-cut)

where the first inequality follows from the
feasibility of y.

Note: if δ(U) is an s, t-cut, then P contains
at least one edge from δ(U).
−→ Variable yU appears at least once on
the right-hand side above, and hence we
obtain the 2nd inequality

Back to the General Case

Proposition

If y is a feasible width
assignment, then any
s, t-path must have length at
least∑

(yU : U s, t-cut).

Example:

yU1
+ yU2

+ yU3
+ yU4

= 7

−→ Path sa, ac, cb, bt is a
shortest path!

Proof: Consider an s, t-path P . It follows
that

c(P) =
∑

(ce : e ∈ P)

≥
∑(∑

(yU : e ∈ δ(U)) : e ∈ P
)

≥
∑

(yU : δ(U) s, t-cut)

where the first inequality follows from the
feasibility of y.

Note: if δ(U) is an s, t-cut, then P contains
at least one edge from δ(U).
−→ Variable yU appears at least once on
the right-hand side above, and hence we
obtain the 2nd inequality

One More Example

Question: Can you spot a shortest
s, t-path?

s

a b

c d

t

2

6

3

2

2

4

1

1

4 2

1
e

3

One More Example

Question: Can you spot a shortest
s, t-path?
−→ P = sa, ac, cd, dt of length 7.

s

a b

c d

t

2

6

3

2

2

4

1

1

4 2

1
e

3

One More Example

Question: Can you spot a shortest
s, t-path?
−→ P = sa, ac, cd, dt of length 7.

Question: Can you prove your
guess?

s

a b

c d

t

2

6

3

2

2

4

1

1

4 2

1
e

3

One More Example

Question: Can you spot a shortest
s, t-path?
−→ P = sa, ac, cd, dt of length 7.

Question: Can you prove your
guess?
−→ Yes! There is a feasible dual
width assignment of value 7:

y{s} = 2

y{s,a} = 1

y{s,a,c} = 1

y{s,a,c,e} = 1

y{s,a,c,d,e} = 1

y{s,a,b,c,d,e} = 1

s

a b

c d

t

2

6

3

2

2

4

1

1

4 2

1
e

3

2

1 1 1 1

1

One More Example

Question

(A) In an instance with a shortest
path, can we always find feasible
widths to prove optimality?

s

a b

c d

t

2

6

3

2

2

4

1

1

4 2

1
e

3

2

1 1 1 1

1

One More Example

Question

(A) In an instance with a shortest
path, can we always find feasible
widths to prove optimality?

(B) If so, how do we find a path and
these widths?

s

a b

c d

t

2

6

3

2

2

4

1

1

4 2

1
e

3

2

1 1 1 1

1

One More Example

Question

(A) In an instance with a shortest
path, can we always find feasible
widths to prove optimality?

(B) If so, how do we find a path and
these widths?

We will answer (A) affirmatively,
and provide an efficient algorithm
for (B) shortly.

s

a b

c d

t

2

6

3

2

2

4

1

1

4 2

1
e

3

2

1 1 1 1

1

Recap

• A shortest path instance is given by a graph G = (V,E) and
non-negative lengths ce for all e ∈ E.

• A width assignment yU ≥ 0 for all s, t-cuts δ(U) is feasible if∑
(yU : e ∈ δ(U)) ≤ ce

for all e ∈ E.

• If y is a feasible width assignment and P an s, t-path, then

c(P) ≥
∑

yU

Recap

• A shortest path instance is given by a graph G = (V,E) and
non-negative lengths ce for all e ∈ E.

• A width assignment yU ≥ 0 for all s, t-cuts δ(U) is feasible if∑
(yU : e ∈ δ(U)) ≤ ce

for all e ∈ E.

• If y is a feasible width assignment and P an s, t-path, then

c(P) ≥
∑

yU

Recap

• A shortest path instance is given by a graph G = (V,E) and
non-negative lengths ce for all e ∈ E.

• A width assignment yU ≥ 0 for all s, t-cuts δ(U) is feasible if∑
(yU : e ∈ δ(U)) ≤ ce

for all e ∈ E.

• If y is a feasible width assignment and P an s, t-path, then

c(P) ≥
∑

yU

CO 250: Introduction to Optimization
Module 3: Duality through examples (Weak Duality)

Recap: Feasible Widths

Suppose we are given an instance of
the shortest path problem. . .

• a graph G = (V,E),

• a non-negative length ce for
each edge e ∈ E, and

• a pair of vertices s and t in V .

A width-assignment is of the form

{yU : δ(U) s, t-cut}

s

a b

c d

t

3

4

1
21

2

3

4

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).

Recap: Feasible Widths

Suppose we are given an instance of
the shortest path problem. . .

• a graph G = (V,E),

• a non-negative length ce for
each edge e ∈ E, and

• a pair of vertices s and t in V .

A width-assignment is of the form

{yU : δ(U) s, t-cut}

s

a b

c d

t

3

4

1
21

2

3

4

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).

Recap: Feasible Widths

Suppose we are given an instance of
the shortest path problem. . .

• a graph G = (V,E),

• a non-negative length ce for
each edge e ∈ E, and

• a pair of vertices s and t in V .

A width-assignment is of the form

{yU : δ(U) s, t-cut}

s

a b

c d

t

3

4

1
21

2

3

4

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).

Recap: Feasible Widths

Suppose we are given an instance of
the shortest path problem. . .

• a graph G = (V,E),

• a non-negative length ce for
each edge e ∈ E, and

• a pair of vertices s and t in V .

A width-assignment is of the form

{yU : δ(U) s, t-cut}

and this is feasible if the total width
of cuts containing edge e is no more
than ce, for all e ∈ E.

s

a

b

t

3

4

1

2

2

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).

Recap: Feasible Widths

Suppose we are given an instance of
the shortest path problem. . .

• a graph G = (V,E),

• a non-negative length ce for
each edge e ∈ E, and

• a pair of vertices s and t in V .

A width-assignment is of the form

{yU : δ(U) s, t-cut}

and this is feasible if the total width
of cuts containing edge e is no more
than ce, for all e ∈ E.

s

a

b

t

3

4

1

2

2

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).

Recap: Feasible Widths

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).

Seemingly, we used an adhoc
argument, taylormade for shortest
paths. . .

s

a

b

t

3

4

1

2

2

Recap: Feasible Widths

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).

Seemingly, we used an adhoc
argument, taylormade for shortest
paths. . .

but, as we will now see, there is a
constructive and quite mechanical
way to derive the Proposition via
linear programming!

s

a

b

t

3

4

1

2

2

An Instructive Example LP

The LP on the right is feasible. . .

E.g., x1 = (8, 16)> and
x2 = (5, 13)> are feasible.

Question

Can you find an optimal solution?

x1 has an objective of value 64 and
x2 has a value of 49 −→ x1 is
definitely not optimal, but is x2?

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Feasible widths provide a
lower-bound on the length of a
shortest s, t-path. . .

Question

Can we find a good lower-bound on
the objective value of the above LP?

An Instructive Example LP

The LP on the right is feasible. . .

E.g., x1 = (8, 16)> and
x2 = (5, 13)> are feasible.

Question

Can you find an optimal solution?

x1 has an objective of value 64 and
x2 has a value of 49 −→ x1 is
definitely not optimal, but is x2?

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Feasible widths provide a
lower-bound on the length of a
shortest s, t-path. . .

Question

Can we find a good lower-bound on
the objective value of the above LP?

An Instructive Example LP

The LP on the right is feasible. . .

E.g., x1 = (8, 16)> and
x2 = (5, 13)> are feasible.

Question

Can you find an optimal solution?

x1 has an objective of value 64 and
x2 has a value of 49 −→ x1 is
definitely not optimal, but is x2?

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Feasible widths provide a
lower-bound on the length of a
shortest s, t-path. . .

Question

Can we find a good lower-bound on
the objective value of the above LP?

An Instructive Example LP

The LP on the right is feasible. . .

E.g., x1 = (8, 16)> and
x2 = (5, 13)> are feasible.

Question

Can you find an optimal solution?

x1 has an objective of value 64 and
x2 has a value of 49 −→ x1 is
definitely not optimal, but is x2?

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Feasible widths provide a
lower-bound on the length of a
shortest s, t-path. . .

Question

Can we find a good lower-bound on
the objective value of the above LP?

An Instructive Example LP

The LP on the right is feasible. . .

E.g., x1 = (8, 16)> and
x2 = (5, 13)> are feasible.

Question

Can you find an optimal solution?

x1 has an objective of value 64 and
x2 has a value of 49 −→ x1 is
definitely not optimal, but is x2?

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Feasible widths provide a
lower-bound on the length of a
shortest s, t-path. . .

Question

Can we find a good lower-bound on
the objective value of the above LP?

An Instructive Example LP

The LP on the right is feasible. . .

E.g., x1 = (8, 16)> and
x2 = (5, 13)> are feasible.

Question

Can you find an optimal solution?

x1 has an objective of value 64 and
x2 has a value of 49 −→ x1 is
definitely not optimal, but is x2?

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Feasible widths provide a
lower-bound on the length of a
shortest s, t-path. . .

Question

Can we find a good lower-bound on
the objective value of the above LP?

Deriving Valid Inequalities

Let’s suppose that x is feasible for
the LP on the right.

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Deriving Valid Inequalities

Let’s suppose that x is feasible for
the LP on the right.

It follows that x satisfies 2 1
1 1
−1 1

x ≥

20
18
8



min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Deriving Valid Inequalities

Let’s suppose that x is feasible for
the LP on the right.

It follows that x satisfies 2 1
1 1
−1 1

x ≥

20
18
8


and it also satisfies

(2, 1)x ≥ 20

+ (1, 1)x ≥ 18

+ (−1, 1)x ≥ 8

= (2, 3)x ≥ 46

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Deriving Valid Inequalities

Let’s suppose that x is feasible for
the LP on the right.

It follows that x satisfies 2 1
1 1
−1 1

x ≥

20
18
8


and it also satisfies

(2, 1)x ≥ 20

+ (1, 1)x ≥ 18

+ (−1, 1)x ≥ 8

= (2, 3)x ≥ 46

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Additionally, it satisfies

y1 · (2, 1)x ≥ y1 · 20

+ y2 · (1, 1)x ≥ y2 · 18

+ y3 · (−1, 1)x ≥ y3 · 8

= (2y1 + y2 − y3, y1 + y2 + y3)x

≥ 20y1 + 18y2 + 8y3

for y1, y2, y3 ≥ 0.

So, if x is feasible for the LP on the
right, it also satisfies

(y1, y2, y2)

 2 1
1 1
−1 1

x ≥

(y1, y2, y3)

20
18
8


for any y1, y2, y3 ≥ 0.

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Therefore,

z(x) = (2, 3)x

≥ (2, 3)x+ 44− (1, 3)x

= 44 + (1, 0)x

Since x ≥ 0, it follows that

z(x) ≥ 44

for every feasible solution x!

So, if x is feasible for the LP on the
right, it also satisfies

(y1, y2, y2)

 2 1
1 1
−1 1

x ≥

(y1, y2, y3)

20
18
8


for any y1, y2, y3 ≥ 0.

E.g., for y = (0, 2, 1)>, we obtain

(1, 3)x ≥ 44

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Therefore,

z(x) = (2, 3)x

≥ (2, 3)x+ 44− (1, 3)x

= 44 + (1, 0)x

Since x ≥ 0, it follows that

z(x) ≥ 44

for every feasible solution x!

So, if x is feasible for the LP on the
right, it also satisfies

(y1, y2, y2)

 2 1
1 1
−1 1

x ≥

(y1, y2, y3)

20
18
8


for any y1, y2, y3 ≥ 0.

E.g., for y = (0, 2, 1)>, we obtain

(1, 3)x ≥ 44

or
0 ≥ 44− (1, 3)x (?)

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Therefore,

z(x) = (2, 3)x

≥ (2, 3)x+ 44− (1, 3)x

= 44 + (1, 0)x

Since x ≥ 0, it follows that

z(x) ≥ 44

for every feasible solution x!

So, if x is feasible for the LP on the
right, it also satisfies

(y1, y2, y2)

 2 1
1 1
−1 1

x ≥

(y1, y2, y3)

20
18
8


for any y1, y2, y3 ≥ 0.

E.g., for y = (0, 2, 1)>, we obtain

(1, 3)x ≥ 44

or
0 ≥ 44− (1, 3)x (?)

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Therefore,

z(x) = (2, 3)x

≥ (2, 3)x+ 44− (1, 3)x

= 44 + (1, 0)x

Since x ≥ 0, it follows that

z(x) ≥ 44

for every feasible solution x!

So, if x is feasible for the LP on the
right, it also satisfies

(y1, y2, y2)

 2 1
1 1
−1 1

x ≥

(y1, y2, y3)

20
18
8


for any y1, y2, y3 ≥ 0.

E.g., for y = (0, 2, 1)>, we obtain

(1, 3)x ≥ 44

or
0 ≥ 44− (1, 3)x (?)

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Therefore,

z(x) = (2, 3)x

≥ (2, 3)x+ 44− (1, 3)x

= 44 + (1, 0)x

Since x ≥ 0, it follows that

z(x) ≥ 44

for every feasible solution x!

State of Affairs

We now know that

(i) x2 = (5, 13)> is a solution to
the LP of value 49 and

(ii) z(x) ≥ 44 for every feasible
solution to the LP.

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

State of Affairs

We now know that

(i) x2 = (5, 13)> is a solution to
the LP of value 49 and

(ii) z(x) ≥ 44 for every feasible
solution to the LP.

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

State of Affairs

We now know that

(i) x2 = (5, 13)> is a solution to
the LP of value 49 and

(ii) z(x) ≥ 44 for every feasible
solution to the LP.

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

State of Affairs

We now know that

(i) x2 = (5, 13)> is a solution to
the LP of value 49 and

(ii) z(x) ≥ 44 for every feasible
solution to the LP.

−→ The optimal value of the LP is
in the interval [44, 49].

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

State of Affairs

We now know that

(i) x2 = (5, 13)> is a solution to
the LP of value 49 and

(ii) z(x) ≥ 44 for every feasible
solution to the LP.

−→ The optimal value of the LP is
in the interval [44, 49].

Can we find a better lowerbound on
z(x) for a feasible x?

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Lowerbounding z(x) Systematically!

We know that a feasible x satisfies

0 ≥ (y1, y2, y3)

20
18
8

−
(y1, y2, y2)

 2 1
1 1
−1 1

x

for any y1, y2, y3 ≥ 0.

Lowerbounding z(x) Systematically!

We know that a feasible x satisfies

0 ≥ (y1, y2, y3)

20
18
8

−
(y1, y2, y2)

 2 1
1 1
−1 1

x

for any y1, y2, y3 ≥ 0. Therefore,

z(x) ≥ (y1, y2, y3)

20
18
8

+

(2, 3)− (y1, y2, y2)

 2 1
1 1
−1 1

x (?)

Lowerbounding z(x) Systematically!

We know that a feasible x satisfies

0 ≥ (y1, y2, y3)

20
18
8

−
(y1, y2, y2)

 2 1
1 1
−1 1

x

for any y1, y2, y3 ≥ 0. Therefore,

z(x) ≥ (y1, y2, y3)

20
18
8

+

(2, 3)− (y1, y2, y2)

 2 1
1 1
−1 1

x (?)

We want the second term to
be non-negative. Since
x ≥ 0, this amounts to
choosing y such that

(y1, y2, y2)

 2 1
1 1
−1 1

 ≤ (2, 3)

Lowerbounding z(x) Systematically!

We know that a feasible x satisfies

0 ≥ (y1, y2, y3)

20
18
8

−
(y1, y2, y2)

 2 1
1 1
−1 1

x

for any y1, y2, y3 ≥ 0. Therefore,

z(x) ≥ (y1, y2, y3)

20
18
8

+

(2, 3)− (y1, y2, y2)

 2 1
1 1
−1 1

x (?)

We want the second term to
be non-negative. Since
x ≥ 0, this amounts to
choosing y such that

(y1, y2, y2)

 2 1
1 1
−1 1

 ≤ (2, 3)

With such a y we then have
from (?):

z(x) ≥ (y1, y2, y3)

20
18
8



Lowerbounding z(x) Systematically!

So, we choose y ≥ 0 such that

(y1, y2, y2)

 2 1
1 1
−1 1

 ≤ (2, 3) (?)

yields

z(x) ≥ (y1, y2, y3)

20
18
8

 (♦)

Idea

Find the best possible lower-bound
on z.

I.e., find y ≥ 0 such that (?)
holds, and the right-hand side of (♦)
is maximized!

This is a Linear Program:

max (20, 18, 8)y

s.t.

 2 1
1 1
−1 1

 y ≤ (2, 3)

y ≥ 0

Lowerbounding z(x) Systematically!

So, we choose y ≥ 0 such that

(y1, y2, y2)

 2 1
1 1
−1 1

 ≤ (2, 3) (?)

yields

z(x) ≥ (y1, y2, y3)

20
18
8

 (♦)

Idea

Find the best possible lower-bound
on z.

I.e., find y ≥ 0 such that (?)
holds, and the right-hand side of (♦)
is maximized!

This is a Linear Program:

max (20, 18, 8)y

s.t.

 2 1
1 1
−1 1

 y ≤ (2, 3)

y ≥ 0

Lowerbounding z(x) Systematically!

So, we choose y ≥ 0 such that

(y1, y2, y2)

 2 1
1 1
−1 1

 ≤ (2, 3) (?)

yields

z(x) ≥ (y1, y2, y3)

20
18
8

 (♦)

Idea

Find the best possible lower-bound
on z. I.e., find y ≥ 0 such that (?)
holds, and the right-hand side of (♦)
is maximized!

This is a Linear Program:

max (20, 18, 8)y

s.t.

 2 1
1 1
−1 1

 y ≤ (2, 3)

y ≥ 0

Lowerbounding z(x) Systematically!

So, we choose y ≥ 0 such that

(y1, y2, y2)

 2 1
1 1
−1 1

 ≤ (2, 3) (?)

yields

z(x) ≥ (y1, y2, y3)

20
18
8

 (♦)

Idea

Find the best possible lower-bound
on z. I.e., find y ≥ 0 such that (?)
holds, and the right-hand side of (♦)
is maximized!

This is a Linear Program:

max (20, 18, 8)y

s.t.

 2 1
1 1
−1 1

 y ≤ (2, 3)

y ≥ 0

Lowerbounding z(x) Systematically!

This is a Linear Program:

max (20, 18, 8)y

s.t.

 2 1
1 1
−1 1

 y ≤ (2, 3)

y ≥ 0

Solving it gives:

ȳ1 = 0

ȳ2 = 5/2

ȳ3 = 1/2

and the objective value is 49.

Lowerbounding z(x) Systematically!

This is a Linear Program:

max (20, 18, 8)y

s.t.

 2 1
1 1
−1 1

 y ≤ (2, 3)

y ≥ 0

Solving it gives:

ȳ1 = 0

ȳ2 = 5/2

ȳ3 = 1/2

and the objective value is 49.

There is no feasible solution x to

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

which has an objective value smaller
than 49.

Lowerbounding z(x) Systematically!

This is a Linear Program:

max (20, 18, 8)y

s.t.

 2 1
1 1
−1 1

 y ≤ (2, 3)

y ≥ 0

Solving it gives:

ȳ1 = 0

ȳ2 = 5/2

ȳ3 = 1/2

and the objective value is 49.

There is no feasible solution x to

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

which has an objective value smaller
than 49.

Since x2 = (5, 13)> is a feasible
solution with value 49, it must be
optimal!

A General Argument

Suppose now we are given the LP

min c>x

s.t. Ax ≥ b
x ≥ 0

A General Argument

Suppose now we are given the LP

min c>x

s.t. Ax ≥ b
x ≥ 0

Any feasible solution x must satisfy

y>Ax ≥ y>b,

for y ≥ 0,

A General Argument

Suppose now we are given the LP

min c>x

s.t. Ax ≥ b
x ≥ 0

Any feasible solution x must satisfy

y>Ax ≥ y>b,

for y ≥ 0, and hence also

0 ≥ y>b− y>Ax

A General Argument

Suppose now we are given the LP

min c>x

s.t. Ax ≥ b
x ≥ 0

Any feasible solution x must satisfy

y>Ax ≥ y>b,

for y ≥ 0, and hence also

0 ≥ y>b− y>Ax

Therefore,

z(x) = c>x

≥ c>x+ y>b− y>Ax

= y>b+ (c> − y>A)x

A General Argument

Suppose now we are given the LP

min c>x

s.t. Ax ≥ b
x ≥ 0

Any feasible solution x must satisfy

y>Ax ≥ y>b,

for y ≥ 0, and hence also

0 ≥ y>b− y>Ax

Therefore,

z(x) = c>x

≥ c>x+ y>b− y>Ax
= y>b+ (c> − y>A)x

A General Argument

Suppose now we are given the LP

min c>x

s.t. Ax ≥ b
x ≥ 0

Any feasible solution x must satisfy

y>Ax ≥ y>b,

for y ≥ 0, and hence also

0 ≥ y>b− y>Ax

Therefore,

z(x) = c>x

≥ c>x+ y>b− y>Ax
= y>b+ (c> − y>A)x

If we also know that

A>y ≤ c

then x ≥ 0 implies that z(x) ≥ y>b.

A General Argument

Suppose now we are given the LP

min c>x

s.t. Ax ≥ b
x ≥ 0

Any feasible solution x must satisfy

y>Ax ≥ y>b,

for y ≥ 0, and hence also

0 ≥ y>b− y>Ax

Therefore,

z(x) = c>x

≥ c>x+ y>b− y>Ax
= y>b+ (c> − y>A)x

If we also know that

A>y ≤ c

then x ≥ 0 implies that z(x) ≥ y>b.

The best lower-bound on z(x) can
be found by the following LP:

max b>y

s.t. A>y ≤ c
y ≥ 0

The Dual LP

The linear program

max bT y (D)

s.t. AT y ≤ c
y ≥ 0

is called the dual of primal LP

min cTx (P)

s.t. Ax ≥ b
x ≥ 0

Proof:
bT ȳ = ȳT b

≤ ȳT (Ax̄) = (AT ȳ)T x̄ ≤ cT x̄

as ȳ ≥ 0 and b ≤ Ax̄, as x̄ ≥ 0 and AT ȳ ≤ c.

The Dual LP

The linear program

max bT y (D)

s.t. AT y ≤ c
y ≥ 0

is called the dual of primal LP

min cTx (P)

s.t. Ax ≥ b
x ≥ 0

Theorem

[Weak Duality] If x̄ is feasible for (P) and ȳ is feasible for (D), then
bT ȳ ≤ cT x̄.

Proof:
bT ȳ = ȳT b

≤ ȳT (Ax̄) = (AT ȳ)T x̄ ≤ cT x̄

as ȳ ≥ 0 and b ≤ Ax̄, as x̄ ≥ 0 and AT ȳ ≤ c.

The Dual LP

The linear program

max bT y (D)

s.t. AT y ≤ c
y ≥ 0

is called the dual of primal LP

min cTx (P)

s.t. Ax ≥ b
x ≥ 0

Theorem

[Weak Duality] If x̄ is feasible for (P) and ȳ is feasible for (D), then
bT ȳ ≤ cT x̄.

Proof:
bT ȳ = ȳT b

≤ ȳT (Ax̄) = (AT ȳ)T x̄ ≤ cT x̄

as ȳ ≥ 0 and b ≤ Ax̄, as x̄ ≥ 0 and AT ȳ ≤ c.

The Dual LP

The linear program

max bT y (D)

s.t. AT y ≤ c
y ≥ 0

is called the dual of primal LP

min cTx (P)

s.t. Ax ≥ b
x ≥ 0

Theorem

[Weak Duality] If x̄ is feasible for (P) and ȳ is feasible for (D), then
bT ȳ ≤ cT x̄.

Proof:
bT ȳ = ȳT b ≤ ȳT (Ax̄) = (AT ȳ)T x̄

≤ cT x̄

as ȳ ≥ 0 and b ≤ Ax̄,

as x̄ ≥ 0 and AT ȳ ≤ c.

The Dual LP

The linear program

max bT y (D)

s.t. AT y ≤ c
y ≥ 0

is called the dual of primal LP

min cTx (P)

s.t. Ax ≥ b
x ≥ 0

Theorem

[Weak Duality] If x̄ is feasible for (P) and ȳ is feasible for (D), then
bT ȳ ≤ cT x̄.

Proof:
bT ȳ = ȳT b ≤ ȳT (Ax̄) = (AT ȳ)T x̄ ≤ cT x̄

as ȳ ≥ 0 and b ≤ Ax̄, as x̄ ≥ 0 and AT ȳ ≤ c.

Lowerbounding the Length of s, t-Paths

Recap: Shortest Path LP

Given a shortest path instance G = (V,E), s, t ∈ V , ce ≥ 0 for all e ∈ E,
the shortest-path LP is

min
∑(

cexe : e ∈ E
)

s.t.
∑(

xe : e ∈ δ(U)
)
≥ 1 (U ⊆ V, s ∈ U, t /∈ U)

x ≥ 0, x integer

Recap: Shortest Path LP

Given a shortest path instance G = (V,E), s, t ∈ V , ce ≥ 0 for all e ∈ E,
the shortest-path LP is

min
∑(

cexe : e ∈ E
)

s.t.
∑(

xe : e ∈ δ(U)
)
≥ 1 (U ⊆ V, s ∈ U, t /∈ U)

x ≥ 0, x integer

Let’s look at an example!

Shortest Path: Example

On the right, we see a sample instance of
the shortest-path problem.

Here is the corresponding IP:

min (3, 4, 1, 2, 2)x

s.t.



sa sb ab at bt

{s} 1 1 0 0 0

{s, a} 0 1 1 1 0

{s, b} 1 0 1 0 1

{s, a, b} 0 0 0 1 1

x ≥ 1

x ≥ 0, x integer

s

a

b

t

3

4

1

2

2

Note that if P is an
s, t-path, then letting

x̄e =

{
1 if e is an edge of P

0 otherwise.

for all e ∈ E yields a feasible
IP solution and

its objective
value is c(P).

Shortest Path: Example

On the right, we see a sample instance of
the shortest-path problem.

Here is the corresponding IP:

min (3, 4, 1, 2, 2)x

s.t.



sa sb ab at bt

{s} 1 1 0 0 0

{s, a} 0 1 1 1 0

{s, b} 1 0 1 0 1

{s, a, b} 0 0 0 1 1

x ≥ 1

x ≥ 0, x integer

s

a

b

t

3

4

1

2

2

Note that if P is an
s, t-path, then letting

x̄e =

{
1 if e is an edge of P

0 otherwise.

for all e ∈ E yields a feasible
IP solution and

its objective
value is c(P).

Shortest Path: Example

On the right, we see a sample instance of
the shortest-path problem.

Here is the corresponding IP:

min (3, 4, 1, 2, 2)x

s.t.



sa sb ab at bt

{s} 1 1 0 0 0

{s, a} 0 1 1 1 0

{s, b} 1 0 1 0 1

{s, a, b} 0 0 0 1 1

x ≥ 1

x ≥ 0, x integer

s

a

b

t

3

4

1

2

2

Note that if P is an
s, t-path, then letting

x̄e =

{
1 if e is an edge of P

0 otherwise.

for all e ∈ E yields a feasible
IP solution and

its objective
value is c(P).

Shortest Path: Example

On the right, we see a sample instance of
the shortest-path problem.

Here is the corresponding IP:

min (3, 4, 1, 2, 2)x

s.t.



sa sb ab at bt

{s} 1 1 0 0 0

{s, a} 0 1 1 1 0

{s, b} 1 0 1 0 1

{s, a, b} 0 0 0 1 1

x ≥ 1

x ≥ 0, x integer

s

a

b

t

3

4

1

2

2

Note that if P is an
s, t-path, then letting

x̄e =

{
1 if e is an edge of P

0 otherwise.

for all e ∈ E yields a feasible
IP solution and its objective
value is c(P).

min (3, 4, 1, 2, 2)x

s.t.



sa sb ab at bt

{s} 1 1 0 0 0

{s, a} 0 1 1 1 0

{s, b} 1 0 1 0 1

{s, a, b} 0 0 0 1 1

x ≥ 1

x ≥ 0, x integer

Example:
P = sa, ab, bt

is an s, t-path.

s

a

b

t

3

4

1

2

2

min (3, 4, 1, 2, 2)x

s.t.



sa sb ab at bt

{s} 1 1 0 0 0

{s, a} 0 1 1 1 0

{s, b} 1 0 1 0 1

{s, a, b} 0 0 0 1 1

x ≥ 1

x ≥ 0, x integer

Example:
P = sa, ab, bt

is an s, t-path.

s

a

b

t

3

4

1

2

2

x = (1, 0, 1, 0, 1)T

is feasible for the IP, and its
value is 6.

min (3, 4, 1, 2, 2)x

s.t.



sa sb ab at bt

{s} 1 1 0 0 0

{s, a} 0 1 1 1 0

{s, b} 1 0 1 0 1

{s, a, b} 0 0 0 1 1

x ≥ 1

x ≥ 0, x integer

Example:
P = sa, ab, bt

is an s, t-path.

s

a

b

t

3

4

1

2

2

x = (1, 0, 1, 0, 1)T

is feasible for the IP, and its
value is 6.

Remark

The optimal value of the shortest path IP is, at most, the length of a
shortest s, t-path.

min (3, 4, 1, 2, 2)x (P)

s.t.



sa sb ab at bt

{s} 1 1 0 0 0

{s, a} 0 1 1 1 0

{s, b} 1 0 1 0 1

{s, a, b} 0 0 0 1 1

x ≥ 1

x ≥ 0, x integer

Note that dropping the integrality
restriction can not increase the optimal
value.

s

a

b

t

3

4

1

2

2

Straight from Weak Duality theorem, we have that:

Remark

The dual of (P) has optimal value no larger than that of (P)!

min (3, 4, 1, 2, 2)x (P)

s.t.



sa sb ab at bt

{s} 1 1 0 0 0

{s, a} 0 1 1 1 0

{s, b} 1 0 1 0 1

{s, a, b} 0 0 0 1 1

x ≥ 1

x ≥ 0, x integer

Note that dropping the integrality
restriction can not increase the optimal
value.

s

a

b

t

3

4

1

2

2

The resulting LP is called the
linear programming
relaxation of the IP.

Straight from Weak Duality theorem, we have that:

Remark

The dual of (P) has optimal value no larger than that of (P)!

min (3, 4, 1, 2, 2)x (P)

s.t.



sa sb ab at bt

{s} 1 1 0 0 0

{s, a} 0 1 1 1 0

{s, b} 1 0 1 0 1

{s, a, b} 0 0 0 1 1

x ≥ 1

x ≥ 0, x integer

Note that dropping the integrality
restriction can not increase the optimal
value.

s

a

b

t

3

4

1

2

2

The resulting LP is called the
linear programming
relaxation of the IP.

Straight from Weak Duality theorem, we have that:

Remark

The dual of (P) has optimal value no larger than that of (P)!

The dual of the shortest path LP on the
previous slide is given by

max 1>y

s.t.



{s}{s, a} {s, b} {s, a, b}
sa 1 0 1 0

sb 1 1 0 0

ab 0 1 1 0

at 0 1 0 1

bt 0 0 1 1

y ≤


3
4
1
2
2


y ≥ 0

s

a

b

t

3

4

1

2

2

The dual of the shortest path LP on the
previous slide is given by

max 1>y

s.t.



{s}{s, a} {s, b} {s, a, b}
sa 1 0 1 0

sb 1 1 0 0

ab 0 1 1 0

at 0 1 0 1

bt 0 0 1 1

y ≤


3
4
1
2
2


y ≥ 0

s

a

b

t

3

4

1

2

2

Note that dual solutions
assign the value yU ≥ 0 to
every s, t-cut δ(U)!

The dual of the shortest path LP on the
previous slide is given by

max 1>y

s.t.



{s}{s, a} {s, b} {s, a, b}
sa 1 0 1 0

sb 1 1 0 0

ab 0 1 1 0

at 0 1 0 1

bt 0 0 1 1

y ≤


3
4
1
2
2


y ≥ 0

s

a

b

t

3

4

1

2

2

Note that dual solutions
assign the value yU ≥ 0 to
every s, t-cut δ(U)!

Focus on the constraint for edge ab:

y{s,a} + y{s,b} ≤ 1

The dual of the shortest path LP on the
previous slide is given by

max 1>y

s.t.



{s}{s, a} {s, b} {s, a, b}
sa 1 0 1 0

sb 1 1 0 0

ab 0 1 1 0

at 0 1 0 1

bt 0 0 1 1

y ≤


3
4
1
2
2


y ≥ 0

s

a

b

t

3

4

1

2

2

Note that dual solutions
assign the value yU ≥ 0 to
every s, t-cut δ(U)!

Focus on the constraint for edge ab:

y{s,a} + y{s,b} ≤ 1

The left-hand side is precisely the y-value assigned to s, t-cuts containing
ab!

The dual of the shortest path LP on the
previous slide is given by

max 1>y

s.t.



{s}{s, a} {s, b} {s, a, b}
sa 1 0 1 0

sb 1 1 0 0

ab 0 1 1 0

at 0 1 0 1

bt 0 0 1 1

y ≤


3
4
1
2
2


y ≥ 0

s

a

b

t

3

4

1

2

2

Note that dual solutions
assign the value yU ≥ 0 to
every s, t-cut δ(U)!

Remark

y is feasible for the above LP if and only if it is a feasible width
assignment for the s, t-cuts in the given shortest path instance!

General Shortest Path Instances

Input: G = (V,E), ce ≥ 0 for all
e ∈ E, s, t ∈ V .

General Shortest Path Instances

Input: G = (V,E), ce ≥ 0 for all
e ∈ E, s, t ∈ V .

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(U)) ≥ 1

(δ(U) s, t− cut)

x ≥ 0

General Shortest Path Instances

Input: G = (V,E), ce ≥ 0 for all
e ∈ E, s, t ∈ V .

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(U)) ≥ 1

(δ(U) s, t− cut)

x ≥ 0

The LP is of the form

min cTx (P)

s.t. Ax ≥ 1

x ≥ 0

where

(i) A has a column for every edge
and a row for every s, t-cut
δ(U).

(ii) A[U, e] = 1 if e ∈ δ(U) and 0
otherwise.

General Shortest Path Instances

Input: G = (V,E), ce ≥ 0 for all
e ∈ E, s, t ∈ V .

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(U)) ≥ 1

(δ(U) s, t− cut)

x ≥ 0

The LP is of the form

min cTx (P)

s.t. Ax ≥ 1

x ≥ 0

where

(i) A has a column for every edge
and a row for every s, t-cut
δ(U).

(ii) A[U, e] = 1 if e ∈ δ(U) and 0
otherwise.

General Shortest Path Instances

Input: G = (V,E), ce ≥ 0 for all
e ∈ E, s, t ∈ V .

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(U)) ≥ 1

(δ(U) s, t− cut)

x ≥ 0

The LP is of the form

min cTx (P)

s.t. Ax ≥ 1

x ≥ 0

where

(i) A has a column for every edge
and a row for every s, t-cut
δ(U).

(ii) A[U, e] = 1 if e ∈ δ(U) and 0
otherwise.

The LP is of the form

min cTx (P)

s.t. Ax ≥ 1

x ≥ 0

where

(i) A has a column for every edge
and a row for every s, t-cut
δ(U).

(ii) A[U, e] = 1 if e ∈ δ(U), and 0
otherwise.

Its dual is of the form

max 1T y (D)

s.t. AT y ≤ c
y ≥ 0

The LP is of the form

min cTx (P)

s.t. Ax ≥ 1

x ≥ 0

where

(i) A has a column for every edge
and a row for every s, t-cut
δ(U).

(ii) A[U, e] = 1 if e ∈ δ(U), and 0
otherwise.

Its dual is of the form

max 1T y (D)

s.t. AT y ≤ c
y ≥ 0

Note that the dual has a constraint
for every edge e ∈ E.

The LP is of the form

min cTx (P)

s.t. Ax ≥ 1

x ≥ 0

where

(i) A has a column for every edge
and a row for every s, t-cut
δ(U).

(ii) A[U, e] = 1 if e ∈ δ(U), and 0
otherwise.

Its dual is of the form

max 1T y (D)

s.t. AT y ≤ c
y ≥ 0

Note that the dual has a constraint
for every edge e ∈ E. The left-hand
side of this constraint is∑

(yU : e ∈ δ(U))

The LP is of the form

min cTx (P)

s.t. Ax ≥ 1

x ≥ 0

where

(i) A has a column for every edge
and a row for every s, t-cut
δ(U).

(ii) A[U, e] = 1 if e ∈ δ(U), and 0
otherwise.

Its dual is of the form

max 1T y (D)

s.t. AT y ≤ c
y ≥ 0

Note that the dual has a constraint
for every edge e ∈ E. The left-hand
side of this constraint is∑

(yU : e ∈ δ(U))

and the right-hand side is ce.

The LP is of the form

min cTx (P)

s.t. Ax ≥ 1

x ≥ 0

where

(i) A has a column for every edge
and a row for every s, t-cut
δ(U).

(ii) A[U, e] = 1 if e ∈ δ(U), and 0
otherwise.

Its dual is of the form

max 1T y (D)

s.t. AT y ≤ c
y ≥ 0

Note that the dual has a constraint
for every edge e ∈ E. The left-hand
side of this constraint is∑

(yU : e ∈ δ(U))

and the right-hand side is ce.

Remark

Feasible solutions to (D) correspond precisely to feasible width
assignments.

The LP is of the form

min cTx (P)

s.t. Ax ≥ 1

x ≥ 0

where

(i) A has a column for every edge
and a row for every s, t-cut
δ(U).

(ii) A[U, e] = 1 if e ∈ δ(U), and 0
otherwise.

Its dual is of the form

max 1T y (D)

s.t. AT y ≤ c
y ≥ 0

Note that the dual has a constraint
for every edge e ∈ E. The left-hand
side of this constraint is∑

(yU : e ∈ δ(U))

and the right-hand side is ce.

Remark

Feasible solutions to (D) correspond precisely to feasible width
assignments. Weak duality implies that

∑
yU is, at most, the length of a

shortest s, t-path!

Recap

• The dual LP of
min{cTx : Ax ≥ b, x ≥ 0} (P)

is given by
max{bT y : AT y ≤ c, y ≥ 0} (D)

• If x is feasible for (P) and y feasible for (D), then bT y ≤ cTx.

• The LP relaxation of an integer program is obtained by dropping the
integrality restriction.

• The dual of the shortest path LP is given by

max
∑

(yU : δ(U) s, t-cut)

s.t.
∑

(yU : e ∈ δ(U)) ≤ ce (e ∈ E)

y ≥ 0

Recap

• The dual LP of
min{cTx : Ax ≥ b, x ≥ 0} (P)

is given by
max{bT y : AT y ≤ c, y ≥ 0} (D)

• If x is feasible for (P) and y feasible for (D), then bT y ≤ cTx.

• The LP relaxation of an integer program is obtained by dropping the
integrality restriction.

• The dual of the shortest path LP is given by

max
∑

(yU : δ(U) s, t-cut)

s.t.
∑

(yU : e ∈ δ(U)) ≤ ce (e ∈ E)

y ≥ 0

Recap

• The dual LP of
min{cTx : Ax ≥ b, x ≥ 0} (P)

is given by
max{bT y : AT y ≤ c, y ≥ 0} (D)

• If x is feasible for (P) and y feasible for (D), then bT y ≤ cTx.

• The LP relaxation of an integer program is obtained by dropping the
integrality restriction.

• The dual of the shortest path LP is given by

max
∑

(yU : δ(U) s, t-cut)

s.t.
∑

(yU : e ∈ δ(U)) ≤ ce (e ∈ E)

y ≥ 0

Recap

• The dual LP of
min{cTx : Ax ≥ b, x ≥ 0} (P)

is given by
max{bT y : AT y ≤ c, y ≥ 0} (D)

• If x is feasible for (P) and y feasible for (D), then bT y ≤ cTx.

• The LP relaxation of an integer program is obtained by dropping the
integrality restriction.

• The dual of the shortest path LP is given by

max
∑

(yU : δ(U) s, t-cut)

s.t.
∑

(yU : e ∈ δ(U)) ≤ ce (e ∈ E)

y ≥ 0

CO 250: Introduction to Optimization
Module 3: Duality through examples (Shortest Path Algorithm)

Recap: Feasible Widths via Duality

The figure on the right shows
another simple instance of the
shortest s, t-path problem.

d

s

23 1

3
5

1

4

1

t

a b
c

Recap: Feasible Widths via Duality

The figure on the right shows
another simple instance of the
shortest s, t-path problem.

By inspection: shortest s, t-path
(bold edges) has length 5

d

s

23 1

3
5

1

4

1

t

a b
c

Recap: Feasible Widths via Duality

The figure on the right shows
another simple instance of the
shortest s, t-path problem.

By inspection: shortest s, t-path
(bold edges) has length 5

There is a feasible width assignment
of value 5, proving optimality!

d

s

23 1

3
5

1

4

1

t

a b
c

1
1

3

Recap: Feasible Widths via Duality

The figure on the right shows
another simple instance of the
shortest s, t-path problem.

By inspection: shortest s, t-path
(bold edges) has length 5

There is a feasible width assignment
of value 5, proving optimality!

Shortest path LP:

min
∑

(xe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

d

s

23 1

3
5

1

4

1

t

a b
c

1
1

3

Recap: Feasible Widths via Duality

The figure on the right shows
another simple instance of the
shortest s, t-path problem.

By inspection: shortest s, t-path
(bold edges) has length 5

There is a feasible width assignment
of value 5, proving optimality!

Shortest path LP:

min
∑

(xe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

d

s

23 1

3
5

1

4

1

t

a b
c

1
1

3

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Recap: Feasible Widths via Duality

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

d

s

23 1

3
5

1

4

1

t

a b
c

1
1

3

Letting

xe =

{
1 e bold in figure

0 otherwise

for all e ∈ E is feasible for shortest
path LP.

Recap: Feasible Widths via Duality

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

d

s

23 1

3
5

1

4

1

t

a b
c

1
1

3

Letting

y{s} = y{s,b} = 1, y{s,a,b,c} = 3,

and yS = 0 for all other s, t-cuts
δ(S) yields a feasible dual solution
of value 5!

Recap: Feasible Widths via Duality

Shortest path LP:

min
∑

(xe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

d

s

23 1

3
5

1

4

1

t

a b
c

1
1

3

Weak Duality Theorem

If x̄ is feasible for shortest path LP,
and ȳ is feasible for its dual then
bT ȳ ≤ cT x̄.

