Integer Programming

Module 1: Formulations (IP Models)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 990

Recap: WaterTech

max $300x_1 + 260x_2 + 220x_3 + 180x_4 - 8y_5 - 6y_6$

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ 「 듣 → 9 Q Q

s.t. $11x_1 + 7x_2 + 6x_3 + 5x_4 \le 700$ $4x_1 + 6x_2 + 5x_3 + 4x_4 \leq 500$ $8x_1 + 5x_2 + 5x_3 + 6x_4 < y_5$ $7x_1 + 8x_2 + 7x_3 + 4x_4 \leq y_{11}$ v_{s} < 600 $y_u \leq 650$ $x_1, x_2, x_3, x_4, y_1, y_5 \geq 0.$

Recap: WaterTech

$$
\max \ 300x_1 + 260x_2 + 220x_3 + 180x_4 - 8y_5 - 6y_u
$$

s.t.
$$
11x_1 + 7x_2 + 6x_3 + 5x_4 \le 700
$$

$$
4x_1 + 6x_2 + 5x_3 + 4x_4 \le 500
$$

$$
8x_1 + 5x_2 + 5x_3 + 6x_4 \le y_s
$$

$$
7x_1 + 8x_2 + 7x_3 + 4x_4 \le y_u
$$

$$
y_s \le 600
$$

$$
y_u \le 650
$$

$$
x_1, x_2, x_3, x_4, y_u, y_s \ge 0.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Optimal solution: $x = (16 + \frac{2}{3}, 50, 0, 33 + \frac{1}{3})^T$, $y_s = 583 + \frac{1}{3}$, $y_u = 650$

Recap: WaterTech

$$
\text{max} \quad 300x_1 + 260x_2 + 220x_3 + 180x_4 - 8y_5 - 6y_u
$$

s.t.
$$
11x_1 + 7x_2 + 6x_3 + 5x_4 \le 700
$$

\n $4x_1 + 6x_2 + 5x_3 + 4x_4 \le 500$
\n $8x_1 + 5x_2 + 5x_3 + 6x_4 \le y_s$
\n $7x_1 + 8x_2 + 7x_3 + 4x_4 \le y_u$
\n $y_s \le 600$
\n $y_u \le 650$
\n $x_1, x_2, x_3, x_4, y_u, y_s \ge 0$.

Optimal solution: $x = (16 + \frac{2}{3}, 50, 0, 33 + \frac{1}{3})^T$, $y_s = 583 + \frac{1}{3}$, $y_{\mu} = 650$

Fractional solutions are often not desirable! Can we force solution to take on only integer values? KOKK@KKEKKEK E 1990

An integer program is a linear program with added integrality constraints for some/all variables.

max $x_1 + x_2 + 2x_4$ s.t. $x_1 + x_2 \leq 1$ $-x_2 - x_3 > -1$ $x_1 + x_3 = 1$ $x_1, x_2, x_3 \geq 0$

An integer program is a linear program with added integrality constraints for some/all variables.

max $x_1 + x_2 + 2x_4$ s.t. $x_1 + x_2 \leq 1$ $-x_2 - x_3 > -1$ $x_1 + x_3 = 1$ $x_1, x_2, x_3 \geq 0$ x_1, x_3 integer.

An integer program is a linear program with added integrality constraints for some/all variables.

• We call an IP mixed if there are integer and fractional variables, and pure otherwise.

max $x_1 + x_2 + 2x_4$ s.t. $x_1 + x_2 \leq 1$ $-x_2 - x_3 > -1$ $x_1 + x_3 = 1$ $x_1, x_2, x_3 \geq 0$ x_1, x_3 integer.

K ロ ▶ K @ ▶ K ミ » K ミ » - 를 → 9 Q @

An integer program is a linear program with added integrality constraints for some/all variables.

