Optimization - assignment 1

Task 1.1:

Let $x_1, ..., x_5 \in \mathbb{R}$ denote the amount of savings for each food. x_1 thereby stands for the amount of servings of raw carrots, x_2 for the amount of savings of baked potatoes and so on. The underlying LP then reads:

$$
\begin{aligned}\n\min 0.14x_1 + 0.12x_2 + 0.2x_3 + 0.75x_4 + 0.15x_5 \\
\text{s.t. } 23x_1 + 171x_2 + 65x_3 + 112x_4 + 188x_5 &\ge 2000 \\
0.1x_1 + 0.2x_2 + 9.3x_4 + 16x_5 &\ge 50 \\
0.6x_1 + 3.7x_2 + 2.2x_3 + 7x_4 + 7.7x_5 &\ge 100 \\
6x_1 + 30x_2 + 13x_3 + 2x_5 &\ge 250 \\
x &\ge 0\n\end{aligned}
$$

With $x = (x_1, ..., x_5)^T$.

Task 1.2:

(a) *Proof by contradiction*. Let (x, y) be the solution vector of the given optimization problem. Assume now that there is a vector $\tilde{x} \in \mathbb{R}^n$ with smaller deviation than x, i.e.

$$
\sum_{i=1}^{n} |b_i - \sum_{j=1}^{n} a_{ij} \tilde{x}_j| < \sum_{i=1}^{n} |b_i - \sum_{j=1}^{n} a_{ij} x_j|.
$$

Then,

$$
\sum_{i=1}^{m} y_i \ge \sum_{i=1}^{m} |b_i - \sum_{j=1}^{n} a_{ij} x_j| > \sum_{i=1}^{m} |b_i - \sum_{j=1}^{n} a_{ij} \tilde{x}_j|
$$

which contradicts the assumption that (x, y) is the optimal solution to the LP since (\tilde{x}, \tilde{y}) with $\tilde{y}_i = |b_i - \sum_{j=1}^n a_{ij}\tilde{x}_j| \; \forall i \in [m]$ is a feasible solution with a smaller objective function evaluation.

Thus, the assumption is wrong and x is a vector of minimum deviation. \Box

(b) Due to the absolute values on the left hand side of the constraints, the constraint function is not linear which makes this optimization problem to a nonlinear one. To overcome this issue, one can formulate:

$$
b_i - \sum_{j=1}^n a_{ij} x_j \le y_i
$$

and
$$
-b_i + \sum_{j=1}^n a_{ij} x_j \le y_i \quad \forall i \in [m]
$$

instead of $y_i \ge |b_i - \sum_{j=1}^n a_{ij} x_j| \ \forall i \in [m]$ since $|a| \le b \iff a \le b \land -a \le b$ for general $a, b \in \mathbb{R}$

(c) The corresponding LP can be formulated as:

$$
\min y \text{ subject to } |b_i - \sum_{j=1}^n a_{ij} x_j| \le y \quad \forall i \in [m]
$$

analogously to (b), this can also be formulated as

min y
s.t.
$$
b_i - \sum_{j=1}^n a_{ij} x_j \leq y \quad \forall i \in [m]
$$

$$
\sum_{j=1}^n a_{ij} x_j - b_i \leq y \quad \forall i \in [m]
$$

which transforms the formulated optimization problem to a LP.