Recap: Feasible Widths via Duality

Shortest path LP:

min
∑

(xe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

d

s

23 1

3
5

1

4

1

t

a b
c

1
1

3

Weak Duality Theorem

If x̄ is feasible for shortest path LP,
and ȳ is feasible for its dual then
bT ȳ ≤ cT x̄.

−→ Bold path in figure is shortest
s, t-path!

Recap: Feasible Widths via Duality

d

s

23 1

3
5

1

4

1

t

a b
c

1
1

3

Weak Duality Theorem

If x̄ is feasible for shortest path LP,
and ȳ is feasible for its dual then
bT ȳ ≤ cT x̄.

Today:

1. How did we find the bold path?

2. How did we find the dual
solution?

3. Is there always a shortest
s, t-path and a dual solution
whose value matches its length?

Recap: Feasible Widths via Duality

d

s

23 1

3
5

1

4

1

t

a b
c

1
1

3

Weak Duality Theorem

If x̄ is feasible for shortest path LP,
and ȳ is feasible for its dual then
bT ȳ ≤ cT x̄.

−→ Bold path in figure is shortest
s, t-path!

Today:

1. How did we find the bold path?

2. How did we find the dual
solution?

3. Is there always a shortest
s, t-path and a dual solution
whose value matches its length?

Recap: Feasible Widths via Duality

d

s

23 1

3
5

1

4

1

t

a b
c

1
1

3

Weak Duality Theorem

If x̄ is feasible for shortest path LP,
and ȳ is feasible for its dual then
bT ȳ ≤ cT x̄.

−→ Bold path in figure is shortest
s, t-path!

Today:

1. How did we find the bold path?

2. How did we find the dual
solution?

3. Is there always a shortest
s, t-path and a dual solution
whose value matches its length?

An Algorithm for the Shortest s, t-Path Problem

Arcs and Directed Paths

So far: edges of a graph G = (V,E) are
unordered pairs of vertices.

Arcs and Directed Paths

So far: edges of a graph G = (V,E) are
unordered pairs of vertices.

Now: introduce arcs – ordered pairs of
vertices.

Arcs and Directed Paths

So far: edges of a graph G = (V,E) are
unordered pairs of vertices.

Now: introduce arcs – ordered pairs of
vertices. Denote an arc from u to v as −→uv,
and draw it as arrow from u to v.

u

u

v

v

Arcs and Directed Paths

So far: edges of a graph G = (V,E) are
unordered pairs of vertices.

Now: introduce arcs – ordered pairs of
vertices. Denote an arc from u to v as −→uv,
and draw it as arrow from u to v.

A directed path is then a sequence of arcs:

−−→v1v2,−−→v2v3, . . . ,−−−−→vk−1vk,

where −−−→vivi+1 is an arc in the given graph,
and vi 6= vj for all i 6= j.

u

u

v

v

Arcs and Directed Paths

So far: edges of a graph G = (V,E) are
unordered pairs of vertices.

Now: introduce arcs – ordered pairs of
vertices. Denote an arc from u to v as −→uv,
and draw it as arrow from u to v.

A directed path is then a sequence of arcs:

−−→v1v2,−−→v2v3, . . . ,−−−−→vk−1vk,

where −−−→vivi+1 is an arc in the given graph,
and vi 6= vj for all i 6= j.

Example:
−→uv,−→vw,−→wx

is a directed u, x-path.

u

u

v

v

u

v

w
x

Shortest Paths: Algorithmic Ideas

Idea: Find an s, t-path P and a feasible
dual y s.t. c(P) = 1T y. How?

s

a

b
c

d
t

3

2 1

2

4

2

4

1

1

Recall the shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Algorithmic Ideas

Idea: Find an s, t-path P and a feasible
dual y s.t. c(P) = 1T y. How?

Definition

Let y be a feasible dual solution. The slack
of an edge e ∈ E is defined as

slacky(e) = ce −
∑

(yU :

δ(U) s, t-cut, e ∈ δ(U))

s

a

b
c

d
t

3

2 1

2

4

2

4

1

1

Recall the shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Algorithmic Ideas

Definition

Let y be a feasible dual solution. The slack
of an edge e ∈ E is defined as

slacky(e) = ce −
∑

(yU :

δ(U) s, t-cut, e ∈ δ(U))

Examples: for the dual y given on the right,

• slacky(sa) =

• slacky(sd) =

• slacky(ct) =

s

a

b
c

d
t

3

2 1

2

4

2

4

2

1

1

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Algorithmic Ideas

Definition

Let y be a feasible dual solution. The slack
of an edge e ∈ E is defined as

slacky(e) = ce −
∑

(yU :

δ(U) s, t-cut, e ∈ δ(U))

Examples: for the dual y given on the right,

• slacky(sa) = 2− 1 = 1

• slacky(sd) =

• slacky(ct) =

s

a

b
c

d
t

3

2 1

2

4

2

4

2

1

1

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Algorithmic Ideas

Definition

Let y be a feasible dual solution. The slack
of an edge e ∈ E is defined as

slacky(e) = ce −
∑

(yU :

δ(U) s, t-cut, e ∈ δ(U))

Examples: for the dual y given on the right,

• slacky(sa) = 2− 1 = 1

• slacky(sd) =

• slacky(ct) =

s

a

b
c

d
t

3

2 1

2

4

2

4

2

1

1

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Algorithmic Ideas

Definition

Let y be a feasible dual solution. The slack
of an edge e ∈ E is defined as

slacky(e) = ce −
∑

(yU :

δ(U) s, t-cut, e ∈ δ(U))

Examples: for the dual y given on the right,

• slacky(sa) = 2− 1 = 1

• slacky(sd) = 3− 1− 1 = 1

• slacky(ct) =

s

a

b
c

d
t

3

2 1

2

4

2

4

2

1

1

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Algorithmic Ideas

Definition

Let y be a feasible dual solution. The slack
of an edge e ∈ E is defined as

slacky(e) = ce −
∑

(yU :

δ(U) s, t-cut, e ∈ δ(U))

Examples: for the dual y given on the right,

• slacky(sa) = 2− 1 = 1

• slacky(sd) = 3− 1− 1 = 1

• slacky(ct) =

s

a

b
c

d
t

3

2 1

2

4

2

4

2

1

1

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Algorithmic Ideas

Definition

Let y be a feasible dual solution. The slack
of an edge e ∈ E is defined as

slacky(e) = ce −
∑

(yU :

δ(U) s, t-cut, e ∈ δ(U))

Examples: for the dual y given on the right,

• slacky(sa) = 2− 1 = 1

• slacky(sd) = 3− 1− 1 = 1

• slacky(ct) = 4− 1− 2 = 1

s

a

b
c

d
t

3

2 1

2

4

2

4

2

1

1

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Start with the trivial dual y = 0

s

a

b
c

d
t

3

2 1

2

4

2

4

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Start with the trivial dual y = 0

Simplest s, t-cut: δ({s}) s

a

b
c

d
t

3

2 1

2

4

2

4

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Start with the trivial dual y = 0

Simplest s, t-cut: δ({s})
−→ increase y{s} as much as we can
maintaining feasibility

s

a

b
c

d
t

3

2 1

2

4

2

4

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Start with the trivial dual y = 0

Simplest s, t-cut: δ({s})
−→ increase y{s} as much as we can
maintaining feasibility
−→ y{s} = 1

s

a

b
c

d
t

3

2 1

2

4

2

4

1

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Start with the trivial dual y = 0

Simplest s, t-cut: δ({s})
−→ increase y{s} as much as we can
maintaining feasibility
−→ y{s} = 1

Note: This decreases the slack of sc to 0!

s

a

b
c

d
t

3

2 1

2

4

2

4

1

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Start with the trivial dual y = 0

Simplest s, t-cut: δ({s})
−→ increase y{s} as much as we can
maintaining feasibility
−→ y{s} = 1

Note: This decreases the slack of sc to 0!
−→ replace sc by −→sc

s

a

b
c

d
t

3

2 1

2

4

2

4

1

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Start with the trivial dual y = 0

Simplest s, t-cut: δ({s})
−→ increase y{s} as much as we can
maintaining feasibility
−→ y{s} = 1

Note: This decreases the slack of sc to 0!
−→ replace sc by −→sc

Next: Look at all vertices that are reachable
from s via directed paths:

U = {s, c}

s

a

b
c

d
t

3

2 1

2

4

2

4

1

1

1
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Start with the trivial dual y = 0

Simplest s, t-cut: δ({s})
−→ increase y{s} as much as we can
maintaining feasibility
−→ y{s} = 1

Note: This decreases the slack of sc to 0!
−→ replace sc by −→sc

Next: Look at all vertices that are reachable
from s via directed paths:

U = {s, c}

and consider increasing yU

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Start with the trivial dual y = 0

Simplest s, t-cut: δ({s})
−→ increase y{s} as much as we can
maintaining feasibility
−→ y{s} = 1

Note: This decreases the slack of sc to 0!
−→ replace sc by −→sc

Next: Look at all vertices that are reachable
from s via directed paths:

U = {s, c}

and consider increasing yU

Q: By how much can you increase yU?

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Q: By how much can you increase yU? The

maximum increase possible for y{s,c} is
determined by the slack of edges in
δ({s, c})! 2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Q: By how much can you increase yU? The

maximum increase possible for y{s,c} is
determined by the slack of edges in
δ({s, c})!

slacky(sa) =

slacky(cb) =

slacky(ct) =

slacky(cd) =

slacky(sd) =

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Q: By how much can you increase yU? The

maximum increase possible for y{s,c} is
determined by the slack of edges in
δ({s, c})!

slacky(sa) = 2− 1 = 1

slacky(cb) =

slacky(ct) =

slacky(cd) =

slacky(sd) =

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Q: By how much can you increase yU? The

maximum increase possible for y{s,c} is
determined by the slack of edges in
δ({s, c})!

slacky(sa) = 2− 1 = 1

slacky(cb) = 2

slacky(ct) =

slacky(cd) =

slacky(sd) =

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Q: By how much can you increase yU? The

maximum increase possible for y{s,c} is
determined by the slack of edges in
δ({s, c})!

slacky(sa) = 2− 1 = 1

slacky(cb) = 2

slacky(ct) = 4

slacky(cd) =

slacky(sd) =

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Q: By how much can you increase yU? The

maximum increase possible for y{s,c} is
determined by the slack of edges in
δ({s, c})!

slacky(sa) = 2− 1 = 1

slacky(cb) = 2

slacky(ct) = 4

slacky(cd) = 1

slacky(sd) =

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Q: By how much can you increase yU? The

maximum increase possible for y{s,c} is
determined by the slack of edges in
δ({s, c})!

slacky(sa) = 2− 1 = 1

slacky(cb) = 2

slacky(ct) = 4

slacky(cd) = 1

slacky(sd) = 3− 1 = 2

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Q: By how much can you increase yU? The

maximum increase possible for y{s,c} is
determined by the slack of edges in
δ({s, c})!

slacky(sa) = 2− 1 = 1

slacky(cb) = 2

slacky(ct) = 4

slacky(cd) = 1

slacky(sd) = 3− 1 = 2

Edges cd and sa minimize slack. Pick one
arbitrarily: sa.

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Q: By how much can you increase yU? The

maximum increase possible for y{s,c} is
determined by the slack of edges in
δ({s, c})!

slacky(sa) = 2− 1 = 1

slacky(cb) = 2

slacky(ct) = 4

slacky(cd) = 1

slacky(sd) = 3− 1 = 2

Edges cd and sa minimize slack. Pick one
arbitrarily: sa.
Set yU = slacky(sa) = 1 and convert sa
into arc −→sa

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Q: Which vertices are reachable from s via
directed paths?

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Q: Which vertices are reachable from s via
directed paths?

U = {s, a, c}
2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Q: Which vertices are reachable from s via
directed paths?

U = {s, a, c}

Natural idea: Increase y{s,a,c} by as much
as we can. How much?

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Q: Which vertices are reachable from s via
directed paths?

U = {s, a, c}

Natural idea: Increase y{s,a,c} by as much
as we can. How much?
−→ the slack of cd is 0, and hence

y{s,a,c} = 0

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Q: Which vertices are reachable from s via
directed paths?

U = {s, a, c}

Natural idea: Increase y{s,a,c} by as much
as we can. How much?
−→ the slack of cd is 0, and hence

y{s,a,c} = 0

Also: change cd into
−→
cd, and let

U = {s, a, c, d}

be the reachable vertices from s

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:

U = {s, a, c, d}

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:

U = {s, a, c, d}

Let us compute the slack of edges in δ(U):

slacky(ab) =

slacky(cb) =

slacky(ct) =

slacky(dt) =

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:

U = {s, a, c, d}

Let us compute the slack of edges in δ(U):

slacky(ab) = 1

slacky(cb) =

slacky(ct) =

slacky(dt) =

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:

U = {s, a, c, d}

Let us compute the slack of edges in δ(U):

slacky(ab) = 1

slacky(cb) = 2− 1 = 1

slacky(ct) =

slacky(dt) =

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:

U = {s, a, c, d}

Let us compute the slack of edges in δ(U):

slacky(ab) = 1

slacky(cb) = 2− 1 = 1

slacky(ct) = 4− 1 = 3

slacky(dt) =

2

4
1

s

a

b
c

d
t

3

2 1

2

4

11
U

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:

U = {s, a, c, d}

Let us compute the slack of edges in δ(U):

slacky(ab) = 1

slacky(cb) = 2− 1 = 1

slacky(ct) = 4− 1 = 3

slacky(dt) = 2

Let y{s,a,c,d} = 1, add equality arc
−→
cb, and

update the set

U = {s, a, b, c, d}

of vertices reachable from s

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11
U

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:

U = {s, a, b, c, d}

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11
U

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:

U = {s, a, b, c, d}

Let us compute the slack of edges in δ(U):

slacky(bt) =

slacky(ct) =

slacky(dt) =

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11
U

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:

U = {s, a, b, c, d}

Let us compute the slack of edges in δ(U):

slacky(bt) = 4

slacky(ct) =

slacky(dt) =

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11
U

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:

U = {s, a, b, c, d}

Let us compute the slack of edges in δ(U):

slacky(bt) = 4

slacky(ct) = 4− 2 = 2

slacky(dt) =

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11
U

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:

U = {s, a, b, c, d}

Let us compute the slack of edges in δ(U):

slacky(bt) = 4

slacky(ct) = 4− 2 = 2

slacky(dt) = 2− 1 = 1

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11
U

1

1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Vertices reachable from s by directed paths:

U = {s, a, b, c, d}

Let us compute the slack of edges in δ(U):

slacky(bt) = 4

slacky(ct) = 4− 2 = 2

slacky(dt) = 2− 1 = 1

Let y{s,a,b,c,d} = 1, add equality arc
−→
dt.

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11
U

1

1
1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Note: we now have a directed s, t-path in
our graph:

P = −→sc,
−→
cd,
−→
dt,

and its length is 4!

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11

1

1 1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Note: we now have a directed s, t-path in
our graph:

P = −→sc,
−→
cd,
−→
dt,

and its length is 4!

We also have a feasible dual solution:

y{s} = y{s,c} = y{s,a,c,d} = y{s,a,b,c,d} = 1,

and yU = 0 otherwise.

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11

1

1 1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Note: we now have a directed s, t-path in
our graph:

P = −→sc,
−→
cd,
−→
dt,

and its length is 4!

We also have a feasible dual solution:

y{s} = y{s,c} = y{s,a,c,d} = y{s,a,b,c,d} = 1,

and yU = 0 otherwise. Its value is 4!

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11

1

1 1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Paths: Building Duals Incrementally

Note: we now have a directed s, t-path in
our graph:

P = −→sc,
−→
cd,
−→
dt,

and its length is 4!

We also have a feasible dual solution:

y{s} = y{s,c} = y{s,a,c,d} = y{s,a,b,c,d} = 1,

and yU = 0 otherwise. Its value is 4!

−→ Path P is a shortest path!

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11

1

1 1

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Shortest Path Algorithm

To compute the shortest Path for the instance on
the right, we used the following algorithm:

2

4
1

s

a

b
c

d

t

3

2 1

2

4

11

1

1 1

Recap

• We saw a shortest path algorithm that computes

(a) an s, t-path P , and
(b) a feasible solution y for the dual of the shortest path LP

simultaneously

• We will soon show, that the length of the output path P , and the
value of the dual solution y are the same, showing that both P and
y are optimal

• Have a look at the book. It has another full example run of the
shortest path algorithm

Recap

• We saw a shortest path algorithm that computes

(a) an s, t-path P , and
(b) a feasible solution y for the dual of the shortest path LP

simultaneously

• We will soon show, that the length of the output path P , and the
value of the dual solution y are the same, showing that both P and
y are optimal

• Have a look at the book. It has another full example run of the
shortest path algorithm

Recap

• We saw a shortest path algorithm that computes

(a) an s, t-path P , and
(b) a feasible solution y for the dual of the shortest path LP

simultaneously

• We will soon show, that the length of the output path P , and the
value of the dual solution y are the same, showing that both P and
y are optimal

• Have a look at the book. It has another full example run of the
shortest path algorithm

CO 250: Introduction to Optimization
Module 3: Duality through examples (Correctness Shortest

Path Algorithm)

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes

• An s, t-path P

• a feasible solution, y, for the
dual of the shortest path LP.

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes

• An s, t-path P whose
characteristic vector, xP , is
feasible for the shortest path
LP, and

• a feasible solution, y, for the
dual of the shortest path LP.

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes

• An s, t-path P whose
characteristic vector, xP , is
feasible for the shortest path
LP, and

• a feasible solution, y, for the
dual of the shortest path LP.

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes

• An s, t-path P whose
characteristic vector, xP , is
feasible for the shortest path
LP, and

• a feasible solution, y, for the
dual of the shortest path LP.

Important: cTx = 1T y

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes

• An s, t-path P whose
characteristic vector, xP , is
feasible for the shortest path
LP, and

• a feasible solution, y, for the
dual of the shortest path LP.

Important: cTx = 1T y → P is a
shortest path!

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes

• An s, t-path P whose
characteristic vector, xP , is
feasible for the shortest path
LP, and

• a feasible solution, y, for the
dual of the shortest path LP.

Important: cTx = 1T y → P is a
shortest path!

We will start this lecture with
another example!

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Recall the algorithm we developed previously:

Recall the algorithm we developed previously:

−→ Run this on the example instance on the right.

2 1

13 3

43

s

t

v u

w
z

Recall the algorithm we developed previously:

−→ Run this on the example instance on the right.

Initially: y = 0 and U = {s}

2 1

13 3

43

s

t

v u

w
z

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)

−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv

−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw

−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz

−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv

−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw

−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz

−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv

−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw

−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz

−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw

−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz

−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw

−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz

−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz

−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz

−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz
−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz
−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz
−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt
−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz
−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt
−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Now: We have a directed
s, t-path P of length 7,

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz
−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt
−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Now: We have a directed
s, t-path P of length 7, and
a dual feasible solution of
the same value!

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz
−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt
−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Now: We have a directed
s, t-path P of length 7, and
a dual feasible solution of
the same value!

−→ P is a shortest path!

Question

Will the algorithm always terminate? 2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Question

Will the algorithm always terminate? Will it
always find an s, t-path P whose length is
equal to the value of a feasible dual
solution?

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Question

Will the algorithm always terminate? Will it
always find an s, t-path P whose length is
equal to the value of a feasible dual
solution?

This lecture: We will show the answers to
the above are yes & yes!

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Recall: the slack of an edge uv ∈ E for a
feasible dual solution y is

cuv −
∑

(yU : e ∈ δ(U))

.

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Recall: the slack of an edge uv ∈ E for a
feasible dual solution y is

cuv −
∑

(yU : e ∈ δ(U))

We call an edge uv ∈ E an equality edge if
its slack is 0.

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Recall: the slack of an edge uv ∈ E for a
feasible dual solution y is

cuv −
∑

(yU : e ∈ δ(U))

We call an edge uv ∈ E an equality edge if
its slack is 0.

Example: edge vz is an equality edge, and
zt is not!

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

We will also call a cut δ(U) active for a
dual solution y if yU > 0.

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

We will also call a cut δ(U) active for a
dual solution y if yU > 0.

Example: δ({s, v, u}) is active, while
δ({s, v}) is not!

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual solution, and P and
s, t-path. P is a shortest path if

(i) all edges on P are equality edges, and

(ii) every active cut δ(U) has exactly one
edge of P .

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual solution, and P and
s, t-path. P is a shortest path if

(i) all edges on P are equality edges, and

(ii) every active cut δ(U) has exactly one
edge of P .

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual solution, and P and
s, t-path. P is a shortest path if

(i) all edges on P are equality edges, and

(ii) every active cut δ(U) has exactly one
edge of P .

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual solution, and P and
s, t-path. P is a shortest path if

(i) all edges on P are equality edges, and

(ii) every active cut δ(U) has exactly one
edge of P .

Note: Both conditions are satisfied in the
example on the right.

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual
solution, and P and s, t-path.
P is a shortest path if

(i) all edges on P are
equality edges, and

(ii) every active cut δ(U)
has exactly one edge of
P .

Proof: Let’s suppose that P and y satisfy
(i) and (ii) of the proposition.

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual
solution, and P and s, t-path.
P is a shortest path if

(i) all edges on P are
equality edges, and

(ii) every active cut δ(U)
has exactly one edge of
P .

Proof: Let’s suppose that P and y satisfy
(i) and (ii) of the proposition.Then,∑

e∈P

ce =
∑
e∈P

(
∑

(yU : e ∈ δ(U))

because every edge on P is an equality
edge by (i).

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual
solution, and P and s, t-path.
P is a shortest path if

(i) all edges on P are
equality edges, and

(ii) every active cut δ(U)
has exactly one edge of
P .

Proof: Let’s suppose that P and y satisfy
(i) and (ii) of the proposition.Then,∑

e∈P

ce =
∑
e∈P

(
∑

(yU : e ∈ δ(U))

because every edge on P is an equality
edge by (i). The right-hand side equals

∑
(yU · |P ∩ δ(U)| : δ(U))

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual
solution, and P and s, t-path.
P is a shortest path if

(i) all edges on P are
equality edges, and

(ii) every active cut δ(U)
has exactly one edge of
P .

Note: Both conditions are
satisfied in the example on
the right!

Proof: Let’s suppose that P and y satisfy
(i) and (ii) of the proposition.Then,∑

e∈P

ce =
∑
e∈P

(
∑

(yU : e ∈ δ(U))

because every edge on P is an equality
edge by (i). The right-hand side equals

∑
(yU · |P ∩ δ(U)| : δ(U))

But, by (ii), yU > 0 only if |P ∩ δ(U)| = 1.
Hence: ∑

e∈P

ce =
∑
U

yU

Correctness of the Shortest Path Algorithm

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

2

1
1

3

3
4

3
s t

v

u w

z

1

It suffices to show:

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

2

1
1

3

3
4

3
s t

v

u w

z

1

It suffices to show:

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

2

1
1

3

3
4

3
s t

v

u w

z

1

It suffices to show:

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

2

1
1

3

3
4

3
s t

v

u w

z

1

It suffices to show:

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

2

1
1

3

3
4

3
s t

v

u w

z

1

It suffices to show:

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

2

1
1

3

3
4

3
s t

v

u w

z

1

It suffices to show:

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Suppose the invariants hold when the
algorithm terminates. Then:

• t ∈ U and (I4) implies that there is
a directed s, t-path P ,

• y is feasible by (I1), and

• arcs on P are equality arcs by (I2)

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Suppose the invariants hold when the
algorithm terminates. Then:

• t ∈ U and (I4) implies that there is
a directed s, t-path P ,

• y is feasible by (I1), and

• arcs on P are equality arcs by (I2)

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Suppose the invariants hold when the
algorithm terminates. Then:

• t ∈ U and (I4) implies that there is
a directed s, t-path P ,

• y is feasible by (I1), and

• arcs on P are equality arcs by (I2)

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Suppose the invariants hold when the
algorithm terminates. Then:

• t ∈ U and (I4) implies that there is
a directed s, t-path P ,

• y is feasible by (I1), and

• arcs on P are equality arcs by (I2)

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Suppose the invariants hold when the
algorithm terminates. Then:

• t ∈ U and (I4) implies that there is
a directed s, t-path P ,

• y is feasible by (I1), and

• arcs on P are equality arcs by (I2)

To show: δ(U) active −→ P has
exactly one edge in δ(U).

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

For a contradiction suppose δ(U) active
and P has more than one edge in δ(U)

Let e and e′ be the first two edges on P
that leave δ(U)

.

Then, there must also be an arc f on P
that enters U ,

but this contradicts (I3)!

Proposition

The Shortest Path Algorithm maintains
throughout its execution that:

(I3) no active cut δ(U) has an entering
arc: an arc wu with w 6∈ U , and
u ∈ U

s

t

e

e’

fU
wu

Correctness of the Shortest Path Algorithm

For a contradiction suppose δ(U) active
and P has more than one edge in δ(U)

Let e and e′ be the first two edges on P
that leave δ(U).

Then, there must also be an arc f on P
that enters U ,

but this contradicts (I3)!

Proposition

The Shortest Path Algorithm maintains
throughout its execution that:

(I3) no active cut δ(U) has an entering
arc: an arc wu with w 6∈ U , and
u ∈ U

s

t

e

e’

fU
wu

Correctness of the Shortest Path Algorithm

For a contradiction suppose δ(U) active
and P has more than one edge in δ(U)

Let e and e′ be the first two edges on P
that leave δ(U).

Then, there must also be an arc f on P
that enters U ,

but this contradicts (I3)!

Proposition

The Shortest Path Algorithm maintains
throughout its execution that:

(I3) no active cut δ(U) has an entering
arc: an arc wu with w 6∈ U , and
u ∈ U

s

t

e

e’

fU
wu

Correctness of the Shortest Path Algorithm

For a contradiction suppose δ(U) active
and P has more than one edge in δ(U)

Let e and e′ be the first two edges on P
that leave δ(U).

Then, there must also be an arc f on P
that enters U , but this contradicts (I3)!

Proposition

The Shortest Path Algorithm maintains
throughout its execution that:

(I3) no active cut δ(U) has an entering
arc: an arc wu with w 6∈ U , and
u ∈ U

s

t

e

e’

fU
wu

Correctness of the Shortest Path Algorithm

Let’s now prove the proposition!

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering, arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Let’s now prove the proposition!

Trivial: (I1) – (I5) hold after Step 1.

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering, arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Let’s now prove the proposition!

Trivial: (I1) – (I5) hold after Step 1.
Suppose (I1) – (I5) hold before Step 3.

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering, arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Let’s now prove the proposition!

Trivial: (I1) – (I5) hold after Step 1.
Suppose (I1) – (I5) hold before Step 3.
We will show that they also hold after
Step 6.

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering, arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

(I1) y is Dual Feasible

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Note: In Step 3-6, only yU for the current U changes.

yU appears only on the left-hand sides of constraints for edges in δ(U).

The smallest slack of any of these constraints is precisely the increase in
yU .

−→ y remains feasible!

Also: The constraint of the newly created arc holds with equality after
the increase

−→ (I2) continues to hold and constraints for arcs have slack 0.

(I1) y is Dual Feasible

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Note: In Step 3-6, only yU for the current U changes.

yU appears only on the left-hand sides of constraints for edges in δ(U).

The smallest slack of any of these constraints is precisely the increase in
yU .

−→ y remains feasible!

Also: The constraint of the newly created arc holds with equality after
the increase

−→ (I2) continues to hold and constraints for arcs have slack 0.

(I1) y is Dual Feasible

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Note: In Step 3-6, only yU for the current U changes.

yU appears only on the left-hand sides of constraints for edges in δ(U).

The smallest slack of any of these constraints is precisely the increase in
yU .

−→ y remains feasible!

Also: The constraint of the newly created arc holds with equality after
the increase

−→ (I2) continues to hold and constraints for arcs have slack 0.

(I1) y is Dual Feasible

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Note: In Step 3-6, only yU for the current U changes.

yU appears only on the left-hand sides of constraints for edges in δ(U).

The smallest slack of any of these constraints is precisely the increase in
yU .

−→ y remains feasible!

Also: The constraint of the newly created arc holds with equality after
the increase

−→ (I2) continues to hold and constraints for arcs have slack 0.

(I1) y is Dual Feasible

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Note: In Step 3-6, only yU for the current U changes.

yU appears only on the left-hand sides of constraints for edges in δ(U).

The smallest slack of any of these constraints is precisely the increase in
yU .

−→ y remains feasible!

Also: The constraint of the newly created arc holds with equality after
the increase

−→ (I2) continues to hold and constraints for arcs have slack 0.

(I1) y is Dual Feasible

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Note: In Step 3-6, only yU for the current U changes.

yU appears only on the left-hand sides of constraints for edges in δ(U).

The smallest slack of any of these constraints is precisely the increase in
yU .

−→ y remains feasible!

Also: The constraint of the newly created arc holds with equality after
the increase

−→ (I2) continues to hold and constraints for arcs have slack 0.

(I1) y is Dual Feasible

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Note: In Step 3-6, only yU for the current U changes.

yU appears only on the left-hand sides of constraints for edges in δ(U).

The smallest slack of any of these constraints is precisely the increase in
yU .

−→ y remains feasible!

Also: The constraint of the newly created arc holds with equality after
the increase
−→ (I2) continues to hold and constraints for arcs have slack 0.

Correctness of the Shortest Path Algorithm

• the only new active cut created is
δ(U)

• (I5) −→ all old arcs have both
ends in U

• one new arc has tail in U , and head
outside U

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

• the only new active cut created is
δ(U)

• (I5) −→ all old arcs have both
ends in U

• one new arc has tail in U , and head
outside U

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

• the only new active cut created is
δ(U)

• (I5) −→ all old arcs have both
ends in U

• one new arc has tail in U , and head
outside U

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

• the only new active cut created is
δ(U)

• (I5) −→ all old arcs have both
ends in U

• one new arc has tail in U , and head
outside U

−→ (I3) holds after Step 6

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: Algorithms adds arc ab in current
step, and (I4) implies that there is a
directed s, a-path P .

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: Algorithms adds arc ab in current
step, and (I4) implies that there is a
directed s, a-path P .

U

s

a b

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: Algorithms adds arc ab in current
step, and (I4) implies that there is a
directed s, a-path P .

U

s

a b

(I5) −→ arcs different from ab have
both ends in U

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: Algorithms adds arc ab in current
step, and (I4) implies that there is a
directed s, a-path P .

U

s

a b

(I5) −→ arcs different from ab have
both ends in U

−→ since b is outside U , it cannot be
on P , and thus, P together with ab is a

directed s, b-path

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: Algorithms adds arc ab in current
step, and (I4) implies that there is a
directed s, a-path P .

U

s

a b

(I5) −→ arcs different from ab have
both ends in U

−→ since b is outside U , it cannot be
on P , and thus, P together with ab is a

directed s, b-path

−→ (I4) holds at the end of loop

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

U

s

a b

Finally, the only new arc added is ab. As
b is added to U , (I5) continues to hold.

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

U

s

a b

Finally, the only new arc added is ab. As
b is added to U , (I5) continues to hold.

We are now done!

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Recap

• We saw that the shortest path algorithm

(i) always produces an s, t-path P , and
(ii) a feasible dual solution y.

• Moreover, the length of P equals the objective value of y, and
hence, P must be a shortest s, t-path.

• Implicitly, we therefore showed that the shortest path LP always has
an optimal integer solution!

Recap

• We saw that the shortest path algorithm

(i) always produces an s, t-path P , and

(ii) a feasible dual solution y.

• Moreover, the length of P equals the objective value of y, and
hence, P must be a shortest s, t-path.

• Implicitly, we therefore showed that the shortest path LP always has
an optimal integer solution!

Recap

• We saw that the shortest path algorithm

(i) always produces an s, t-path P , and
(ii) a feasible dual solution y.

• Moreover, the length of P equals the objective value of y, and
hence, P must be a shortest s, t-path.

• Implicitly, we therefore showed that the shortest path LP always has
an optimal integer solution!

Recap

• We saw that the shortest path algorithm

(i) always produces an s, t-path P , and
(ii) a feasible dual solution y.

• Moreover, the length of P equals the objective value of y, and
hence, P must be a shortest s, t-path.

• Implicitly, we therefore showed that the shortest path LP always has
an optimal integer solution!

Recap

• We saw that the shortest path algorithm

(i) always produces an s, t-path P , and
(ii) a feasible dual solution y.

• Moreover, the length of P equals the objective value of y, and
hence, P must be a shortest s, t-path.

• Implicitly, we therefore showed that the shortest path LP always has
an optimal integer solution!

CO 250: Introduction to Optimization
Module 4: Duality Theory (Weak Duality)

Recap: Shortest Path LP

Solutions to a shortest path instance
G = (V,E), s, t ∈ V , ce ≥ 0 for all
e ∈ E, correspond to feasible
0, 1-solutions for the LP

min
∑(

cexe : e ∈ E
)

s.t.
∑(

xe : e ∈ δ(U)
)
≥ 1

(U ⊆ V, s ∈ U, t /∈ U)

x ≥ 0

s

a b

d

c

g

h

ij

t

Recap: Shortest Path LP

Solutions to a shortest path instance
G = (V,E), s, t ∈ V , ce ≥ 0 for all
e ∈ E, correspond to feasible
0, 1-solutions for the LP

min
∑(

cexe : e ∈ E
)

s.t.
∑(

xe : e ∈ δ(U)
)
≥ 1

(U ⊆ V, s ∈ U, t /∈ U)

x ≥ 0

This LP is of the form:

min{cTx : Ax ≥ b, x ≥ 0}

s

a b

d

c

g

h

ij

t

Recap: Shortest Path LP

Solutions to a shortest path instance
G = (V,E), s, t ∈ V , ce ≥ 0 for all
e ∈ E, correspond to feasible
0, 1-solutions for the LP

min
∑(

cexe : e ∈ E
)

s.t.
∑(

xe : e ∈ δ(U)
)
≥ 1

(U ⊆ V, s ∈ U, t /∈ U)

x ≥ 0

This LP is of the form:

min{cTx : Ax ≥ b, x ≥ 0}

s

a b

d

c

g

h

ij

t

where

• b = 1;

• A has a row for every s, t-cut
δ(U), and a column for every
edge e; and

• AUe = 1 if e ∈ δ(U) and
AUe = 0 otherwise.

Recap: Shortest Path LP

Solutions to a shortest path instance
G = (V,E), s, t ∈ V , ce ≥ 0 for all
e ∈ E, correspond to feasible
0, 1-solutions for the LP

min
∑(

cexe : e ∈ E
)

s.t.
∑(

xe : e ∈ δ(U)
)
≥ 1

(U ⊆ V, s ∈ U, t /∈ U)

x ≥ 0

This LP is of the form:

min{cTx : Ax ≥ b, x ≥ 0}

s

a b

d

c

g

h

ij

t

where

• b = 1;

• A has a row for every s, t-cut
δ(U), and a column for every
edge e; and

• AUe = 1 if e ∈ δ(U) and
AUe = 0 otherwise.

Recap: Shortest Path LP

Solutions to a shortest path instance
G = (V,E), s, t ∈ V , ce ≥ 0 for all
e ∈ E, correspond to feasible
0, 1-solutions for the LP

min
∑(

cexe : e ∈ E
)

s.t.
∑(

xe : e ∈ δ(U)
)
≥ 1

(U ⊆ V, s ∈ U, t /∈ U)

x ≥ 0

This LP is of the form:

min{cTx : Ax ≥ b, x ≥ 0}

s

a b

d

c

g

h

ij

t

where

• b = 1;

• A has a row for every s, t-cut
δ(U), and a column for every
edge e; and

• AUe = 1 if e ∈ δ(U) and
AUe = 0 otherwise.

Recap: Shortest Path Dual

min{cTx : Ax ≥ b, x ≥ 0} (P)

s

a b

d

c

g

h

ij

t

Recap: Shortest Path Dual

min{cTx : Ax ≥ b, x ≥ 0} (P)

The dual of (P) is given by

max{bT y : AT y ≤ c, y ≥ 0} (D)

s

a b

d

c

g

h

ij

t

Recap: Shortest Path Dual

min{cTx : Ax ≥ b, x ≥ 0} (P)

The dual of (P) is given by

max{bT y : AT y ≤ c, y ≥ 0} (D)

If (P) is a shortest path LP, then we
can rewrite (D) as

max
∑

(yU : s ∈ U, t 6∈ U)

s.t.
∑

(yU : e ∈ δ(U)) ≤ ce
(e ∈ E)

y ≥ 0

s

a b

d

c

g

h

ij

t

Recap: Shortest Path Dual

min{cTx : Ax ≥ b, x ≥ 0} (P)

The dual of (P) is given by

max{bT y : AT y ≤ c, y ≥ 0} (D)

If (P) is a shortest path LP, then we
can rewrite (D) as

max
∑

(yU : s ∈ U, t 6∈ U)

s.t.
∑

(yU : e ∈ δ(U)) ≤ ce
(e ∈ E)

y ≥ 0

s

a b

d

c

g

h

ij

t

Theorem

If x̄ is feasible for (P) and ȳ is
feasible for (D), then bT ȳ ≤ cT x̄.

Recap: Shortest Path Dual

min{cTx : Ax ≥ b, x ≥ 0} (P)

The dual of (P) is given by

max{bT y : AT y ≤ c, y ≥ 0} (D)

If (P) is a shortest path LP, then we
can rewrite (D) as

max
∑

(yU : s ∈ U, t 6∈ U)

s.t.
∑

(yU : e ∈ δ(U)) ≤ ce
(e ∈ E)

y ≥ 0

s

a b

d

c

g

h

ij

t

Theorem

If x̄ is feasible for (P) and ȳ is
feasible for (D), then bT ȳ ≤ cT x̄.

Equivalent: y feasible widths and P
an s, t-path −→ 1T y ≤ c(P)

This Lecture

Question: Can we find
lower-bounds on the optimal
value of a general LP?

max cTx

s.t. Ax ? b

x ? 0

This Lecture

Question: Can we find
lower-bounds on the optimal
value of a general LP?

In the LP on the right,

Ax ? b

stands for a system of
inequalities whose sign is one of
≤,= or ≥

max cTx

s.t. Ax ? b

x ? 0

This Lecture

Question: Can we find
lower-bounds on the optimal
value of a general LP?

In the LP on the right,

Ax ? b

stands for a system of
inequalities whose sign is one of
≤,= or ≥, and

x ? 0

indicates that variables are either
non-negative, non-positive, or
free.

max cTx

s.t. Ax ? b

x ? 0

Recall: in the primal-dual pair

min{cTx : Ax ≥ b, x ≥ 0} (P)

max{bT y : AT y ≤ c, y ≥ 0} (D)

• each non-negative variable, xe, in
(P) corresponds to a ‘≤‘-constraint
in (D), and

• each ‘≥‘-constraint in (P)
corresponds to a non-negative
variable yU in (D).

This Lecture

Question: Can we find
lower-bounds on the optimal
value of a general LP?

In the LP on the right,

Ax ? b

stands for a system of
inequalities whose sign is one of
≤,= or ≥, and

x ? 0

indicates that variables are either
non-negative, non-positive, or
free.

max cTx

s.t. Ax ? b

x ? 0

Recall: in the primal-dual pair

min{cTx : Ax ≥ b, x ≥ 0} (P)

max{bT y : AT y ≤ c, y ≥ 0} (D)

• each non-negative variable, xe, in
(P) corresponds to a ‘≤‘-constraint
in (D), and

• each ‘≥‘-constraint in (P)
corresponds to a non-negative
variable yU in (D).

This Lecture

Question: Can we find
lower-bounds on the optimal
value of a general LP?

In the LP on the right,

Ax ? b

stands for a system of
inequalities whose sign is one of
≤,= or ≥, and

x ? 0

indicates that variables are either
non-negative, non-positive, or
free.

max cTx

s.t. Ax ? b

x ? 0

Recall: in the primal-dual pair

min{cTx : Ax ≥ b, x ≥ 0} (P)

max{bT y : AT y ≤ c, y ≥ 0} (D)

• each non-negative variable, xe, in
(P) corresponds to a ‘≤‘-constraint
in (D), and

• each ‘≥‘-constraint in (P)
corresponds to a non-negative
variable yU in (D).

Weak Duality in General

Consider the primal LP

max cTx

s.t. Ax ? b

x ? 0

Question: What are the question
marks?

A: As before:

primal variables ≡ dual constraints

primal constraints ≡ dual variables

Its dual LP is given by

min bT y

s.t. AT y ? c

y ? 0

Weak Duality in General

Consider the primal LP

max cTx

s.t. Ax ? b

x ? 0

Question: What are the question
marks?

A: As before:

primal variables ≡ dual constraints

primal constraints ≡ dual variables

Its dual LP is given by

min bT y

s.t. AT y ? c

y ? 0

Weak Duality in General

Consider the primal LP

max cTx

s.t. Ax ? b

x ? 0

Question: What are the question
marks?

A: As before:

primal variables ≡ dual constraints

primal constraints ≡ dual variables

Its dual LP is given by

min bT y

s.t. AT y ? c

y ? 0

Weak Duality in General

Consider the primal LP

max cTx

s.t. Ax ? b

x ? 0

Question: What are the question
marks?

A: As before:

primal variables ≡ dual constraints

primal constraints ≡ dual variables

Its dual LP is given by

min bT y

s.t. AT y ? c

y ? 0

Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 1:

max (1, 0, 2)x (P)

s.t.

(
3 −1 0
1 0 1

)
x
≤
=

(
3
4

)
x1, x2 ≥ 0, x3 free

Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 1:

max (1, 0, 2)x (P)

s.t.

(
3 −1 0
1 0 1

)
x
≤
=

(
3
4

)
x1, x2 ≥ 0, x3 free

Its dual LP:

min (3, 4)y (D)

s.t.

 3 1
−1 0
0 1

 y ?

1
0
2


y ? 0

Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 1:

max (1, 0, 2)x (P)

s.t.

(
3 −1 0
1 0 1

)
x
≤
=

(
3
4

)
x1, x2 ≥ 0, x3 free

Its dual LP:

min (3, 4)y (D)

s.t.

 3 1
−1 0
0 1

 y ?

1
0
2


y1 ≥ 0, y2 free

Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 1:

max (1, 0, 2)x (P)

s.t.

(
3 −1 0
1 0 1

)
x
≤
=

(
3
4

)
x1, x2 ≥ 0, x3 free

Its dual LP:

min (3, 4)y (D)

s.t.