- We call an IP mixed if there are integer and fractional variables, and pure otherwise.
- Difference between LPs and IPs is subtle. Yet: LPs are easy to solve, IPs are not!

max $x_1 + x_2 + 2x_4$ s.t. $x_1 + x_2 \leq 1$ $-x_2 - x_3 > -1$ $x_1 + x_3 = 1$ $x_1, x_2, x_3 \geq 0$ x_1, x_3 integer.

K ロ ▶ K @ ▶ K ミ » K ミ » - 를 → 9 Q @

• Integer programs are provably difficult to solve!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 990

.

- Integer programs are provably difficult to solve!
- Every problem instance has a size which we normally denote by n .

- Integer programs are provably difficult to solve!
- Every problem instance has a size which we normally denote by n . Think: $n \sim$ number of variables/constraints of IP.

KOKK@KKEKKEK E 1990

- Integer programs are provably difficult to solve!
- Every problem instance has a size which we normally denote by n . Think: $n \sim$ number of variables/constraints of IP.
- The running time of an algorithm is then the number of steps that an algorithm takes.

- Integer programs are provably difficult to solve!
- Every problem instance has a size which we normally denote by n . Think: $n \sim$ number of variables/constraints of IP.
- The running time of an algorithm is then the number of steps that an algorithm takes.
- It is stated as a function of $n: f(n)$ measures the largest number of steps an algorithm takes on an instance of size n.

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ 「 듣 → 9 Q Q

Can we solve IPs?

• An algorithm is efficient if its running time $f(n)$ is a polynomial of n.

- An algorithm is efficient if its running time $f(n)$ is a polynomial of n .
- LPs can be solved efficiently.

メロト メ押 トメミトメミト

 \equiv Ω

- An algorithm is efficient if its running time $f(n)$ is a polynomial of n .
- LPs can be solved efficiently.
- IPs are very unlikely to admit efficient algorithms!

メロメ メ御 メメ きょくきょう

GB 11 Ω

- An algorithm is efficient if its running time $f(n)$ is a polynomial of n .
- LPs can be solved efficiently.
- IPs are very unlikely to admit efficient algorithms!
- It is very important to look for an efficient algorithm for a problem. The table states actual running times of a computer that can execute 1 million operations per second on an instance of size $n = 100$

 n_{\leftarrow} \rightarrow \leftarrow \mathbb{P} \rightarrow 2^{n} $f(n)$ || n || $n \log_2(n)$ || n $1.5ⁿ$ Ω Integer Programming

IP Models: Knapsack

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 990

• Company wishes to ship crates from Toronto to Kitchener.

- Company wishes to ship crates from Toronto to Kitchener.
- Each crate type has weight and value:

- Company wishes to ship crates from Toronto to Kitchener.
- Each crate type has weight and value:

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ 「 듣 → 9 Q Q

• Total weight of crates shipped must not exceed 10,000 lbs.

- Company wishes to ship crates from Toronto to Kitchener.
- Each crate type has weight and value:

- Total weight of crates shipped must not exceed 10,000 lbs.
- Goal: Maximize total value of shipped goods.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 990

IP Model

Variables.

Variables. One variable x_i for number of crates of type i to pack.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Variables. One variable x_i for number of crates of type i to pack.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Constraints.

- Variables. One variable x_i for number of crates of type i to pack.
- Constraints. The total weight of a crates picked must not exceed 10000 lbs.

- Variables. One variable x_i for number of crates of type i to pack.
- Constraints. The total weight of a crates picked must not exceed 10000 lbs.

 $30x_1 + 20x_2 + 30x_3 + 90x_4 + 30x_5 + 70x_6 \le 10000$

- Variables. One variable x_i for number of crates of type i to pack.
- Constraints. The total weight of a crates picked must not exceed 10000 lbs.

 $30x_1 + 20x_2 + 30x_3 + 90x_4 + 30x_5 + 70x_6 \le 10000$

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ 「 듣 → 9 Q Q

Objective function: Maximize total value.

