

Assignment 11

Discussed during the tutorial on January 26th

10.1 (10 points) Consider the following NLP:

min x₃ s.t. $x_1 + x_2 \le 0, x_1^2 - 4 \le 0, x_1^2 - 2x_1 + x_2^2 - x_3 + 1 \le 0$.

Let $\bar{x} = (1/2, -1/2, 1/2)^T$. Write down the optimality conditions for \bar{x} for this NLP as described in the Karush-Kuhn-Tucker theorem. Using these conditions and the theorem, prove that \bar{x} is optimal.

10.2 (10 points) Let $u, w \in \mathbb{R}^n$ be given such that u_j and w_j are positive for each j. Consider the following NLP:

min
$$-\sum_{j=1}^{n} w_j \ln(x_j)$$
 s.t. $u^T x = n, -x \le 0$

- (a) Prove that this NLP is convex.
- (b) Using the Karush-Kuhn-Tucker theorem (on possibly a slight modification of the NLP), find an optimal solution in terms of u and w.
- (c) Prove that the solution you found is the unique optimal solution.

10.3 (10 points) Consider the following NLP:

min
$$-7x_1 - 5x_2$$
 s.t. $2x_1^2 + x_2^2 + x_1x_2 - 4 \le 0, x_1^2 + x_2^2 - 2 \le 0, -x_1 + 1/2 \le 0$.

Let $\bar{x} = (1,1)^T$. Write down the optimality conditions for \bar{x} for this NLP described in the Karush-Kuhn-Tucker theorem. Using these conditions and the theorem, prove that \bar{x} is optimal. Note, you may use the fact that the functions defining the objective function and the constraints are convex and differentiable without proving it.

Upload your solutions as a .pdf-file to the course page on the TUHH e-learning portal until 8am on 24th of January.