 3 1
−1 0
0 1

 y
≥
≥
=

1
0
2


y1 ≥ 0, y2 free

Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 2:

min dT y (P)

s.t. WT y ≥ e
y ≥ 0

Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 2:

min dT y (P)

s.t. WT y ≥ e
y ≥ 0

To compute dual LP, check
right-hand side of table:

max eTx (D)

s.t. Wx ? d

x ? 0

Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 2:

min dT y (P)

s.t. WT y ≥ e
y ≥ 0

To compute dual LP, check
right-hand side of table:

max eTx (D)

s.t. Wx ? d

x ≥ 0

Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 2:

min dT y (P)

s.t. WT y ≥ e
y ≥ 0

To compute dual LP, check
right-hand side of table:

max eTx (D)

s.t. Wx ≤ d
x ≥ 0

Primal-Dual Pairs

Example 2:

min dT y (P)

s.t. WT y ≥ e
y ≥ 0

Substitute:
• d −→ c

• e −→ b

• y −→ x

• WT −→ A

• x −→ y

To compute dual LP, check
right-hand side of table:

max eTx (D)

s.t. Wx ≤ d
x ≥ 0

Primal-Dual Pairs

Example 2:

min cTx (P)

s.t. Ax ≥ b
x ≥ 0

Substitute:
• d −→ c

• e −→ b

• y −→ x

• WT −→ A

• x −→ y

To compute dual LP, check
right-hand side of table:

max bTx (D)

s.t. AT y ≤ c
y ≥ 0

Primal-Dual Pairs

Example 2:

min cTx (P)

s.t. Ax ≥ b
x ≥ 0

Substitute:
• d −→ c

• e −→ b

• y −→ x

• WT −→ A

• x −→ y

To compute dual LP, check
right-hand side of table:

max bTx (D)

s.t. AT y ≤ c
y ≥ 0

This is consistent with the earlier
discussion we had!

Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 3:

max (12, 26, 20)x (P)

s.t.

1 2 1
4 6 5
2 −1 −3

x
≥
≤
=

−2
2
13


x1 ≥ 0, x2 free, x3 ≥ 0

Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 3:

max (12, 26, 20)x (P)

s.t.

1 2 1
4 6 5
2 −1 −3

x
≥
≤
=

−2
2
13


x1 ≥ 0, x2 free, x3 ≥ 0

Its dual LP:

min (−2, 2, 13)y (D)

s.t.

1 4 2
2 6 −1
1 5 −3

 y ?

12
26
20


y ? 0

Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 3:

max (12, 26, 20)x (P)

s.t.

1 2 1
4 6 5
2 −1 −3

x
≥
≤
=

−2
2
13


x1 ≥ 0, x2 free, x3 ≥ 0

Its dual LP:

min (−2, 2, 13)y (D)

s.t.

1 4 2
2 6 −1
1 5 −3

 y ?

12
26
20


y1 ≤ 0, y2 ≥ 0, y3 free

Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 3:

max (12, 26, 20)x (P)

s.t.

1 2 1
4 6 5
2 −1 −3

x
≥
≤
=

−2
2
13


x1 ≥ 0, x2 free, x3 ≥ 0

Its dual LP:

min (−2, 2, 13)y (D)

s.t.

1 4 2
2 6 −1
1 5 −3

 y
≥
=
≥

12
26
20


y1 ≤ 0, y2 ≥ 0, y3 free

Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Theorem

Let (Pmax) and (Pmin) represent the above.

Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Theorem

Let (Pmax) and (Pmin) represent the above. If x̄ and ȳ are feasible for
the two LPs, then

cT x̄ ≤ bT ȳ

If cT x̄ = bT ȳ, then x̄ is optimal for (Pmax), and ȳ is optimal for (Pmin).

Primal-Dual Pairs

Theorem

Let (Pmax) and (Pmin) represent the above. If x̄ and ȳ are feasible for
the two LPs, then

cT x̄ ≤ bT ȳ

If cT x̄ = bT ȳ, then x̄ is optimal for (Pmax), and ȳ is optimal for (Pmin).

Example 3 (continued):

max (12, 26, 20)x (P)

s.t.

1 2 1
4 6 5
2 −1 −3

x
≥
≤
=

−2
2
13


x1 ≥ 0, x2 free, x3 ≥ 0

Its dual LP:

min (−2, 2, 13)y (D)

s.t.

1 4 2
2 6 −1
1 5 −3

 y
≥
=
≥

12
26
20


y1 ≤ 0, y2 ≥ 0, y3 free

Feasible solutions: x̄ = (5,−3, 0)T and ȳ = (0, 4,−2)T .

Primal-Dual Pairs

Theorem

Let (Pmax) and (Pmin) represent the above. If x̄ and ȳ are feasible for
the two LPs, then

cT x̄ ≤ bT ȳ

If cT x̄ = bT ȳ, then x̄ is optimal for (Pmax), and ȳ is optimal for (Pmin).

Example 3 (continued):

max (12, 26, 20)x (P)

s.t.

1 2 1
4 6 5
2 −1 −3

x
≥
≤
=

−2
2
13


x1 ≥ 0, x2 free, x3 ≥ 0

Its dual LP:

min (−2, 2, 13)y (D)

s.t.

1 4 2
2 6 −1
1 5 −3

 y
≥
=
≥

12
26
20


y1 ≤ 0, y2 ≥ 0, y3 free

Feasible solutions: x̄ = (5,−3, 0)T and ȳ = (0, 4,−2)T .
Since (12, 26, 20)x̄ = (−2, 2, 13)ȳ = −18 −→ both are optimal!

Proving the General Weak Duality Theorem

General Primal LP:

max cTx

s.t. rowi(A)x ≤ bi (i ∈ R1)

rowi(A)x ≥ bi (i ∈ R2)

rowi(A)x = bi (i ∈ R3)

xj ≥ 0 (j ∈ C1)

xj ≤ 0 (j ∈ C2)

xj free (j ∈ C3)

Its dual according to the table:

min bT y

s.t. colj(A)T y ≥ cj (j ∈ C1)

colj(A)T y ≤ cj (j ∈ C2)

colj(A)T y = cj (j ∈ C3)

yi ≥ 0 (i ∈ R1)

yi ≤ 0 (i ∈ R2)

yi free (i ∈ R3)

Proving the General Weak Duality Theorem

General Primal LP:

max cTx

s.t. rowi(A)x ≤ bi (i ∈ R1)

rowi(A)x ≥ bi (i ∈ R2)

rowi(A)x = bi (i ∈ R3)

xj ≥ 0 (j ∈ C1)

xj ≤ 0 (j ∈ C2)

xj free (j ∈ C3)

Its dual according to the table:

min bT y

s.t. colj(A)T y ≥ cj (j ∈ C1)

colj(A)T y ≤ cj (j ∈ C2)

colj(A)T y = cj (j ∈ C3)

yi ≥ 0 (i ∈ R1)

yi ≤ 0 (i ∈ R2)

yi free (i ∈ R3)

Proving the General Weak Duality Theorem

General Primal LP:

max cTx

s.t. rowi(A)x ≤ bi (i ∈ R1)

rowi(A)x ≥ bi (i ∈ R2)

rowi(A)x = bi (i ∈ R3)

xj ≥ 0 (j ∈ C1)

xj ≤ 0 (j ∈ C2)

xj free (j ∈ C3)

Its dual according to the table:

min bT y

s.t. colj(A)T y ≥ cj (j ∈ C1)

colj(A)T y ≤ cj (j ∈ C2)

colj(A)T y = cj (j ∈ C3)

yi ≥ 0 (i ∈ R1)

yi ≤ 0 (i ∈ R2)

yi free (i ∈ R3)

We can rewrite the above LPs using slack variables!

Proving the General Weak Duality Theorem

General Primal LP:

max cTx

s.t. Ax+ s = b

si ≥ 0 (i ∈ R1)

si ≤ 0 (i ∈ R2)

si = 0 (i ∈ R3)

xj ≥ 0 (j ∈ C1)

xj ≤ 0 (j ∈ C2)

xj free (j ∈ C3)

Its dual according to the table:

min bT y

s.t. AT y + w = c (?)

wj ≤ 0 (j ∈ C1)

wj ≥ 0 (j ∈ C2)

wj = 0 (j ∈ C3)

yi ≥ 0 (i ∈ R1)

yi ≤ 0 (i ∈ R2)

yi free (i ∈ R3)

Suppose x̄ and ȳ are feasible for the original primal and dual LPs
Let s̄ = b−Ax̄ and w̄ = c−AT ȳ. It follows that

ȳT b = ȳT (Ax̄+ s̄) = (ȳTA)x̄+ ȳT s̄
(?)
=

(c− w̄)T x̄+ ȳT s̄ = cT x̄− w̄T x̄+ ȳT s̄.

We can show that w̄T x̄ ≤ 0 and ȳT s̄ ≥ 0

Proving the General Weak Duality Theorem

General Primal LP:

max cTx

s.t. Ax+ s = b

si ≥ 0 (i ∈ R1)

si ≤ 0 (i ∈ R2)

si = 0 (i ∈ R3)

xj ≥ 0 (j ∈ C1)

xj ≤ 0 (j ∈ C2)

xj free (j ∈ C3)

Its dual according to the table:

min bT y

s.t. AT y + w = c (?)

wj ≤ 0 (j ∈ C1)

wj ≥ 0 (j ∈ C2)

wj = 0 (j ∈ C3)

yi ≥ 0 (i ∈ R1)

yi ≤ 0 (i ∈ R2)

yi free (i ∈ R3)

Suppose x̄ and ȳ are feasible for the original primal and dual LPs

Let s̄ = b−Ax̄ and w̄ = c−AT ȳ. It follows that

ȳT b = ȳT (Ax̄+ s̄) = (ȳTA)x̄+ ȳT s̄
(?)
=

(c− w̄)T x̄+ ȳT s̄ = cT x̄− w̄T x̄+ ȳT s̄.

We can show that w̄T x̄ ≤ 0 and ȳT s̄ ≥ 0

Proving the General Weak Duality Theorem

General Primal LP:

max cTx

s.t. Ax+ s = b

si ≥ 0 (i ∈ R1)

si ≤ 0 (i ∈ R2)

si = 0 (i ∈ R3)

xj ≥ 0 (j ∈ C1)

xj ≤ 0 (j ∈ C2)

xj free (j ∈ C3)

Its dual according to the table:

min bT y

s.t. AT y + w = c (?)

wj ≤ 0 (j ∈ C1)

wj ≥ 0 (j ∈ C2)

wj = 0 (j ∈ C3)

yi ≥ 0 (i ∈ R1)

yi ≤ 0 (i ∈ R2)

yi free (i ∈ R3)

Suppose x̄ and ȳ are feasible for the original primal and dual LPs
Let s̄ = b−Ax̄ and w̄ = c−AT ȳ.

It follows that

ȳT b = ȳT (Ax̄+ s̄) = (ȳTA)x̄+ ȳT s̄
(?)
=

(c− w̄)T x̄+ ȳT s̄ = cT x̄− w̄T x̄+ ȳT s̄.

We can show that w̄T x̄ ≤ 0 and ȳT s̄ ≥ 0

Proving the General Weak Duality Theorem

General Primal LP:

max cTx

s.t. Ax+ s = b

si ≥ 0 (i ∈ R1)

si ≤ 0 (i ∈ R2)

si = 0 (i ∈ R3)

xj ≥ 0 (j ∈ C1)

xj ≤ 0 (j ∈ C2)

xj free (j ∈ C3)

Its dual according to the table:

min bT y

s.t. AT y + w = c (?)

wj ≤ 0 (j ∈ C1)

wj ≥ 0 (j ∈ C2)

wj = 0 (j ∈ C3)

yi ≥ 0 (i ∈ R1)

yi ≤ 0 (i ∈ R2)

yi free (i ∈ R3)

Suppose x̄ and ȳ are feasible for the original primal and dual LPs
Let s̄ = b−Ax̄ and w̄ = c−AT ȳ. It follows that

ȳT b = ȳT (Ax̄+ s̄) = (ȳTA)x̄+ ȳT s̄

(?)
=

(c− w̄)T x̄+ ȳT s̄ = cT x̄− w̄T x̄+ ȳT s̄.

We can show that w̄T x̄ ≤ 0 and ȳT s̄ ≥ 0

Proving the General Weak Duality Theorem

General Primal LP:

max cTx

s.t. Ax+ s = b

si ≥ 0 (i ∈ R1)

si ≤ 0 (i ∈ R2)

si = 0 (i ∈ R3)

xj ≥ 0 (j ∈ C1)

xj ≤ 0 (j ∈ C2)

xj free (j ∈ C3)

Its dual according to the table:

min bT y

s.t. AT y + w = c (?)

wj ≤ 0 (j ∈ C1)

wj ≥ 0 (j ∈ C2)

wj = 0 (j ∈ C3)

yi ≥ 0 (i ∈ R1)

yi ≤ 0 (i ∈ R2)

yi free (i ∈ R3)

Suppose x̄ and ȳ are feasible for the original primal and dual LPs
Let s̄ = b−Ax̄ and w̄ = c−AT ȳ. It follows that

ȳT b = ȳT (Ax̄+ s̄) = (ȳTA)x̄+ ȳT s̄
(?)
=

(c− w̄)T x̄+ ȳT s̄ = cT x̄− w̄T x̄+ ȳT s̄.

We can show that w̄T x̄ ≤ 0 and ȳT s̄ ≥ 0

Proving the General Weak Duality Theorem

General Primal LP:

max cTx

s.t. Ax+ s = b

si ≥ 0 (i ∈ R1)

si ≤ 0 (i ∈ R2)

si = 0 (i ∈ R3)

xj ≥ 0 (j ∈ C1)

xj ≤ 0 (j ∈ C2)

xj free (j ∈ C3)

Its dual according to the table:

min bT y

s.t. AT y + w = c (?)

wj ≤ 0 (j ∈ C1)

wj ≥ 0 (j ∈ C2)

wj = 0 (j ∈ C3)

yi ≥ 0 (i ∈ R1)

yi ≤ 0 (i ∈ R2)

yi free (i ∈ R3)

Suppose x̄ and ȳ are feasible for the original primal and dual LPs
Let s̄ = b−Ax̄ and w̄ = c−AT ȳ. It follows that

ȳT b = ȳT (Ax̄+ s̄) = (ȳTA)x̄+ ȳT s̄
(?)
=

(c− w̄)T x̄+ ȳT s̄ = cT x̄− w̄T x̄+ ȳT s̄.

We can show that w̄T x̄ ≤ 0 and ȳT s̄ ≥ 0

Proving the General Weak Duality Theorem

General Primal LP:

max cTx

s.t. Ax+ s = b

si ≥ 0 (i ∈ R1)

si ≤ 0 (i ∈ R2)

si = 0 (i ∈ R3)

xj ≥ 0 (j ∈ C1)

xj ≤ 0 (j ∈ C2)

xj free (j ∈ C3)

Its dual according to the table:

min bT y

s.t. AT y + w = c (?)

wj ≤ 0 (j ∈ C1)

wj ≥ 0 (j ∈ C2)

wj = 0 (j ∈ C3)

yi ≥ 0 (i ∈ R1)

yi ≤ 0 (i ∈ R2)

yi free (i ∈ R3)

Suppose x̄ and ȳ are feasible for the original primal and dual LPs
Let s̄ = b−Ax̄ and w̄ = c−AT ȳ. It follows that

ȳT b = ȳT (Ax̄+ s̄) = (ȳTA)x̄+ ȳT s̄
(?)
=

(c− w̄)T x̄+ ȳT s̄ = cT x̄− w̄T x̄+ ȳT s̄.

We can show that w̄T x̄ ≤ 0 and ȳT s̄ ≥ 0 −→ ȳT b ≥ cT x̄

Consequences of Weak Duality

Theorem

Let (Pmax) and (Pmin) represent
the above table. If x̄ and ȳ are
feasible for the two LPs, then

cT x̄ ≤ bT ȳ

If cT x̄ = bT ȳ, then x̄ is optimal for
(Pmax), and ȳ is optimal for
(Pmin).

(i) (Pmax) is unbounded −→
(Pmin) infeasible

(ii) (Pmin) is unbounded −→
(Pmax) infeasible

(iii) (Pmax) and (Pmin) feasible
−→ both must have optimal
solutions

Proof: (i) Suppose, for a contradiction, that ȳ is feasible for (Pmin).
By weak duality −→ cT x̄ ≤ bT ȳ for all x̄ feasible for (Pmax), and hence
the latter is bounded.

(ii) Similar to (i)

(iii) weak duality −→ both (Pmax) and (Pmin) bounded

Fundamental Theorem of LP −→ Both LPs must have an optimal
solution!

Consequences of Weak Duality

Theorem

Let (Pmax) and (Pmin) represent
the above table. If x̄ and ȳ are
feasible for the two LPs, then

cT x̄ ≤ bT ȳ

If cT x̄ = bT ȳ, then x̄ is optimal for
(Pmax), and ȳ is optimal for
(Pmin).

(i) (Pmax) is unbounded −→
(Pmin) infeasible

(ii) (Pmin) is unbounded −→
(Pmax) infeasible

(iii) (Pmax) and (Pmin) feasible
−→ both must have optimal
solutions

Proof: (i) Suppose, for a contradiction, that ȳ is feasible for (Pmin).
By weak duality −→ cT x̄ ≤ bT ȳ for all x̄ feasible for (Pmax), and hence
the latter is bounded.

(ii) Similar to (i)

(iii) weak duality −→ both (Pmax) and (Pmin) bounded

Fundamental Theorem of LP −→ Both LPs must have an optimal
solution!

Consequences of Weak Duality

Theorem

Let (Pmax) and (Pmin) represent
the above table. If x̄ and ȳ are
feasible for the two LPs, then

cT x̄ ≤ bT ȳ

If cT x̄ = bT ȳ, then x̄ is optimal for
(Pmax), and ȳ is optimal for
(Pmin).

(i) (Pmax) is unbounded −→
(Pmin) infeasible

(ii) (Pmin) is unbounded −→
(Pmax) infeasible

(iii) (Pmax) and (Pmin) feasible
−→ both must have optimal
solutions

Proof: (i) Suppose, for a contradiction, that ȳ is feasible for (Pmin).
By weak duality −→ cT x̄ ≤ bT ȳ for all x̄ feasible for (Pmax), and hence
the latter is bounded.

(ii) Similar to (i)

(iii) weak duality −→ both (Pmax) and (Pmin) bounded

Fundamental Theorem of LP −→ Both LPs must have an optimal
solution!

Consequences of Weak Duality

Theorem

Let (Pmax) and (Pmin) represent
the above table. If x̄ and ȳ are
feasible for the two LPs, then

cT x̄ ≤ bT ȳ

If cT x̄ = bT ȳ, then x̄ is optimal for
(Pmax), and ȳ is optimal for
(Pmin).

(i) (Pmax) is unbounded −→
(Pmin) infeasible

(ii) (Pmin) is unbounded −→
(Pmax) infeasible

(iii) (Pmax) and (Pmin) feasible
−→ both must have optimal
solutions

Proof: (i) Suppose, for a contradiction, that ȳ is feasible for (Pmin).
By weak duality −→ cT x̄ ≤ bT ȳ for all x̄ feasible for (Pmax), and hence
the latter is bounded.

(ii) Similar to (i)

(iii) weak duality −→ both (Pmax) and (Pmin) bounded

Fundamental Theorem of LP −→ Both LPs must have an optimal
solution!

Consequences of Weak Duality

Theorem

Let (Pmax) and (Pmin) represent
the above table. If x̄ and ȳ are
feasible for the two LPs, then

cT x̄ ≤ bT ȳ

If cT x̄ = bT ȳ, then x̄ is optimal for
(Pmax), and ȳ is optimal for
(Pmin).

(i) (Pmax) is unbounded −→
(Pmin) infeasible

(ii) (Pmin) is unbounded −→
(Pmax) infeasible

(iii) (Pmax) and (Pmin) feasible
−→ both must have optimal
solutions

Proof: (i) Suppose, for a contradiction, that ȳ is feasible for (Pmin).

By weak duality −→ cT x̄ ≤ bT ȳ for all x̄ feasible for (Pmax), and hence
the latter is bounded.

(ii) Similar to (i)

(iii) weak duality −→ both (Pmax) and (Pmin) bounded

Fundamental Theorem of LP −→ Both LPs must have an optimal
solution!

Consequences of Weak Duality

Theorem

Let (Pmax) and (Pmin) represent
the above table. If x̄ and ȳ are
feasible for the two LPs, then

cT x̄ ≤ bT ȳ

If cT x̄ = bT ȳ, then x̄ is optimal for
(Pmax), and ȳ is optimal for
(Pmin).

(i) (Pmax) is unbounded −→
(Pmin) infeasible

(ii) (Pmin) is unbounded −→
(Pmax) infeasible

(iii) (Pmax) and (Pmin) feasible
−→ both must have optimal
solutions

Proof: (i) Suppose, for a contradiction, that ȳ is feasible for (Pmin).
By weak duality −→ cT x̄ ≤ bT ȳ for all x̄ feasible for (Pmax), and hence
the latter is bounded.

(ii) Similar to (i)

(iii) weak duality −→ both (Pmax) and (Pmin) bounded

Fundamental Theorem of LP −→ Both LPs must have an optimal
solution!

Consequences of Weak Duality

Theorem

Let (Pmax) and (Pmin) represent
the above table. If x̄ and ȳ are
feasible for the two LPs, then

cT x̄ ≤ bT ȳ

If cT x̄ = bT ȳ, then x̄ is optimal for
(Pmax), and ȳ is optimal for
(Pmin).

(i) (Pmax) is unbounded −→
(Pmin) infeasible

(ii) (Pmin) is unbounded −→
(Pmax) infeasible

(iii) (Pmax) and (Pmin) feasible
−→ both must have optimal
solutions

Proof: (i) Suppose, for a contradiction, that ȳ is feasible for (Pmin).
By weak duality −→ cT x̄ ≤ bT ȳ for all x̄ feasible for (Pmax), and hence
the latter is bounded.

(ii) Similar to (i)

(iii) weak duality −→ both (Pmax) and (Pmin) bounded

Fundamental Theorem of LP −→ Both LPs must have an optimal
solution!

Consequences of Weak Duality

Theorem

Let (Pmax) and (Pmin) represent
the above table. If x̄ and ȳ are
feasible for the two LPs, then

cT x̄ ≤ bT ȳ

If cT x̄ = bT ȳ, then x̄ is optimal for
(Pmax), and ȳ is optimal for
(Pmin).

(i) (Pmax) is unbounded −→
(Pmin) infeasible

(ii) (Pmin) is unbounded −→
(Pmax) infeasible

(iii) (Pmax) and (Pmin) feasible
−→ both must have optimal
solutions

Proof: (i) Suppose, for a contradiction, that ȳ is feasible for (Pmin).
By weak duality −→ cT x̄ ≤ bT ȳ for all x̄ feasible for (Pmax), and hence
the latter is bounded.

(ii) Similar to (i)

(iii) weak duality −→ both (Pmax) and (Pmin) bounded

Fundamental Theorem of LP −→ Both LPs must have an optimal
solution!

Consequences of Weak Duality

Theorem

Let (Pmax) and (Pmin) represent
the above table. If x̄ and ȳ are
feasible for the two LPs, then

cT x̄ ≤ bT ȳ

If cT x̄ = bT ȳ, then x̄ is optimal for
(Pmax), and ȳ is optimal for
(Pmin).

(i) (Pmax) is unbounded −→
(Pmin) infeasible

(ii) (Pmin) is unbounded −→
(Pmax) infeasible

(iii) (Pmax) and (Pmin) feasible
−→ both must have optimal
solutions

Proof: (i) Suppose, for a contradiction, that ȳ is feasible for (Pmin).
By weak duality −→ cT x̄ ≤ bT ȳ for all x̄ feasible for (Pmax), and hence
the latter is bounded.

(ii) Similar to (i)

(iii) weak duality −→ both (Pmax) and (Pmin) bounded

Fundamental Theorem of LP −→ Both LPs must have an optimal
solution!

Recap

• We can use the above table to compute duals of general LPs

• Weak duality theorem: if x̄ and ȳ are feasible for (Pmax) and
(Pmin), then:

cT x̄ ≤ bT ȳ

Recap

• We can use the above table to compute duals of general LPs

• Weak duality theorem: if x̄ and ȳ are feasible for (Pmax) and
(Pmin), then:

cT x̄ ≤ bT ȳ

Recap

• We can use the above table to compute duals of general LPs

• Weak duality theorem: if x̄ and ȳ are feasible for (Pmax) and
(Pmin), then:

cT x̄ ≤ bT ȳ

Both are optimal if equality holds!

CO 250: Introduction to Optimization
Module 4: Duality Theory (Strong Duality)

Recap: Weak Duality

Last lecture: we described a
method to construct the dual of a
general linear program.

Recap: Weak Duality

Last lecture: we described a
method to construct the dual of a
general linear program.

E.g.: consider the primal LP, (P), on
the right

max (2,−1, 3)x (P)

s.t.

1 0 −1
0 −2 1
1 1 0

x
≤
=
≥

 2
1
−2


x1 ≥ 0, x2 ≤ 0, x3 free

Recap: Weak Duality

Last lecture: we described a
method to construct the dual of a
general linear program.

E.g.: consider the primal LP, (P), on
the right – a max LP that falls in
the left (Pmax) part of the table.

max (2,−1, 3)x (P)

s.t.

1 0 −1
0 −2 1
1 1 0

x
≤
=
≥

 2
1
−2


x1 ≥ 0, x2 ≤ 0, x3 free

Recap: Weak Duality

Last lecture: we described a
method to construct the dual of a
general linear program.

E.g.: consider the primal LP, (P), on
the right – a max LP that falls in
the left (Pmax) part of the table.

−→ The dual of (P) is a min LP.

max (2,−1, 3)x (P)

s.t.

1 0 −1
0 −2 1
1 1 0

x
≤
=
≥

 2
1
−2


x1 ≥ 0, x2 ≤ 0, x3 free

Recap: Weak Duality

max (2,−1, 3)x (P)

s.t.

1 0 −1
0 −2 1
1 1 0

x
≤
=
≥

 2
1
−2


x1 ≥ 0, x2 ≤ 0, x3 free

min (2, 1,−2)y (D)

s.t.

 1 0 1
0 −2 1
−1 1 0

 y ?

 2
−1
3


y ? 0

Recap: Weak Duality

max (2,−1, 3)x (P)

s.t.

1 0 −1
0 −2 1
1 1 0

x
≤
=
≥

 2
1
−2


x1 ≥ 0, x2 ≤ 0, x3 free

min (2, 1,−2)y (D)

s.t.

 1 0 1
0 −2 1
−1 1 0

 y ?

 2
−1
3


y1 ≥ 0, y2 free, y3 ≤ 0

Recap: Weak Duality

max (2,−1, 3)x (P)

s.t.

1 0 −1
0 −2 1
1 1 0

x
≤
=
≥

 2
1
−2


x1 ≥ 0, x2 ≤ 0, x3 free

min (2, 1,−2)y (D)

s.t.

 1 0 1
0 −2 1
−1 1 0

 y
≥
≤
=

 2
−1
3


y1 ≥ 0, y2 free, y3 ≤ 0

Recap: Weak Duality

max (2,−1, 3)x (P)

s.t.

1 0 −1
0 −2 1
1 1 0

x
≤
=
≥

 2
1
−2


x1 ≥ 0, x2 ≤ 0, x3 free

min (2, 1,−2)y (D)

s.t.

 1 0 1
0 −2 1
−1 1 0

 y
≥
≤
=

 2
−1
3


y1 ≥ 0, y2 free, y3 ≤ 0

Weak Duality Theorem

if x̄ is feasible for (P) and ȳ is feasible for (D),

=⇒ cT x̄ ≤ bT ȳ

Recap: Weak Duality

max (2,−1, 3)x (P)

s.t.

1 0 −1
0 −2 1
1 1 0

x
≤
=
≥

 2
1
−2


x1 ≥ 0, x2 ≤ 0, x3 free

min (2, 1,−2)y (D)

s.t.

 1 0 1
0 −2 1
−1 1 0

 y
≥
≤
=

 2
−1
3


y1 ≥ 0, y2 free, y3 ≤ 0

Weak Duality Theorem

if x̄ is feasible for (P) and ȳ is feasible for (D),

=⇒ cT x̄ ≤ bT ȳ

If cT x̄ = bT ȳ, then both x̄ and ȳ are optimal.

This Lecture: Strong Duality

Question

Can we always find feasible solutions x̄ and ȳ to a primal-dual pair,
(Pmax), (Pmin), such that cT x̄ = bT ȳ?

This Lecture: Strong Duality

Question

Can we always find feasible solutions x̄ and ȳ to a primal-dual pair,
(Pmax), (Pmin), such that cT x̄ = bT ȳ?

Strong Duality Theorem

If (Pmax) has an optimal solution x̄, then (Pmin) has an optimal
solution ȳ such that cT x̄ = bT ȳ.

Strong Duality – for LPs in SEF

Let us prove the Strong Duality Theorem in
the special case where (P) is in SEF. max cTx (P)

s.t. Ax = b

x ≥ 0

Strong Duality – for LPs in SEF

Let us prove the Strong Duality Theorem in
the special case where (P) is in SEF. max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

Strong Duality – for LPs in SEF

Let us prove the Strong Duality Theorem in
the special case where (P) is in SEF.

Let’s assume (P) has an optimal solution.

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

Strong Duality – for LPs in SEF

Let us prove the Strong Duality Theorem in
the special case where (P) is in SEF.

Let’s assume (P) has an optimal solution.

−→ 2-Phase Simplex terminates with an
optimal basis B

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

Strong Duality – for LPs in SEF

Let us prove the Strong Duality Theorem in
the special case where (P) is in SEF.

Let’s assume (P) has an optimal solution.

−→ 2-Phase Simplex terminates with an
optimal basis B (Why?)

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

Strong Duality – for LPs in SEF

Let us prove the Strong Duality Theorem in
the special case where (P) is in SEF.

Let’s assume (P) has an optimal solution.

−→ 2-Phase Simplex terminates with an
optimal basis B (Why?)

We can rewrite (P) for basis B:

max z = ȳT b + c̄Tx (P’)

s.t. xB + A−1
B ANxN = A−1

B b

x ≥ 0

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

Strong Duality – for LPs in SEF

Let us prove the Strong Duality Theorem in
the special case where (P) is in SEF.

Let’s assume (P) has an optimal solution.

−→ 2-Phase Simplex terminates with an
optimal basis B (Why?)

We can rewrite (P) for basis B:

max z = ȳT b + c̄Tx (P’)

s.t. xB + A−1
B ANxN = A−1

B b

x ≥ 0

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

where:

ȳ = A−T
B cB

c̄T = cT − ȳTA

Strong Duality – for LPs in SEF

Let us prove the Strong Duality Theorem in
the special case where (P) is in SEF.

Let’s assume (P) has an optimal solution.

−→ 2-Phase Simplex terminates with an
optimal basis B (Why?)

We can rewrite (P) for basis B:

max z = ȳT b + c̄Tx (P’)

s.t. xB + A−1
B ANxN = A−1

B b

x ≥ 0

and: x̄B = A−1
B b and x̄N = 0

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

where:

ȳ = A−T
B cB

c̄T = cT − ȳTA

Strong Duality – for LPs in SEF

We can rewrite (P) for basis B:

max z = ȳT b + c̄Tx (P’)

s.t. xB + A−1
B ANxN = A−1

B b

x ≥ 0

and: x̄B = A−1
B b and x̄N = 0

Recall that (P) and (P’) are equivalent!

Goal: Show that ȳ is dual feasible.

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

where:

ȳ = A−T
B cB

c̄T = cT − ȳTA

Strong Duality – for LPs in SEF

We can rewrite (P) for basis B:

max z = ȳT b + c̄Tx (P’)

s.t. xB + A−1
B ANxN = A−1

B b

x ≥ 0

and: x̄B = A−1
B b and x̄N = 0

Recall that (P) and (P’) are equivalent!

−→ x̄ is feasible in (P), and has same
objective value in (P) and (P’)

Goal: Show that ȳ is dual feasible.

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

where:

ȳ = A−T
B cB

c̄T = cT − ȳTA

Strong Duality – for LPs in SEF

We can rewrite (P) for basis B:

max z = ȳT b + c̄Tx (P’)

s.t. xB + A−1
B ANxN = A−1

B b

x ≥ 0

and: x̄B = A−1
B b and x̄N = 0

Recall that (P) and (P’) are equivalent!

−→ x̄ is feasible in (P), and has same
objective value in (P) and (P’)

cT x̄ = ȳT b + c̄T x̄

= ȳT b + c̄TN x̄N

= bT ȳ

Goal: Show that ȳ is dual feasible.

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

where:

ȳ = A−T
B cB

c̄T = cT − ȳTA

Strong Duality – for LPs in SEF

We can rewrite (P) for basis B:

max z = ȳT b + c̄Tx (P’)

s.t. xB + A−1
B ANxN = A−1

B b

x ≥ 0

and: x̄B = A−1
B b and x̄N = 0

Recall that (P) and (P’) are equivalent!

−→ x̄ is feasible in (P), and has same
objective value in (P) and (P’)

cT x̄ = ȳT b + c̄T x̄

= ȳT b + c̄TN x̄N

= bT ȳ

Goal: Show that ȳ is dual feasible.

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

where:

ȳ = A−T
B cB

c̄T = cT − ȳTA

Strong Duality – for LPs in SEF

We can rewrite (P) for basis B:

max z = ȳT b + c̄Tx (P’)

s.t. xB + A−1
B ANxN = A−1

B b

x ≥ 0

and: x̄B = A−1
B b and x̄N = 0

Recall that (P) and (P’) are equivalent!

−→ x̄ is feasible in (P), and has same
objective value in (P) and (P’)

cT x̄ = ȳT b + c̄T x̄

= ȳT b + c̄TN x̄N

= bT ȳ

Goal: Show that ȳ is dual feasible.

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

where:

ȳ = A−T
B cB

c̄T = cT − ȳTA

Strong Duality – for LPs in SEF

We can rewrite (P) for basis B:

max z = ȳT b + c̄Tx (P’)

s.t. xB + A−1
B ANxN = A−1

B b

x ≥ 0

and: x̄B = A−1
B b and x̄N = 0

Recall that (P) and (P’) are equivalent!

−→ x̄ is feasible in (P), and has same
objective value in (P) and (P’)

cT x̄ = ȳT b + c̄T x̄

= ȳT b + c̄TN x̄N

= bT ȳ

Goal: Show that ȳ is dual feasible.

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

where:

ȳ = A−T
B cB

c̄T = cT − ȳTA

Strong Duality – for LPs in SEF

We can rewrite (P) for basis B:

max z = ȳT b + c̄Tx (P’)

s.t. xB + A−1
B ANxN = A−1

B b

x ≥ 0

and: x̄B = A−1
B b and x̄N = 0 and

cT x̄ = bT ȳ.

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

where:

ȳ = A−T
B cB

c̄T = cT − ȳTA

Strong Duality – for LPs in SEF

We can rewrite (P) for basis B:

max z = ȳT b + c̄Tx (P’)

s.t. xB + A−1
B ANxN = A−1

B b

x ≥ 0

and: x̄B = A−1
B b and x̄N = 0 and

cT x̄ = bT ȳ.

Note that B is an optimal basis −→ c̄ ≤ 0

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

where:

ȳ = A−T
B cB

c̄T = cT − ȳTA

Strong Duality – for LPs in SEF

We can rewrite (P) for basis B:

max z = ȳT b + c̄Tx (P’)

s.t. xB + A−1
B ANxN = A−1

B b

x ≥ 0

and: x̄B = A−1
B b and x̄N = 0 and

cT x̄ = bT ȳ.

Note that B is an optimal basis −→ c̄ ≤ 0

−→ cT − ȳTA ≤ 0

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

where:

ȳ = A−T
B cB

c̄T = cT − ȳTA

Strong Duality – for LPs in SEF

We can rewrite (P) for basis B:

max z = ȳT b + c̄Tx (P’)

s.t. xB + A−1
B ANxN = A−1

B b

x ≥ 0

and: x̄B = A−1
B b and x̄N = 0 and

cT x̄ = bT ȳ.

Note that B is an optimal basis −→ c̄ ≤ 0

−→ cT − ȳTA ≤ 0

Equivalently, AT ȳ ≥ c,

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

where:

ȳ = A−T
B cB

c̄T = cT − ȳTA

Strong Duality – for LPs in SEF

We can rewrite (P) for basis B:

max z = ȳT b + c̄Tx (P’)

s.t. xB + A−1
B ANxN = A−1

B b

x ≥ 0

and: x̄B = A−1
B b and x̄N = 0 and

cT x̄ = bT ȳ.

Note that B is an optimal basis −→ c̄ ≤ 0

−→ cT − ȳTA ≤ 0

Equivalently, AT ȳ ≥ c,
meaning ȳ is dual feasible!

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

where:

ȳ = A−T
B cB

c̄T = cT − ȳTA

Strong Duality Theorem

Strong Duality Theorem

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal
solution, then (D) has one, and their objective values equal.

Strong Duality Theorem

Strong Duality Theorem

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal
solution, then (D) has one, and their objective values equal.

Note: (P) is feasible and (D) is feasible −→ (P) cannot be unbounded

Strong Duality Theorem

Strong Duality Theorem

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal
solution, then (D) has one, and their objective values equal.

Note: (P) is feasible and (D) is feasible −→ (P) cannot be unbounded

Fundamental Theorem of LP −→ (P) has an optimal solution.

Strong Duality Theorem

Strong Duality Theorem

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal
solution, then (D) has one, and their objective values equal.

Note: (P) is feasible and (D) is feasible −→ (P) cannot be unbounded

Fundamental Theorem of LP −→ (P) has an optimal solution.

Subtly different version via previous results:

Strong Duality Theorem – Feasibility Version

Let (P) and (D) be primal-dual pair of LPs. If both are feasible, then
both have optimal solutions of the same objective value.

Possible Outcomes of Primal-Dual Pair (P), (D)

PPPPPPPP(D)
(P)

optimal solution unbounded infeasible

optimal solution

possible 1© impossible 2© impossible 3©

unbounded

impossible 4© impossible 5© possible 6©

infeasible

impossible 7© possible 8© possible 9©

Possible Outcomes of Primal-Dual Pair (P), (D)

PPPPPPPP(D)
(P)

optimal solution unbounded infeasible

optimal solution possible 1©

impossible 2© impossible 3©

unbounded

impossible 4© impossible 5©

possible 6©
infeasible

impossible 7©

possible 8©

possible 9©

• 1©, 6©, and 8© many examples exist

• 2© follows directly from Weak Duality as
follows:

• 3©, 7© follow directly from Strong Duality

• I’ll leave 9© for you to do as an exercise!

Possible Outcomes of Primal-Dual Pair (P), (D)

PPPPPPPP(D)
(P)

optimal solution unbounded infeasible

optimal solution possible 1© impossible 2©

impossible 3©

unbounded

impossible 4© impossible 5©

possible 6©
infeasible

impossible 7©

possible 8©

possible 9©

• 1©, 6©, and 8© many examples exist

• 2© follows directly from Weak Duality as
follows:

• 3©, 7© follow directly from Strong Duality

• I’ll leave 9© for you to do as an exercise!

Possible Outcomes of Primal-Dual Pair (P), (D)

PPPPPPPP(D)
(P)

optimal solution unbounded infeasible

optimal solution possible 1© impossible 2©

impossible 3©

unbounded

impossible 4© impossible 5©

possible 6©
infeasible

impossible 7©

possible 8©

possible 9©

• 1©, 6©, and 8© many examples exist

• 2© follows directly from Weak Duality as
follows:

Suppose, for a contradiction, that (D) has an
optimal solution ȳ.

• 3©, 7© follow directly from Strong Duality

• I’ll leave 9© for you to do as an exercise!

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

Possible Outcomes of Primal-Dual Pair (P), (D)

PPPPPPPP(D)
(P)

optimal solution unbounded infeasible

optimal solution possible 1© impossible 2©

impossible 3©

unbounded

impossible 4© impossible 5©

possible 6©
infeasible

impossible 7©

possible 8©

possible 9©

• 1©, 6©, and 8© many examples exist

• 2© follows directly from Weak Duality as
follows:

Suppose, for a contradiction, that (D) has an
optimal solution ȳ.
cT x̄ ≤ bT ȳ for all feasible primal solutions x̄
by Weak Duality

• 3©, 7© follow directly from Strong Duality

• I’ll leave 9© for you to do as an exercise!

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

Possible Outcomes of Primal-Dual Pair (P), (D)

PPPPPPPP(D)
(P)

optimal solution unbounded infeasible

optimal solution possible 1© impossible 2©

impossible 3©

unbounded

impossible 4© impossible 5©

possible 6©
infeasible

impossible 7©

possible 8©

possible 9©

• 1©, 6©, and 8© many examples exist

• 2© follows directly from Weak Duality as
follows:

Suppose, for a contradiction, that (D) has an
optimal solution ȳ.
cT x̄ ≤ bT ȳ for all feasible primal solutions x̄
by Weak Duality −→ (P) is bounded!

• 3©, 7© follow directly from Strong Duality

• I’ll leave 9© for you to do as an exercise!

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

Possible Outcomes of Primal-Dual Pair (P), (D)

PPPPPPPP(D)
(P)

optimal solution unbounded infeasible

optimal solution possible 1© impossible 2©

impossible 3©

unbounded impossible 4© impossible 5© possible 6©
infeasible

impossible 7©

possible 8©

possible 9©

• 1©, 6©, and 8© many examples exist

• 2© follows directly from Weak Duality as
follows:

Suppose, for a contradiction, that (D) has an
optimal solution ȳ.
cT x̄ ≤ bT ȳ for all feasible primal solutions x̄
by Weak Duality −→ (P) is bounded!
Similar arguments apply to 4© and 5©

• 3©, 7© follow directly from Strong Duality

• I’ll leave 9© for you to do as an exercise!

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

Possible Outcomes of Primal-Dual Pair (P), (D)

PPPPPPPP(D)
(P)

optimal solution unbounded infeasible

optimal solution possible 1© impossible 2© impossible 3©
unbounded impossible 4© impossible 5© possible 6©
infeasible impossible 7© possible 8©

possible 9©

• 1©, 6©, and 8© many examples exist

• 2© follows directly from Weak Duality as
follows:

Suppose, for a contradiction, that (D) has an
optimal solution ȳ.
cT x̄ ≤ bT ȳ for all feasible primal solutions x̄
by Weak Duality −→ (P) is bounded!
Similar arguments apply to 4© and 5©

• 3©, 7© follow directly from Strong Duality

• I’ll leave 9© for you to do as an exercise!