- Variables. One variable x_i for number of crates of type i to pack.
- Constraints. The total weight of a crates picked must not exceed 10000 lbs.

 $30x_1 + 20x_2 + 30x_3 + 90x_4 + 30x_5 + 70x_6 \le 10000$

• Objective function: Maximize total value.

max $60x_1 + 70x_2 + 40x_3 + 70x_4 + 20x_5 + 90x_6$

K ロ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆ Q Q ◇

- max $60x_1 + 70x_2 + 40x_3 + 70x_4 + 20x_5 + 90x_6$
	- s.t. $30x_1 + 20x_2 + 30x_3 + 90x_4 + 30x_5 + 70x_6 \le 10000$ $x_i \ge 0$ (i \in [6]) x_i integer $(i \in [6])$

KID KA KE KIE KE DA G

max $60x_1 + 70x_2 + 40x_3 + 70x_4 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 + 90x_4 + 30x_5 + 70x_6 \le 10000$ $x_i > 0$ (i \in [6]) x_i integer $(i \in [6])$

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ 「 듣 → 9 Q Q

Let's make this model a bit more interesting...

Suppose that ...

• We must not send more than 10 crates of the same type.

max $60x_1 + 70x_2 + 40x_3 +$ $70x_4 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 +$ $90x_4 + 30x_5 + 70x_6 \le 10000$ $x_i \ge 0$ (i \in [6]) x_i integer $(i \in [6])$

Suppose that ...

• We must not send more than 10 crates of the same type.

max $60x_1 + 70x_2 + 40x_3 +$ $70x_4 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 +$ $90x_4 + 30x_5 + 70x_6 \le 10000$ $0 \le x_i \le 10$ $(i \in [6])$ x_i integer $(i \in [6])$

Suppose that ...

- We must not send more than 10 crates of the same type.
- Can only send crates of type 3, if we send at least 1 crate of type 4.

max $60x_1 + 70x_2 + 40x_3 +$ $70x_1 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 +$ $90x_4 + 30x_5 + 70x_6 \le 10000$ $0 \le x_i \le 10$ $(i \in [6])$ x_i integer $(i \in [6])$

Suppose that ...

- We must not send more than 10 crates of the same type.
- Can only send crates of type 3, if we send at least 1 crate of type 4.

Note: Can send at most 10 crates of type 3 by previous constraint!

max $60x_1 + 70x_2 + 40x_3 +$ $70x_4 + 20x_5 + 90x_6$

s.t.
$$
30x_1 + 20x_2 + 30x_3 +
$$

\n $90x_4 + 30x_5 + 70x_6 \le 10000$
\n $0 \le x_i \le 10 \quad (i \in [6])$
\n x_i integer $(i \in [6])$

K ロ ▶ K @ ▶ K ミ » K ミ » - 를 → 9 Q @

Suppose that ...

- We must not send more than 10 crates of the same type.
- Can only send crates of type 3, if we send at least 1 crate of type 4.

Note: Can send at most 10 crates of type 3 by previous constraint!

max $60x_1 + 70x_2 + 40x_3 +$ $70x_4 + 20x_5 + 90x_6$

s.t.
$$
30x_1 + 20x_2 + 30x_3 +
$$

\n $90x_4 + 30x_5 + 70x_6 \le 10000$
\n $x_3 \le 10x_4$
\n $0 \le x_i \le 10$ (*i* \in [6])
\n x_i integer (*i* \in [6])
KitchTech: Added Conditions

Correctness:

 \bullet $x_4 > 1 \longrightarrow$ new constraint is redundant!

max $60x_1 + 70x_2 + 40x_3$ + $70x_4 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 +$ $90x_4 + 30x_5 + 70x_6 \leq 10000$ $x_3 < 10x_4$ $0 \le x_i \le 10$ $(i \in [6])$ x_i integer $(i \in [6])$