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

Possible Outcomes of Primal-Dual Pair (P), (D)

PPPPPPPP(D)
(P)

optimal solution unbounded infeasible

optimal solution possible 1© impossible 2© impossible 3©
unbounded impossible 4© impossible 5© possible 6©
infeasible impossible 7© possible 8© possible 9©

• 1©, 6©, and 8© many examples exist

• 2© follows directly from Weak Duality as
follows:

Suppose, for a contradiction, that (D) has an
optimal solution ȳ.
cT x̄ ≤ bT ȳ for all feasible primal solutions x̄
by Weak Duality −→ (P) is bounded!
Similar arguments apply to 4© and 5©

• 3©, 7© follow directly from Strong Duality

• I’ll leave 9© for you to do as an exercise!

max cTx (P)

s.t. Ax = b

x ≥ 0

min bT y (D)

s.t. AT y ≥ c

Recap

Strong Duality Theorem

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal
solution, then (D) has one, and their objective values equal.

Recap

Strong Duality Theorem

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal
solution, then (D) has one, and their objective values equal.

PPPPPPPP(D)
(P)

optimal solution unbounded infeasible

optimal solution possible 1© impossible 2© impossible 3©
unbounded impossible 4© impossible 5© possible 6©
infeasible impossible 7© possible 8© possible 9©

CO 250: Introduction to Optimization
Module 4: Duality Theory (Geometry of Duality)

Recap: Strong Duality

max cTx (P)

s.t. Ax ≤ b
min bT y (D)

s.t. AT y = c

y ≥ 0

Strong Duality Theorem

For the above primal-dual pair of LPs, (P) and (D), if (P)
has an optimal solution, then (D) has one and their
objective values equal.

Recap: The Geometry of an LP

In Module 2, we saw that
• The feasible region of an LP is

a polyhedron.

• Basic solutions correspond to
extreme points of this
polyhedron.

Question

When is an extreme point optimal?

Module 2 and strong duality told us
that Simplex computes

• a basic solution (if it exists),
and

• a certificate of optimality.

v

Today we will investigate these
certificates using geometry.

Recap: The Geometry of an LP

In Module 2, we saw that
• The feasible region of an LP is

a polyhedron.

• Basic solutions correspond to
extreme points of this
polyhedron.

Question

When is an extreme point optimal?

Module 2 and strong duality told us
that Simplex computes

• a basic solution (if it exists),
and

• a certificate of optimality.

v

Today we will investigate these
certificates using geometry.

Recap: The Geometry of an LP

In Module 2, we saw that
• The feasible region of an LP is

a polyhedron.

• Basic solutions correspond to
extreme points of this
polyhedron.

Question

When is an extreme point optimal?

Module 2 and strong duality told us
that Simplex computes

• a basic solution (if it exists),
and

• a certificate of optimality.

v

Today we will investigate these
certificates using geometry.

Recap: The Geometry of an LP

In Module 2, we saw that
• The feasible region of an LP is

a polyhedron.

• Basic solutions correspond to
extreme points of this
polyhedron.

Question

When is an extreme point optimal?

Module 2 and strong duality told us
that Simplex computes

• a basic solution (if it exists),
and

• a certificate of optimality.

v

Today we will investigate these
certificates using geometry.

Revisiting Weak Duality

We can rewrite (P) using slack variables s:

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality

We can rewrite (P) using slack variables s:

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

Note:

• (x, s) feasible for (P’) −→ x feasible
for (P)

• x feasible for (P) −→ (x, b−Ax)
feasible for (P’)

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality

We can rewrite (P) using slack variables s:

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

Note:

• (x, s) feasible for (P’) −→ x feasible
for (P)

• x feasible for (P) −→ (x, b−Ax)
feasible for (P’)

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality

Suppose x̄ is feasible for (P), and ȳ is
feasible for (D) max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality

Suppose x̄ is feasible for (P), and ȳ is
feasible for (D)

−→ (x̄, b−Ax̄) feasible for (P’)

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality

Suppose x̄ is feasible for (P), and ȳ is
feasible for (D)

−→ (x̄, b−Ax̄︸ ︷︷ ︸
s̄

) feasible for (P’)

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality

Suppose x̄ is feasible for (P), and ȳ is
feasible for (D)

−→ (x̄, b−Ax̄︸ ︷︷ ︸
s̄

) feasible for (P’)

Recall the Weak Duality proof:

ȳT b = ȳT (Ax̄+ s̄)

= (ȳTA)x̄+ ȳT s̄

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality

Suppose x̄ is feasible for (P), and ȳ is
feasible for (D)

−→ (x̄, b−Ax̄︸ ︷︷ ︸
s̄

) feasible for (P’)

Recall the Weak Duality proof:

ȳT b = ȳT (Ax̄+ s̄)

= (ȳTA)x̄+ ȳT s̄

= cT x̄+ ȳT s̄

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality

Suppose x̄ is feasible for (P), and ȳ is
feasible for (D)

−→ (x̄, b−Ax̄︸ ︷︷ ︸
s̄

) feasible for (P’)

Recall the Weak Duality proof:

ȳT b = ȳT (Ax̄+ s̄)

= (ȳTA)x̄+ ȳT s̄

= cT x̄+ ȳT s̄

Strong Duality tells us that:

x̄, ȳ both optimal ⇐⇒ cT x̄ = ȳT b

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality

Suppose x̄ is feasible for (P), and ȳ is
feasible for (D)

−→ (x̄, b−Ax̄︸ ︷︷ ︸
s̄

) feasible for (P’)

Recall the Weak Duality proof:

ȳT b = ȳT (Ax̄+ s̄)

= (ȳTA)x̄+ ȳT s̄

= cT x̄+ ȳT s̄

Strong Duality tells us that:

x̄, ȳ both optimal ⇐⇒ cT x̄ = ȳT b

⇐⇒ ȳT s̄ = 0

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality

Recall the Weak Duality proof:

ȳT b = ȳT (Ax̄+ s̄)

= (ȳTA)x̄+ ȳT s̄

= cT x̄+ ȳT s̄

0 = ȳT s̄ =

m∑

i=1

ȳis̄i (?)

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality

Recall the Weak Duality proof:

ȳT b = ȳT (Ax̄+ s̄)

= (ȳTA)x̄+ ȳT s̄

= cT x̄+ ȳT s̄

0 = ȳT s̄ =

m∑

i=1

ȳis̄i (?)

By feasibility, ȳ ≥ 0 and s̄ ≥ 0

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality

Recall the Weak Duality proof:

ȳT b = ȳT (Ax̄+ s̄)

= (ȳTA)x̄+ ȳT s̄

= cT x̄+ ȳT s̄

0 = ȳT s̄ =

m∑

i=1

ȳis̄i (?)

By feasibility, ȳ ≥ 0 and s̄ ≥ 0 and hence

(?) holds if and only if ȳi = 0 or s̄i = 0,

for every 1 ≤ i ≤ m.

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality – Recap

Given: x̄ and ȳ feasible solutions for (P)
and (D)

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality – Recap

Given: x̄ and ȳ feasible solutions for (P)
and (D)

Define: s̄ = b−Ax̄

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality – Recap

Given: x̄ and ȳ feasible solutions for (P)
and (D)

Define: s̄ = b−Ax̄

Then:

x̄ and ȳ optimal ⇐⇒ ȳi = 0 or s̄i = 0

for all 1 ≤ i ≤ m.

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality – Recap

Given: x̄ and ȳ feasible solutions for (P)
and (D)

Define: s̄ = b−Ax̄

Then:

x̄ and ȳ optimal ⇐⇒ ȳi = 0 or s̄i = 0︸ ︷︷ ︸
(?)

for all 1 ≤ i ≤ m.

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality – Recap

Given: x̄ and ȳ feasible solutions for (P)
and (D)

Define: s̄ = b−Ax̄

Then:

x̄ and ȳ optimal ⇐⇒ ȳi = 0 or s̄i = 0︸ ︷︷ ︸
(?)

for all 1 ≤ i ≤ m. We can rephrase (?)
equivalently as

ȳi = 0 or ith constraint of (P) holds with
equality .

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Revisiting Weak Duality – Recap

Given: x̄ and ȳ feasible solutions for (P)
and (D)

Define: s̄ = b−Ax̄

Then:

x̄ and ȳ optimal ⇐⇒ ȳi = 0 or s̄i = 0︸ ︷︷ ︸
(?)

for all 1 ≤ i ≤ m. We can rephrase (?)
equivalently as

ȳi = 0 or ith constraint of (P) holds with
equality (is tight).

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Complementary Slackness –
Special Case

Let x̄ and ȳ be feasible for (P) and (D).

Then x̄ and ȳ are optimal if and only if

(i) ȳi = 0, or

(ii) the ith constraint of (P) is tight for x̄,

for every row index i.

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0

Complementary Slackness Conditions – Example

Consider the following LP:

max (5, 3, 5)x (P)

s.t.




1 2 −1
3 1 2
−1 1 1


x ≤




2
4
−1




Its dual is:

min (2, 4,−1)y (D)

s.t.




1 3 −1
2 1 1
−1 2 1


 y =




5
3
5




y ≥ 0

Claim

x̄ = (1,−1, 1)T and ȳ = (0, 2, 1)T

are optimal!

Complementary Slackness

Feasible solutions x̄ and ȳ for (P)
and (D) are optimal if and only if

ȳi = 0 or the ith primal constraint is
tight for x̄, for all row indices i.

It is easy to check if x̄ and ȳ are
feasible.

(i) ȳ1 = 0 or (1, 2,−1)x̄ = 2

(ii) ȳ2 = 0 or (3, 1, 2)x̄ = 4

(iii) ȳ3 = 0 or (−1, 1, 1)x̄ = −1

−→ x̄ and ȳ are optimal!

Complementary Slackness Conditions – Example

Consider the following LP:

max (5, 3, 5)x (P)

s.t.




1 2 −1
3 1 2
−1 1 1


x ≤




2
4
−1




Its dual is:

min (2, 4,−1)y (D)

s.t.




1 3 −1
2 1 1
−1 2 1


 y =




5
3
5




y ≥ 0

Claim

x̄ = (1,−1, 1)T and ȳ = (0, 2, 1)T

are optimal!

Complementary Slackness

Feasible solutions x̄ and ȳ for (P)
and (D) are optimal if and only if

ȳi = 0 or the ith primal constraint is
tight for x̄, for all row indices i.

It is easy to check if x̄ and ȳ are
feasible.

(i) ȳ1 = 0 or (1, 2,−1)x̄ = 2

(ii) ȳ2 = 0 or (3, 1, 2)x̄ = 4

(iii) ȳ3 = 0 or (−1, 1, 1)x̄ = −1

−→ x̄ and ȳ are optimal!

Complementary Slackness Conditions – Example

Consider the following LP:

max (5, 3, 5)x (P)

s.t.




1 2 −1
3 1 2
−1 1 1


x ≤




2
4
−1




Its dual is:

min (2, 4,−1)y (D)

s.t.




1 3 −1
2 1 1
−1 2 1


 y =




5
3
5




y ≥ 0

Claim

x̄ = (1,−1, 1)T and ȳ = (0, 2, 1)T

are optimal!

Complementary Slackness

Feasible solutions x̄ and ȳ for (P)
and (D) are optimal if and only if

ȳi = 0 or the ith primal constraint is
tight for x̄, for all row indices i.

It is easy to check if x̄ and ȳ are
feasible.

(i) ȳ1 = 0 or (1, 2,−1)x̄ = 2

(ii) ȳ2 = 0 or (3, 1, 2)x̄ = 4

(iii) ȳ3 = 0 or (−1, 1, 1)x̄ = −1

−→ x̄ and ȳ are optimal!

Complementary Slackness Conditions – Example

Consider the following LP:

max (5, 3, 5)x (P)

s.t.




1 2 −1
3 1 2
−1 1 1


x ≤




2
4
−1




Its dual is:

min (2, 4,−1)y (D)

s.t.




1 3 −1
2 1 1
−1 2 1


 y =




5
3
5




y ≥ 0

Claim

x̄ = (1,−1, 1)T and ȳ = (0, 2, 1)T

are optimal!

Complementary Slackness

Feasible solutions x̄ and ȳ for (P)
and (D) are optimal if and only if

ȳi = 0 or the ith primal constraint is
tight for x̄, for all row indices i.

It is easy to check if x̄ and ȳ are
feasible.

(i) ȳ1 = 0 or (1, 2,−1)x̄ = 2

(ii) ȳ2 = 0 or (3, 1, 2)x̄ = 4

(iii) ȳ3 = 0 or (−1, 1, 1)x̄ = −1

−→ x̄ and ȳ are optimal!

Complementary Slackness Conditions – Example

Consider the following LP:

max (5, 3, 5)x (P)

s.t.




1 2 −1
3 1 2
−1 1 1


x ≤




2
4
−1




Its dual is:

min (2, 4,−1)y (D)

s.t.




1 3 −1
2 1 1
−1 2 1


 y =




5
3
5




y ≥ 0

Claim

x̄ = (1,−1, 1)T and ȳ = (0, 2, 1)T

are optimal!

Complementary Slackness

Feasible solutions x̄ and ȳ for (P)
and (D) are optimal if and only if

ȳi = 0 or the ith primal constraint is
tight for x̄, for all row indices i.

It is easy to check if x̄ and ȳ are
feasible.

(i) ȳ1 = 0 or (1, 2,−1)x̄ = 2

(ii) ȳ2 = 0 or (3, 1, 2)x̄ = 4

(iii) ȳ3 = 0 or (−1, 1, 1)x̄ = −1

−→ x̄ and ȳ are optimal!

Complementary Slackness Conditions – Example

Consider the following LP:

max (5, 3, 5)x (P)

s.t.




1 2 −1
3 1 2
−1 1 1


x ≤




2
4
−1




Its dual is:

min (2, 4,−1)y (D)

s.t.




1 3 −1
2 1 1
−1 2 1


 y =




5
3
5




y ≥ 0

Claim

x̄ = (1,−1, 1)T and ȳ = (0, 2, 1)T

are optimal!

Complementary Slackness

Feasible solutions x̄ and ȳ for (P)
and (D) are optimal if and only if

ȳi = 0 or the ith primal constraint is
tight for x̄, for all row indices i.

It is easy to check if x̄ and ȳ are
feasible.

(i) ȳ1 = 0 or (1, 2,−1)x̄ = 2

(ii) ȳ2 = 0 or (3, 1, 2)x̄ = 4

(iii) ȳ3 = 0 or (−1, 1, 1)x̄ = −1

−→ x̄ and ȳ are optimal!

Complementary Slackness Conditions – Example

Consider the following LP:

max (5, 3, 5)x (P)

s.t.




1 2 −1
3 1 2
−1 1 1


x ≤




2
4
−1




Its dual is:

min (2, 4,−1)y (D)

s.t.




1 3 −1
2 1 1
−1 2 1


 y =




5
3
5




y ≥ 0

Claim

x̄ = (1,−1, 1)T and ȳ = (0, 2, 1)T

are optimal!

Complementary Slackness

Feasible solutions x̄ and ȳ for (P)
and (D) are optimal if and only if

ȳi = 0 or the ith primal constraint is
tight for x̄, for all row indices i.

It is easy to check if x̄ and ȳ are
feasible.

(i) ȳ1 = 0 or (1, 2,−1)x̄ = 2

(ii) ȳ2 = 0 or (3, 1, 2)x̄ = 4

(iii) ȳ3 = 0 or (−1, 1, 1)x̄ = −1

−→ x̄ and ȳ are optimal!

Complementary Slackness Conditions – Example

Consider the following LP:

max (5, 3, 5)x (P)

s.t.




1 2 −1
3 1 2
−1 1 1


x ≤




2
4
−1




Its dual is:

min (2, 4,−1)y (D)

s.t.




1 3 −1
2 1 1
−1 2 1


 y =




5
3
5




y ≥ 0

Claim

x̄ = (1,−1, 1)T and ȳ = (0, 2, 1)T

are optimal!

Complementary Slackness

Feasible solutions x̄ and ȳ for (P)
and (D) are optimal if and only if

ȳi = 0 or the ith primal constraint is
tight for x̄, for all row indices i.

It is easy to check if x̄ and ȳ are
feasible.

(i) ȳ1 = 0 or (1, 2,−1)x̄ = 2

(ii) ȳ2 = 0 or (3, 1, 2)x̄ = 4

(iii) ȳ3 = 0 or (−1, 1, 1)x̄ = −1

−→ x̄ and ȳ are optimal!

Complementary Slackness Conditions – Example

Consider the following LP:

max (5, 3, 5)x (P)

s.t.




1 2 −1
3 1 2
−1 1 1


x ≤




2
4
−1




Its dual is:

min (2, 4,−1)y (D)

s.t.




1 3 −1
2 1 1
−1 2 1


 y =




5
3
5




y ≥ 0

Claim

x̄ = (1,−1, 1)T and ȳ = (0, 2, 1)T

are optimal!

Complementary Slackness

Feasible solutions x̄ and ȳ for (P)
and (D) are optimal if and only if

ȳi = 0 or the ith primal constraint is
tight for x̄, for all row indices i.

It is easy to check if x̄ and ȳ are
feasible.

(i) ȳ1 = 0 or (1, 2,−1)x̄ = 2

(ii) ȳ2 = 0 or (3, 1, 2)x̄ = 4

(iii) ȳ3 = 0 or (−1, 1, 1)x̄ = −1

−→ x̄ and ȳ are optimal!

General Complementary Slackness

Suppose: (Pmax) and (Pmin) are a pair of primal and dual LPs
according to the above table

General Complementary Slackness

Suppose: (Pmax) and (Pmin) are a pair of primal and dual LPs
according to the above table, with feasible solutions x̄, and ȳ

General Complementary Slackness

Suppose: (Pmax) and (Pmin) are a pair of primal and dual LPs
according to the above table, with feasible solutions x̄, and ȳ

x̄ and ȳ satisfy the complementary slackness conditions if ...

for all variables xj of (Pmax):

(i) x̄j = 0, or

(ii) jth constraint of (Pmin) is
satisfied with equality for ȳ

General Complementary Slackness

Suppose: (Pmax) and (Pmin) are a pair of primal and dual LPs
according to the above table, with feasible solutions x̄, and ȳ

x̄ and ȳ satisfy the complementary slackness conditions if ...

for all variables xj of (Pmax):

(i) x̄j = 0, or

(ii) jth constraint of (Pmin) is
satisfied with equality for ȳ

for all variables yi of (Pmin):

(i) ȳi = 0, or

(ii) ith constraint of (Pmax) is
satisfied with equality for x̄

General Complementary Slackness

x̄ and ȳ satisfy the CS conditions if ...

for all variables xj of (Pmax):

(i) x̄j = 0, or

(ii) jth constraint of (Pmin) is
satisfied with equality for ȳ

for all variables yi of (Pmin):

(i) ȳi = 0, or

(ii) ith constraint of (Pmax) is
satisfied with equality for x̄

General Complementary Slackness

x̄ and ȳ satisfy the CS conditions if ...

for all variables xj of (Pmax):

(i) x̄j = 0, or

(ii) jth constraint of (Pmin) is
satisfied with equality for ȳ

for all variables yi of (Pmin):

(i) ȳi = 0, or

(ii) ith constraint of (Pmax) is
satisfied with equality for x̄

Note: The two or’s above are inclusive!

General Complementary Slackness

x̄ and ȳ satisfy the CS conditions if ...

for all variables xj of (Pmax):

(i) x̄j = 0, or

(ii) jth constraint of (Pmin) is
satisfied with equality for ȳ

for all variables yi of (Pmin):

(i) ȳi = 0, or

(ii) ith constraint of (Pmax) is
satisfied with equality for x̄

Note: The two or’s above are inclusive!

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let x̄ and ȳ
be feasible solutions. Then these solutions are optimal if and only if the
CS conditions hold.

General CS Conditions – Example

Consider the following LP...

max (−2,−1, 0)x (P)

s.t.

(
1 3 2
−1 4 2

)
≥
≤

(
5
7

)

x1 ≤ 0, x2 ≥ 0

General CS Conditions – Example

Consider the following LP...

max (−2,−1, 0)x (P)

s.t.

(
1 3 2
−1 4 2

)
≥
≤

(
5
7

)

x1 ≤ 0, x2 ≥ 0

... and its dual LP:

min (5, 7)y (D)

s.t.




1 −1
3 4
2 2


 y

≤
≥
=



−2
−1
0




y1 ≤ 0, y2 ≥ 0

General CS Conditions – Example

max (−2,−1, 0)x (P)

s.t.

(
1 3 2
−1 4 2

)
≥
≤

(
5
7

)

x1 ≤ 0, x2 ≥ 0

min (5, 7)y (D)

s.t.




1 −1
3 4
2 2


 y

≤
≥
=



−2
−1
0




y1 ≤ 0, y2 ≥ 0

Check: x̄ = (−1, 0, 3)T and ȳ = (−1, 1)T are feasible for (P) and (D).

General CS Conditions – Example

max (−2,−1, 0)x (P)

s.t.

(
1 3 2
−1 4 2

)
≥
≤

(
5
7

)

x1 ≤ 0, x2 ≥ 0

min (5, 7)y (D)

s.t.




1 −1
3 4
2 2


 y

≤
≥
=



−2
−1
0




y1 ≤ 0, y2 ≥ 0

Check: x̄ = (−1, 0, 3)T and ȳ = (−1, 1)T are feasible for (P) and (D).
Are they also optimal?

General CS Conditions – Example

max (−2,−1, 0)x (P)

s.t.

(
1 3 2
−1 4 2

)
≥
≤

(
5
7

)

x1 ≤ 0, x2 ≥ 0

min (5, 7)y (D)

s.t.




1 −1
3 4
2 2


 y

≤
≥
=



−2
−1
0




y1 ≤ 0, y2 ≥ 0

Check: x̄ = (−1, 0, 3)T and ȳ = (−1, 1)T are feasible for (P) and (D).
Are they also optimal?

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let x̄ and ȳ
be feasible solutions. Then these solutions are optimal if and only if the
CS conditions hold.

General CS Conditions – Example

max (−2,−1, 0)x (P)

s.t.

(
1 3 2
−1 4 2

)
≥
≤

(
5
7

)

x1 ≤ 0, x2 ≥ 0

min (5, 7)y (D)

s.t.




1 −1
3 4
2 2


 y

≤
≥
=



−2
−1
0




y1 ≤ 0, y2 ≥ 0

Claim

x̄ = (−1, 0, 3)T and ȳ = (−1, 1)T are optimal

Primal conditions:

(i) x̄1 = 0 or the first (D)
constraint is tight for ȳ.

(ii) x̄2 = 0 or the second (D)
constraint is tight for ȳ.

(iii) x̄3 = 0 or the third (D)
constraint is tight for ȳ.

General CS Conditions – Example

max (−2,−1, 0)x (P)

s.t.

(
1 3 2
−1 4 2

)
≥
≤

(
5
7

)

x1 ≤ 0, x2 ≥ 0

min (5, 7)y (D)

s.t.




1 −1
3 4
2 2


 y

≤
≥
=



−2
−1
0




y1 ≤ 0, y2 ≥ 0

Claim

x̄ = (−1, 0, 3)T and ȳ = (−1, 1)T are optimal

Primal conditions:

(i) x̄1 = 0 or the first (D)
constraint is tight for ȳ.

(ii) x̄2 = 0 or the second (D)
constraint is tight for ȳ.

(iii) x̄3 = 0 or the third (D)
constraint is tight for ȳ.

Dual conditions:

(i) ȳ1 = 0 or the first (P)
constraint is tight for x̄.

(ii) ȳ2 = 0 or the second (P)
constraint is tight for x̄.

Complementary Slackness – Geometry

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let x̄ and ȳ
be feasible solutions. Then these solutions are optimal if and only if the
CS conditions hold.

Will now see a geometric interpretation of this theorem!

Complementary Slackness – Geometry

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let x̄ and ȳ
be feasible solutions. Then these solutions are optimal if and only if the
CS conditions hold.

Will now see a geometric interpretation of this theorem!

But some basics first!

Geometry – Cones of Vectors

Definition
Let a(1), . . . , a(k) be vectors in Rn.
The cone generated by these vectors
is given by

C = {λ1a
(1)+λ2a

(2)+. . .+λka
(k) :

λ ≥ 0} a (1)
=

✓
2

�1

◆

a
(2) =

✓
3
1

◆

a
(3

) =

✓ 2
1

◆

x1

x2

1

3

�1

1 2

0

Geometry – Cones of Vectors

Definition
Let a(1), . . . , a(k) be vectors in Rn.
The cone generated by these vectors
is given by

C = {λ1a
(1)+λ2a

(2)+. . .+λka
(k) :

λ ≥ 0}

Example: The cone generated by
a(1), a(2) and a(3) is the blue-shaded
area.

a (1)
=

✓
2

�1

◆

a
(2) =

✓
3
1

◆

a
(3

) =

✓ 2
1

◆

x1

x2

1

3

�1

1 2

0

Geometry – Cone of Tight Constraints

Consider the following polyhedron:

P = {x ∈ R2 :



1 0
1 1
0 1




︸ ︷︷ ︸
A

x ≤




2
3
2




︸ ︷︷ ︸
b

}

Consider: x̄ = (2, 1)T

(i) x̄ ∈ P −→ Check!

(ii) Tight constraints:

row1(A)x̄ = b1

row2(A)x̄ = b2

x11 2

0

1

2

x2

x̄

(1)

(3)

(2)

Cone of tight constraints:

Cone generated by rows of tight
constraints

Geometry – Cone of Tight Constraints

Consider the following polyhedron:

P = {x ∈ R2 :



1 0
1 1
0 1




︸ ︷︷ ︸
A

x ≤




2
3
2




︸ ︷︷ ︸
b

}

Consider: x̄ = (2, 1)T

(i) x̄ ∈ P −→ Check!

(ii) Tight constraints:

row1(A)x̄ = b1

row2(A)x̄ = b2

x11 2

0

1

2

x2

x̄

(1)

(3)

(2)

Cone of tight constraints:

Cone generated by rows of tight
constraints

Geometry – Cone of Tight Constraints

Consider the following polyhedron:

P = {x ∈ R2 :



1 0
1 1
0 1




︸ ︷︷ ︸
A

x ≤




2
3
2




︸ ︷︷ ︸
b

}

Consider: x̄ = (2, 1)T

(i) x̄ ∈ P −→ Check!

(ii) Tight constraints:

row1(A)x̄ = b1

row2(A)x̄ = b2

x11 2

0

1

2

x2

x̄

(1)

(3)

(2)

Cone of tight constraints:

Cone generated by rows of tight
constraints

Geometry – Cone of Tight Constraints

Consider the following polyhedron:

P = {x ∈ R2 :



1 0
1 1
0 1




︸ ︷︷ ︸
A

x ≤




2
3
2




︸ ︷︷ ︸
b

}

Consider: x̄ = (2, 1)T

(i) x̄ ∈ P −→ Check!

(ii) Tight constraints:

row1(A)x̄ = b1

row2(A)x̄ = b2

x11 2

0

1

2

x2

x̄

(1)

(3)

(2)

Cone of tight constraints:

Cone generated by rows of tight
constraints

Geometry – Cone of Tight Constraints

Consider the following polyhedron:

P = {x ∈ R2 :



1 0
1 1
0 1




︸ ︷︷ ︸
A

x ≤




2
3
2




︸ ︷︷ ︸
b

}

Consider: x̄ = (2, 1)T

(i) x̄ ∈ P −→ Check!

(ii) Tight constraints:

row1(A)x̄ = b1 −→ (1, 0)x̄ = 2

row2(A)x̄ = b2 −→ (1, 1)x̄ = 3

x11 2

0

1

2

x2

x̄

(1)

(3)

(2)

Cone of tight constraints:

Cone generated by rows of tight
constraints

Geometry – Cone of Tight Constraints

Cone of tight constraints:

Cone generated by rows of tight con-
straints

Tight constraints:

(1, 0)x̄ = 2 (1)

(1, 1)x̄ = 3 (2)

Cone of tight constraints:

{λ1(1, 0)T + λ2(1, 1)T : λ1, λ2 ≥ 0}

Consider an LP of the form

max{cTx : Ax ≤ b}

and a feasible solution x̄.

x11 2

0

1

2

x2

x̄

(1)

(3)

(2)

The cone of tight constraints at
x̄ is the cone generated by the
rows of A corresponding to tight
constraints at x̄.

Geometry – Cone of Tight Constraints

Cone of tight constraints:

Cone generated by rows of tight con-
straints

Tight constraints:

(1, 0)x̄ = 2 (1)

(1, 1)x̄ = 3 (2)

Cone of tight constraints:

{λ1(1, 0)T + λ2(1, 1)T : λ1, λ2 ≥ 0}

Consider an LP of the form

max{cTx : Ax ≤ b}

and a feasible solution x̄.

x11 2

0

1

2

x2

x̄

(1)

(3)

(2)

The cone of tight constraints at
x̄ is the cone generated by the
rows of A corresponding to tight
constraints at x̄.

Geometry – Cone of Tight Constraints

Cone of tight constraints:

Cone generated by rows of tight con-
straints

Tight constraints:

(1, 0)x̄ = 2 (1)

(1, 1)x̄ = 3 (2)

Cone of tight constraints:

{λ1(1, 0)T + λ2(1, 1)T : λ1, λ2 ≥ 0}

Consider an LP of the form

max{cTx : Ax ≤ b}

and a feasible solution x̄.

x11 2

0

1

2

x2

x̄

(1)

(3)

(2)

The cone of tight constraints at
x̄ is the cone generated by the
rows of A corresponding to tight
constraints at x̄.

Geometry – Cone of Tight Constraints

Cone of tight constraints:

Cone generated by rows of tight con-
straints

Tight constraints:

(1, 0)x̄ = 2 (1)

(1, 1)x̄ = 3 (2)

Cone of tight constraints:

{λ1(1, 0)T + λ2(1, 1)T : λ1, λ2 ≥ 0}

Consider an LP of the form

max{cTx : Ax ≤ b}

and a feasible solution x̄.

x11 2

0

1

2

x2

x̄

(1)

(3)

(2)

The cone of tight constraints at
x̄ is the cone generated by the
rows of A corresponding to tight
constraints at x̄.

Geometry – Cone of Tight Constraints

Theorem

Let x̄ be a feasible solution to

max{cTx : Ax ≤ b}

Then x̄ is optimal if and only if c is
in the cone of tight constraints for x̄.

x11 2

0

1

2

x2

x̄

(1)

(3)

(2)

P = {x ∈ R2 :



1 0
1 1
0 1


x ≤




2
3
2


}

Geometry – Cone of Tight Constraints

Theorem

Let x̄ be a feasible solution to

max{cTx : Ax ≤ b}

Then x̄ is optimal if and only if c is
in the cone of tight constraints for x̄.

Example: Consider the LP

max{(3/2, 1/2)x : x ∈ P}

x11 2

0

1

2

x2

x̄

(1)

(3)

(2)

P = {x ∈ R2 :



1 0
1 1
0 1


x ≤




2
3
2


}

Geometry – Cone of Tight Constraints

Theorem

Let x̄ be a feasible solution to

max{cTx : Ax ≤ b}

Then x̄ is optimal if and only if c is
in the cone of tight constraints for x̄.

Example: Consider the LP

max{(3/2, 1/2)x : x ∈ P}

Tight constraints at x̄ = (2, 1)T :

(1, 0)x̄ = 2 (1)

(1, 1)x̄ = 3 (2)

x11 2

0

1

2

x2

x̄

(1)

(3)

(2)

P = {x ∈ R2 :



1 0
1 1
0 1


x ≤




2
3
2


}

Geometry – Cone of Tight Constraints

Example: Consider the LP

max{(3/2, 1/2)x : x ∈ P} (?)

Tight constraints at x̄ = (2, 1)T :

(1, 0)x̄ = 2 (1)

(1, 1)x̄ = 3 (2)

Note: (3/2, 1/2)T in cone of tight
constraints as
(

3/2
1/2

)
= 1 ·

(
1
0

)
+ 1/2 ·

(
1
1

)

x11 2

0

1

2

x2

x̄

(1)

(3)

(2)

P = {x ∈ R2 :



1 0
1 1
0 1


x ≤




2
3
2


}

Geometry – Cone of Tight Constraints

Example: Consider the LP

max{(3/2, 1/2)x : x ∈ P} (?)

Tight constraints at x̄ = (2, 1)T :

(1, 0)x̄ = 2 (1)

(1, 1)x̄ = 3 (2)

Note: (3/2, 1/2)T is in cone of tight
constraints as
(

3/2
1/2

)
= 1 ·

(
1
0

)
+ 1/2 ·

(
1
1

)

Therefore: x̄ is an optimal solution!

Theorem

Let x̄ be a feasible solution to

max{cTx : Ax ≤ b}

Then x̄ is optimal if and only if c is
in the cone of tight constraints for x̄.

Geometry – Cone of Tight Constraints

Example: Consider the LP

max{(3/2, 1/2)x : x ∈ P} (?)

Tight constraints at x̄ = (2, 1)T :

(1, 0)x̄ = 2 (1)

(1, 1)x̄ = 3 (2)

Note: (3/2, 1/2)T is in cone of tight
constraints as
(

3/2
1/2

)
= 1 ·

(
1
0

)
+ 1/2 ·

(
1
1

)

Therefore: x̄ is an optimal solution!

Theorem

Let x̄ be a feasible solution to

max{cTx : Ax ≤ b}

Then x̄ is optimal if and only if c is
in the cone of tight constraints for x̄.

Proving the “if” direction of the
above theorem amounts to

(i) finding a feasible solution ȳ to
the dual of (?), and

(ii) showing that x̄ and ȳ satisfy
the CS conditions!

Geometry – Cone of Tight Constraints

Example: Consider the LP

max{(3/2, 1/2)x : x ∈ P} (?)

Tight constraints at x̄ = (2, 1)T :

(1, 0)x̄ = 2 (1)

(1, 1)x̄ = 3 (2)

Note: (3/2, 1/2)T is in cone of tight
constraints as
(

3/2
1/2

)
= 1 ·

(
1
0

)
+ 1/2 ·

(
1
1

)

Therefore: x̄ is an optimal solution!

Theorem

Let x̄ be a feasible solution to

max{cTx : Ax ≤ b}

Then x̄ is optimal if and only if c is
in the cone of tight constraints for x̄.

Proving the “if” direction of the
above theorem amounts to

(i) finding a feasible solution ȳ to
the dual of (?), and

(ii) showing that x̄ and ȳ satisfy
the CS conditions!

The above theorem follows from CS
Theorem!

Geometric Optimality – Towards a Proof

If we write out the LP:

max (3/2, 1/2)x (?)

s.t.




1 0
1 1
0 1


x ≤




2
3
2




Geometric Optimality – Towards a Proof

If we write out the LP:

max (3/2, 1/2)x (?)

s.t.




1 0
1 1
0 1


x ≤




2
3
2




We can write the dual of (?) as:

min (2, 3, 2)y (♦)

s.t.

(
1 1 0
0 1 1

)
y =

(
3/2
1/2

)

y ≥ 0

Geometric Optimality – Towards a Proof

If we write out the LP:

max (3/2, 1/2)x (?)

s.t.




1 0
1 1
0 1


x ≤




2
3
2




We can write the dual of (?) as:

min (2, 3, 2)y (♦)

s.t.

(
1 1 0
0 1 1

)
y =

(
3/2
1/2

)

y ≥ 0

We know that:
(

3/2
1/2

)
= 1 ·

(
1
0

)
+ 1/2 ·

(
1
1

)

Geometric Optimality – Towards a Proof

If we write out the LP:

max (3/2, 1/2)x (?)

s.t.




1 0
1 1
0 1


x ≤




2
3
2




We can write the dual of (?) as:

min (2, 3, 2)y (♦)

s.t.

(
1 1 0
0 1 1

)
y =

(
3/2
1/2

)

y ≥ 0

We know that:
(

3/2
1/2

)
= 1 ·

(
1
0

)
+ 1/2 ·

(
1
1

)

Hence: ȳ = (1, 1/2, 0)T is feasible
for (♦).

Geometric Optimality – Towards a Proof

If we write out the LP:

max (3/2, 1/2)x (?)

s.t.




1 0
1 1
0 1


x ≤




2
3
2




We can write the dual of (?) as:

min (2, 3, 2)y (♦)

s.t.

(
1 1 0
0 1 1

)
y =

(
3/2
1/2

)

y ≥ 0

We know that:
(

3/2
1/2

)
= 1 ·

(
1
0

)
+ 1/2 ·

(
1
1

)

Hence: ȳ = (1, 1/2, 0)T is feasible
for (♦).

Also: ȳi > 0 only if the constraint i
is tight at x̄.

Geometric Optimality – Towards a Proof

If we write out the LP:

max (3/2, 1/2)x (?)

s.t.




1 0
1 1
0 1


x ≤




2
3
2




We can write the dual of (?) as:

min (2, 3, 2)y (♦)

s.t.

(
1 1 0
0 1 1

)
y =

(
3/2
1/2

)

y ≥ 0

We know that:
(

3/2
1/2

)
= 1 ·

(
1
0

)
+ 1/2 ·

(
1
1

)

Hence: ȳ = (1, 1/2, 0)T is feasible
for (♦).

Also: ȳi > 0 only if the constraint i
is tight at x̄.
−→ Dual CS Conditions hold!

Geometric Optimality – Towards a Proof

If we write out the LP:

max (3/2, 1/2)x (?)

s.t.




1 0
1 1
0 1


x ≤




2
3
2




We can write the dual of (?) as:

min (2, 3, 2)y (♦)

s.t.

(
1 1 0
0 1 1

)
y =

(
3/2
1/2

)

y ≥ 0

We know that:
(

3/2
1/2

)
= 1 ·

(
1
0

)
+ 1/2 ·

(
1
1

)

Hence: ȳ = (1, 1/2, 0)T is feasible
for (♦).

Also: ȳi > 0 only if the constraint i
is tight at x̄.
−→ Dual CS Conditions hold!

How about primal CS conditions?

Geometric Optimality – Towards a Proof

If we write out the LP:

max (3/2, 1/2)x (?)

s.t.




1 0
1 1
0 1


x ≤




2
3
2




We can write the dual of (?) as:

min (2, 3, 2)y (♦)

s.t.

(
1 1 0
0 1 1

)
y =

(
3/2
1/2

)

y ≥ 0

We know that:
(

3/2
1/2

)
= 1 ·

(
1
0

)
+ 1/2 ·

(
1
1

)

Hence: ȳ = (1, 1/2, 0)T is feasible
for (♦).

Also: ȳi > 0 only if the constraint i
is tight at x̄.
−→ Dual CS Conditions hold!

How about primal CS conditions?
−→ they always hold as all
constraints in the dual are equality
constraints!

Geometric Optimality – Towards a Proof

If we write out the LP:

max (3/2, 1/2)x (?)

s.t.




1 0
1 1
0 1


x ≤




2
3
2




We can write the dual of (?) as:

min (2, 3, 2)y (♦)

s.t.

(
1 1 0
0 1 1

)
y =

(
3/2
1/2

)

y ≥ 0

We know that:
(

3/2
1/2

)
= 1 ·

(
1
0

)
+ 1/2 ·

(
1
1

)

Hence: ȳ = (1, 1/2, 0)T is feasible
for (♦).

Also: ȳi > 0 only if the constraint i
is tight at x̄.
−→ Dual CS Conditions hold!

How about primal CS conditions?
−→ they always hold as all
constraints in the dual are equality
constraints!

CS Theorem −→ (x̄, ȳ) optimal!

Suppose x̄ is a solution to (P), and
let J(x̄) be the indices of tight
constraints for x̄.

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

(x, y) satisfy CS Conditions if for all
variables yi of (D):

yi = 0 or rowi(A)x = bi (?)

Suppose x̄ is a solution to (P), and
let J(x̄) be the indices of tight
constraints for x̄. i.e.,

rowi(A)x̄ = bi

for i ∈ J(x̄) and

rowi(A)x̄ < bi

for i 6∈ J(x̄).

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

(x, y) satisfy CS Conditions if for all
variables yi of (D):

yi = 0 or rowi(A)x = bi (?)

Suppose x̄ is a solution to (P), and
let J(x̄) be the indices of tight
constraints for x̄. i.e.,

rowi(A)x̄ = bi

for i ∈ J(x̄) and

rowi(A)x̄ < bi

for i 6∈ J(x̄).

Suppose c is in the cone of tight
constraints at x̄

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

(x, y) satisfy CS Conditions if for all
variables yi of (D):

yi = 0 or rowi(A)x = bi (?)

Suppose x̄ is a solution to (P), and
let J(x̄) be the indices of tight
constraints for x̄. i.e.,

rowi(A)x̄ = bi

for i ∈ J(x̄) and

rowi(A)x̄ < bi

for i 6∈ J(x̄).

Suppose c is in the cone of tight
constraints at x̄, and thus

c =
∑

i∈J(x̄)

λirowi(A)T

for some λ ≥ 0.

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

(x, y) satisfy CS Conditions if for all
variables yi of (D):

yi = 0 or rowi(A)x = bi (?)

Suppose c is in the cone of tight
constraints at x̄, and thus for some
λ ≥ 0:

c =
∑

i∈J(x̄)

λirowi(A)T

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

(x, y) satisfy CS Conditions if for all
variables yi of (D):

yi = 0 or rowi(A)x = bi (?)

Suppose c is in the cone of tight
constraints at x̄, and thus for some
λ ≥ 0:

c =
∑

i∈J(x̄)

λirowi(A)T

= AT ȳ

Where we define:

ȳi =

{
λi : i ∈ J(x̄)

0 : otherwise

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

(x, y) satisfy CS Conditions if for all
variables yi of (D):

yi = 0 or rowi(A)x = bi (?)

Suppose c is in the cone of tight
constraints at x̄, and thus for some
λ ≥ 0:

c =
∑

i∈J(x̄)

λirowi(A)T

= AT ȳ

Where we define:

ȳi =

{
λi : i ∈ J(x̄)

0 : otherwise

Since λ ≥ 0: ȳ is feasible for (D)!

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

(x, y) satisfy CS Conditions if for all
variables yi of (D):

yi = 0 or rowi(A)x = bi (?)

Suppose c is in the cone of tight
constraints at x̄, and thus for some
λ ≥ 0:

c =
∑

i∈J(x̄)

λirowi(A)T

= AT ȳ

Where we define:

ȳi =

{
λi : i ∈ J(x̄)

0 : otherwise

Since λ ≥ 0: ȳ is feasible for (D)!

Also note: ȳi > 0 only if
rowi(A)x̄ = bi

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

(x, y) satisfy CS Conditions if for all
variables yi of (D):

yi = 0 or rowi(A)x = bi (?)

Suppose c is in the cone of tight
constraints at x̄, and thus for some
λ ≥ 0:

c =
∑

i∈J(x̄)

λirowi(A)T

= AT ȳ

Where we define:

ȳi =

{
λi : i ∈ J(x̄)

0 : otherwise

Since λ ≥ 0: ȳ is feasible for (D)!

Also note: ȳi > 0 only if
rowi(A)x̄ = bi
−→ CS conditions (?) hold!

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

(x, y) satisfy CS Conditions if for all
variables yi of (D):

yi = 0 or rowi(A)x = bi (?)

Suppose c is in the cone of tight
constraints at x̄, and thus for some
λ ≥ 0:

c =
∑

i∈J(x̄)

λirowi(A)T

= AT ȳ

Where we define:

ȳi =

{
λi : i ∈ J(x̄)

0 : otherwise

Since λ ≥ 0: ȳ is feasible for (D)!

Also note: ȳi > 0 only if
rowi(A)x̄ = bi
−→ CS conditions (?) hold!

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

(x, y) satisfy CS Conditions if for all
variables yi of (D):

yi = 0 or rowi(A)x = bi (?)

Hence: (x̄, ȳ) are optimal!

Wrapping up...

We almost proved:

Theorem

Let x̄ be a feasible solution to

max{cTx : Ax ≤ b}

Then x̄ is optimal if and only if c is in the cone of tight constraints for x̄.

Wrapping up...

We almost proved:

Theorem

Let x̄ be a feasible solution to

max{cTx : Ax ≤ b}

Then x̄ is optimal if and only if c is in the cone of tight constraints for x̄.

Missing: x̄ is optimal −→ c is in the cone of tight constraints

Wrapping up...

We almost proved:

Theorem

Let x̄ be a feasible solution to

max{cTx : Ax ≤ b}

Then x̄ is optimal if and only if c is in the cone of tight constraints for x̄.

Missing: x̄ is optimal −→ c is in the cone of tight constraints

CS Theorem −→ there is a feasible dual solution ȳ that, together with x̄,
satisfies CS conditions.

Wrapping up...

We almost proved:

Theorem

Let x̄ be a feasible solution to

max{cTx : Ax ≤ b}

Then x̄ is optimal if and only if c is in the cone of tight constraints for x̄.

Missing: x̄ is optimal −→ c is in the cone of tight constraints

CS Theorem −→ there is a feasible dual solution ȳ that, together with x̄,
satisfies CS conditions.

We can use CS conditions and ȳ to show that c lies in cone of tight
constraints for x̄. This is an exercise!

Recap

Given a feasible solution x̄ to

max{cTx : Ax ≤ b}

x̄ is optimal if and only if c is in the
cone of tight constraints for x̄.

x11 2

0

1

2

x2

x̄

(1)

(3)

(2)

max (3/2, 1/2)x (P)

s.t.




1 0
1 1
0 1


x ≤




2
3
2




Recap

Given a feasible solution x̄ to

max{cTx : Ax ≤ b}

x̄ is optimal if and only if c is in the
cone of tight constraints for x̄.

This provides a nice geometric view
of optimality certificates

x11 2

0

1

2

x2

x̄

(1)

(3)

(2)

max (3/2, 1/2)x (P)

s.t.




1 0
1 1
0 1


x ≤




2
3
2




CO 250: Introduction to Optimization
Module 5: Integer Programs (IP versus LP)

LP versus IP

Linear programming Integer programming

Can solve very large instances

Algorithms exist that are
guaranteed to be fast

Short certificate of
infeasibility (Farka’s Lemma)

Short certificate of
optimality (Strong Duality)

The only possible outcomes are
infeasible, unbounded, r optimal

LP versus IP

Linear programming Integer programming

Can solve very large instances

Algorithms exist that are
guaranteed to be fast

Short certificate of
infeasibility (Farka’s Lemma)

Short certificate of
optimality (Strong Duality)

The only possible outcomes are
infeasible, unbounded, r optimal

LP versus IP

Linear programming Integer programming

Can solve very large instances

Algorithms exist that are
guaranteed to be fast

Short certificate of
infeasibility (Farka’s Lemma)

Short certificate of
optimality (Strong Duality)

The only possible outcomes are
infeasible, unbounded, r optimal

LP versus IP

Linear programming Integer programming

Can solve very large instances

Algorithms exist that are
guaranteed to be fast

Short certificate of
infeasibility (Farka’s Lemma)

Short certificate of
optimality (Strong Duality)

The only possible outcomes are
infeasible, unbounded, r optimal

LP versus IP

Linear programming Integer programming

Can solve very large instances

Algorithms exist that are
guaranteed to be fast

Short certificate of
infeasibility (Farka’s Lemma)

Short certificate of
optimality (Strong Duality)

The only possible outcomes are
infeasible, unbounded, r optimal

LP versus IP

Linear programming Integer programming

Can solve very large instances

Algorithms exist that are
guaranteed to be fast

Short certificate of
infeasibility (Farka’s Lemma)

Short certificate of
optimality (Strong Duality)

The only possible outcomes are
infeasible, unbounded, or optimal

LP versus IP

Linear programming Integer programming

Can solve very large instances Some small instances cannot be solved

Algorithms exist that are
guaranteed to be fast

Short certificate of
infeasibility (Farka’s Lemma)

Short certificate of
optimality (Strong Duality)

The only possible outcomes are
infeasible, unbounded, or optimal

LP versus IP

Linear programming Integer programming

Can solve very large instances Some small instances cannot be solved

Algorithms exist that are No fast algorithm exists
guaranteed to be fast

Short certificate of
infeasibility (Farka’s Lemma)

Short certificate of
optimality (Strong Duality)

The only possible outcomes are
infeasible, unbounded, or optimal

Remark

We cannot PROVE an algorithm that is guaranteed to be fast does not
exist, but we can show that it is “highly unlikely”.

LP versus IP

Linear programming Integer programming

Can solve very large instances Some small instances cannot be solved

Algorithms exist that are No fast algorithm exists
guaranteed to be fast

Short certificate of Does not always exist
infeasibility (Farka’s Lemma)

Short certificate of
optimality (Strong Duality)

The only possible outcomes are
infeasible, unbounded, or optimal

Remark

We cannot PROVE that sometimes there is no short certificate of
infeasibility, but we can show that it is “highly unlikely”.

LP versus IP

Linear programming Integer programming

Can solve very large instances Some small instances cannot be solved

Algorithms exist that are No fast algorithm exists
guaranteed to be fast

Short certificate of Does not always exist
infeasibility (Farka’s Lemma)

Short certificate of Does not always exist
optimality (Strong Duality)

The only possible outcomes are:
infeasible, unbounded, or optimal

Remark

We cannot PROVE that sometimes there is no short certificate of
optimality, but we can show that it is “highly unlikely”.

LP versus IP

Linear programming Integer programming

Can solve very large instances Some small instances cannot be solved

Algorithms exist that are No fast algorithm exists
guaranteed to be fast

Short certificate of Does not always exist
infeasibility (Farka’s Lemma)

Short certificate of Does not always exist
optimality (Strong Duality)

The only possible outcomes are Can have other outcomes
infeasible, unbounded, or optimal

Let us look at an example...

LP versus IP

Linear programming Integer programming

Can solve very large instances Some small instances cannot be solved

Algorithms exist that are No fast algorithm exists
guaranteed to be fast

Short certificate of Does not always exist
infeasibility (Farka’s Lemma)

Short certificate of Does not always exist
optimality (Strong Duality)

The only possible outcomes are Can have other outcomes
infeasible, unbounded, or optimal

Let us look at an example...

A Bad Example

Proposition

The following IP,

max x1 −
√

x2

s.t.

x1 ≤
√

x2

x1, x2 ≥
x1, x2 integer

is feasible, bounded, and has no optimal solution.

• It is feasible. X

• is an upper bound. X

• It has no optimal solution. ???

A Bad Example

Proposition

The following IP,

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

is feasible, bounded, and has no optimal solution.

• It is feasible. X

• is an upper bound. X

• It has no optimal solution. ???

A Bad Example

Proposition

The following IP,

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

is feasible, bounded, and has no optimal solution.

• It is feasible.

X

• is an upper bound. X

• It has no optimal solution. ???

A Bad Example

Proposition

The following IP,

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

is feasible, bounded, and has no optimal solution.

• It is feasible. X

• is an upper bound. X

• It has no optimal solution. ???

A Bad Example

Proposition

The following IP,

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

is feasible, bounded, and has no optimal solution.

• It is feasible. X

• 0 is an upper bound.

X

• It has no optimal solution. ???

A Bad Example

Proposition

The following IP,

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

is feasible, bounded, and has no optimal solution.

• It is feasible. X

• 0 is an upper bound. X

• It has no optimal solution. ???

A Bad Example

Proposition

The following IP,

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

is feasible, bounded, and has no optimal solution.

• It is feasible. X

• 0 is an upper bound. X

• It has no optimal solution.

???

A Bad Example

Proposition

The following IP,

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

is feasible, bounded, and has no optimal solution.

• It is feasible. X

• 0 is an upper bound. X

• It has no optimal solution. ???

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= x1 + x2 x′

2
= x1 + x2

We will show:

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

contradiction !!!

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2.

Let

x′
1
= x1 + x2 x′

2
= x1 + x2

We will show:

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

contradiction !!!

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

We will show:

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

contradiction !!!

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

We will show:

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

contradiction !!!

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

We will show:

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

contradiction !!!

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

We will show:

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

contradiction !!!

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

We will show:

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

contradiction !!!

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= x1 + x2 ≥ and x′

2
= x1 + x2 ≥ X

x′
1

?

≤
√

x′
2

x1 + x2

?

≤
√

(x1 + x2) =
√

x1 +
√

x2

x1(2−
√
2)

?

≤ (2
√

− 2)x2

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
x2 X

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√

x′
2

x1 + x2

?

≤
√

(x1 + x2) =
√

x1 +
√

x2

x1(2−
√
2)

?

≤ (2
√

− 2)x2

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
x2 X

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√
2x′

2

x1 + x2

?

≤
√

(x1 + x2) =
√

x1 +
√

x2

x1(2−
√
2)

?

≤ (2
√

− 2)x2

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
x2 X

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√
2x′

2
⇐⇒

2x1 + 2x2

?

≤
√
2 (x1 + 2x2)

=
√

x1 +
√

x2

x1(2−
√
2)

?

≤ (2
√

− 2)x2

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
x2 X

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√
2x′

2
⇐⇒

2x1 + 2x2

?

≤
√
2 (x1 + 2x2) =

√
2x1 + 2

√
2x2

x1(2−
√
2)

?

≤ (2
√

− 2)x2

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
x2 X

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√
2x′

2
⇐⇒

2x1 + 2x2

?

≤
√
2 (x1 + 2x2) =

√
2x1 + 2

√
2x2 ⇐⇒

x1(2−
√
2)

?

≤ (2
√
2− 2)x2

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
x2 X

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√
2x′

2
⇐⇒

2x1 + 2x2

?

≤
√
2 (x1 + 2x2) =

√
2x1 + 2

√
2x2 ⇐⇒

x1(2−
√
2)

?

≤ (2
√
2− 2)x2 ⇐⇒

x1

?

≤ 2
√
2−2

2−
√
2
x2

=
√

x2 X

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√
2x′

2
⇐⇒

2x1 + 2x2

?

≤
√
2 (x1 + 2x2) =

√
2x1 + 2

√
2x2 ⇐⇒

x1(2−
√
2)

?

≤ (2
√
2− 2)x2 ⇐⇒

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
2x2

X

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Proof

x′
1
= 2x1 + 2x2 ≥ 1 and x′

2
= x1 + 2x2 ≥ 1 X

x′
1

?

≤
√
2x′

2
⇐⇒

2x1 + 2x2

?

≤
√
2 (x1 + 2x2) =

√
2x1 + 2

√
2x2 ⇐⇒

x1(2−
√
2)

?

≤ (2
√
2− 2)x2 ⇐⇒

x1

?

≤ 2
√
2−2

2−
√
2
x2 =

√
2x2 X

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
, x′

2
has larger value than x1, x2.

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
−
√
2x′

2
> x1 −

√
2x2.

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
−
√
2x′

2
> x1 −

√
2x2.

Proof

(x1 + x2)−
√
2(x1 + x2)

√ ?

> x1 −
√

x2

Simplifying (takes a little w rk), we obtain√
x2

?

> x1

• ≥ since x1, x2 are feasible for (IP)

• > otherwise
√

= x1

x2

but
√

is not a rational number

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
−
√
2x′

2
> x1 −

√
2x2.

Proof

(2x1 + 2x2)−
√
2(x1 + 2x2)

√
2

?

> x1 −
√
2x2

Simplifying (takes a little w rk), we obtain√
x2

?

> x1

• ≥ since x1, x2 are feasible for (IP)

• > otherwise
√

= x1

x2

but
√

is not a rational number

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
−
√
2x′

2
> x1 −

√
2x2.

Proof

(2x1 + 2x2)−
√
2(x1 + 2x2)

√
2

?

> x1 −
√
2x2

Simplifying (takes a little work), we obtain

√
x2

?

> x1

• ≥ since x1, x2 are feasible for (IP)

• > otherwise
√

= x1

x2

but
√

is not a rational number

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
−
√
2x′

2
> x1 −

√
2x2.

Proof

(2x1 + 2x2)−
√
2(x1 + 2x2)

√
2

?

> x1 −
√
2x2

Simplifying (takes a little work), we obtain√
2x2

?

> x1

• ≥ since x1, x2 are feasible for (IP)

• > otherwise
√

= x1

x2

but
√

is not a rational number

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
−
√
2x′

2
> x1 −

√
2x2.

Proof

(2x1 + 2x2)−
√
2(x1 + 2x2)

√
2

?

> x1 −
√
2x2

Simplifying (takes a little work), we obtain√
2x2

?

> x1

• ≥ since x1, x2 are feasible for (IP)

• > otherwise
√

= x1

x2

but
√

is not a rational number

max x1 −
√
2x2

s.t.

x1 ≤
√
2x2

x1, x2 ≥ 1

x1, x2 integer

No optimal solution

Suppose, for a contradiction, there exists optimal x1, x2. Let

x′
1
= 2x1 + 2x2 x′

2
= x1 + 2x2

Claim 1. x′
1
, x′

2
are feasible.

Claim 2. x′
1
−
√
2x′

2
> x1 −

√
2x2.

Proof

(2x1 + 2x2)−
√
2(x1 + 2x2)

√
2

?

> x1 −
√
2x2

Simplifying (takes a little work), we obtain√
2x2

?

> x1

• ≥ since x1, x2 are feasible for (IP)

• > otherwise
√
2 = x1

x2

but
√
2 is not a rational number

Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as p wefull.

Go d News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.

Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as p wefull.

Go d News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.

Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as p wefull.

Go d News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.

Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as p wefull.

Go d News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.

Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Go d News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.

Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.

Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.

Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.

Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.

Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.

Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.

Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.

Bad News/Good News

Bad News:

• IPs are hard to solve.

• Theory for IPs is harder than for LPs.

• Results are not as powefull.

Good News:

• IPs can formulate a huge number of practical problems.

• Commercial codes solve many of these problems routinely.

• Some of the theory developed for LPs extends to IPs.

This lecture will show:

Integer Programming can, in principle, be reduced to Linear Programming.

Remark

This will NOT give us a practical procedure to solve IPs,

but it will suggest a strategy.

Definition

Let C be a subset of ℜn.

The convex hull of C is the smallest convex set that contains C.

Convex hull of C

Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

Convex hull of C

Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

x2

x11 2 3

a

b

c

0

1

2

C = {a, b, c}

Convex hull of C

Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

x2

x11 2 3

a

b

c

0

1

2

C = {a, b, c}

Convex hull of C

Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

Convex hull of C

C

Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

Convex hull of C

C

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

The notion of a convex hull is well defined.

Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

Convex hull of C

C

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C?

YES

The notion of a convex hull is well defined.

Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

Convex hull of C

C

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

The notion of a convex hull is well defined.

Definition

Let C be a subset of ℜn.
The convex hull of C is the smallest convex set that contains C.

Convex hull of C

C

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

The notion of a convex hull is well defined.

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 = H2

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 = H2

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 = H2

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 = H2

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 = H2

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

C

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

C

H1

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

H2C

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

H1

H2C

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

H2C

H1

• C ⊆ H1 ∩H2,

• H1 ∩H2 is convex

However, H1∩H2 is smaller than bothH1 andH2. This is a contradiction.

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

H2C

H1

• C ⊆ H1 ∩H2,

• H1 ∩H2 is convex

However, H1∩H2 is smaller than bothH1 andH2. This is a contradiction.

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

H2C

H1

• C ⊆ H1 ∩H2,

• H1 ∩H2 is convex

However, H1∩H2 is smaller than bothH1 andH2. This is a contradiction.

Question

Given C ⊆ ℜn, is there a unique smallest convex set containing C? YES

Why?

Suppose, for a contradiction, there exists:

• H1 smallest convex set containing C

• H2 smallest convex set containing C

• H1 6= H2

H2C

H1

• C ⊆ H1 ∩H2,

• H1 ∩H2 is convex

However, H1∩H2 is smaller than bothH1 andH2. This is a contradiction.

Convex Hulls and Integer Programs

P =







(

x1

x2

)

:





−1 0
1 −1
−1 −3





(

x1

x2

)

≤





−3/2
5/2
−3





(1)
(2)
(3)







.

Convex Hulls and Integer Programs

P =







(

x1

x2

)

:





−1 0
1 −1
−1 −3





(

x1

x2

)

≤





−3/2
5/2
−3





(1)
(2)
(3)







.

Convex Hulls and Integer Programs

P =







(

x1

x2

)

:





−1 0
1 −1
−1 −3





(

x1

x2

)

≤





−3/2
5/2
−3





(1)
(2)
(3)







.

x2

x11 2 30

1

2

(1)

(2)

(3)

3

4

4

P

Convex Hulls and Integer Programs

P =







(

x1

x2

)

:





−1 0
1 −1
−1 −3





(

x1

x2

)

≤





−3/2
5/2
−3





(1)
(2)
(3)







.

x2

x11 2 30

1

2

(1)

(2)

(3)

3

4

4

P

Integer points in P

Convex Hulls and Integer Programs

P =







(

x1

x2

)

:





−1 0
1 −1
−1 −3





(

x1

x2

)

≤





−3/2
5/2
−3





(1)
(2)
(3)







.

x2

x11 2 30

1

2

(1)

(2)

(3)

(a) (b)

(c)

Q
3

4

4

P

Q convex hull of
integer points in P

Q =







(

x1

x2

)

:





−1 0
1 −1
0 −1





(

x1

x2

)

≤





−2
2
−1





(a)
(b)
(c)







. Polyhedron

Convex Hulls and Integer Programs

P =







(

x1

x2

)

:





−1 0
1 −1
−1 −3





(

x1

x2

)

≤





−3/2
5/2
−3





(1)
(2)
(3)







.

x2

x11 2 30

1

2

(1)

(2)

(3)

(a) (b)

(c)

Q
3

4

4

P

Q convex hull of
integer points in P

Q =







(

x1

x2

)

:





−1 0
1 −1
0 −1





(

x1

x2

)

≤





−2
2
−1





(a)
(b)
(c)







.

Polyhedron

Convex Hulls and Integer Programs

P =







(

x1

x2

)

:





−1 0
1 −1
−1 −3





(

x1

x2

)

≤





−3/2
5/2
−3





(1)
(2)
(3)







.

x2

x11 2 30

1

2

(1)

(2)

(3)

(a) (b)

(c)

Q
3

4

4

P

Q convex hull of
integer points in P

Q =







(

x1

x2

)

:





−1 0
1 −1
0 −1





(

x1

x2

)

≤





−2
2
−1





(a)
(b)
(c)







. Polyhedron

Meyer’s Theorem

Consider P = {x : Ax ≤ b} where A, b are rational.
Then, the convex hull of all integer points in P is a polyhedron.

(We’ll omit the proof)

Remark

The condition that all entries of and b are rational numbers cannot be
excluded from the hypothesis.

Example

Consider

=

{(

x1

x2

)

: x1 ≤
√

x2, x1, x2 ≥ .

The convex hull of all integer points in is NOT a polyhedron.

Goal: Use Meyer’s the rem to reduce the problem of solving
Integer Programs, to the problem of solving Linear Program.

Meyer’s Theorem

Consider P = {x : Ax ≤ b} where A, b are rational.
Then, the convex hull of all integer points in P is a polyhedron.

(We’ll omit the proof)

Remark

The condition that all entries of and b are rational numbers cannot be
excluded from the hypothesis.

Example

Consider

=

{(

x1

x2

)

: x1 ≤
√

x2, x1, x2 ≥ .

The convex hull of all integer points in is NOT a polyhedron.

Goal: Use Meyer’s the rem to reduce the problem of solving
Integer Programs, to the problem of solving Linear Program.

Meyer’s Theorem

Consider P = {x : Ax ≤ b} where A, b are rational.
Then, the convex hull of all integer points in P is a polyhedron.

(We’ll omit the proof)

Remark

The condition that all entries of A and b are rational numbers cannot be
excluded from the hypothesis.

Example

Consider

=

{(

x1

x2

)

: x1 ≤
√

x2, x1, x2 ≥ .

The convex hull of all integer points in is NOT a polyhedron.

Goal: Use Meyer’s the rem to reduce the problem of solving
Integer Programs, to the problem of solving Linear Program.

Meyer’s Theorem

Consider P = {x : Ax ≤ b} where A, b are rational.
Then, the convex hull of all integer points in P is a polyhedron.

(We’ll omit the proof)

Remark

The condition that all entries of A and b are rational numbers cannot be
excluded from the hypothesis.

Example

Consider

P =

{(

x1

x2

)

: x1 ≤
√
2x2, x1, x2 ≥ 1

}

.

The convex hull of all integer points in is NOT a polyhedron.

Goal: Use Meyer’s the rem to reduce the problem of solving
Integer Programs, to the problem of solving Linear Program.

Meyer’s Theorem

Consider P = {x : Ax ≤ b} where A, b are rational.
Then, the convex hull of all integer points in P is a polyhedron.

(We’ll omit the proof)

Remark

The condition that all entries of A and b are rational numbers cannot be
excluded from the hypothesis.

Example

Consider

P =

{(

x1

x2

)

: x1 ≤
√
2x2, x1, x2 ≥ 1

}

.

The convex hull of all integer points in P is NOT a polyhedron.

Goal: Use Meyer’s the rem to reduce the problem of solving
Integer Programs, to the problem of solving Linear Program.

Meyer’s Theorem

Consider P = {x : Ax ≤ b} where A, b are rational.
Then, the convex hull of all integer points in P is a polyhedron.

(We’ll omit the proof)

Remark

The condition that all entries of A and b are rational numbers cannot be
excluded from the hypothesis.

Example

Consider

P =

{(

x1

x2

)

: x1 ≤
√
2x2, x1, x2 ≥ 1

}

.

The convex hull of all integer points in P is NOT a polyhedron.

Goal: Use Meyer’s theorem to reduce the problem of solving
Integer Programs, to the problem of solving Linear Program.

Let A, b be rational.

max{c⊤x : Ax ≤ b, x integer}. (IP)

The convex hull of the feasible sol. of (IP) is a polyhedron x : ′x ≤ b′ .

max c⊤x : ′x ≤ b′ (LP)

Theorem

(IP) is infeasible if and only if (LP) is infeasible,
(IP) is unbounded if and only if (LP) is unbounded,
an optimal solution to (IP) is an optimal solution to (LP), and
an extreme optimal solution to (LP) is an optimal solution to (IP).

(We’ll omit the proofs)

Conceptual way of solving (IP):

Step 1. Compute ′, b′.

Step 2. Use Simplex to find an extreme optimal solution to (LP).

Let A, b be rational.

max{c⊤x : Ax ≤ b, x integer}. (IP)

The convex hull of the feasible sol. of (IP) is a polyhedron {x : A′x ≤ b′} .

max c⊤x : ′x ≤ b′ (LP)

Theorem

(IP) is infeasible if and only if (LP) is infeasible,
(IP) is unbounded if and only if (LP) is unbounded,
an optimal solution to (IP) is an optimal solution to (LP), and
an extreme optimal solution to (LP) is an optimal solution to (IP).

(We’ll omit the proofs)

Conceptual way of solving (IP):

Step 1. Compute ′, b′.

Step 2. Use Simplex to find an extreme optimal solution to (LP).

Let A, b be rational.

max{c⊤x : Ax ≤ b, x integer}. (IP)

The convex hull of the feasible sol. of (IP) is a polyhedron {x : A′x ≤ b′} .

max{c⊤x : A′x ≤ b′} (LP)

Theorem

(IP) is infeasible if and only if (LP) is infeasible,
(IP) is unbounded if and only if (LP) is unbounded,
an optimal solution to (IP) is an optimal solution to (LP), and
an extreme optimal solution to (LP) is an optimal solution to (IP).

(We’ll omit the proofs)

Conceptual way of solving (IP):

Step 1. Compute ′, b′.

Step 2. Use Simplex to find an extreme optimal solution to (LP).

Let A, b be rational.

max{c⊤x : Ax ≤ b, x integer}. (IP)

The convex hull of the feasible sol. of (IP) is a polyhedron {x : A′x ≤ b′} .

max{c⊤x : A′x ≤ b′} (LP)

Theorem

(IP) is infeasible if and only if (LP) is infeasible,
(IP) is unbounded if and only if (LP) is unbounded,
an optimal solution to (IP) is an optimal solution to (LP), and
an extreme optimal solution to (LP) is an optimal solution to (IP).

(We’ll omit the proofs)

Conceptual way of solving (IP):

Step 1. Compute ′, b′.

Step 2. Use Simplex to find an extreme optimal solution to (LP).

Let A, b be rational.

max{c⊤x : Ax ≤ b, x integer}. (IP)

The convex hull of the feasible sol. of (IP) is a polyhedron {x : A′x ≤ b′} .

max{c⊤x : A′x ≤ b′} (LP)

Theorem

• (IP) is infeasible if and only if (LP) is infeasible,

(IP) is unbounded if and only if (LP) is unbounded,
an optimal solution to (IP) is an optimal solution to (LP), and
an extreme optimal solution to (LP) is an optimal solution to (IP).

(We’ll omit the proofs)

Conceptual way of solving (IP):

Step 1. Compute ′, b′.

Step 2. Use Simplex to find an extreme optimal solution to (LP).

Let A, b be rational.

max{c⊤x : Ax ≤ b, x integer}. (IP)

The convex hull of the feasible sol. of (IP) is a polyhedron {x : A′x ≤ b′} .

max{c⊤x : A′x ≤ b′} (LP)

Theorem

• (IP) is infeasible if and only if (LP) is infeasible,
• (IP) is unbounded if and only if (LP) is unbounded,

an optimal solution to (IP) is an optimal solution to (LP), and
an extreme optimal solution to (LP) is an optimal solution to (IP).

(We’ll omit the proofs)

Conceptual way of solving (IP):

Step 1. Compute ′, b′.

Step 2. Use Simplex to find an extreme optimal solution to (LP).

Let A, b be rational.

max{c⊤x : Ax ≤ b, x integer}. (IP)

The convex hull of the feasible sol. of (IP) is a polyhedron {x : A′x ≤ b′} .

max{c⊤x : A′x ≤ b′} (LP)

Theorem

• (IP) is infeasible if and only if (LP) is infeasible,
• (IP) is unbounded if and only if (LP) is unbounded,
• an optimal solution to (IP) is an optimal solution to (LP), and

an extreme optimal solution to (LP) is an optimal solution to (IP).

(We’ll omit the proofs)

Conceptual way of solving (IP):

Step 1. Compute ′, b′.

Step 2. Use Simplex to find an extreme optimal solution to (LP).

Let A, b be rational.

max{c⊤x : Ax ≤ b, x integer}. (IP)

The convex hull of the feasible sol. of (IP) is a polyhedron {x : A′x ≤ b′} .

max{c⊤x : A′x ≤ b′} (LP)

Theorem

• (IP) is infeasible if and only if (LP) is infeasible,
• (IP) is unbounded if and only if (LP) is unbounded,
• an optimal solution to (IP) is an optimal solution to (LP), and
• an extreme optimal solution to (LP) is an optimal solution to (IP).

(We’ll omit the proofs)

Conceptual way of solving (IP):

Step 1. Compute ′, b′.

Step 2. Use Simplex to find an extreme optimal solution to (LP).

Let A, b be rational.

max{c⊤x : Ax ≤ b, x integer}. (IP)

The convex hull of the feasible sol. of (IP) is a polyhedron {x : A′x ≤ b′} .

max{c⊤x : A′x ≤ b′} (LP)

Theorem

• (IP) is infeasible if and only if (LP) is infeasible,
• (IP) is unbounded if and only if (LP) is unbounded,
• an optimal solution to (IP) is an optimal solution to (LP), and
• an extreme optimal solution to (LP) is an optimal solution to (IP).

(We’ll omit the proofs)

Conceptual way of solving (IP):

Step 1. Compute ′, b′.

Step 2. Use Simplex to find an extreme optimal solution to (LP).

Let A, b be rational.

max{c⊤x : Ax ≤ b, x integer}. (IP)

The convex hull of the feasible sol. of (IP) is a polyhedron {x : A′x ≤ b′} .

max{c⊤x : A′x ≤ b′} (LP)

Theorem

• (IP) is infeasible if and only if (LP) is infeasible,
• (IP) is unbounded if and only if (LP) is unbounded,
• an optimal solution to (IP) is an optimal solution to (LP), and
• an extreme optimal solution to (LP) is an optimal solution to (IP).

(We’ll omit the proofs)

Conceptual way of solving (IP):

Step 1. Compute ′, b′.

Step 2. Use Simplex to find an extreme optimal solution to (LP).

Let A, b be rational.

max{c⊤x : Ax ≤ b, x integer}. (IP)

The convex hull of the feasible sol. of (IP) is a polyhedron {x : A′x ≤ b′} .

max{c⊤x : A′x ≤ b′} (LP)

Theorem

• (IP) is infeasible if and only if (LP) is infeasible,
• (IP) is unbounded if and only if (LP) is unbounded,
• an optimal solution to (IP) is an optimal solution to (LP), and
• an extreme optimal solution to (LP) is an optimal solution to (IP).

(We’ll omit the proofs)

Conceptual way of solving (IP):

Step 1. Compute A′, b′.

Step 2. Use Simplex to find an extreme optimal solution to (LP).

Let A, b be rational.

max{c⊤x : Ax ≤ b, x integer}. (IP)

The convex hull of the feasible sol. of (IP) is a polyhedron {x : A′x ≤ b′} .

max{c⊤x : A′x ≤ b′} (LP)

Theorem

• (IP) is infeasible if and only if (LP) is infeasible,
• (IP) is unbounded if and only if (LP) is unbounded,
• an optimal solution to (IP) is an optimal solution to (LP), and
• an extreme optimal solution to (LP) is an optimal solution to (IP).

(We’ll omit the proofs)

Conceptual way of solving (IP):

Step 1. Compute A′, b′.

Step 2. Use Simplex to find an extreme optimal solution to (LP).

max















(

1 1
)

x :









2 1
1 2
−1 −4
−1 0









x ≤









7
7
−4
− 1

2









(1)
(2)
(3)
(4)

x integer















(IP)

Feasible region of the
LP relaxation f (IP)

max















(

1 1
)

x :









2 1
1 2
−1 −4
−1 0









x ≤









7
7
−4
− 1

2









(1)
(2)
(3)
(4)

x integer















(IP)

x2

x11 2 30

1

2

(1)

(2)

(3)

3

4

(4)

Feasible region of the
LP relaxation of (IP)

max















(

1 1
)

x :









2 1
1 2
−1 −4
−1 0









x ≤









7
7
−4
− 1

2









(1)
(2)
(3)
(4)

x integer















(IP)

x2

x11 2 30

1

2

(1)

(2)

(3)

3

4

(4)

The feasible region
of (IP)

max















(

1 1
)

x :









2 1
1 2
−1 −4
−1 0









x ≤









7
7
−4
− 1

2









(1)
(2)
(3)
(4)

x integer















(IP)

x2

x11 2 30

1

2

(1)

(2)

(3)

(a)

(b)

(c)

3

4

(4)

The convex hull of
the feasible region

of (IP)

max







(

1 1
)

x :





−1 0
0 −1
1 1



x ≤





−1
−1
4





(a)
(b)
(c)







(LP)

max















(

1 1
)

x :









2 1
1 2
−1 −4
−1 0









x ≤









7
7
−4
− 1

2









(1)
(2)
(3)
(4)

x integer















(IP)

x2

x11 2 30

1

2

(1)

(2)

(3)

(a)

(b)

(c)

3

4

(4)

The convex hull of
the feasible region

of (IP)

max







(

1 1
)

x :





−1 0
0 −1
1 1



x ≤





−1
−1
4





(a)
(b)
(c)







(LP)

max















(

1 1
)

x :









2 1
1 2
−1 −4
−1 0









x ≤









7
7
−4
− 1

2









(1)
(2)
(3)
(4)

x integer















(IP)

x2

x11 2 30

1

2

(1)

(2)

(3)

(a)

(b)

(c)

3

4

(4)

Optimal solutions of
(IP)

max







(

1 1
)

x :





−1 0
0 −1
1 1



x ≤





−1
−1
4





(a)
(b)
(c)







(LP)

max















(

1 1
)

x :









2 1
1 2
−1 −4
−1 0









x ≤









7
7
−4
− 1

2









(1)
(2)
(3)
(4)

x integer















(IP)

x2

x11 2 30

1

2

(1)

(2)

(3)

(a)

(b)

(c)

3

4

(4)

Optimal solutions of
(LP)

max







(

1 1
)

x :





−1 0
0 −1
1 1



x ≤





−1
−1
4





(a)
(b)
(c)







(LP)

max















(

1 1
)

x :









2 1
1 2
−1 −4
−1 0









x ≤









7
7
−4
− 1

2









(1)
(2)
(3)
(4)

x integer















(IP)

x2

x11 2 30

1

2

(1)

(2)

(3)

(a)

(b)

(c)

3

4

(4)

Extreme optimal
solution of (LP)

max







(

1 1
)

x :





−1 0
0 −1
1 1



x ≤





−1
−1
4





(a)
(b)
(c)







(LP)

max{c⊤x : Ax ≤ b, x integer} (IP)

The convex hull of the feasible region is a polyhedron {x : A′x ≤ b′}.

max{c⊤x : A′x ≤ b′} (LP)

Conceptual way of solving (IP):

Step 1. Compute A′, b′.

Step 2. Use Simplex to find an extreme optimal solution.

Remark

This is NOT a practical way to solve an Integer Program.

Why Not?

• We d not know how to compute ′, b′, and

•
′, b′ can be much more complicated than A, b.

max{c⊤x : Ax ≤ b, x integer} (IP)

The convex hull of the feasible region is a polyhedron {x : A′x ≤ b′}.

max{c⊤x : A′x ≤ b′} (LP)

Conceptual way of solving (IP):

Step 1. Compute A′, b′.

Step 2. Use Simplex to find an extreme optimal solution.

Remark

This is NOT a practical way to solve an Integer Program.

Why Not?

• We d not know how to compute ′, b′, and

•
′, b′ can be much more complicated than A, b.

max{c⊤x : Ax ≤ b, x integer} (IP)

The convex hull of the feasible region is a polyhedron {x : A′x ≤ b′}.

max{c⊤x : A′x ≤ b′} (LP)

Conceptual way of solving (IP):

Step 1. Compute A′, b′.

Step 2. Use Simplex to find an extreme optimal solution.

Remark

This is NOT a practical way to solve an Integer Program.

Why Not?

• We d not know how to compute ′, b′, and

•
′, b′ can be much more complicated than A, b.

max{c⊤x : Ax ≤ b, x integer} (IP)

The convex hull of the feasible region is a polyhedron {x : A′x ≤ b′}.

max{c⊤x : A′x ≤ b′} (LP)

Conceptual way of solving (IP):

Step 1. Compute A′, b′.

Step 2. Use Simplex to find an extreme optimal solution.

Remark

This is NOT a practical way to solve an Integer Program.

Why Not?

• We do not know how to compute A′, b′, and

•
′, b′ can be much more complicated than A, b.

max{c⊤x : Ax ≤ b, x integer} (IP)

The convex hull of the feasible region is a polyhedron {x : A′x ≤ b′}.

max{c⊤x : A′x ≤ b′} (LP)

Conceptual way of solving (IP):

Step 1. Compute A′, b′.

Step 2. Use Simplex to find an extreme optimal solution.

Remark

This is NOT a practical way to solve an Integer Program.

Why Not?

• We do not know how to compute A′, b′, and

• A′, b′ can be much more complicated than A, b.

Question

How do we fix these problems?

Idea

Construct an approximation of the convex hull of the solutions of (IP).

Recap

• Integer Programs are much harder to solve than Linear Programs.

• Linear Programming theory does not extend to Integer Programs.

• We defined the notion of convex hulls.

• The convex hull of the integer points in a rational polyhedron is a
polyhedron.

• Integer pr grammin reduces to Linear programming,
but it is not a practical reduction.

Question

How do we fix these problems?

Idea

Construct an approximation of the convex hull of the solutions of (IP).

Recap

• Integer Programs are much harder to solve than Linear Programs.

• Linear Programming theory does not extend to Integer Programs.

• We defined the notion of convex hulls.

• The convex hull of the integer points in a rational polyhedron is a
polyhedron.

• Integer pr grammin reduces to Linear programming,
but it is not a practical reduction.

Question

How do we fix these problems?

Idea

Construct an approximation of the convex hull of the solutions of (IP).

Recap

• Integer Programs are much harder to solve than Linear Programs.

• Linear Programming theory does not extend to Integer Programs.

• We defined the notion of convex hulls.

• The convex hull of the integer points in a rational polyhedron is a
polyhedron.

• Integer pr grammin reduces to Linear programming,
but it is not a practical reduction.

Question

How do we fix these problems?

Idea

Construct an approximation of the convex hull of the solutions of (IP).

Recap

• Integer Programs are much harder to solve than Linear Programs.

• Linear Programming theory does not extend to Integer Programs.

• We defined the notion of convex hulls.

• The convex hull of the integer points in a rational polyhedron is a
polyhedron.

• Integer pr grammin reduces to Linear programming,
but it is not a practical reduction.

Question

How do we fix these problems?

Idea

Construct an approximation of the convex hull of the solutions of (IP).

Recap

• Integer Programs are much harder to solve than Linear Programs.

• Linear Programming theory does not extend to Integer Programs.

• We defined the notion of convex hulls.

• The convex hull of the integer points in a rational polyhedron is a
polyhedron.

• Integer pr grammin reduces to Linear programming,
but it is not a practical reduction.

Question

How do we fix these problems?

Idea

Construct an approximation of the convex hull of the solutions of (IP).

Recap

• Integer Programs are much harder to solve than Linear Programs.

• Linear Programming theory does not extend to Integer Programs.

• We defined the notion of convex hulls.

• The convex hull of the integer points in a rational polyhedron is a
polyhedron.

• Integer pr grammin reduces to Linear programming,
but it is not a practical reduction.

Question

How do we fix these problems?

Idea

Construct an approximation of the convex hull of the solutions of (IP).

Recap

• Integer Programs are much harder to solve than Linear Programs.

• Linear Programming theory does not extend to Integer Programs.

• We defined the notion of convex hulls.

• The convex hull of the integer points in a rational polyhedron is a
polyhedron.

• Integer pr grammin reduces to Linear programming,
but it is not a practical reduction.

Question

How do we fix these problems?

Idea

Construct an approximation of the convex hull of the solutions of (IP).

Recap

• Integer Programs are much harder to solve than Linear Programs.

• Linear Programming theory does not extend to Integer Programs.

• We defined the notion of convex hulls.

• The convex hull of the integer points in a rational polyhedron is a
polyhedron.

• Integer programming reduces to Linear programming,

but it is not a practical reduction.

Question

How do we fix these problems?

Idea

Construct an approximation of the convex hull of the solutions of (IP).

Recap

• Integer Programs are much harder to solve than Linear Programs.

• Linear Programming theory does not extend to Integer Programs.

• We defined the notion of convex hulls.

• The convex hull of the integer points in a rational polyhedron is a
polyhedron.

• Integer programming reduces to Linear programming,
but it is not a practical reduction.

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

CO 250: Introduction to Optimization
Module 5: Integer Programs (Cutting Planes)

Overview

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

Our First Integer Program:

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

Overview

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

Our First Integer Program:

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

Overview

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

Our First Integer Program:

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

Overview

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

Our First Integer Program:

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

Overview

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

Our First Integer Program:

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

x2

x11 2 30

1

2

4

Overview

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

Our First Integer Program:

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

x2

x11 2 30

1

2

4

(1)

Overview

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

Our First Integer Program:

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

x2

x11 2 30

1

2

4

(2)

(1)

Overview

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

Our First Integer Program:

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

x2

x11 2 30

1

2

4

(2)

(1)

Overview

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

Our First Integer Program:

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

x2

x11 2 30

1

2

4

(2)

(1)

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

x2

x11 2 30

1

2

4

(2)

(1)

Idea

Solve the LP relaxation instead of the riginal IP.

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

x2

x11 2 30

1

2

4

(2)

(1)

Idea

Solve the LP relaxation instead of the original IP.

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0

x2

x11 2 30

1

2

4

(2)

(1)

Idea

Solve the LP relaxation instead of the original IP.

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0

x2

x11 2 30

1

2

4

(2)

(1)

x̄

Using Simplex, we find that x̄ =
(
8
3 ,

4
3

)⊤
is optimal.

Not integer!

We now search for a constraint α⊤x ≤ β that

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0

x2

x11 2 30

1

2

4

(2)

(1)

x̄

Using Simplex, we find that x̄ =
(
8
3 ,

4
3

)⊤
is optimal. Not integer!

We now search for a constraint α⊤x ≤ β that

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0

x2

x11 2 30

1

2

4

(2)

(1)

x̄

Using Simplex, we find that x̄ =
(
8
3 ,

4
3

)⊤
is optimal. Not integer!

We now search for a constraint α⊤x ≤ β that

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0

x2

x11 2 30

1

2

4

(2)

(1)

x̄

Using Simplex, we find that x̄ =
(
8
3 ,

4
3

)⊤
is optimal. Not integer!