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ 「 듣 → 9 Q Q

KitchTech: Added Conditions

Correctness:

- \bullet $x_4 > 1 \longrightarrow$ new constraint is redundant!
- $\bullet x_4 = 0 \longrightarrow$ new constraint becomes

$$
\qquad x_3\leq 0.
$$

max $60x_1 + 70x_2 + 40x_3 +$ $70x_4 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 +$ $90x_4 + 30x_5 + 70x_6 \leq 10000$ $x_3 < 10x_4$ $0 \le x_i \le 10$ $(i \in [6])$ x_i integer $(i \in [6])$

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ 「 듣 → 9 Q Q

Suppose that we must

- **1** take a total of at least 4 crates of type 1 or 2, or
- 2 take at least 4 crates of type 5 or 6.

max $60x_1 + 70x_2 + 40x_3 +$ $70x_4 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 +$ $90x_4 + 30x_5 + 70x_6 \le 10000$ $x_3 \le 10x_4$ $0 \le x_i \le 10$ $(i \in [6])$ x_i integer $(i \in [6])$

Suppose that we must

- **1** take a total of at least 4 crates of type 1 or 2, or
- 2 take at least 4 crates of type 5 or 6.

Ideas?

max $60x_1 + 70x_2 + 40x_3 +$ $70x_4 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 +$ $90x_4 + 30x_5 + 70x_6 \le 10000$ $x_3 \le 10x_4$ $0 \le x_i \le 10$ $(i \in [6])$ x_i integer $(i \in [6])$

Suppose that we must

- **1** take a total of at least 4 crates of type 1 or 2, or
- 2 take at least 4 crates of type 5 or 6.

Ideas?

Create a new variable y s.t.

$$
y = 1 \longrightarrow
$$

$$
x_1 + x_2 \ge 4,
$$

2 $v = 0 \rightarrow$

max $60x_1 + 70x_2 + 40x_3 +$ $70x_1 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 +$ $90x_4 + 30x_5 + 70x_6 \le 10000$ $x_3 < 10x_4$ $0 \le x_i \le 10$ $(i \in [6])$ x_i integer $(i \in [6])$

Create a new variable y

s.t.

- \bullet y = 1 \rightarrow $x_1 + x_2 \geq 4$,
- 2 $v = 0 \rightarrow$ $x_5 + x_6 \geq 4$.

Force y to take on values 0 or 1.

Add constraints:

max $60x_1 + 70x_2 + 40x_3 +$ $70x_1 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 +$ $90x_4 + 30x_5 + 70x_6 \le 10000$ $x_3 < 10x_4$ $0 \le x_i \le 10$ $(i \in [6])$ x_i integer $(i \in [6])$

Create a new variable y

s.t.

- \bullet y = 1 \rightarrow $x_1 + x_2 \geq 4$,
- 2 $v = 0 \rightarrow$ $x_5 + x_6 \geq 4$.

Force y to take on values 0 or 1.

Add constraints:

 $2x_1 + x_2 > 4y$

max $60x_1 + 70x_2 + 40x_3$ + $70x_1 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 +$ $90x_4 + 30x_5 + 70x_6 \le 10000$ $x_3 < 10x_4$ $0 \le x_i \le 10$ $(i \in [6])$ x_i integer $(i \in [6])$

Create a new variable y

s.t.

- \bullet y = 1 \rightarrow $x_1 + x_2 \geq 4$,
- 2 $v = 0 \rightarrow$ $x_5 + x_6 \geq 4$.

Force y to take on values 0 or 1.

Add constraints:

 $2x_1 + x_2 > 4y$

$$
2 x_5 + x_6 \ge 4(1 - y)
$$

max $60x_1 + 70x_2 + 40x_3$ + $70x_1 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 +$ $90x_4 + 30x_5 + 70x_6 \le 10000$ $x_3 < 10x_4$ $0 \le x_i \le 10$ $(i \in [6])$ x_i integer $(i \in [6])$

Create a new variable y

s.t.

- \bullet y = 1 \rightarrow $x_1 + x_2 \geq 4$,
- 2 $v = 0 \rightarrow$ $x_5 + x_6 \geq 4$.

Force y to take on values 0 or 1.

Add constraints:

 $2x_1 + x_2 > 4y$

$$
x_5+x_6\geq 4(1-y)
$$

3 0 $< v < 1$

max $60x_1 + 70x_2 + 40x_3$ + $70x_1 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 +$ $90x_4 + 30x_5 + 70x_6 \le 10000$ $x_3 < 10x_4$ $0 \le x_i \le 10$ $(i \in [6])$ x_i integer $(i \in [6])$

Create a new variable y

s.t.

- \bullet y = 1 \rightarrow $x_1 + x_2 \geq 4$,
- 2 $v = 0 \rightarrow$ $x_5 + x_6 \geq 4$.

Force y to take on values 0 or 1.

Add constraints:

 $2x_1 + x_2 > 4y$

$$
x_5+x_6\geq 4(1-y)
$$

3 0 $< v < 1$

max $60x_1 + 70x_2 + 40x_3$ + $70x_1 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 +$ $90x_4 + 30x_5 + 70x_6 \le 10000$ $x_3 < 10x_4$ $0 \le x_i \le 10$ $(i \in [6])$ x_i integer $(i \in [6])$

Create a new variable y s.t.

$$
\bullet \ y = 1 \longrightarrow
$$

$$
x_1 + x_2 \ge 4,
$$

$$
y = 0 \longrightarrow
$$

 $x_5 + x_6 \ge 4.$

Force y to take on values 0 or 1.

Add constraints:

 $2x_1 + x_2 > 4y$

$$
x_5 + x_6 \ge 4(1-y)
$$

max $60x_1 + 70x_2 + 40x_3$ + $70x_4 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 +$ $90x_4 + 30x_5 + 70x_6 \leq 10000$ $x_3 < 10x_4$ $x_1 + x_2 > 4y$ $x_5 + x_6 \ge 4(1 - y)$ $0 < y < 1$ $0 \le x_i \le 10$ $(i \in [6])$ y integer x_i integer $(i \in [6])$

K ロ > K 個 > K 로 > K 로 > T 로 → K Q Q Q

3 0 $< v < 1$

Binary Variables

Variable y is called a binary variable.

These are very useful for modeling logical constraints of the form:

[Condition (A or B) and $|C| \rightarrow 0$

Will see more examples ...

max $60x_1 + 70x_2 + 40x_3 +$ $70x_1 + 20x_5 + 90x_6$ s.t. $30x_1 + 20x_2 + 30x_3 +$ $90x_4 + 30x_5 + 70x_6 \le 10000$ $x_3 < 10x_4$ $x_1 + x_2 > 4v$ $x_5 + x_6 > 4(1 - y)$ $0 \leq y \leq 1$ $0 \le x_i \le 10$ $(i \in [6])$ y integer x_i integer $(i \in [6])$

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - 10 Q Q

Integer Programming

IP Models: Scheduling

メロメ メ御 メメ きょくきょう

 \equiv 990

• The neighbourhood coffee shop is open on workdays.

メロメ メ御 メメ きょくきょう

 $E = \Omega Q$

- The neighbourhood coffee shop is open on workdays.
- Daily demand for workers:

メロメ メ御 メメ きょくきょう

ミー 299

- The neighbourhood coffee shop is open on workdays.
- Daily demand for workers:

• Each worker works for 4 consecutive days and has one day off.