We now search for a constraint α⊤x ≤ β that

• is satisfied for all feasible solutions to the IP, and

• is not satisfied for x.

We will call this constraint a cutting plane for x.

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0

x2

x11 2 30

1

2

4

(2)

(1)

x̄

Using Simplex, we find that x̄ =
(
8
3 ,

4
3

)⊤
is optimal. Not integer!

We now search for a constraint α⊤x ≤ β that

• is satisfied for all feasible solutions to the IP, and

• is not satisfied for x̄.

We will call this constraint a cutting plane for x.

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0

x2

x11 2 30

1

2

4

(2)

(1)

x̄

Using Simplex, we find that x̄ =
(
8
3 ,

4
3

)⊤
is optimal. Not integer!

We now search for a constraint α⊤x ≤ β that

• is satisfied for all feasible solutions to the IP, and

• is not satisfied for x̄.

We will call this constraint a cutting plane for x̄.

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0

x2

x11 2 30

1

2

4

(2)

(1)

x̄

(?)

Using Simplex, we find that x̄ =
(
8
3 ,

4
3

)⊤
is optimal. Not integer!

We now search for a constraint α⊤x ≤ β that

• is satisfied for all feasible solutions to the IP, and

• is not satisfied for x̄.

We will call this constraint a cutting plane for x̄.

Example:
x1 + 3x2 ≤ 6. (⋆)

After adding (⋆) to our relaxation, we get

max
(
2 5

)
x

s. t.




1 4
1 1
1 3



x ≤





8
4
6





(1)
(2)
(3)

x ≥ 0

After adding (⋆) to our relaxation, we get

max
(
2 5

)
x

s. t.




1 4
1 1
1 3



x ≤





8
4
6





(1)
(2)
(3)

x ≥ 0

x2

x11 2 30

1

2

4

(2)

(1)

x̄

(?)

After adding (⋆) to our relaxation, we get

max
(
2 5

)
x

s. t.




1 4
1 1
1 3



x ≤





8
4
6





(1)
(2)
(3)

x ≥ 0

x2

x11 2 30

1

2

4

(2)

(1)

(?)

x0

Using Simplex, we get: x′ = (3, 1)
⊤

is optimal.

Integer!

After adding (⋆) to our relaxation, we get

max
(
2 5

)
x

s. t.




1 4
1 1
1 3



x ≤





8
4
6





(1)
(2)
(3)

x ≥ 0

x2

x11 2 30

1

2

4

(2)

(1)

(?)

x0

Using Simplex, we get: x′ = (3, 1)
⊤

is optimal. Integer!

After adding (⋆) to our relaxation, we get

max
(
2 5

)
x

s. t.




1 4
1 1
1 3



x ≤





8
4
6





(1)
(2)
(3)

x ≥ 0

x2

x11 2 30

1

2

4

(2)

(1)

(?)

x0

Using Simplex, we get: x′ = (3, 1)
⊤

is optimal. Integer!

Since x′ is optimal for the IP relaxation, x′ is also optimal for the IP!

We have now solved our first IP.

After adding (⋆) to our relaxation, we get

max
(
2 5

)
x

s. t.




1 4
1 1
1 3



x ≤





8
4
6





(1)
(2)
(3)

x ≥ 0

x2

x11 2 30

1

2

4

(2)

(1)

(?)

x0

Using Simplex, we get: x′ = (3, 1)
⊤

is optimal. Integer!

Since x′ is optimal for the IP relaxation, x′ is also optimal for the IP!

We have now solved our first IP.

Cutting Plane Scheme

max
{
c⊤x : Ax ≤ b, x integer

}
(IP)

Let (P) denote max c⊤x : Ax ≤ b .

If (P) is infeasible, then STOP. (IP) is also infeasible.

Let x be the optimal solution to (P).

If x is integral, then STOP. x is also optimal for (IP).

Find a cutting plane a⊤x ≤ β for x.

Add constraint a⊤x ≤ β to the system Ax ≤ b.

Cutting Plane Scheme

max
{
c⊤x : Ax ≤ b, x integer

}
(IP)

Let (P) denote max c⊤x : Ax ≤ b .

If (P) is infeasible, then STOP. (IP) is also infeasible.

Let x be the optimal solution to (P).

If x is integral, then STOP. x is also optimal for (IP).

Find a cutting plane a⊤x ≤ β for x.

Add constraint a⊤x ≤ β to the system Ax ≤ b.

Cutting Plane Scheme

max
{
c⊤x : Ax ≤ b, x integer

}
(IP)

feasible region of (IP)

feasible region of (P)

• Let (P) denote max{c⊤x : Ax ≤ b}.

If (P) is infeasible, then STOP. (IP) is also infeasible.

Let x be the optimal solution to (P).

If x is integral, then STOP. x is also optimal for (IP).

Find a cutting plane a⊤x ≤ β for x.

Add constraint a⊤x ≤ β to the system Ax ≤ b.

Cutting Plane Scheme

max
{
c⊤x : Ax ≤ b, x integer

}
(IP)

feasible region of (IP)

feasible region of (P)

• Let (P) denote max{c⊤x : Ax ≤ b}.

• If (P) is infeasible, then STOP. (IP) is also infeasible.

Let x be the optimal solution to (P).

If x is integral, then STOP. x is also optimal for (IP).

Find a cutting plane a⊤x ≤ β for x.

Add constraint a⊤x ≤ β to the system Ax ≤ b.

Cutting Plane Scheme

max
{
c⊤x : Ax ≤ b, x integer

}
(IP)

feasible region of (IP)

feasible region of (P)

• Let (P) denote max{c⊤x : Ax ≤ b}.

• If (P) is infeasible, then STOP. (IP) is also infeasible.

• Let x̄ be the optimal solution to (P).

If x is integral, then STOP. x is also optimal for (IP).

Find a cutting plane a⊤x ≤ β for x.

Add constraint a⊤x ≤ β to the system Ax ≤ b.

Cutting Plane Scheme

max
{
c⊤x : Ax ≤ b, x integer

}
(IP)

feasible region of (IP)

feasible region of (P)

• Let (P) denote max{c⊤x : Ax ≤ b}.

• If (P) is infeasible, then STOP. (IP) is also infeasible.

• Let x̄ be the optimal solution to (P).

• If x̄ is integral, then STOP. x̄ is also optimal for (IP).

Find a cutting plane a⊤x ≤ β for x.

Add constraint a⊤x ≤ β to the system Ax ≤ b.

Cutting Plane Scheme

max
{
c⊤x : Ax ≤ b, x integer

}
(IP)

feasible region of (IP)

feasible region of (P)

• Let (P) denote max{c⊤x : Ax ≤ b}.

• If (P) is infeasible, then STOP. (IP) is also infeasible.

• Let x̄ be the optimal solution to (P).

• If x̄ is integral, then STOP. x̄ is also optimal for (IP).

• Find a cutting plane a⊤x ≤ β for x̄.

Add constraint a⊤x ≤ β to the system Ax ≤ b.

Cutting Plane Scheme

max
{
c⊤x : Ax ≤ b, x integer

}
(IP)

feasible region of (IP)

feasible region of (P)

• Let (P) denote max{c⊤x : Ax ≤ b}.

• If (P) is infeasible, then STOP. (IP) is also infeasible.

• Let x̄ be the optimal solution to (P).

• If x̄ is integral, then STOP. x̄ is also optimal for (IP).

• Find a cutting plane a⊤x ≤ β for x̄.

• Add constraint a⊤x ≤ β to the system Ax ≤ b.

Question

How can we find cutting planes?

Simplex does this for us!

Definition

Let a ∈ ℜ, then the flo r of a, denoted ⌊a⌋, is the largest integer ≤ a.

Example

⌊ . ⌋ =

⌊ ⌋ =

⌊− . ⌋ = −

Question

How can we find cutting planes?

Simplex does this for us!

Definition

Let a ∈ ℜ, then the flo r of a, denoted ⌊a⌋, is the largest integer ≤ a.

Example

⌊ . ⌋ =

⌊ ⌋ =

⌊− . ⌋ = −

Question

How can we find cutting planes?

Simplex does this for us!

Definition

Let a ∈ ℜ, then the floor of a, denoted ⌊a⌋, is the largest integer ≤ a.

Example

⌊ . ⌋ =

⌊ ⌋ =

⌊− . ⌋ = −

Question

How can we find cutting planes?

Simplex does this for us!

Definition

Let a ∈ ℜ, then the floor of a, denoted ⌊a⌋, is the largest integer ≤ a.

Example

⌊ . ⌋ =

⌊ ⌋ =

⌊− . ⌋ = −

Question

How can we find cutting planes?

Simplex does this for us!

Definition

Let a ∈ ℜ, then the floor of a, denoted ⌊a⌋, is the largest integer ≤ a.

Example

⌊3.7⌋ = 3

⌊ ⌋ =

⌊− . ⌋ = −

Question

How can we find cutting planes?

Simplex does this for us!

Definition

Let a ∈ ℜ, then the floor of a, denoted ⌊a⌋, is the largest integer ≤ a.

Example

⌊3.7⌋ = 3

⌊62⌋ = 62

⌊− . ⌋ = −

Question

How can we find cutting planes?

Simplex does this for us!

Definition

Let a ∈ ℜ, then the floor of a, denoted ⌊a⌋, is the largest integer ≤ a.

Example

⌊3.7⌋ = 3

⌊62⌋ = 62

⌊−2.1⌋ = −3

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

Add a slack variable, x3 ≥ 0, and rewrite (1) as

x1 + 4x2 + x3 = 8.

Add another slack variable, x4 ≥ 0, and rewrite (2) as

x1 + x2 + x4 = 4.

Since x1, x2 are integers, x3 = 8− x1 − 4x2 and x4 = 4− x1 − x2 are integers.

Thus, we can rewrite the IP as

max
(
2 5 0 0

)
x

s. t.
(
1 4 1 0
1 1 0 1

)

x =

(
8
4

)

x ≥ 0, x integer

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

Add a slack variable, x3 ≥ 0, and rewrite (1) as

x1 + 4x2 + x3 = 8.

Add another slack variable, x4 ≥ 0, and rewrite (2) as

x1 + x2 + x4 = 4.

Since x1, x2 are integers, x3 = 8− x1 − 4x2 and x4 = 4− x1 − x2 are integers.

Thus, we can rewrite the IP as

max
(
2 5 0 0

)
x

s. t.
(
1 4 1 0
1 1 0 1

)

x =

(
8
4

)

x ≥ 0, x integer

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

Add a slack variable, x3 ≥ 0, and rewrite (1) as

x1 + 4x2 + x3 = 8.

Add another slack variable, x4 ≥ 0, and rewrite (2) as

x1 + x2 + x4 = 4.

Since x1, x2 are integers, x3 = 8− x1 − 4x2 and x4 = 4− x1 − x2 are integers.

Thus, we can rewrite the IP as

max
(
2 5 0 0

)
x

s. t.
(
1 4 1 0
1 1 0 1

)

x =

(
8
4

)

x ≥ 0, x integer

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

Add a slack variable, x3 ≥ 0, and rewrite (1) as

x1 + 4x2 + x3 = 8.

Add another slack variable, x4 ≥ 0, and rewrite (2) as

x1 + x2 + x4 = 4.

Since x1, x2 are integers, x3 = 8− x1 − 4x2 and x4 = 4− x1 − x2 are integers.

Thus, we can rewrite the IP as

max
(
2 5 0 0

)
x

s. t.
(
1 4 1 0
1 1 0 1

)

x =

(
8
4

)

x ≥ 0, x integer

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer

Add a slack variable, x3 ≥ 0, and rewrite (1) as

x1 + 4x2 + x3 = 8.

Add another slack variable, x4 ≥ 0, and rewrite (2) as

x1 + x2 + x4 = 4.

Since x1, x2 are integers, x3 = 8− x1 − 4x2 and x4 = 4− x1 − x2 are integers.

Thus, we can rewrite the IP as

max
(
2 5 0 0

)
x

s. t.
(
1 4 1 0
1 1 0 1

)

x =

(
8
4

)

x ≥ 0, x integer

Solving the IP

max
(
2 5 0 0

)
x

s. t.
(
1 4 1 0
1 1 0 1

)

x =

(
8
4

)

x ≥ 0, x integer

We will now relax the integer program.

Solving the IP

max
(
2 5 0 0

)
x

s. t.
(
1 4 1 0
1 1 0 1

)

x =

(
8
4

)

x ≥ 0, x integer

We will now relax the integer program.

Solving the IP

max
(
2 5 0 0

)
x

s. t.
(
1 4 1 0
1 1 0 1

)

x =

(
8
4

)

x ≥ 0

We will use the Simplex algorithm to solve this.

Get an optimal basis B = {1, 2} and rewrite in canonical form for B:

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤. Not integer

Let us use the canonical form to get a cutting plane for x̄.

Solving the IP

max
(
2 5 0 0

)
x

s. t.
(
1 4 1 0
1 1 0 1

)

x =

(
8
4

)

x ≥ 0

We will use the Simplex algorithm to solve this.

Get an optimal basis B = {1, 2} and rewrite in canonical form for B:

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤. Not integer

Let us use the canonical form to get a cutting plane for x̄.

Solving the IP

max
(
2 5 0 0

)
x

s. t.
(
1 4 1 0
1 1 0 1

)

x =

(
8
4

)

x ≥ 0

We will use the Simplex algorithm to solve this.

Get an optimal basis B = {1, 2} and rewrite in canonical form for B:

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤. Not integer

Let us use the canonical form to get a cutting plane for x̄.

Solving the IP

max
(
2 5 0 0

)
x

s. t.
(
1 4 1 0
1 1 0 1

)

x =

(
8
4

)

x ≥ 0

We will use the Simplex algorithm to solve this.

Get an optimal basis B = {1, 2} and rewrite in canonical form for B:

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤. Not integer

Let us use the canonical form to get a cutting plane for x̄.

Solving the IP

max
(
2 5 0 0

)
x

s. t.
(
1 4 1 0
1 1 0 1

)

x =

(
8
4

)

x ≥ 0

We will use the Simplex algorithm to solve this.

Get an optimal basis B = {1, 2} and rewrite in canonical form for B:

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤.

Not integer

Let us use the canonical form to get a cutting plane for x̄.

Solving the IP

max
(
2 5 0 0

)
x

s. t.
(
1 4 1 0
1 1 0 1

)

x =

(
8
4

)

x ≥ 0

We will use the Simplex algorithm to solve this.

Get an optimal basis B = {1, 2} and rewrite in canonical form for B:

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤. Not integer

Let us use the canonical form to get a cutting plane for x̄.

Solving the IP

max
(
2 5 0 0

)
x

s. t.
(
1 4 1 0
1 1 0 1

)

x =

(
8
4

)

x ≥ 0

We will use the Simplex algorithm to solve this.

Get an optimal basis B = {1, 2} and rewrite in canonical form for B:

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤. Not integer

Let us use the canonical form to get a cutting plane for x̄.

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤.

Every feasible solution to the LP relaxation satisfies,

x1 −
1

3
x3 +

4

3
x4 =

8

3

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤.

Every feasible solution to the LP relaxation satisfies,

x1 −
1

3
x3 +

4

3
x4 =

8

3

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤.

Every feasible solution to the LP relaxation satisfies,

x1 −
1

3
x3 +

4

3
x4 ≤

8

3

x1 +

⌊

−
1

3

⌋

x3 +

⌊
4

3

⌋

x4 ≤
8

3

x1 − x3 + x4 ≤
8

3

For every feasible solution to the IP, x1 − x3 + x4 is integer.

Hence, every feasible solution to the IP satisfies

x1 − x3 + x4 ≤

⌊
8

3

⌋

= 2

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤.

Every feasible solution to the LP relaxation satisfies,

x1 −
1

3
x3 +

4

3
x4 ≤

8

3

x1 +

⌊

−
1

3

⌋

x3 +

⌊
4

3

⌋

x4 ≤
8

3

x1 − x3 + x4 ≤
8

3

For every feasible solution to the IP, x1 − x3 + x4 is integer.

Hence, every feasible solution to the IP satisfies

x1 − x3 + x4 ≤

⌊
8

3

⌋

= 2

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤.

Every feasible solution to the LP relaxation satisfies,

x1 −
1

3
x3 +

4

3
x4 ≤

8

3

x1 +

⌊

−
1

3

⌋

x3 +

⌊
4

3

⌋

x4 ≤
8

3

x1 − x3 + x4 ≤
8

3

For every feasible solution to the IP, x1 − x3 + x4 is integer.

Hence, every feasible solution to the IP satisfies

x1 − x3 + x4 ≤

⌊
8

3

⌋

= 2

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤.

Every feasible solution to the LP relaxation satisfies,

x1 −
1

3
x3 +

4

3
x4 ≤

8

3

x1 +

⌊

−
1

3

⌋

x3 +

⌊
4

3

⌋

x4 ≤
8

3

x1 − x3 + x4 ≤
8

3

For every feasible solution to the IP, x1 − x3 + x4 is integer.

Hence, every feasible solution to the IP satisfies

x1 − x3 + x4 ≤

⌊
8

3

⌋

= 2

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤.

Every feasible solution to the LP relaxation satisfies,

x1 −
1

3
x3 +

4

3
x4 ≤

8

3

x1 +

⌊

−
1

3

⌋

x3 +

⌊
4

3

⌋

x4 ≤
8

3

x1 − x3 + x4 ≤
8

3

For every feasible solution to the IP, x1 − x3 + x4 is integer.

Hence, every feasible solution to the IP satisfies

x1 − x3 + x4 ≤

⌊
8

3

⌋

= 2

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤.

Every feasible solution to the IP satisfies

x1 − x3 + x4 ≤ 2 (⋆)

However, x̄ does not satisfy (⋆) as

x1

8/3

− x3

0

+ x4

0

=
8

3
> 2

(⋆) is a cutting plane for x̄.

We can rewrite (⋆) as

x1 − x3 + x4 + x5 = 2 where x5 ≥ 0.

We now add this to the relaxation.

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤.

Every feasible solution to the IP satisfies

x1 − x3 + x4 ≤ 2 (⋆)

However, x̄ does not satisfy (⋆) as

x1

8/3

− x3

0

+ x4

0

=
8

3
> 2

(⋆) is a cutting plane for x̄.

We can rewrite (⋆) as

x1 − x3 + x4 + x5 = 2 where x5 ≥ 0.

We now add this to the relaxation.

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤.

Every feasible solution to the IP satisfies

x1 − x3 + x4 ≤ 2 (⋆)

However, x̄ does not satisfy (⋆) as

x1
︸︷︷︸

8/3

− x3
︸︷︷︸

0

+ x4
︸︷︷︸

0

=
8

3
> 2

(⋆) is a cutting plane for x̄.

We can rewrite (⋆) as

x1 − x3 + x4 + x5 = 2 where x5 ≥ 0.

We now add this to the relaxation.

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤.

Every feasible solution to the IP satisfies

x1 − x3 + x4 ≤ 2 (⋆)

However, x̄ does not satisfy (⋆) as

x1
︸︷︷︸

8/3

− x3
︸︷︷︸

0

+ x4
︸︷︷︸

0

=
8

3
> 2

(⋆) is a cutting plane for x̄.

We can rewrite (⋆) as

x1 − x3 + x4 + x5 = 2 where x5 ≥ 0.

We now add this to the relaxation.

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤.

Every feasible solution to the IP satisfies

x1 − x3 + x4 ≤ 2 (⋆)

However, x̄ does not satisfy (⋆) as

x1
︸︷︷︸

8/3

− x3
︸︷︷︸

0

+ x4
︸︷︷︸

0

=
8

3
> 2

(⋆) is a cutting plane for x̄.

We can rewrite (⋆) as

x1 − x3 + x4 + x5 = 2 where x5 ≥ 0.

We now add this to the relaxation.

max
(
0 0 −1 −1

)
x+ 12

s. t.
(
1 0 −1/3 4/3
0 1 1/3 −1/3

)

x =

(
8/3
4/3

)

x ≥ 0

The basic solution is x̄ = (8/3, 4/3, 0, 0)⊤.

Every feasible solution to the IP satisfies

x1 − x3 + x4 ≤ 2 (⋆)

However, x̄ does not satisfy (⋆) as

x1
︸︷︷︸

8/3

− x3
︸︷︷︸

0

+ x4
︸︷︷︸

0

=
8

3
> 2

(⋆) is a cutting plane for x̄.

We can rewrite (⋆) as

x1 − x3 + x4 + x5 = 2 where x5 ≥ 0.

We now add this to the relaxation.

max
(
0 0 −1 −1 0

)
x+ 12

s. t.




1 0 −1/3 4/3 0
0 1 1/3 −1/3 0
1 0 −1 1 1



x =





8/3
4/3
2





x ≥ 0

Solve this using the Simplex algorithm.

Get optimal basis B = {1, 2, 3} and rewrite in canonical form for B:

max
(
0 0 0 − 1

2
− 3

2

)
x+ 11

s. t.




1 0 0 3/2 −1/2
0 1 0 −1/2 1/2
0 0 1 1/2 −3/2



x =





3
1
1





x ≥ 0

The basic optimal solution is x′ = (3, 1, 1, 0, 0)⊤. Integer!

Since x′ is optimal for the IP relaxation, x′ is also optimal for the IP!

max
(
0 0 −1 −1 0

)
x+ 12

s. t.




1 0 −1/3 4/3 0
0 1 1/3 −1/3 0
1 0 −1 1 1



x =





8/3
4/3
2





x ≥ 0

Solve this using the Simplex algorithm.

Get optimal basis B = {1, 2, 3} and rewrite in canonical form for B:

max
(
0 0 0 − 1

2
− 3

2

)
x+ 11

s. t.




1 0 0 3/2 −1/2
0 1 0 −1/2 1/2
0 0 1 1/2 −3/2



x =





3
1
1





x ≥ 0

The basic optimal solution is x′ = (3, 1, 1, 0, 0)⊤. Integer!

Since x′ is optimal for the IP relaxation, x′ is also optimal for the IP!

max
(
0 0 −1 −1 0

)
x+ 12

s. t.




1 0 −1/3 4/3 0
0 1 1/3 −1/3 0
1 0 −1 1 1



x =





8/3
4/3
2





x ≥ 0

Solve this using the Simplex algorithm.

Get optimal basis B = {1, 2, 3} and rewrite in canonical form for B:

max
(
0 0 0 − 1

2
− 3

2

)
x+ 11

s. t.




1 0 0 3/2 −1/2
0 1 0 −1/2 1/2
0 0 1 1/2 −3/2



x =





3
1
1





x ≥ 0

The basic optimal solution is x′ = (3, 1, 1, 0, 0)⊤. Integer!

Since x′ is optimal for the IP relaxation, x′ is also optimal for the IP!

max
(
0 0 −1 −1 0

)
x+ 12

s. t.




1 0 −1/3 4/3 0
0 1 1/3 −1/3 0
1 0 −1 1 1



x =





8/3
4/3
2





x ≥ 0

Solve this using the Simplex algorithm.

Get optimal basis B = {1, 2, 3} and rewrite in canonical form for B:

max
(
0 0 0 − 1

2
− 3

2

)
x+ 11

s. t.




1 0 0 3/2 −1/2
0 1 0 −1/2 1/2
0 0 1 1/2 −3/2



x =





3
1
1





x ≥ 0

The basic optimal solution is x′ = (3, 1, 1, 0, 0)⊤. Integer!

Since x′ is optimal for the IP relaxation, x′ is also optimal for the IP!

max
(
0 0 −1 −1 0

)
x+ 12

s. t.




1 0 −1/3 4/3 0
0 1 1/3 −1/3 0
1 0 −1 1 1



x =





8/3
4/3
2





x ≥ 0

Solve this using the Simplex algorithm.

Get optimal basis B = {1, 2, 3} and rewrite in canonical form for B:

max
(
0 0 0 − 1

2
− 3

2

)
x+ 11

s. t.




1 0 0 3/2 −1/2
0 1 0 −1/2 1/2
0 0 1 1/2 −3/2



x =





3
1
1





x ≥ 0

The basic optimal solution is x′ = (3, 1, 1, 0, 0)⊤.

Integer!

Since x′ is optimal for the IP relaxation, x′ is also optimal for the IP!

max
(
0 0 −1 −1 0

)
x+ 12

s. t.




1 0 −1/3 4/3 0
0 1 1/3 −1/3 0
1 0 −1 1 1



x =





8/3
4/3
2





x ≥ 0

Solve this using the Simplex algorithm.

Get optimal basis B = {1, 2, 3} and rewrite in canonical form for B:

max
(
0 0 0 − 1

2
− 3

2

)
x+ 11

s. t.




1 0 0 3/2 −1/2
0 1 0 −1/2 1/2
0 0 1 1/2 −3/2



x =





3
1
1





x ≥ 0

The basic optimal solution is x′ = (3, 1, 1, 0, 0)⊤. Integer!

Since x′ is optimal for the IP relaxation, x′ is also optimal for the IP!

max
(
0 0 −1 −1 0

)
x+ 12

s. t.




1 0 −1/3 4/3 0
0 1 1/3 −1/3 0
1 0 −1 1 1



x =





8/3
4/3
2





x ≥ 0

Solve this using the Simplex algorithm.

Get optimal basis B = {1, 2, 3} and rewrite in canonical form for B:

max
(
0 0 0 − 1

2
− 3

2

)
x+ 11

s. t.




1 0 0 3/2 −1/2
0 1 0 −1/2 1/2
0 0 1 1/2 −3/2



x =





3
1
1





x ≥ 0

The basic optimal solution is x′ = (3, 1, 1, 0, 0)⊤. Integer!

Since x′ is optimal for the IP relaxation, x′ is also optimal for the IP!

(3, 1, 1, 0, 0)⊤ is optimal for

max
(
0 0 −1 −1 0

)
x+ 12

s. t.




1 0 −1/3 4/3 0
0 1 1/3 −1/3 0
1 0 −1 1 1



x =





8/3
4/3
2





x ≥ 0, x integer

(3, 1)⊤ is optimal for

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x =

(
8
4

)
(1)
(2)

x ≥ 0, x integer

(3, 1, 1, 0, 0)⊤ is optimal for

max
(
0 0 −1 −1 0

)
x+ 12

s. t.




1 0 −1/3 4/3 0
0 1 1/3 −1/3 0
1 0 −1 1 1



x =





8/3
4/3
2





x ≥ 0, x integer

(3, 1)⊤ is optimal for

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x =

(
8
4

)
(1)
(2)

x ≥ 0, x integer

(3, 1, 1, 0, 0)⊤ is optimal for

max
(
0 0 −1 −1 0

)
x+ 12

s. t.




1 0 −1/3 4/3 0
0 1 1/3 −1/3 0
1 0 −1 1 1



x =





8/3
4/3
2





x ≥ 0, x integer

(3, 1)⊤ is optimal for

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x =

(
8
4

)
(1)
(2)

x ≥ 0, x integer

x2

x11 2 30

1

2

4

(2)

(1)

Getting Cutting Planes in General

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ ¯
s. t.

xB +ANxN = b
x ≥ 0

N = j : j ∈ B

x basic (xN = , xB = b)

r(i) index of ith basic variable

Suppose x is not integer. Then, bi is fractional for some value i.

We know that every feasible solution to the LP relaxation satisfies

xr(i) +
∑

j∈N

ijxj = bi.

Getting Cutting Planes in General

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = j : j ∈ B

x basic (xN = , xB = b)

r(i) index of ith basic variable

Suppose x is not integer. Then, bi is fractional for some value i.

We know that every feasible solution to the LP relaxation satisfies

xr(i) +
∑

j∈N

ijxj = bi.

Getting Cutting Planes in General

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x basic (xN = , xB = b)

r(i) index of ith basic variable

Suppose x is not integer. Then, bi is fractional for some value i.

We know that every feasible solution to the LP relaxation satisfies

xr(i) +
∑

j∈N

ijxj = bi.

Getting Cutting Planes in General

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable

Suppose x is not integer. Then, bi is fractional for some value i.

We know that every feasible solution to the LP relaxation satisfies

xr(i) +
∑

j∈N

ijxj = bi.

Getting Cutting Planes in General

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable

Suppose x is not integer. Then, bi is fractional for some value i.

We know that every feasible solution to the LP relaxation satisfies

xr(i) +
∑

j∈N

ijxj = bi.

Getting Cutting Planes in General

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable

Suppose x̄ is not integer.

Then, bi is fractional for some value i.

We know that every feasible solution to the LP relaxation satisfies

xr(i) +
∑

j∈N

ijxj = bi.

Getting Cutting Planes in General

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable

Suppose x̄ is not integer. Then, bi is fractional for some value i.

We know that every feasible solution to the LP relaxation satisfies

xr(i) +
∑

j∈N

ijxj = bi.

Getting Cutting Planes in General

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable

Suppose x̄ is not integer. Then, bi is fractional for some value i.

We know that every feasible solution to the LP relaxation satisfies

xr(i) +
∑

j∈N

Aijxj = bi.

Getting Cutting Planes in General

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable

Suppose x̄ is not integer. Then, bi is fractional for some value i.

We know that every feasible solution to the LP relaxation satisfies

xr(i) +
∑

j∈N

Aijxj ≤ bi.

= xr(i) +
∑

j∈N

⌊ ij⌋xj ≤ bi.

Getting Cutting Planes in General

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable

Suppose x̄ is not integer. Then, bi is fractional for some value i.

We know that every feasible solution to the LP relaxation satisfies

xr(i) +
∑

j∈N

Aijxj ≤ bi. =⇒ xr(i) +
∑

j∈N

⌊Aij⌋xj ≤ bi.

Getting Cutting Planes in General

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable.

Suppose x̄ is not integer. Then, bi is fractional for some value i.

Every feasible solution to the LP relaxation satisfies

xr(i) +
∑

j∈N

Aijxj ≤ bi. =⇒ xr(i) +
∑

j∈N

⌊Aij⌋xj

︸ ︷︷ ︸

integer for all x integer

≤ bi.

Hence, every feasible solution to IP satisfies

xr(i) +
∑

j∈N

⌊ ij⌋xj ≤ ⌊bi⌋

Getting Cutting Planes in General

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable.

Suppose x̄ is not integer. Then, bi is fractional for some value i.

Every feasible solution to the LP relaxation satisfies

xr(i) +
∑

j∈N

Aijxj ≤ bi. =⇒ xr(i) +
∑

j∈N

⌊Aij⌋xj

︸ ︷︷ ︸

integer for all x integer

≤ bi.

Hence, every feasible solution to IP satisfies

xr(i) +
∑

j∈N

⌊Aij⌋xj ≤ ⌊bi⌋

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable

Suppose x̄ is not integer. Then, bi is fractional for some value i.

Every feasible solution to IP satisfies

xr(i) +
∑

j∈N

⌊Aij⌋xj ≤ ⌊b⌋ (⋆)

However, x does not satisfy () as

xr(i)

bi

+
∑

j∈N

⌊ ij⌋ xj

=0

= bi > ⌊bi⌋ .

() is a cutting plane for x.

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable

Suppose x̄ is not integer. Then, bi is fractional for some value i.

Every feasible solution to IP satisfies

xr(i) +
∑

j∈N

⌊Aij⌋xj ≤ ⌊b⌋ (⋆)

However, x̄ does not satisfy (⋆) as

xr(i)

bi

+
∑

j∈N

⌊ ij⌋ xj

=0

= bi > ⌊bi⌋ .

() is a cutting plane for x.

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable

Suppose x̄ is not integer. Then, bi is fractional for some value i.

Every feasible solution to IP satisfies

xr(i) +
∑

j∈N

⌊Aij⌋xj ≤ ⌊b⌋ (⋆)

However, x̄ does not satisfy (⋆) as

xr(i)
︸︷︷︸

bi

+
∑

j∈N

⌊Aij⌋ xj
︸︷︷︸
=0

= bi > ⌊bi⌋ .

() is a cutting plane for x.

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable

Suppose x̄ is not integer. Then, bi is fractional for some value i.

Every feasible solution to IP satisfies

xr(i) +
∑

j∈N

⌊Aij⌋xj ≤ ⌊b⌋ (⋆)

However, x̄ does not satisfy (⋆) as

xr(i)
︸︷︷︸

bi

+
∑

j∈N

⌊Aij⌋ xj
︸︷︷︸
=0

= bi

> ⌊bi⌋ .

() is a cutting plane for x.

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable

Suppose x̄ is not integer. Then, bi is fractional for some value i.

Every feasible solution to IP satisfies

xr(i) +
∑

j∈N

⌊Aij⌋xj ≤ ⌊b⌋ (⋆)

However, x̄ does not satisfy (⋆) as

xr(i)
︸︷︷︸

bi

+
∑

j∈N

⌊Aij⌋ xj
︸︷︷︸
=0

= bi > ⌊bi⌋ .

() is a cutting plane for x.

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ z̄
s. t.

xB +ANxN = b
x ≥ 0

N = {j : j /∈ B}

x̄ basic (x̄N = 0, x̄B = b)

r(i) index of ith basic variable

Suppose x̄ is not integer. Then, bi is fractional for some value i.

Every feasible solution to IP satisfies

xr(i) +
∑

j∈N

⌊Aij⌋xj ≤ ⌊b⌋ (⋆)

However, x̄ does not satisfy (⋆) as

xr(i)
︸︷︷︸

bi

+
∑

j∈N

⌊Aij⌋ xj
︸︷︷︸
=0

= bi > ⌊bi⌋ .

(⋆) is a cutting plane for x̄.

The Good and the Bad

The Good News:

• The Simplex based cutting plane algorithm eventually will terminate.

The Bad News

• If implemented in this way, it will be terribly slow.

Ways we can Improve the Algorithm

• Do not use the 2-phase Simplex to reoptimize; w rk with the dual.

• Add more than one cutting plane at at time.

• Combine it with a divide and conquer strategy (branch and bound).

The Good and the Bad

The Good News:

• The Simplex based cutting plane algorithm eventually will terminate.

The Bad News

• If implemented in this way, it will be terribly slow.

Ways we can Improve the Algorithm

• Do not use the 2-phase Simplex to reoptimize; w rk with the dual.

• Add more than one cutting plane at at time.

• Combine it with a divide and conquer strategy (branch and bound).

The Good and the Bad

The Good News:

• The Simplex based cutting plane algorithm eventually will terminate.

The Bad News

• If implemented in this way, it will be terribly slow.

Ways we can Improve the Algorithm

• Do not use the 2-phase Simplex to reoptimize; w rk with the dual.

• Add more than one cutting plane at at time.

• Combine it with a divide and conquer strategy (branch and bound).

The Good and the Bad

The Good News:

• The Simplex based cutting plane algorithm eventually will terminate.

The Bad News

• If implemented in this way, it will be terribly slow.

Ways we can Improve the Algorithm

• Do not use the 2-phase Simplex to reoptimize; w rk with the dual.

• Add more than one cutting plane at at time.

• Combine it with a divide and conquer strategy (branch and bound).

The Good and the Bad

The Good News:

• The Simplex based cutting plane algorithm eventually will terminate.

The Bad News

• If implemented in this way, it will be terribly slow.

Ways we can Improve the Algorithm

• Do not use the 2-phase Simplex to reoptimize; work with the dual.

• Add more than one cutting plane at at time.

• Combine it with a divide and conquer strategy (branch and bound).

The Good and the Bad

The Good News:

• The Simplex based cutting plane algorithm eventually will terminate.

The Bad News

• If implemented in this way, it will be terribly slow.

Ways we can Improve the Algorithm

• Do not use the 2-phase Simplex to reoptimize; work with the dual.

• Add more than one cutting plane at at time.

• Combine it with a divide and conquer strategy (branch and bound).

The Good and the Bad

The Good News:

• The Simplex based cutting plane algorithm eventually will terminate.

The Bad News

• If implemented in this way, it will be terribly slow.

Ways we can Improve the Algorithm

• Do not use the 2-phase Simplex to reoptimize; work with the dual.

• Add more than one cutting plane at at time.

• Combine it with a divide and conquer strategy (branch and bound).

Recap

• We solve the LP relaxation of an integer program and get a solution;

• If the solution is integer, it is optimal for the integer program;

• Otherwise, we add a cutting plane.

• Cutting planes can be obtained from the final canonical form.

• Careful implementation is key to success.

Recap

• We solve the LP relaxation of an integer program and get a solution;

• If the solution is integer, it is optimal for the integer program;

• Otherwise, we add a cutting plane.

• Cutting planes can be obtained from the final canonical form.

• Careful implementation is key to success.

Recap

• We solve the LP relaxation of an integer program and get a solution;

• If the solution is integer, it is optimal for the integer program;

• Otherwise, we add a cutting plane.

• Cutting planes can be obtained from the final canonical form.

• Careful implementation is key to success.

Recap

• We solve the LP relaxation of an integer program and get a solution;

• If the solution is integer, it is optimal for the integer program;

• Otherwise, we add a cutting plane.

• Cutting planes can be obtained from the final canonical form.

• Careful implementation is key to success.

Recap

• We solve the LP relaxation of an integer program and get a solution;

• If the solution is integer, it is optimal for the integer program;

• Otherwise, we add a cutting plane.

• Cutting planes can be obtained from the final canonical form.

• Careful implementation is key to success.

Recap

• We solve the LP relaxation of an integer program and get a solution;

• If the solution is integer, it is optimal for the integer program;

• Otherwise, we add a cutting plane.

• Cutting planes can be obtained from the final canonical form.

• Careful implementation is key to success.

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

CO 250: Introduction to Optimization
Module 6: Nonlinear Programs (Convexity)

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ (i = , . . . , k)

where

f : ℜn ℜ, and

gi : ℜ
n ℜ for i = , . . . , k.

Remark

There aren’t any restrictions regarding the type of functions.

This is a very general model, but NLPs can be very hard to solve!

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

where

f : ℜn ℜ, and

gi : ℜ
n ℜ for i = , . . . , k.

Remark

There aren’t any restrictions regarding the type of functions.

This is a very general model, but NLPs can be very hard to solve!

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

where

f : ℜn → ℜ, and

gi : ℜ
n ℜ for i = , . . . , k.

Remark

There aren’t any restrictions regarding the type of functions.

This is a very general model, but NLPs can be very hard to solve!

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

where

f : ℜn → ℜ, and

gi : ℜ
n → ℜ for i = 1, . . . , k.

Remark

There aren’t any restrictions regarding the type of functions.

This is a very general model, but NLPs can be very hard to solve!

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

where

f : ℜn → ℜ, and

gi : ℜ
n → ℜ for i = 1, . . . , k.

Remark

There aren’t any restrictions regarding the type of functions.

This is a very general model, but NLPs can be very hard to solve!

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

where

f : ℜn → ℜ, and

gi : ℜ
n → ℜ for i = 1, . . . , k.

Remark

There aren’t any restrictions regarding the type of functions.

This is a very general model, but NLPs can be very hard to solve!

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

min x2

s.t.

−x2
1 − x2 + 2 ≤ 0

x2 −
3
2 ≤ 0

x1 −
3
2 ≤ 0

−x1 − 2 ≤ 0

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

min x2
︸︷︷︸

f(x)

s.t.

−x2
1 − x2 + 2 ≤ 0

x2 −
3
2 ≤ 0

x1 −
3
2 ≤ 0

−x1 − 2 ≤ 0

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

min x2

s.t.

−x
2

1
− x2 + 2

︸ ︷︷ ︸

g1(x)

≤ 0

x2 −
3
2 ≤ 0

x1 −
3
2 ≤ 0

−x1 − 2 ≤ 0

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

min x2

s.t.

−x2
1 − x2 + 2 ≤ 0

x2 −

3

2
︸ ︷︷ ︸

g2(x)

≤ 0

x1 −
3
2 ≤ 0

−x1 − 2 ≤ 0

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

min x2

s.t.

−x2
1 − x2 + 2 ≤ 0

x2 −
3
2 ≤ 0

x1 −

3

2
︸ ︷︷ ︸

g3(x)

≤ 0

−x1 − 2 ≤ 0

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

min x2

s.t.

−x2
1 − x2 + 2 ≤ 0

x2 −
3
2 ≤ 0

x1 −
3
2 ≤ 0

−x1 − 2
︸ ︷︷ ︸

g4(x)

≤ 0

min x2

s.t.

−x2

1 − x2 + 2 ≤ 0

x2 − 3/2 ≤ 0

x1 − 3/2 ≤ 0

−x1 − 2 ≤ 0

x1

x2

1 20−1−2

(1)

1

2

−1

−2

(1) x2 ≥ 2− x2
1.

min x2

s.t.

−x2

1 − x2 + 2 ≤ 0

x2 − 3/2 ≤ 0

x1 − 3/2 ≤ 0

−x1 − 2 ≤ 0

x1

x2

1 20−1−2

(1)

(2)

1

2

−1

−2

(1) x2 ≥ 2− x2
1.

(2) x2 ≤ 3
2 .

min x2

s.t.

−x2

1 − x2 + 2 ≤ 0

x2 − 3/2 ≤ 0

x1 − 3/2 ≤ 0

−x1 − 2 ≤ 0

x1

x2

1 20−1−2

(1)

(2)

(3)

1

2

−1

−2

(1) x2 ≥ 2− x2
1.

(2) x2 ≤ 3
2 .

(3) x1 ≤ 3
2 .

min x2

s.t.

−x2

1 − x2 + 2 ≤ 0

x2 − 3/2 ≤ 0

x1 − 3/2 ≤ 0

−x1 − 2 ≤ 0

x1

x2

1 20−1−2

(1)

(2)

(3)(4)

1

2

−1

−2

(1) x2 ≥ 2− x2
1.

(2) x2 ≤ 3
2 .

(3) x1 ≤ 3
2 .

(4) x1 ≥ −2.

min x2

s.t.

−x2

1 − x2 + 2 ≤ 0

x2 − 3/2 ≤ 0

x1 − 3/2 ≤ 0

−x1 − 2 ≤ 0

x1

x2

1 20−1−2

(1)

(2)

(3)(4)

1

2

−1

−2

Feasible region

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

Remark

We may assume f(x) is a linear function, i.e., f(x) = c⊤x.

We can rewrite (P) as

min λ

s.t.

λ ≥ f(x)

gi(x) ≤ (i = , . . . , k)

(Q)

The optimal solution to (Q) will have λ = f(x).

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

Remark

We may assume f(x) is a linear function, i.e., f(x) = c⊤x.

We can rewrite (P) as

min λ

s.t.

λ ≥ f(x)

gi(x) ≤ (i = , . . . , k)

(Q)

The optimal solution to (Q) will have λ = f(x).

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

Remark

We may assume f(x) is a linear function, i.e., f(x) = c⊤x.

We can rewrite (P) as

min λ

s.t.