メロメ メ御 メメ きょくきょう

 $E = \Omega Q$

- The neighbourhood coffee shop is open on workdays.
- Daily demand for workers:

Each worker works for 4 consecutive days and has one day off. e.g.: work: Mon, Tue, Wed, Thu; off: Fri or work: Wed, Thu, Fri, Mon; off: Tue

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

ミー 299

- The neighbourhood coffee shop is open on workdays.
- Daily demand for workers:

- **•** Each worker works for 4 consecutive days and has one day off. e.g.: work: Mon, Tue, Wed, Thu; off: Fri or work: Wed, Thu, Fri, Mon; off: Tue
- **Q** Goal: hire the smallest number of workers so that the demand can be met!

(ロ) (個) (目) (美)

 $E = \Omega Q$

- The neighbourhood coffee shop is open on workdays.
- Daily demand for workers:

- **•** Each worker works for 4 consecutive days and has one day off. e.g.: work: Mon, Tue, Wed, Thu; off: Fri or work: Wed, Thu, Fri, Mon; off: Tue
- **Q** Goal: hire the smallest number of workers so that the demand can be met!

4 Variables. What do we need to decide on?

K ロ K K 伊 K K ミ K K モ K コ E K Y Q Q Q C

4 Variables. What do we need to decide on? \rightarrow introduce variable x_d for every $d \in \{M, T, W, Th, F\}$ counting the number of people to hire with starting day d.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

1 Variables. What do we need to decide on? \rightarrow introduce variable x_d for every $d \in \{M, T, W, Th, F\}$ counting the number of people to hire with starting day d.

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ 「 듣 → 9 Q Q

2 Objective function. What do we want to minimize?

- **1** Variables. What do we need to decide on? \rightarrow introduce variable x_d for every $d \in \{M, T, W, Th, F\}$ counting the number of people to hire with starting day d.
- 2 Objective function. What do we want to minimize? \rightarrow the total number of people hired:

 $\min x_M + x_T + x_W + x_{Th} + x_F$.

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ 「 듣 → 9 Q Q

- **1** Variables. What do we need to decide on? \rightarrow introduce variable x_d for every $d \in \{M, T, W, Th, F\}$ counting the number of people to hire with starting day d.
- 2 Objective function. What do we want to minimize? \rightarrow the total number of people hired:

```
\min x_M + x_T + x_W + x_{Th} + x_F.
```
K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ 「 듣 → 9 Q Q

3 Constraints. Need to ensure that enough people work on each of the days.

- **1** Variables. What do we need to decide on? \rightarrow introduce variable x_d for every $d \in \{M, T, W, Th, F\}$ counting the number of people to hire with starting day d.
- 2 Objective function. What do we want to minimize? \rightarrow the total number of people hired:

 $\min x_M + x_T + x_W + x_{Th} + x_F$.

3 Constraints. Need to ensure that enough people work on each of the days.

Question: Given a solution $(x_M, x_T, x_W, x_{Th}, x_F)$, how many people work on Monday?

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ 「 듣 → 9 Q Q

- **1** Variables. What do we need to decide on? \rightarrow introduce variable x_d for every $d \in \{M, T, W, Th, F\}$ counting the number of people to hire with starting day d.
- 2 Objective function. What do we want to minimize? \rightarrow the total number of people hired:

min $x_M + x_T + x_W + x_{Th} + x_F$.

3 Constraints. Need to ensure that enough people work on each of the days.

Question: Given a solution $(x_M, x_T, x_W, x_{Th}, x_F)$, how many people work on Monday?

All but those that start on Tuesday; i.e.,

$$
x_M + x_W + x_{Th} + x_F.
$$

Monday: $x_M + x_W + x_{Th} + x_F \geq 3$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Monday: Tuesday:

$$
x_M + x_W + x_{Th} + x_F \ge 3
$$

$$
x_M + x_T + x_{Th} + x_F \ge 5
$$

メロトメ 倒 トメ きトメ きトー

 \equiv 990

Monday: $x_M + x_W + x_{Th} + x_F \geq 3$ Tuesday: $x_M + x_T + x_{Th} + x_F \geq 5$ Wednesday: $x_M + x_T + x_W + x_F > 9$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Wednesday: $x_M + x_T + x_W + x_F \geq 9$ Thursday: $x_M + x_T + x_W + x_T \ge 2$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Tuesday: $x_M + x_T + x_{Th} + x_F \geq 5$ Wednesday: $x_M + x_T + x_W + x_F \geq 9$ Thursday: $x_M + x_T + x_W + x_T > 2$ Friday: $x_T + x_W + x_{Th} + x_F \ge 7$