λ ≥ f(x)

gi(x) ≤ 0 (i = 1, . . . , k)

(Q)

The optimal solution to (Q) will have λ = f(x).

Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

Remark

We may assume f(x) is a linear function, i.e., f(x) = c⊤x.

We can rewrite (P) as

min λ

s.t.

λ ≥ f(x)

gi(x) ≤ 0 (i = 1, . . . , k)

(Q)

The optimal solution to (Q) will have λ = f(x).

Nonlinear Programs Generalize Linear Programs

max x1 + x2

s.t.

2x1 − x2 ≥ 3
x1 − x2 = 4

x1, x2 ≥ 0

min − x1 − x2

s.t.

− x1 + x2 + ≤
x1 − x2 − ≤

−x1 + x2 + ≤
−x1 ≤
−x2 ≤

Nonlinear Programs can also generalize Integer Programs!

Nonlinear Programs Generalize Linear Programs

max x1 + x2

s.t.

2x1 − x2 ≥ 3
x1 − x2 = 4

x1, x2 ≥ 0

min − x1 − x2

s.t.

−2x1 + x2 + 3 ≤ 0
x1 − x2 − 4 ≤ 0

−x1 + x2 + 4 ≤ 0
−x1 ≤ 0
−x2 ≤ 0

Nonlinear Programs can also generalize Integer Programs!

Nonlinear Programs Generalize Linear Programs

max x1 + x2

s.t.

2x1 − x2 ≥ 3
x1 − x2 = 4

x1, x2 ≥ 0

min − x1 − x2

s.t.

−2x1 + x2 + 3 ≤ 0
x1 − x2 − 4 ≤ 0

−x1 + x2 + 4 ≤ 0
−x1 ≤ 0
−x2 ≤ 0

Nonlinear Programs can also generalize Integer Programs!

Nonlinear Programs Generalize Integer Programs

max c⊤x

s.t.

Ax ≤ b

xj ∈ {0, 1} (j = 1, . . . , n)

0, 1 IP

Idea

xj ∈ , xj(1− xj) =

min − c⊤x

s.t.

Ax ≤ b

xj(1− xj) ≤ (j = , . . . , n)
−xj(1− xj) ≤ (j = , . . . , n)

Quadratic NLP

Remark

, IPs are hard to solve; thus, quadratic NLPs are also hard to solve.

Nonlinear Programs Generalize Integer Programs

max c⊤x

s.t.

Ax ≤ b

xj ∈ {0, 1} (j = 1, . . . , n)

0, 1 IP

Idea

xj ∈ {0, 1}

xj(1− xj) =

min − c⊤x

s.t.

Ax ≤ b

xj(1− xj) ≤ (j = , . . . , n)
−xj(1− xj) ≤ (j = , . . . , n)

Quadratic NLP

Remark

, IPs are hard to solve; thus, quadratic NLPs are also hard to solve.

Nonlinear Programs Generalize Integer Programs

max c⊤x

s.t.

Ax ≤ b

xj ∈ {0, 1} (j = 1, . . . , n)

0, 1 IP

Idea

xj ∈ {0, 1} ⇐⇒ xj(1− xj) = 0

min − c⊤x

s.t.

Ax ≤ b

xj(1− xj) ≤ (j = , . . . , n)
−xj(1− xj) ≤ (j = , . . . , n)

Quadratic NLP

Remark

, IPs are hard to solve; thus, quadratic NLPs are also hard to solve.

Nonlinear Programs Generalize Integer Programs

max c⊤x

s.t.

Ax ≤ b

xj ∈ {0, 1} (j = 1, . . . , n)

0, 1 IP

Idea

xj ∈ {0, 1} ⇐⇒ xj(1− xj) = 0

min − c⊤x

s.t.

Ax ≤ b

xj(1− xj) ≤ 0 (j = 1, . . . , n)
−xj(1− xj) ≤ 0 (j = 1, . . . , n)

Quadratic NLP

Remark

, IPs are hard to solve; thus, quadratic NLPs are also hard to solve.

Nonlinear Programs Generalize Integer Programs

max c⊤x

s.t.

Ax ≤ b

xj ∈ {0, 1} (j = 1, . . . , n)

0, 1 IP

Idea

xj ∈ {0, 1} ⇐⇒ xj(1− xj) = 0

min − c⊤x

s.t.

Ax ≤ b

xj(1− xj) ≤ 0 (j = 1, . . . , n)
−xj(1− xj) ≤ 0 (j = 1, . . . , n)

Quadratic NLP

Remark

0, 1 IPs are hard to solve; thus, quadratic NLPs are also hard to solve.

Nonlinear Programs Generalize Integer Programs

max c⊤x

s.t.

Ax ≤ b

xj integer (j = 1, . . . , n)

pure IP

Idea

xj integer sin(xj) = .

min − c⊤x

s.t.

Ax ≤ b

sin(xj) = (j = , . . . , n)

Remark

IPs are hard to solve; thus, NLPs are also hard to solve.

Nonlinear Programs Generalize Integer Programs

max c⊤x

s.t.

Ax ≤ b

xj integer (j = 1, . . . , n)

pure IP

Idea

xj integer

sin(xj) = .

min − c⊤x

s.t.

Ax ≤ b

sin(xj) = (j = , . . . , n)

Remark

IPs are hard to solve; thus, NLPs are also hard to solve.

Nonlinear Programs Generalize Integer Programs

max c⊤x

s.t.

Ax ≤ b

xj integer (j = 1, . . . , n)

pure IP

Idea

xj integer ⇐⇒ sin(πxj) = 0.

min − c⊤x

s.t.

Ax ≤ b

sin(xj) = (j = , . . . , n)

Remark

IPs are hard to solve; thus, NLPs are also hard to solve.

Nonlinear Programs Generalize Integer Programs

max c⊤x

s.t.

Ax ≤ b

xj integer (j = 1, . . . , n)

pure IP

Idea

xj integer ⇐⇒ sin(πxj) = 0.

min − c⊤x

s.t.

Ax ≤ b

sin(πxj) = 0 (j = 1, . . . , n)

Remark

IPs are hard to solve; thus, NLPs are also hard to solve.

Nonlinear Programs Generalize Integer Programs

max c⊤x

s.t.

Ax ≤ b

xj integer (j = 1, . . . , n)

pure IP

Idea

xj integer ⇐⇒ sin(πxj) = 0.

min − c⊤x

s.t.

Ax ≤ b

sin(πxj) = 0 (j = 1, . . . , n)

Remark

IPs are hard to solve; thus, NLPs are also hard to solve.

Question

What makes solving an NLP hard?

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

Question

What makes solving an NLP hard?

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

Question

What makes solving an NLP hard?

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

Question

What makes solving an NLP hard?

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

Question

What makes solving an NLP hard?

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

Question

What makes solving an NLP hard?

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

min x2

s.t.

−x2

1 − x2 + 2 ≤ 0

x2 − 3/2 ≤ 0

x1 − 3/2 ≤ 0

−x1 − 2 ≤ 0

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

min x2

s.t.

−x2

1 − x2 + 2 ≤ 0

x2 − 3/2 ≤ 0

x1 − 3/2 ≤ 0

−x1 − 2 ≤ 0

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

min x2

s.t.

−x2

1 − x2 + 2 ≤ 0

x2 − 3/2 ≤ 0

x1 − 3/2 ≤ 0

−x1 − 2 ≤ 0

x1

x2

2
b

a

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

a is an optimal solution

x1

x2

2
b

a

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

a is an optimal solution

no better solution around b

x1

x2

2
b

a

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

a is an optimal solution

no better solution around b

b is a local optimum
x1

x2

2
b

a

Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum if there exists δ > such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

min x2 : x ∈ S

b is a local optimum

Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum

if there exists δ > such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

min x2 : x ∈ S

b is a local optimum

Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum if there exists δ > 0 such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

min x2 : x ∈ S

b is a local optimum

Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum if there exists δ > 0 such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

min x2 : x ∈ S

b is a local optimum

Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum if there exists δ > 0 such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

min{x2 : x ∈ S}

b is a local optimum

x1

x2

b

S

Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum if there exists δ > 0 such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

min{x2 : x ∈ S}

b is a local optimum

x1

x2

b δ

S

Convexity Helps

Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum if there exists δ > 0 such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)

If S is convex and x is a local optimum, then x is optimal.

Convexity Helps

Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum if there exists δ > 0 such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)

If S is convex and x is a local optimum, then x is optimal.

Convexity Helps

Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum if there exists δ > 0 such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)

If S is convex and x is a local optimum, then x is optimal.

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose ∃x′ ∈ S with c⊤x′ < c⊤x.

Let y = λx′ + (1− λ)x for λ > small.

As λ small ||y − x|| ≤ δ.

Since S is convex, y ∈ S.

c⊤y

= c⊤(λx′ + (1− λ)x)

= λ

>0

c⊤x′

<c⊤x

+(1− λ)c⊤x

< λc⊤x+ (1− λ)c⊤x

= c⊤x

A contradiction.

S

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose ∃x′ ∈ S with c⊤x′ < c⊤x.

Let y = λx′ + (1− λ)x for λ > small.

As λ small ||y − x|| ≤ δ.

Since S is convex, y ∈ S.

c⊤y

= c⊤(λx′ + (1− λ)x)

= λ

>0

c⊤x′

<c⊤x

+(1− λ)c⊤x

< λc⊤x+ (1− λ)c⊤x

= c⊤x

A contradiction.

x

S

δ

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose ∃x′ ∈ S with c⊤x′ < c⊤x.

Let y = λx′ + (1− λ)x for λ > small.

As λ small ||y − x|| ≤ δ.

Since S is convex, y ∈ S.

c⊤y

= c⊤(λx′ + (1− λ)x)

= λ

>0

c⊤x′

<c⊤x

+(1− λ)c⊤x

< λc⊤x+ (1− λ)c⊤x

= c⊤x

A contradiction.

x

x0
S

δ

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose ∃x′ ∈ S with c⊤x′ < c⊤x.

Let y = λx′ + (1− λ)x for λ > 0 small.

As λ small ||y − x|| ≤ δ.

Since S is convex, y ∈ S.

c⊤y

= c⊤(λx′ + (1− λ)x)

= λ

>0

c⊤x′

<c⊤x

+(1− λ)c⊤x

< λc⊤x+ (1− λ)c⊤x

= c⊤x

A contradiction.

x

x0

y

S

δ

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose ∃x′ ∈ S with c⊤x′ < c⊤x.

Let y = λx′ + (1− λ)x for λ > 0 small.

As λ small ||y − x|| ≤ δ.

Since S is convex, y ∈ S.

c⊤y

= c⊤(λx′ + (1− λ)x)

= λ

>0

c⊤x′

<c⊤x

+(1− λ)c⊤x

< λc⊤x+ (1− λ)c⊤x

= c⊤x

A contradiction.

x

x0

y

S

δ

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose ∃x′ ∈ S with c⊤x′ < c⊤x.

Let y = λx′ + (1− λ)x for λ > 0 small.

As λ small ||y − x|| ≤ δ.

Since S is convex, y ∈ S.

c⊤y

= c⊤(λx′ + (1− λ)x)

= λ

>0

c⊤x′

<c⊤x

+(1− λ)c⊤x

< λc⊤x+ (1− λ)c⊤x

= c⊤x

A contradiction.

x

x0

y

S

δ

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose ∃x′ ∈ S with c⊤x′ < c⊤x.

Let y = λx′ + (1− λ)x for λ > 0 small.

As λ small ||y − x|| ≤ δ.

Since S is convex, y ∈ S.

c⊤y

= c⊤(λx′ + (1− λ)x)

= λ

>0

c⊤x′

<c⊤x

+(1− λ)c⊤x

< λc⊤x+ (1− λ)c⊤x

= c⊤x

A contradiction.

x

x0

y

S

δ

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose ∃x′ ∈ S with c⊤x′ < c⊤x.

Let y = λx′ + (1− λ)x for λ > 0 small.

As λ small ||y − x|| ≤ δ.

Since S is convex, y ∈ S.

c⊤y = c⊤(λx′ + (1− λ)x)

= λ

>0

c⊤x′

<c⊤x

+(1− λ)c⊤x

< λc⊤x+ (1− λ)c⊤x

= c⊤x

A contradiction.

x

x0

y

S

δ

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose ∃x′ ∈ S with c⊤x′ < c⊤x.

Let y = λx′ + (1− λ)x for λ > 0 small.

As λ small ||y − x|| ≤ δ.

Since S is convex, y ∈ S.

c⊤y = c⊤(λx′ + (1− λ)x)

= λ
︸︷︷︸
>0

c⊤x′

︸︷︷︸

<c⊤x

+(1− λ)c⊤x

< λc⊤x+ (1− λ)c⊤x

= c⊤x

A contradiction.

x

x0

y

S

δ

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose ∃x′ ∈ S with c⊤x′ < c⊤x.

Let y = λx′ + (1− λ)x for λ > 0 small.

As λ small ||y − x|| ≤ δ.

Since S is convex, y ∈ S.

c⊤y = c⊤(λx′ + (1− λ)x)

= λ
︸︷︷︸
>0

c⊤x′

︸︷︷︸

<c⊤x

+(1− λ)c⊤x

< λc⊤x+ (1− λ)c⊤x

= c⊤x

A contradiction.

x

x0

y

S

δ

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose ∃x′ ∈ S with c⊤x′ < c⊤x.

Let y = λx′ + (1− λ)x for λ > 0 small.

As λ small ||y − x|| ≤ δ.

Since S is convex, y ∈ S.

c⊤y = c⊤(λx′ + (1− λ)x)

= λ
︸︷︷︸
>0

c⊤x′

︸︷︷︸

<c⊤x

+(1− λ)c⊤x

< λc⊤x+ (1− λ)c⊤x

= c⊤x

A contradiction.

x

x0

y

S

δ

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose ∃x′ ∈ S with c⊤x′ < c⊤x.

Let y = λx′ + (1− λ)x for λ > 0 small.

As λ small ||y − x|| ≤ δ.

Since S is convex, y ∈ S.

c⊤y = c⊤(λx′ + (1− λ)x)

= λ
︸︷︷︸
>0

c⊤x′

︸︷︷︸

<c⊤x

+(1− λ)c⊤x

< λc⊤x+ (1− λ)c⊤x

= c⊤x

A contradiction.

x

x0

y

S

δ

Consider

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

Goal: Study a case where the feasible region of (P) is convex.

• We will define convex functions

• We will prove

Proposition

If g1, . . . , gk are all convex, then the feasible region f (P) is convex.

Consider

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

Goal: Study a case where the feasible region of (P) is convex.

• We will define convex functions

• We will prove

Proposition

If g1, . . . , gk are all convex, then the feasible region f (P) is convex.

Consider

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

Goal: Study a case where the feasible region of (P) is convex.

• We will define convex functions

• We will prove

Proposition

If g1, . . . , gk are all convex, then the feasible region f (P) is convex.

Consider

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

Goal: Study a case where the feasible region of (P) is convex.

• We will define convex functions

• We will prove

Proposition

If g1, . . . , gk are all convex, then the feasible region of (P) is convex.

Definition

Function f : ℜn → ℜ is convex

if for all a, b ∈ ℜn,

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b) for all ≤ λ ≤ .

Convex function!

Definition

Function f : ℜn → ℜ is convex if for all a, b ∈ ℜn,

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b) for all ≤ λ ≤ .

Convex function!

Definition

Function f : ℜn → ℜ is convex if for all a, b ∈ ℜn,

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b)

for all ≤ λ ≤ .

Convex function!

Definition

Function f : ℜn → ℜ is convex if for all a, b ∈ ℜn,

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b) for all 0 ≤ λ ≤ 1.

Convex function!

Definition

Function f : ℜn → ℜ is convex if for all a, b ∈ ℜn,

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b) for all 0 ≤ λ ≤ 1.

y ∈ R

f

x

Convex function!

Definition

Function f : ℜn → ℜ is convex if for all a, b ∈ ℜn,

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b) for all 0 ≤ λ ≤ 1.

a b

y ∈ R

f

x

Convex function!

Definition

Function f : ℜn → ℜ is convex if for all a, b ∈ ℜn,

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b) for all 0 ≤ λ ≤ 1.

λf(a) + (1− λ)f(b)

a b

y ∈ R

f

x

f(a)

f(b)

Convex function!

Definition

Function f : ℜn → ℜ is convex if for all a, b ∈ ℜn,

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b) for all 0 ≤ λ ≤ 1.

Not a convex function!

Definition

Function f : ℜn → ℜ is convex if for all a, b ∈ ℜn,

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b) for all 0 ≤ λ ≤ 1.

a b

y ∈ R

f

x

f(a)

f(b)

Not a convex function!

Definition

Function f : ℜn → ℜ is convex if for all a, b ∈ ℜn,

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b) for all 0 ≤ λ ≤ 1.

a b

y ∈ R

f

x

f(a)

f(b)

Not a convex function!

Definition

Function f : ℜn → ℜ is convex if for all a, b ∈ ℜn,

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b) for all 0 ≤ λ ≤ 1.

Convex function!

Definition

Function f : ℜn → ℜ is convex if for all a, b ∈ ℜn,

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b) for all 0 ≤ λ ≤ 1.

x1
x2

a

b

f(a)

f(b)

y ∈ R

f

Convex function!

Definition

Function f : ℜn → ℜ is convex if for all a, b ∈ ℜn,

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b) for all 0 ≤ λ ≤ 1.

x1
x2

a

b

f(a)

f(b)

y ∈ R

f

Convex function!

Example

We claim that f(x) = x2 is convex.

Pick a, b ∈ ℜ and pick λ where ≤ λ ≤ .

T check:

[λa+ (1− λ)b]
2 ?
≤ λa2 + (1− λ)b2.

We may assume that λ = , .

After simplifying

λ(1− λ)2ab
?
≤ λ(1− λ)(a2 + b2),

r, equivalently, as λ, (1− λ) > ,

a2 + b2 − ab
?
≥ ,

which is the case as a2 + b2 − ab = (a− b)2 ≥ .

Example

We claim that f(x) = x2 is convex.

Pick a, b ∈ ℜ and pick λ where 0 ≤ λ ≤ 1.

T check:

[λa+ (1− λ)b]
2 ?
≤ λa2 + (1− λ)b2.

We may assume that λ = , .

After simplifying

λ(1− λ)2ab
?
≤ λ(1− λ)(a2 + b2),

r, equivalently, as λ, (1− λ) > ,

a2 + b2 − ab
?
≥ ,

which is the case as a2 + b2 − ab = (a− b)2 ≥ .

Example

We claim that f(x) = x2 is convex.

Pick a, b ∈ ℜ and pick λ where 0 ≤ λ ≤ 1.

To check:

[λa+ (1− λ)b]
2 ?
≤ λa2 + (1− λ)b2.

We may assume that λ = , .

After simplifying

λ(1− λ)2ab
?
≤ λ(1− λ)(a2 + b2),

r, equivalently, as λ, (1− λ) > ,

a2 + b2 − ab
?
≥ ,

which is the case as a2 + b2 − ab = (a− b)2 ≥ .

Example

We claim that f(x) = x2 is convex.

Pick a, b ∈ ℜ and pick λ where 0 ≤ λ ≤ 1.

To check:

[λa+ (1− λ)b]
2 ?
≤ λa2 + (1− λ)b2.

We may assume that λ 6= 0, 1.

After simplifying

λ(1− λ)2ab
?
≤ λ(1− λ)(a2 + b2),

r, equivalently, as λ, (1− λ) > ,

a2 + b2 − ab
?
≥ ,

which is the case as a2 + b2 − ab = (a− b)2 ≥ .

Example

We claim that f(x) = x2 is convex.

Pick a, b ∈ ℜ and pick λ where 0 ≤ λ ≤ 1.

To check:

[λa+ (1− λ)b]
2 ?
≤ λa2 + (1− λ)b2.

We may assume that λ 6= 0, 1.

After simplifying

λ(1− λ)2ab
?
≤ λ(1− λ)(a2 + b2),

r, equivalently, as λ, (1− λ) > ,

a2 + b2 − ab
?
≥ ,

which is the case as a2 + b2 − ab = (a− b)2 ≥ .

Example

We claim that f(x) = x2 is convex.

Pick a, b ∈ ℜ and pick λ where 0 ≤ λ ≤ 1.

To check:

[λa+ (1− λ)b]
2 ?
≤ λa2 + (1− λ)b2.

We may assume that λ 6= 0, 1.

After simplifying

λ(1− λ)2ab
?
≤ λ(1− λ)(a2 + b2),

or, equivalently, as λ, (1− λ) > 0,

a2 + b2 − 2ab
?
≥ 0,

which is the case as a2 + b2 − ab = (a− b)2 ≥ .

Example

We claim that f(x) = x2 is convex.

Pick a, b ∈ ℜ and pick λ where 0 ≤ λ ≤ 1.

To check:

[λa+ (1− λ)b]
2 ?
≤ λa2 + (1− λ)b2.

We may assume that λ 6= 0, 1.

After simplifying

λ(1− λ)2ab
?
≤ λ(1− λ)(a2 + b2),

or, equivalently, as λ, (1− λ) > 0,

a2 + b2 − 2ab
?
≥ 0,

which is the case as a2 + b2 − 2ab = (a− b)2 ≥ 0.

Why Do We Care About Convex Functions?

Proposition

Let g : ℜn → ℜ be a convex function and β ∈ ℜ.

Then S = {x ∈ ℜn : g(x) ≤ β} is a convex set.

Proposition

Let g : ℜn → ℜ be a convex function and β ∈ ℜ.

Then S = {x ∈ ℜn : g(x) ≤ β} is a convex set.

S

g

y ∈ R

x

y = β

Proposition

Let g : ℜn → ℜ be a convex function and β ∈ ℜ.

Then S = {x ∈ ℜn : g(x) ≤ β} is a convex set.

y ∈ R

y = β

x

S

g

Proposition

Let g : ℜn → ℜ be a convex function and β ∈ ℜ.

Then S = {x ∈ ℜn : g(x) ≤ β} is a convex set.

x1
x2

y ∈ R

f

y = β

S

Proposition

Let g : ℜn → ℜ be a convex function and β ∈ ℜ.

Then S = {x ∈ ℜn : g(x) ≤ β} is a convex set.

Proof

Pick a, b ∈ S.

Pick λ where ≤ λ ≤ .

Let x = λa+ (1− λ)b.

Our goal is to show that x ∈ S, i.e., that g(x) ≤ β.

g(x) = g (λa+ (1− λ)b)

≤ λg(a) + (1− λ)g(b) (convexity of g)

Proposition

Let g : ℜn → ℜ be a convex function and β ∈ ℜ.

Then S = {x ∈ ℜn : g(x) ≤ β} is a convex set.

Proof

Pick a, b ∈ S.

Pick λ where ≤ λ ≤ .

Let x = λa+ (1− λ)b.

Our goal is to show that x ∈ S, i.e., that g(x) ≤ β.

g(x) = g (λa+ (1− λ)b)

≤ λg(a) + (1− λ)g(b) (convexity of g)

Proposition

Let g : ℜn → ℜ be a convex function and β ∈ ℜ.

Then S = {x ∈ ℜn : g(x) ≤ β} is a convex set.

Proof

Pick a, b ∈ S.

Pick λ where 0 ≤ λ ≤ 1.

Let x = λa+ (1− λ)b.

Our goal is to show that x ∈ S, i.e., that g(x) ≤ β.

g(x) = g (λa+ (1− λ)b)

≤ λg(a) + (1− λ)g(b) (convexity of g)

Proposition

Let g : ℜn → ℜ be a convex function and β ∈ ℜ.

Then S = {x ∈ ℜn : g(x) ≤ β} is a convex set.

Proof

Pick a, b ∈ S.

Pick λ where 0 ≤ λ ≤ 1.

Let x = λa+ (1− λ)b.

Our goal is to show that x ∈ S, i.e., that g(x) ≤ β.

g(x) = g (λa+ (1− λ)b)

≤ λg(a) + (1− λ)g(b) (convexity of g)

Proposition

Let g : ℜn → ℜ be a convex function and β ∈ ℜ.

Then S = {x ∈ ℜn : g(x) ≤ β} is a convex set.

Proof

Pick a, b ∈ S.

Pick λ where 0 ≤ λ ≤ 1.

Let x = λa+ (1− λ)b.

Our goal is to show that x ∈ S, i.e., that g(x) ≤ β.

g(x) = g (λa+ (1− λ)b)

≤ λg(a) + (1− λ)g(b) (convexity of g)

Proposition

Let g : ℜn → ℜ be a convex function and β ∈ ℜ.

Then S = {x ∈ ℜn : g(x) ≤ β} is a convex set.

Proof

Pick a, b ∈ S.

Pick λ where 0 ≤ λ ≤ 1.

Let x = λa+ (1− λ)b.

Our goal is to show that x ∈ S, i.e., that g(x) ≤ β.

g(x) = g (λa+ (1− λ)b)

≤ λg(a) + (1− λ)g(b) (convexity of g)

Proposition

Let g : ℜn → ℜ be a convex function and β ∈ ℜ.

Then S = {x ∈ ℜn : g(x) ≤ β} is a convex set.

Proof

Pick a, b ∈ S.

Pick λ where 0 ≤ λ ≤ 1.

Let x = λa+ (1− λ)b.

Our goal is to show that x ∈ S, i.e., that g(x) ≤ β.

g(x) = g (λa+ (1− λ)b)

≤ λg(a) + (1− λ)g(b) (convexity of g)

Proposition

Let g : ℜn → ℜ be a convex function and β ∈ ℜ.

Then S = {x ∈ ℜn : g(x) ≤ β} is a convex set.

Proof

Pick a, b ∈ S.

Pick λ where 0 ≤ λ ≤ 1.

Let x = λa+ (1− λ)b.

Our goal is to show that x ∈ S, i.e., that g(x) ≤ β.

g(x) = g (λa+ (1− λ)b)

≤ λ
︸︷︷︸

≥0

g(a)
︸︷︷︸

≤β

+(1− λ)
︸ ︷︷ ︸

≥0

g(b)
︸︷︷︸

≤β

(since a, b ∈ S)

≤ λβ + (1− λ)β = β.

Proposition

Let g : ℜn → ℜ be a convex function and β ∈ ℜ.

Then S = {x ∈ ℜn : g(x) ≤ β} is a convex set.

Proof

Pick a, b ∈ S.

Pick λ where 0 ≤ λ ≤ 1.

Let x = λa+ (1− λ)b.

Our goal is to show that x ∈ S, i.e., that g(x) ≤ β.

g(x) = g (λa+ (1− λ)b)

≤ λ
︸︷︷︸

≥0

g(a)
︸︷︷︸

≤β

+(1− λ)
︸ ︷︷ ︸

≥0

g(b)
︸︷︷︸

≤β

(since a, b ∈ S)

≤ λβ + (1− λ)β = β.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

If all functions gi are convex, then the feasible region of (P) is convex.

Proof

Let Si = x : gi(x) ≤ .

By the previous result, Si is convex.

The feasible region of (P) is S1 ∩ S2 ∩ . . . ∩ Sk.

Since the intersection of convex sets is convex, the result follows.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

If all functions gi are convex, then the feasible region of (P) is convex.

Proof

Let Si = x : gi(x) ≤ .

By the previous result, Si is convex.

The feasible region of (P) is S1 ∩ S2 ∩ . . . ∩ Sk.

Since the intersection of convex sets is convex, the result follows.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

If all functions gi are convex, then the feasible region of (P) is convex.

Proof

Let Si = x : gi(x) ≤ .

By the previous result, Si is convex.

The feasible region of (P) is S1 ∩ S2 ∩ . . . ∩ Sk.

Since the intersection of convex sets is convex, the result follows.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

If all functions gi are convex, then the feasible region of (P) is convex.

Proof

Let Si = {x : gi(x) ≤ 0}.

By the previous result, Si is convex.

The feasible region of (P) is S1 ∩ S2 ∩ . . . ∩ Sk.

Since the intersection of convex sets is convex, the result follows.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

If all functions gi are convex, then the feasible region of (P) is convex.

Proof

Let Si = {x : gi(x) ≤ 0}.

By the previous result, Si is convex.

The feasible region of (P) is S1 ∩ S2 ∩ . . . ∩ Sk.

Since the intersection of convex sets is convex, the result follows.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

If all functions gi are convex, then the feasible region of (P) is convex.

Proof

Let Si = {x : gi(x) ≤ 0}.

By the previous result, Si is convex.

The feasible region of (P) is S1 ∩ S2 ∩ . . . ∩ Sk.

Since the intersection of convex sets is convex, the result follows.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

If all functions gi are convex, then the feasible region of (P) is convex.

Proof

Let Si = {x : gi(x) ≤ 0}.

By the previous result, Si is convex.

The feasible region of (P) is S1 ∩ S2 ∩ . . . ∩ Sk.

Since the intersection of convex sets is convex, the result follows.

Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function.

The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x) ⊆ ℜn+1.

f is convex

epi(f) is convex

Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f is convex

epi(f) is convex

Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f

y > f(x)

y = f(x)

epi(f)

x

x ∈ R
n

y ∈ R

f is convex

epi(f) is convex

Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f

y > f(x)

y = f(x)

epi(f)

x

x ∈ R
n

y ∈ R

f is convex

epi(f) is convex

Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f

y > f(x)

y = f(x)

epi(f)

x

x ∈ R
n

y ∈ R

f is convex

epi(f) is convex

Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f is NOT convex

epi(f) is NOT convex

Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f

x ∈ R
n

y ∈ R

epi(f)

f is NOT convex

epi(f) is NOT convex

Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f

x ∈ R
n

y ∈ R

epi(f)
f is NOT convex

epi(f) is NOT convex

Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f

x ∈ R
n

y ∈ R

epi(f)
f is NOT convex

epi(f) is NOT convex

Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex = epi(f) is convex.

2. epi(f) is convex = f is convex.

Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where ≤ λ ≤ .

T show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

()

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λf(a) + (1− λ)f(b)

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where ≤ λ ≤ .

T show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

()

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λf(a) + (1− λ)f(b)

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f).

Pick λ where ≤ λ ≤ .

T show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

()

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λf(a) + (1− λ)f(b)

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

T show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

()

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λf(a) + (1− λ)f(b)

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

()

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λf(a) + (1− λ)f(b)

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

(⋆)

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λf(a) + (1− λ)f(b)

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

(⋆)

Consider

f (λa+ (1− λ)b)

≤ (convexity of f)

λf(a) + (1− λ)f(b)

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

(⋆)

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λf(a) + (1− λ)f(b)

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

(⋆)

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λ
︸︷︷︸

≥0

f(a) + (1− λ)
︸ ︷︷ ︸

≥0

f(b)

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

(⋆)

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λ
︸︷︷︸

≥0

f(a)
︸︷︷︸

≤α

+(1− λ)
︸ ︷︷ ︸

≥0

f(b)
︸︷︷︸

≤β

≤

λα+ (1− λ)β.

Thus () is in epi(f).

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

(⋆)

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λ
︸︷︷︸

≥0

f(a)
︸︷︷︸

≤α

+(1− λ)
︸ ︷︷ ︸

≥0

f(b)
︸︷︷︸

≤β

≤

λα+ (1− λ)β.

Thus () is in epi(f).

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

(⋆)

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λ
︸︷︷︸

≥0

f(a)
︸︷︷︸

≤α

+(1− λ)
︸ ︷︷ ︸

≥0

f(b)
︸︷︷︸

≤β

≤

λα+ (1− λ)β.

Thus (⋆) is in epi(f).

Recap

1. NLPs are hard in general.

2. We may assume the objective function of NLPs is linear.

3. Local optimum = optimal sol when the feasible region is convex.

4. We defined convex functions.

5. Convex functions yield a convex feasible region.

6. Convex functions and convex sets are related by epigraphs.

Recap

1. NLPs are hard in general.

2. We may assume the objective function of NLPs is linear.

3. Local optimum = optimal sol when the feasible region is convex.

4. We defined convex functions.

5. Convex functions yield a convex feasible region.

6. Convex functions and convex sets are related by epigraphs.

Recap

1. NLPs are hard in general.

2. We may assume the objective function of NLPs is linear.

3. Local optimum = optimal sol when the feasible region is convex.

4. We defined convex functions.

5. Convex functions yield a convex feasible region.

6. Convex functions and convex sets are related by epigraphs.

Recap

1. NLPs are hard in general.

2. We may assume the objective function of NLPs is linear.

3. Local optimum = optimal sol when the feasible region is convex.

4. We defined convex functions.

5. Convex functions yield a convex feasible region.

6. Convex functions and convex sets are related by epigraphs.

Recap

1. NLPs are hard in general.

2. We may assume the objective function of NLPs is linear.

3. Local optimum = optimal sol when the feasible region is convex.

4. We defined convex functions.

5. Convex functions yield a convex feasible region.

6. Convex functions and convex sets are related by epigraphs.

Recap

1. NLPs are hard in general.

2. We may assume the objective function of NLPs is linear.

3. Local optimum = optimal sol when the feasible region is convex.

4. We defined convex functions.

5. Convex functions yield a convex feasible region.

6. Convex functions and convex sets are related by epigraphs.

Recap

1. NLPs are hard in general.

2. We may assume the objective function of NLPs is linear.

3. Local optimum = optimal sol when the feasible region is convex.

4. We defined convex functions.

5. Convex functions yield a convex feasible region.

6. Convex functions and convex sets are related by epigraphs.

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

CO 250: Introduction to Optimization
Module 6: Nonlinear Programs (the KKT theorem)

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

(1) x2 ≥ x2
1;

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

(1)

x1

x2

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(1) x2 ≥ x2
1;

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

(2)

(1)

x1

x2

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(1) x2 ≥ x2
1;

(2) x1 ≥ x2
2;

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

(3)

(2)

(1)

x1

x2

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(1) x2 ≥ x2
1;

(2) x1 ≥ x2
2;

(3) x1 ≥ 1
2 .

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

(3)

(2)

(1)

x1

x2

x̄ =

(

1
1

)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

Claim

x = (1, 1)⊤ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove x is optimal for the relaxation.

Step 3. Deduce that x is optimal for the NLP.

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

(3)

(2)

(1)

x1

x2

x̄ =

(

1
1

)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

Claim

x̄ = (1, 1)⊤ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove x is optimal for the relaxation.

Step 3. Deduce that x is optimal for the NLP.

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

(3)

(2)

(1)

x1

x2

x̄ =

(

1
1

)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

Claim

x̄ = (1, 1)⊤ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove x is optimal for the relaxation.

Step 3. Deduce that x is optimal for the NLP.

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

(3)

(2)

(1)

x1

x2

x̄ =

(

1
1

)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

Claim

x̄ = (1, 1)⊤ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove x is optimal for the relaxation.

Step 3. Deduce that x is optimal for the NLP.

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

(3)

(2)

(1)

x1

x2

x̄ =

(

1
1

)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

Claim

x̄ = (1, 1)⊤ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove x̄ is optimal for the relaxation.

Step 3. Deduce that x is optimal for the NLP.

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

(3)

(2)

(1)

x1

x2

x̄ =

(

1
1

)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

Claim

x̄ = (1, 1)⊤ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove x̄ is optimal for the relaxation.

Step 3. Deduce that x̄ is optimal for the NLP.

Original NLP

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x1

x2

(1)

(2)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(3)

Relaxation

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

Original NLP

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x1

x2

(1)

(2)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(3)

Relaxation

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

x1

x2

(1)

(2)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

Original NLP

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x1

x2

(1)

(2)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(3)

New relaxation

min − x1 − x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + x2

2 ≤ 0 (2)

x1

x2

(2)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(a)

Original NLP

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x1

x2

(1)

(2)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(3)

New relaxation

min − x1 − x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

x1

x2

(b)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(a)

Claim
x̄ = (1, 1)⊤ is an optimal solution to

min − x1 − x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

Claim
x̄ = (1, 1)⊤ is an optimal solution to

max x1 + x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

Proof

Tight constraints for x are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

()

?
∈ cone

{(

−

)

,

(

−
)}

=

()

= ×

(

−

)

+ ×

(

−
)

X

Claim
x̄ = (1, 1)⊤ is an optimal solution to

max x1 + x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

Proof

Tight constraints for x are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

()

?
∈ cone

{(

−

)

,

(

−
)}

=

()

= ×

(

−

)

+ ×

(

−
)

X

Claim
x̄ = (1, 1)⊤ is an optimal solution to

max x1 + x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

Proof

Tight constraints for x̄ are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

()

?
∈ cone

{(

−

)

,

(

−
)}

=

()

= ×

(

−

)

+ ×

(

−
)

X

Claim
x̄ = (1, 1)⊤ is an optimal solution to

max x1 + x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

Proof

Tight constraints for x̄ are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

()

?
∈ cone

{(

−

)

,

(

−
)}

=

()

= ×

(

−

)

+ ×

(

−
)

X

Claim
x̄ = (1, 1)⊤ is an optimal solution to

max x1 + x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

Proof

Tight constraints for x̄ are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

(

1
1

)

?
∈ cone

{(

2
−1

)

,

(

−1
2

)}

=

()

= ×

(

−

)

+ ×

(

−
)

X

Claim
x̄ = (1, 1)⊤ is an optimal solution to

max x1 + x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

Proof

Tight constraints for x̄ are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

(

1
1

)

?
∈ cone

{(

2
−1

)

,

(

−1
2

)}

⇐=

(

1
1

)

= 1×

(

2
−1

)

+ 1×

(

−1
2

)

X

Original NLP

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

Relaxation

min − x1 − x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

x = (1, 1)⊤ is an optimal solution to the relaxation

x is an optimal solution to the riginal NLP

Question

Can we do this in general? YES

The key tool we’ll use is subgradients.

Original NLP

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

Relaxation

min − x1 − x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

x̄ = (1, 1)⊤ is an optimal solution to the relaxation

x is an optimal solution to the riginal NLP

Question

Can we do this in general? YES

The key tool we’ll use is subgradients.

Original NLP

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

Relaxation

min − x1 − x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

x̄ = (1, 1)⊤ is an optimal solution to the relaxation

x̄ is an optimal solution to the original NLP

Question

Can we do this in general? YES

The key tool we’ll use is subgradients.

Original NLP

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

Relaxation

min − x1 − x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

x̄ = (1, 1)⊤ is an optimal solution to the relaxation

x̄ is an optimal solution to the original NLP

Question

Can we do this in general?

YES

The key tool we’ll use is subgradients.

Original NLP

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

Relaxation

min − x1 − x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

x̄ = (1, 1)⊤ is an optimal solution to the relaxation

x̄ is an optimal solution to the original NLP

Question

Can we do this in general? YES

The key tool we’ll use is subgradients.

Original NLP

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

Relaxation

min − x1 − x2

s.t.

2x1 − x2 ≤ 1 (a)

−x1 + 2x2 ≤ 1 (b)

x̄ = (1, 1)⊤ is an optimal solution to the relaxation

x̄ is an optimal solution to the original NLP

Question

Can we do this in general? YES

The key tool we’ll use is subgradients.

Definition

Let f : ℜn → ℜ be a convex function

and x ∈ ℜn.

Then, s ∈ ℜn is a subgradient of f at x if

h(x) :=f(x) + s⊤(x− x) ≤ f(x) for all x ∈ ℜn.

h(x) is affine

h(x) = f(x)

h is a lower bound f r f

Definition

Let f : ℜn → ℜ be a convex function and x̄ ∈ ℜn.

Then, s ∈ ℜn is a subgradient of f at x if

h(x) :=f(x) + s⊤(x− x) ≤ f(x) for all x ∈ ℜn.

h(x) is affine

h(x) = f(x)

h is a lower bound f r f

Definition

Let f : ℜn → ℜ be a convex function and x̄ ∈ ℜn.

Then, s ∈ ℜn is a subgradient of f at x̄ if

h(x) :=f(x) + s⊤(x− x) ≤ f(x) for all x ∈ ℜn.

h(x) is affine

h(x) = f(x)

h is a lower bound f r f

Definition

Let f : ℜn → ℜ be a convex function and x̄ ∈ ℜn.

Then, s ∈ ℜn is a subgradient of f at x̄ if

h(x) :=f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

h(x) is affine

h(x) = f(x)

h is a lower bound f r f

Definition

Let f : ℜn → ℜ be a convex function and x̄ ∈ ℜn.

Then, s ∈ ℜn is a subgradient of f at x̄ if

h(x) :=f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

h(x) is affine

h(x) = f(x)

h is a lower bound f r f

Definition

Let f : ℜn → ℜ be a convex function and x̄ ∈ ℜn.

Then, s ∈ ℜn is a subgradient of f at x̄ if

h(x) :=f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

h(x) is affine

h(x̄) = f(x̄)

h is a lower bound f r f

Definition

Let f : ℜn → ℜ be a convex function and x̄ ∈ ℜn.

Then, s ∈ ℜn is a subgradient of f at x̄ if

h(x) :=f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

h(x) is affine

h(x̄) = f(x̄)

h is a lower bound for f

Definition

Let f : ℜn → ℜ be a convex function and x̄ ∈ ℜn.

Then, s ∈ ℜn is a subgradient of f at x̄ if

h(x) :=f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

h(x) is affine

h(x̄) = f(x̄)

h is a lower bound for f

x ∈ R

h(x)

x̄

f

y ∈ R

Definition

Let f : ℜn → ℜ be a convex function and x̄ ∈ ℜn.

Then, s ∈ ℜn is a subgradient of f at x̄ if

h(x) :=f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

h(x) is affine

h(x̄) = f(x̄)

h is a lower bound for f

unique subgradient

x ∈ R

h(x)

x̄

f

y ∈ R

Definition

Let f : ℜn → ℜ be a convex function and x̄ ∈ ℜn.

Then, s ∈ ℜn is a subgradient of f at x̄ if

h(x) :=f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

h(x) is affine

h(x̄) = f(x̄)

h is a lower bound for f

first subgradient

x ∈ R

h(x)

x̄

f

y ∈ R

Definition

Let f : ℜn → ℜ be a convex function and x̄ ∈ ℜn.

Then, s ∈ ℜn is a subgradient of f at x̄ if

h(x) :=f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

h(x) is affine

h(x̄) = f(x̄)

h is a lower bound for f

second subgradient

x ∈ Rh(x)

x̄

f

y ∈ R

Definition

Let f : ℜn → ℜ be a convex function and x̄ ∈ ℜn.

Then, s ∈ ℜn is a subgradient of f at x̄ if

h(x) :=f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

h(x) is affine

h(x̄) = f(x̄)

h is a lower bound for f

not unique

x ∈ Rh(x)

x̄

f

y ∈ R

Definition

s ∈ ℜn is a subgradient of f at x̄ if

h(x) := f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

Example

Consider f : ℜ2 ℜ where f(x) = −x1 + x2
2 and x = (1, 1)⊤.

We claim that (− , 2)⊤ is a subgradient of f at x.

h(x) = f(x) + s⊤(x− x) =

= + (− , 2)(x− (1, 1)⊤) = − x1 + x2 − .

Check: h(x) ≤ f(x) for all x ∈ ℜn.

−x1 + x2 −
?
≤ −x1 + x2

2

r equivalently,
x2
2 − x2 +

?
≥ ,

which is the case as x2
2 − x2 + = (x2 − 1)2 ≥ .

Definition

s ∈ ℜn is a subgradient of f at x̄ if

h(x) := f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

Example

Consider f : ℜ2 ℜ where f(x) = −x1 + x2
2 and x = (1, 1)⊤.

We claim that (− , 2)⊤ is a subgradient of f at x.

h(x) = f(x) + s⊤(x− x) =

= + (− , 2)(x− (1, 1)⊤) = − x1 + x2 − .

Check: h(x) ≤ f(x) for all x ∈ ℜn.

−x1 + x2 −
?
≤ −x1 + x2

2

r equivalently,
x2
2 − x2 +

?
≥ ,

which is the case as x2
2 − x2 + = (x2 − 1)2 ≥ .

Definition

s ∈ ℜn is a subgradient of f at x̄ if

h(x) := f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

Example

Consider f : ℜ2 → ℜ where f(x) = −x1 + x2
2 and x̄ = (1, 1)⊤.

We claim that (− , 2)⊤ is a subgradient of f at x.

h(x) = f(x) + s⊤(x− x) =

= + (− , 2)(x− (1, 1)⊤) = − x1 + x2 − .

Check: h(x) ≤ f(x) for all x ∈ ℜn.

−x1 + x2 −
?
≤ −x1 + x2

2

r equivalently,
x2
2 − x2 +

?
≥ ,

which is the case as x2
2 − x2 + = (x2 − 1)2 ≥ .

Definition

s ∈ ℜn is a subgradient of f at x̄ if

h(x) := f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

Example

Consider f : ℜ2 → ℜ where f(x) = −x1 + x2
2 and x̄ = (1, 1)⊤.

We claim that (−1, 2)⊤ is a subgradient of f at x̄.

h(x) = f(x) + s⊤(x− x) =

= + (− , 2)(x− (1, 1)⊤) = − x1 + x2 − .

Check: h(x) ≤ f(x) for all x ∈ ℜn.

−x1 + x2 −
?
≤ −x1 + x2

2

r equivalently,
x2
2 − x2 +

?
≥ ,

which is the case as x2
2 − x2 + = (x2 − 1)2 ≥ .

Definition

s ∈ ℜn is a subgradient of f at x̄ if

h(x) := f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

Example

Consider f : ℜ2 → ℜ where f(x) = −x1 + x2
2 and x̄ = (1, 1)⊤.

We claim that (−1, 2)⊤ is a subgradient of f at x̄.

h(x) = f(x̄) + s⊤(x− x̄) =

= + (− , 2)(x− (1, 1)⊤) = − x1 + x2 − .

Check: h(x) ≤ f(x) for all x ∈ ℜn.

−x1 + x2 −
?
≤ −x1 + x2

2

r equivalently,
x2
2 − x2 +

?
≥ ,

which is the case as x2
2 − x2 + = (x2 − 1)2 ≥ .

Definition

s ∈ ℜn is a subgradient of f at x̄ if

h(x) := f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

Example

Consider f : ℜ2 → ℜ where f(x) = −x1 + x2
2 and x̄ = (1, 1)⊤.

We claim that (−1, 2)⊤ is a subgradient of f at x̄.

h(x) = f(x̄) + s⊤(x− x̄) =

= 0 +

(− , 2)(x− (1, 1)⊤) = − x1 + x2 − .

Check: h(x) ≤ f(x) for all x ∈ ℜn.

−x1 + x2 −
?
≤ −x1 + x2

2

r equivalently,
x2
2 − x2 +

?
≥ ,

which is the case as x2
2 − x2 + = (x2 − 1)2 ≥ .

Definition

s ∈ ℜn is a subgradient of f at x̄ if

h(x) := f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

Example

Consider f : ℜ2 → ℜ where f(x) = −x1 + x2
2 and x̄ = (1, 1)⊤.

We claim that (−1, 2)⊤ is a subgradient of f at x̄.

h(x) = f(x̄) + s⊤(x− x̄) =

= 0 + (−1, 2)(x− (1, 1)⊤) =

− x1 + x2 − .

Check: h(x) ≤ f(x) for all x ∈ ℜn.

−x1 + x2 −
?
≤ −x1 + x2

2

r equivalently,
x2
2 − x2 +

?
≥ ,

which is the case as x2
2 − x2 + = (x2 − 1)2 ≥ .

Definition

s ∈ ℜn is a subgradient of f at x̄ if

h(x) := f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

Example

Consider f : ℜ2 → ℜ where f(x) = −x1 + x2
2 and x̄ = (1, 1)⊤.

We claim that (−1, 2)⊤ is a subgradient of f at x̄.

h(x) = f(x̄) + s⊤(x− x̄) =

= 0 + (−1, 2)(x− (1, 1)⊤) = − x1 + 2x2 − 1.

Check: h(x) ≤ f(x) for all x ∈ ℜn.

−x1 + x2 −
?
≤ −x1 + x2

2

r equivalently,
x2
2 − x2 +

?
≥ ,

which is the case as x2
2 − x2 + = (x2 − 1)2 ≥ .

Definition

s ∈ ℜn is a subgradient of f at x̄ if

h(x) := f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

Example

Consider f : ℜ2 → ℜ where f(x) = −x1 + x2
2 and x̄ = (1, 1)⊤.

We claim that (−1, 2)⊤ is a subgradient of f at x̄.

h(x) = f(x̄) + s⊤(x− x̄) =

= 0 + (−1, 2)(x− (1, 1)⊤) = − x1 + 2x2 − 1.

Check: h(x) ≤ f(x) for all x ∈ ℜn.

−x1 + x2 −
?
≤ −x1 + x2

2

r equivalently,
x2
2 − x2 +

?
≥ ,

which is the case as x2
2 − x2 + = (x2 − 1)2 ≥ .

Definition

s ∈ ℜn is a subgradient of f at x̄ if

h(x) := f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

Example

Consider f : ℜ2 → ℜ where f(x) = −x1 + x2
2 and x̄ = (1, 1)⊤.

We claim that (−1, 2)⊤ is a subgradient of f at x̄.

h(x) = f(x̄) + s⊤(x− x̄) =

= 0 + (−1, 2)(x− (1, 1)⊤) = − x1 + 2x2 − 1.

Check: h(x) ≤ f(x) for all x ∈ ℜn.

−x1 + 2x2 − 1
?
≤ −x1 + x2

2

r equivalently,
x2
2 − x2 +

?
≥ ,

which is the case as x2
2 − x2 + = (x2 − 1)2 ≥ .

Definition

s ∈ ℜn is a subgradient of f at x̄ if

h(x) := f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

Example

Consider f : ℜ2 → ℜ where f(x) = −x1 + x2
2 and x̄ = (1, 1)⊤.

We claim that (−1, 2)⊤ is a subgradient of f at x̄.

h(x) = f(x̄) + s⊤(x− x̄) =

= 0 + (−1, 2)(x− (1, 1)⊤) = − x1 + 2x2 − 1.

Check: h(x) ≤ f(x) for all x ∈ ℜn.

−x1 + 2x2 − 1
?
≤ −x1 + x2

2

or equivalently,
x2
2 − 2x2 + 1

?
≥ 0,

which is the case as x2
2 − x2 + = (x2 − 1)2 ≥ .

Definition

s ∈ ℜn is a subgradient of f at x̄ if

h(x) := f(x̄) + s⊤(x− x̄) ≤ f(x) for all x ∈ ℜn.

Example

Consider f : ℜ2 → ℜ where f(x) = −x1 + x2
2 and x̄ = (1, 1)⊤.

We claim that (−1, 2)⊤ is a subgradient of f at x̄.

h(x) = f(x̄) + s⊤(x− x̄) =

= 0 + (−1, 2)(x− (1, 1)⊤) = − x1 + 2x2 − 1.

Check: h(x) ≤ f(x) for all x ∈ ℜn.

−x1 + 2x2 − 1
?
≤ −x1 + x2

2

or equivalently,
x2
2 − 2x2 + 1

?
≥ 0,

which is the case as x2
2 − 2x2 + 1 = (x2 − 1)2 ≥ 0.

Definition

Let C ∈ ℜn be a convex set and let x̄ ∈ C.

The halfspace F = x : s⊤x ≤ β is supp rting C at x if

(1) C ⊆ F and

(2) s⊤x = β. That is, x is on the boundary of F .

Unique supporting halfspace at x.

Definition

Let C ∈ ℜn be a convex set and let x̄ ∈ C.

The halfspace F = {x : s⊤x ≤ β} is supporting C at x̄ if

(1) C ⊆ F and

(2) s⊤x = β. That is, x is on the boundary of F .

Unique supporting halfspace at x.

Definition

Let C ∈ ℜn be a convex set and let x̄ ∈ C.

The halfspace F = {x : s⊤x ≤ β} is supporting C at x̄ if

(1) C ⊆ F and

(2) s⊤x = β. That is, x is on the boundary of F .

Unique supporting halfspace at x.

Definition

Let C ∈ ℜn be a convex set and let x̄ ∈ C.

The halfspace F = {x : s⊤x ≤ β} is supporting C at x̄ if

(1) C ⊆ F and

(2) s⊤x̄ = β. That is, x̄ is on the boundary of F .

Unique supporting halfspace at x.

Definition

Let C ∈ ℜn be a convex set and let x̄ ∈ C.

The halfspace F = {x : s⊤x ≤ β} is supporting C at x̄ if

(1) C ⊆ F and

(2) s⊤x̄ = β. That is, x̄ is on the boundary of F .

C

F

x̄

Unique supporting halfspace at x.

Definition

Let C ∈ ℜn be a convex set and let x̄ ∈ C.

The halfspace F = {x : s⊤x ≤ β} is supporting C at x̄ if

(1) C ⊆ F and

(2) s⊤x̄ = β. That is, x̄ is on the boundary of F .

C

F

x̄

Unique supporting halfspace at x̄.

Definition

Let C ∈ ℜn be a convex set and let x̄ ∈ C.

The halfspace F = {x : s⊤x ≤ β} is supporting C at x̄ if

(1) C ⊆ F and

(2) s⊤x̄ = β. That is, x̄ is on the boundary of F .

C

F

x̄

Definition

Let C ∈ ℜn be a convex set and let x̄ ∈ C.

The halfspace F = {x : s⊤x ≤ β} is supporting C at x̄ if

(1) C ⊆ F and

(2) s⊤x̄ = β. That is, x̄ is on the boundary of F .

C

F

x̄

Non-unique supporting halfspace at x.

Definition

Let C ∈ ℜn be a convex set and let x̄ ∈ C.

The halfspace F = {x : s⊤x ≤ β} is supporting C at x̄ if

(1) C ⊆ F and

(2) s⊤x̄ = β. That is, x̄ is on the boundary of F .

C

F

x̄

Non-unique supporting halfspace at x̄.

Definition

Let C ∈ ℜn be a convex set and let x̄ ∈ C.

The halfspace F = {x : s⊤x ≤ β} is supporting C at x̄ if

(1) C ⊆ F and

(2) s⊤x̄ = β. That is, x̄ is on the boundary of F .

Question

What do we get when n = ?

• C is a segment (or a halfline)

• F is a halfline

Definition

Let C ∈ ℜn be a convex set and let x̄ ∈ C.

The halfspace F = {x : s⊤x ≤ β} is supporting C at x̄ if

(1) C ⊆ F and

(2) s⊤x̄ = β. That is, x̄ is on the boundary of F .

Question

What do we get when n = 1?

• C is a segment (or a halfline)

• F is a halfline

Definition

Let C ∈ ℜn be a convex set and let x̄ ∈ C.

The halfspace F = {x : s⊤x ≤ β} is supporting C at x̄ if

(1) C ⊆ F and

(2) s⊤x̄ = β. That is, x̄ is on the boundary of F .

Question

What do we get when n = 1?

• C is a segment (or a halfline)

• F is a halfline

Definition

Let C ∈ ℜn be a convex set and let x̄ ∈ C.

The halfspace F = {x : s⊤x ≤ β} is supporting C at x̄ if

(1) C ⊆ F and

(2) s⊤x̄ = β. That is, x̄ is on the boundary of F .

Question

What do we get when n = 1?

• C is a segment (or a halfline)

• F is a halfline

Definition

Let C ∈ ℜn be a convex set and let x̄ ∈ C.

The halfspace F = {x : s⊤x ≤ β} is supporting C at x̄ if

(1) C ⊆ F and

(2) s⊤x̄ = β. That is, x̄ is on the boundary of F .

Question

What do we get when n = 1?

• C is a segment (or a halfline)

• F is a halfline

⊆ R
1

x̄C

F

Subgradients and Supporting Halfspaces

Proposition

Let g : ℜn ℜ be convex and let x where g(x) = .

Let s be a subgradient of g at x.

Let C = x : g(x) ≤ .

Let F = x : h(x) := g(x) + s⊤(x− x) ≤ .

Then, F is a supp rtin halfspace of C at x.

Remark

• C is convex, as g is a convex function,

• F is a halfspace, as h(x) is an affine function, and

• h(x) = g(x) = thus, x is on the boundary of F .

Subgradients and Supporting Halfspaces

Proposition

Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x.

Let C = x : g(x) ≤ .

Let F = x : h(x) := g(x) + s⊤(x− x) ≤ .

Then, F is a supp rtin halfspace of C at x.

Remark

• C is convex, as g is a convex function,

• F is a halfspace, as h(x) is an affine function, and

• h(x) = g(x) = thus, x is on the boundary of F .

Subgradients and Supporting Halfspaces

Proposition

Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = x : g(x) ≤ .

Let F = x : h(x) := g(x) + s⊤(x− x) ≤ .

Then, F is a supp rtin halfspace of C at x.

Remark

• C is convex, as g is a convex function,

• F is a halfspace, as h(x) is an affine function, and

• h(x) = g(x) = thus, x is on the boundary of F .

Subgradients and Supporting Halfspaces

Proposition

Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = x : h(x) := g(x) + s⊤(x− x) ≤ .

Then, F is a supp rtin halfspace of C at x.

Remark

• C is convex, as g is a convex function,

• F is a halfspace, as h(x) is an affine function, and

• h(x) = g(x) = thus, x is on the boundary of F .

Subgradients and Supporting Halfspaces

Proposition

Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supp rtin halfspace of C at x.

Remark

• C is convex, as g is a convex function,

• F is a halfspace, as h(x) is an affine function, and

• h(x) = g(x) = thus, x is on the boundary of F .

Subgradients and Supporting Halfspaces

Proposition

Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Remark

• C is convex, as g is a convex function,

• F is a halfspace, as h(x) is an affine function, and

• h(x) = g(x) = thus, x is on the boundary of F .

Subgradients and Supporting Halfspaces

Proposition

Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Remark

• C is convex, as g is a convex function,

• F is a halfspace, as h(x) is an affine function, and

• h(x) = g(x) = thus, x is on the boundary of F .

Subgradients and Supporting Halfspaces

Proposition

Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Remark

• C is convex, as g is a convex function,

• F is a halfspace, as h(x) is an affine function, and

• h(x) = g(x) = thus, x is on the boundary of F .

Subgradients and Supporting Halfspaces

Proposition

Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Remark

• C is convex, as g is a convex function,

• F is a halfspace, as h(x) is an affine function, and

• h(x) = g(x) = thus, x is on the boundary of F .

Subgradients and Supporting Halfspaces

Proposition

Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Remark

• C is convex, as g is a convex function,

• F is a halfspace, as h(x) is an affine function, and

• h(x̄) = g(x̄) = 0 thus, x̄ is on the boundary of F .

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Example

g(x) = x2

2 − x1

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Example

g(x) = x2

2 − x1

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Example

g(x) = x2

2 − x1

0 1 2 x1

x2

C
1

2

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Example

g(x) = x2

2 − x1

x̄ = (1, 1)⊤

0 1 2 x1

x2

C
1

2

x̄

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Example

g(x) = x2

2 − x1

x̄ = (1, 1)⊤

s = (−1, 2)⊤ subgradient at x̄

0 1 2 x1

x2

C
1

2

x̄

s

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Example

g(x) = x2

2 − x1

x̄ = (1, 1)⊤

s = (−1, 2)⊤ subgradient at x̄

h(x) = 0 + (−1, 2)

[(

x1

x2

)

−

(

1
1

)]

= −x1 + 2x2 − 1

0 1 2 x1

x2

C
1

2

x̄

s

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Example

g(x) = x2

2 − x1

x̄ = (1, 1)⊤

s = (−1, 2)⊤ subgradient at x̄

h(x) = 0 + (−1, 2)

[(

x1

x2

)

−

(

1
1

)]

= −x1 + 2x2 − 1

F = {x : −x1 + 2x2 ≤ 1}

0 1 2 x1

x2

FC
1

2

x̄

s

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

x1

y ∈ R

g

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

x1

y ∈ R

g

x̄

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

x1

y ∈ R

g

x̄

C

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

x1

y ∈ R

g

h(x)

x̄

C

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

x1

y ∈ R

g

h(x)

x̄

C

F

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

x1

y ∈ R

g

h(x)

x̄

C

F

⊆ R
1

x̄C

F

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

x1 x2

y ∈ R

g

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

x1 x2

y ∈ R

g

x̄

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

x1 x2

y ∈ R

g

C
x̄

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

x1 x2

y ∈ R

g

C

h(x)

x̄

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

x1 x2

y ∈ R

g

C

h(x)

C
x̄

⊆ R
2

F

x̄

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Proof

Claim: C ⊆ F .

Let x ∈ C and thus, g(x) ≤

By definition of a subgradient, we know that h(x) ≤ g(x).

It follows that h(x) ≤ g(x) ≤ .

Hence, x ∈ F .

Claim: h(x) =

h(x) = g(x) = .

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Proof

Claim: C ⊆ F .

Let x ∈ C and thus, g(x) ≤

By definition of a subgradient, we know that h(x) ≤ g(x).

It follows that h(x) ≤ g(x) ≤ .

Hence, x ∈ F .

Claim: h(x) =

h(x) = g(x) = .

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Proof

Claim: C ⊆ F .

Let x ∈ C and thus, g(x) ≤ 0

By definition of a subgradient, we know that h(x) ≤ g(x).

It follows that h(x) ≤ g(x) ≤ .

Hence, x ∈ F .

Claim: h(x) =

h(x) = g(x) = .

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Proof

Claim: C ⊆ F .

Let x ∈ C and thus, g(x) ≤ 0

By definition of a subgradient, we know that h(x) ≤ g(x).

It follows that h(x) ≤ g(x) ≤ .

Hence, x ∈ F .

Claim: h(x) =

h(x) = g(x) = .

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Proof

Claim: C ⊆ F .

Let x ∈ C and thus, g(x) ≤ 0

By definition of a subgradient, we know that h(x) ≤ g(x).

It follows that h(x) ≤ g(x) ≤ 0.

Hence, x ∈ F .

Claim: h(x) =

h(x) = g(x) = .

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Proof

Claim: C ⊆ F .

Let x ∈ C and thus, g(x) ≤ 0

By definition of a subgradient, we know that h(x) ≤ g(x).

It follows that h(x) ≤ g(x) ≤ 0.

Hence, x ∈ F .

Claim: h(x) =

h(x) = g(x) = .

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Proof

Claim: C ⊆ F .

Let x ∈ C and thus, g(x) ≤ 0

By definition of a subgradient, we know that h(x) ≤ g(x).

It follows that h(x) ≤ g(x) ≤ 0.

Hence, x ∈ F .

Claim: h(x̄) = 0

h(x) = g(x) = .

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Proof

Claim: C ⊆ F .

Let x ∈ C and thus, g(x) ≤ 0

By definition of a subgradient, we know that h(x) ≤ g(x).

It follows that h(x) ≤ g(x) ≤ 0.

Hence, x ∈ F .

Claim: h(x̄) = 0

h(x̄) = g(x̄)

= .

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Proof

Claim: C ⊆ F .

Let x ∈ C and thus, g(x) ≤ 0

By definition of a subgradient, we know that h(x) ≤ g(x).

It follows that h(x) ≤ g(x) ≤ 0.

Hence, x ∈ F .

Claim: h(x̄) = 0

h(x̄) = g(x̄) = 0.

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Question

Why is this relevant for us?

We use it to construct relaxations of NLPs

Proposition
Let g : ℜn → ℜ be convex and let x̄ where g(x̄) = 0.

Let s be a subgradient of g at x̄.

Let C = {x : g(x) ≤ 0}.

Let F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}.

Then, F is a supporting halfspace of C at x̄.

Question

Why is this relevant for us?

We use it to construct relaxations of NLPs

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

x is a feasible solution
g1 is convex
g1(x) =
s is a subgradient for g1 at x

If we replace the nonlinear constraint

g1(x) ≤

with the linear constraint

h(x) = g1(x) + s⊤(x− x) ≤

we get a relaxation.

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

x̄ is a feasible solution

g1 is convex
g1(x) =
s is a subgradient for g1 at x

If we replace the nonlinear constraint

g1(x) ≤

with the linear constraint

h(x) = g1(x) + s⊤(x− x) ≤

we get a relaxation.

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

x̄ is a feasible solution
g1 is convex

g1(x) =
s is a subgradient for g1 at x

If we replace the nonlinear constraint

g1(x) ≤

with the linear constraint

h(x) = g1(x) + s⊤(x− x) ≤

we get a relaxation.

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

x̄ is a feasible solution
g1 is convex
g1(x̄) = 0

s is a subgradient for g1 at x

If we replace the nonlinear constraint

g1(x) ≤

with the linear constraint

h(x) = g1(x) + s⊤(x− x) ≤

we get a relaxation.

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

x̄ is a feasible solution
g1 is convex
g1(x̄) = 0
s is a subgradient for g1 at x̄

If we replace the nonlinear constraint

g1(x) ≤

with the linear constraint

h(x) = g1(x) + s⊤(x− x) ≤

we get a relaxation.

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

x̄ is a feasible solution
g1 is convex
g1(x̄) = 0
s is a subgradient for g1 at x̄

If we replace the nonlinear constraint

g1(x) ≤ 0

with the linear constraint

h(x) = g1(x) + s⊤(x− x) ≤

we get a relaxation.

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

x̄ is a feasible solution
g1 is convex
g1(x̄) = 0
s is a subgradient for g1 at x̄

If we replace the nonlinear constraint

g1(x) ≤ 0

with the linear constraint

h(x) = g1(x̄) + s⊤(x− x̄) ≤ 0

we get a relaxation.

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

x̄ is a feasible solution
g1 is convex
g1(x̄) = 0
s is a subgradient for g1 at x̄

If we replace the nonlinear constraint

g1(x) ≤ 0

with the linear constraint

h(x) = g1(x̄) + s⊤(x− x̄) ≤ 0

we get a relaxation.

{x : g1(x) ≤ 0}

{x : h(x) ≤ 0}

x̄

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x is a feasible solution

∀i ∈ I, gi(x) =

∀i ∈ I, s(i) subgradient for gi at x

If −c ∈ cone
{

s(i) : i ∈ I
}

then x is optimal.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x = (1, 1)⊤ feasible

I = ,

(2,−1)⊤ subgradient for g1 at x

(− , 2)⊤ subgradient for g2 at x

−

(

−
−

)

∈ cone

{(

−

)

,

(

−
)}

= x optimal.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x is a feasible solution

∀i ∈ I, gi(x) =

∀i ∈ I, s(i) subgradient for gi at x

If −c ∈ cone
{

s(i) : i ∈ I
}

then x is optimal.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x = (1, 1)⊤ feasible

I = ,

(2,−1)⊤ subgradient for g1 at x

(− , 2)⊤ subgradient for g2 at x

−

(

−
−

)

∈ cone

{(

−

)

,

(

−
)}

= x optimal.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x) =

∀i ∈ I, s(i) subgradient for gi at x

If −c ∈ cone
{

s(i) : i ∈ I
}

then x is optimal.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x = (1, 1)⊤ feasible

I = ,

(2,−1)⊤ subgradient for g1 at x

(− , 2)⊤ subgradient for g2 at x

−

(

−
−

)

∈ cone

{(

−

)

,

(

−
)}

= x optimal.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x

If −c ∈ cone
{

s(i) : i ∈ I
}

then x is optimal.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x = (1, 1)⊤ feasible

I = ,

(2,−1)⊤ subgradient for g1 at x

(− , 2)⊤ subgradient for g2 at x

−

(

−
−

)

∈ cone

{(

−

)

,

(

−
)}

= x optimal.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x is optimal.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x = (1, 1)⊤ feasible

I = ,

(2,−1)⊤ subgradient for g1 at x

(− , 2)⊤ subgradient for g2 at x

−

(

−
−

)

∈ cone

{(

−

)

,

(

−
)}

= x optimal.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x = (1, 1)⊤ feasible

I = ,

(2,−1)⊤ subgradient for g1 at x

(− , 2)⊤ subgradient for g2 at x

−

(

−
−

)

∈ cone

{(

−

)

,

(

−
)}

= x optimal.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x̄ = (1, 1)⊤ feasible

I = ,

(2,−1)⊤ subgradient for g1 at x

(− , 2)⊤ subgradient for g2 at x

−

(

−
−

)

∈ cone

{(

−

)

,

(

−
)}

= x optimal.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x̄ = (1, 1)⊤ feasible

I = {1, 2}

(2,−1)⊤ subgradient for g1 at x

(− , 2)⊤ subgradient for g2 at x

−

(

−
−

)

∈ cone

{(

−

)

,

(

−
)}

= x optimal.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x̄ = (1, 1)⊤ feasible

I = {1, 2}

(2,−1)⊤ subgradient for g1 at x̄

(− , 2)⊤ subgradient for g2 at x

−

(

−
−

)

∈ cone

{(

−

)

,

(

−
)}

= x optimal.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x̄ = (1, 1)⊤ feasible

I = {1, 2}

(2,−1)⊤ subgradient for g1 at x̄

(−1, 2)⊤ subgradient for g2 at x̄

−

(

−
−

)

∈ cone

{(

−

)

,

(

−
)}

= x optimal.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x̄ = (1, 1)⊤ feasible

I = {1, 2}

(2,−1)⊤ subgradient for g1 at x̄

(−1, 2)⊤ subgradient for g2 at x̄

−

(

−1
−1

)

∈ cone

{(

2
−1

)

,

(

−1
2

)}

=⇒ x̄ optimal.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Proof

We have a relaxation
min c⊤x

s.t.
gi(x) ≤ (i ∈ I)

We proved that the set of solutions to gi(x) ≤

is contained in the set of solutions to gi(x) + s(i)(x− x) ≤ .

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Proof

We have a relaxation
min c⊤x

s.t.
gi(x) ≤ (i ∈ I)

We proved that the set of solutions to gi(x) ≤

is contained in the set of solutions to gi(x) + s(i)(x− x) ≤ .

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Proof

We have a relaxation
min c⊤x

s.t.
gi(x) ≤ 0 (i ∈ I)

We proved that the set of solutions to gi(x) ≤

is contained in the set of solutions to gi(x) + s(i)(x− x) ≤ .

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Proof

We have a relaxation
min c⊤x

s.t.
gi(x) ≤ 0 (i ∈ I)

We proved that the set of solutions to gi(x) ≤ 0

is contained in the set of solutions to gi(x̄) + s(i)(x− x̄) ≤ 0.

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Proof

We have a relaxation
min c⊤x

s.t.
gi(x̄) + s(i)(x− x̄) ≤ 0 (i ∈ I)

gi(x) + s(i)(x− x) ≤ can be rewritten as

s(i)x ≤ s(i)x− gi(x)

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Proof

We have a relaxation
min c⊤x

s.t.
gi(x̄) + s(i)(x− x̄) ≤ 0 (i ∈ I)

gi(x̄) + s(i)(x− x̄) ≤ 0 can be rewritten as

s(i)x ≤ s(i)x− gi(x)

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Proof

We have a relaxation
min c⊤x

s.t.
gi(x̄) + s(i)(x− x̄) ≤ 0 (i ∈ I)

gi(x̄) + s(i)(x− x̄) ≤ 0 can be rewritten as

s(i)x ≤ s(i)x̄− gi(x̄)

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Proof

We have a relaxation
max −c⊤x

s.t.
s(i)x ≤ s(i)x̄− gi(x̄) (i ∈ I)

Then, x is optimal for the relaxation if −c ∈ cone
{

s(i) : i ∈ I
}

.

This means that x is also optimal for the NLP.

Question

Is there a converse to this result? YES

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Proof

We have a relaxation
max −c⊤x

s.t.
s(i)x ≤ s(i)x̄− gi(x̄) (i ∈ I)

Then, x̄ is optimal for the relaxation if −c ∈ cone
{

s(i) : i ∈ I
}

.

This means that x is also optimal for the NLP.

Question

Is there a converse to this result? YES

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Proof

We have a relaxation
max −c⊤x

s.t.
s(i)x ≤ s(i)x̄− gi(x̄) (i ∈ I)

Then, x̄ is optimal for the relaxation if −c ∈ cone
{

s(i) : i ∈ I
}

.

This means that x̄ is also optimal for the NLP.

Question

Is there a converse to this result? YES

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Proof

We have a relaxation
max −c⊤x

s.t.
s(i)x ≤ s(i)x̄− gi(x̄) (i ∈ I)

Then, x̄ is optimal for the relaxation if −c ∈ cone
{

s(i) : i ∈ I
}

.

This means that x̄ is also optimal for the NLP.

Question

Is there a converse to this result?

YES

Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

g1, . . . , gk all convex

x̄ is a feasible solution

∀i ∈ I, gi(x̄) = 0

∀i ∈ I, s(i) subgradient for gi at x̄

If −c ∈ cone
{

s(i) : i ∈ I
}

then x̄ is optimal.

Proof

We have a relaxation
max −c⊤x

s.t.
s(i)x ≤ s(i)x̄− gi(x̄) (i ∈ I)

Then, x̄ is optimal for the relaxation if −c ∈ cone
{

s(i) : i ∈ I
}

.

This means that x̄ is also optimal for the NLP.

Question

Is there a converse to this result? YES

Gradients: A Calculus Detour

Proposition

Let f : ℜn ℜ be a convex function and let x ∈ ℜn.

If the gradient ∇f(x) of f exists at x, then it is a subgradient.

Proposition

Let f : ℜn ℜ be function and let x ∈ ℜn.

If the partial derivative ∂f(x)
∂xj

exists for f at x for all j = , . . . , n, then

the gradient ∇f(x) is obtained by evaluating for x,

(

∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)⊤

.

Gradients: A Calculus Detour

Proposition

Let f : ℜn → ℜ be a convex function and let x̄ ∈ ℜn.

If the gradient ∇f(x) of f exists at x, then it is a subgradient.

Proposition

Let f : ℜn ℜ be function and let x ∈ ℜn.

If the partial derivative ∂f(x)
∂xj

exists for f at x for all j = , . . . , n, then

the gradient ∇f(x) is obtained by evaluating for x,

(

∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)⊤

.

Gradients: A Calculus Detour

Proposition

Let f : ℜn → ℜ be a convex function and let x̄ ∈ ℜn.

If the gradient ∇f(x̄) of f exists at x̄, then it is a subgradient.

Proposition

Let f : ℜn ℜ be function and let x ∈ ℜn.

If the partial derivative ∂f(x)
∂xj

exists for f at x for all j = , . . . , n, then

the gradient ∇f(x) is obtained by evaluating for x,

(

∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)⊤

.

Gradients: A Calculus Detour

Proposition

Let f : ℜn → ℜ be a convex function and let x̄ ∈ ℜn.

If the gradient ∇f(x̄) of f exists at x̄, then it is a subgradient.

Proposition

Let f : ℜn → ℜ be function and let x̄ ∈ ℜn.

If the partial derivative ∂f(x)
∂xj

exists for f at x̄ for all j = 1, . . . , n, then

the gradient ∇f(x̄) is obtained by evaluating for x̄,

(

∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)⊤

.

Example

Compute the gradient of the convex function

f(x) = −x2 + x2
1

at x̄ = (1, 1)⊤.

We have
(

∂f(x)

∂x1
,
∂f(x)

∂x2

)⊤

= (2x1,−1)⊤

F r x we get ∇f(x) = (2,−1)⊤.

Since (2,−1)⊤ is the gradient of f at x, it is a subgradient as well.

Example

Compute the gradient of the convex function

f(x) = −x2 + x2
1

at x̄ = (1, 1)⊤.

We have
(

∂f(x)

∂x1
,
∂f(x)

∂x2

)⊤

= (2x1,−1)⊤

F r x we get ∇f(x) = (2,−1)⊤.

Since (2,−1)⊤ is the gradient of f at x, it is a subgradient as well.

Example

Compute the gradient of the convex function

f(x) = −x2 + x2
1

at x̄ = (1, 1)⊤.

We have
(

∂f(x)

∂x1
,
∂f(x)

∂x2

)⊤

= (2x1,−1)⊤

For x̄ we get ∇f(x̄) = (2,−1)⊤.

Since (2,−1)⊤ is the gradient of f at x, it is a subgradient as well.

Example

Compute the gradient of the convex function

f(x) = −x2 + x2
1

at x̄ = (1, 1)⊤.

We have
(

∂f(x)

∂x1
,
∂f(x)

∂x2

)⊤

= (2x1,−1)⊤

For x̄ we get ∇f(x̄) = (2,−1)⊤.

Since (2,−1)⊤ is the gradient of f at x̄, it is a subgradient as well.

Definition

A feasible solution to x̄ is a Slater point of

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

if gi(x̄) < 0 for all i = 1, . . . , k.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x̄ =
(

3

4
, 3

4

)

⊤
is a Slater point.

Definition

A feasible solution to x̄ is a Slater point of

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

if gi(x̄) < 0 for all i = 1, . . . , k.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x̄ =
(

3

4
, 3

4

)

⊤
is a Slater point.

Definition

A feasible solution to x̄ is a Slater point of

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

if gi(x̄) < 0 for all i = 1, . . . , k.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x̄ =
(

3

4
, 3

4

)

⊤
is a Slater point.

Definition

A feasible solution to x̄ is a Slater point of

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

if gi(x̄) < 0 for all i = 1, . . . , k.

Example

min − x1 − x2

s.t.

−x2 + x2

1 ≤ 0 (1)

−x1 + x2

2 ≤ 0 (2)

−x1 +
1

2
≤ 0 (3)

x̄ =
(

3

4
, 3

4

)

⊤
is a Slater point. x1

x2

(1)

(2)

1

4

1

2

3

4

11

4

1

2

3

4

1

0

(3)

x̄

The Karush-Kuhn-Tucker (KKT) Theorem

Consider the following NLP:

min c⊤x

s.t.

gi(x) ≤ (i = , . . . , k)

Suppose that

1. g1, . . . , gk are all convex,

2. there exists a Slater point,

3. x is a feasible solution,

4. I is the set of indices i for which gi(x) = , and

5. for all i ∈ I there exists a gradient ∇gi(x) of gi at x.

Then x is optimal − c ∈ cone {∇gi(x) : i ∈ I .

Remark

We proved the “easy” direction =”.

The Karush-Kuhn-Tucker (KKT) Theorem

Consider the following NLP:

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

Suppose that

1. g1, . . . , gk are all convex,

2. there exists a Slater point,

3. x is a feasible solution,

4. I is the set of indices i for which gi(x) = , and

5. for all i ∈ I there exists a gradient ∇gi(x) of gi at x.

Then x is optimal − c ∈ cone {∇gi(x) : i ∈ I .

Remark

We proved the “easy” direction =”.

The Karush-Kuhn-Tucker (KKT) Theorem

Consider the following NLP:

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

Suppose that

1. g1, . . . , gk are all convex,

2. there exists a Slater point,

3. x is a feasible solution,

4. I is the set of indices i for which gi(x) = , and

5. for all i ∈ I there exists a gradient ∇gi(x) of gi at x.

Then x is optimal − c ∈ cone {∇gi(x) : i ∈ I .

Remark

We proved the “easy” direction =”.

The Karush-Kuhn-Tucker (KKT) Theorem

Consider the following NLP:

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

Suppose that

1. g1, . . . , gk are all convex,

2. there exists a Slater point,

3. x is a feasible solution,

4. I is the set of indices i for which gi(x) = , and

5. for all i ∈ I there exists a gradient ∇gi(x) of gi at x.

Then x is optimal − c ∈ cone {∇gi(x) : i ∈ I .

Remark

We proved the “easy” direction =”.

The Karush-Kuhn-Tucker (KKT) Theorem

Consider the following NLP:

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

Suppose that

1. g1, . . . , gk are all convex,

2. there exists a Slater point,

3. x is a feasible solution,

4. I is the set of indices i for which gi(x) = , and

5. for all i ∈ I there exists a gradient ∇gi(x) of gi at x.

Then x is optimal − c ∈ cone {∇gi(x) : i ∈ I .

Remark

We proved the “easy” direction =”.

The Karush-Kuhn-Tucker (KKT) Theorem

Consider the following NLP:

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

Suppose that

1. g1, . . . , gk are all convex,

2. there exists a Slater point,

3. x̄ is a feasible solution,

4. I is the set of indices i for which gi(x) = , and

5. for all i ∈ I there exists a gradient ∇gi(x) of gi at x.

Then x is optimal − c ∈ cone {∇gi(x) : i ∈ I .

Remark

We proved the “easy” direction =”.

The Karush-Kuhn-Tucker (KKT) Theorem

Consider the following NLP:

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

Suppose that

1. g1, . . . , gk are all convex,

2. there exists a Slater point,

3. x̄ is a feasible solution,

4. I is the set of indices i for which gi(x̄) = 0, and

5. for all i ∈ I there exists a gradient ∇gi(x) of gi at x.

Then x is optimal − c ∈ cone {∇gi(x) : i ∈ I .

Remark

We proved the “easy” direction =”.

The Karush-Kuhn-Tucker (KKT) Theorem

Consider the following NLP:

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

Suppose that

1. g1, . . . , gk are all convex,

2. there exists a Slater point,

3. x̄ is a feasible solution,

4. I is the set of indices i for which gi(x̄) = 0, and

5. for all i ∈ I there exists a gradient ∇gi(x̄) of gi at x̄.

Then x is optimal − c ∈ cone {∇gi(x) : i ∈ I .

Remark

We proved the “easy” direction =”.

The Karush-Kuhn-Tucker (KKT) Theorem

Consider the following NLP:

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

Suppose that

1. g1, . . . , gk are all convex,

2. there exists a Slater point,

3. x̄ is a feasible solution,

4. I is the set of indices i for which gi(x̄) = 0, and

5. for all i ∈ I there exists a gradient ∇gi(x̄) of gi at x̄.

Then x̄ is optimal ⇐⇒ − c ∈ cone {∇gi(x̄) : i ∈ I}.

Remark

We proved the “easy” direction =”.

The Karush-Kuhn-Tucker (KKT) Theorem

Consider the following NLP:

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

Suppose that

1. g1, . . . , gk are all convex,

2. there exists a Slater point,

3. x̄ is a feasible solution,

4. I is the set of indices i for which gi(x̄) = 0, and

5. for all i ∈ I there exists a gradient ∇gi(x̄) of gi at x̄.

Then x̄ is optimal ⇐⇒ − c ∈ cone {∇gi(x̄) : i ∈ I}.

Remark

We proved the “easy” direction “⇐=”.

Recap

• We showed how to prove optimality using relaxations.

• We defined subgradients.

• We defined supp rting halfspaces.

• We related subgradients and supp rting halfspaces.

• We showed how to relax convex constraints by a linear constraint.

• We gave sufficient conditions for a solution to be optimal.

• We stated the KKT theorem.

Recap

• We showed how to prove optimality using relaxations.

• We defined subgradients.

• We defined supp rting halfspaces.

• We related subgradients and supp rting halfspaces.

• We showed how to relax convex constraints by a linear constraint.

• We gave sufficient conditions for a solution to be optimal.

• We stated the KKT theorem.

Recap

• We showed how to prove optimality using relaxations.

• We defined subgradients.

• We defined supp rting halfspaces.

• We related subgradients and supp rting halfspaces.

• We showed how to relax convex constraints by a linear constraint.

• We gave sufficient conditions for a solution to be optimal.

• We stated the KKT theorem.

Recap

• We showed how to prove optimality using relaxations.

• We defined subgradients.

• We defined supporting halfspaces.

• We related subgradients and supp rting halfspaces.

• We showed how to relax convex constraints by a linear constraint.

• We gave sufficient conditions for a solution to be optimal.

• We stated the KKT theorem.

Recap

• We showed how to prove optimality using relaxations.

• We defined subgradients.

• We defined supporting halfspaces.

• We related subgradients and supporting halfspaces.

• We showed how to relax convex constraints by a linear constraint.

• We gave sufficient conditions for a solution to be optimal.

• We stated the KKT theorem.

Recap

• We showed how to prove optimality using relaxations.

• We defined subgradients.

• We defined supporting halfspaces.

• We related subgradients and supporting halfspaces.

• We showed how to relax convex constraints by a linear constraint.

• We gave sufficient conditions for a solution to be optimal.

• We stated the KKT theorem.

Recap

• We showed how to prove optimality using relaxations.

• We defined subgradients.

• We defined supporting halfspaces.

• We related subgradients and supporting halfspaces.

• We showed how to relax convex constraints by a linear constraint.

• We gave sufficient conditions for a solution to be optimal.

• We stated the KKT theorem.

Recap

• We showed how to prove optimality using relaxations.

• We defined subgradients.

• We defined supporting halfspaces.

• We related subgradients and supporting halfspaces.

• We showed how to relax convex constraints by a linear constraint.

• We gave sufficient conditions for a solution to be optimal.

• We stated the KKT theorem.

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

	Introducing Optimization
	Three Case Studies
	A Modeling Example
	Linear Programming
	Introduction and Definitions
	Multiperiod Models

	Shortest Paths
	Recap
	Cuts
	IP Formulation

	NLP Models
	Introduction
	Example 1: Finding Close Points in an LP
	Example 2: Binary IP via NLP
	Example 3: Fermat's Last Theorem

	Shortest Paths: Certifying Optimality
	Introduction
	Intuitive Lowerbound

	A General Argument – Weak Duality
	Recap

	Computing Shortest Paths
	Recap

	Computing Shortest Paths