K ロ ▶ K @ ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Scheduling LP

min
$$
x_M + x_T + x_W + x_{Th} + x_F
$$

\ns.t. $x_M + x_W + x_{Th} + x_F \ge 3$
\n $x_M + x_T + x_{Th} + x_F \ge 5$
\n $x_M + x_T + x_W + x_F \ge 9$
\n $x_M + x_T + x_W + x_T \ge 2$
\n $x_T + x_W + x_{Th} + x_F \ge 7$
\n $x \ge F$, x integer

メロトメ 倒 トメ きトメ きトー

 $E = 990$

 $S := \{127, 289, 1310, 2754\}.$

We want to add constraints and/or variables to the IP that enforce that the $x_1 + \ldots + x_6$ is in S. How?

KOKK@KKEKKEK E 1990

 $S := \{127, 289, 1310, 2754\}.$

We want to add constraints and/or variables to the IP that enforce that the $x_1 + \ldots + x_6$ is in S. How?

Add binary variables $y_{127}, y_{289}, y_{1310}, y_{2754}$, one for each $i \in S$.

K ロ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆ Q Q ◇

 $S := \{127, 289, 1310, 2754\}.$

We want to add constraints and/or variables to the IP that enforce that the $x_1 + \ldots + x_6$ is in S. How?

- Add binary variables $y_{127}, y_{289}, y_{1310}, y_{2754}$, one for each $i \in S$.
- Want: Exactly one of these variables is 1 in a feasible solution.

K ロ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆ Q Q ◇

 $S := \{127, 289, 1310, 2754\}.$

We want to add constraints and/or variables to the IP that enforce that the $x_1 + \ldots + x_6$ is in S. How?

- Add binary variables $y_{127}, y_{289}, y_{1310}, y_{2754}$, one for each $i \in S$.
- Want: Exactly one of these variables is 1 in a feasible solution.

K ロ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆ Q Q ◇

• If
$$
y_n = 1
$$
 for $n \in S$ then $\sum_{i=1}^{6} x_i = n$

Add the following constraints:

$$
y_{127} + y_{289} + y_{1310} + y_{2754} = 1
$$

\n
$$
\sum_{i=1}^{6} x_i = \sum_{i \in S} iy_i
$$

\n
$$
0 \le y_i \le 1, \quad y_i \text{ integer } \forall i \in S
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Add the following constraints:

$$
y_{127} + y_{289} + y_{1310} + y_{2754} = 1
$$

\n
$$
\sum_{i=1}^{6} x_i = \sum_{i \in S} iy_i
$$

\n
$$
0 \le y_i \le 1, \quad y_i \text{ integer } \forall i \in S
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 990

Why is the resulting IP correct?

• An integer program is obtained by adding integrality constraints for some/all of the variables to an LP.

- An integer program is obtained by adding integrality constraints for some/all of the variables to an LP.
- An algorithm is efficient if its running time can be bounded by a polynomial of the input size of the instance.

- An integer program is obtained by adding integrality constraints for some/all of the variables to an LP.
- An algorithm is efficient if its running time can be bounded by a polynomial of the input size of the instance.
- While LPs admit efficient algorithms, IPs are unlikely to have efficient algorithms. Thus, whenever possible, formulate a problem as an LP!

K ロ ▶ K @ ▶ K ミ » K ミ » - 를 → 9 Q @

- An integer program is obtained by adding integrality constraints for some/all of the variables to an LP.
- An algorithm is efficient if its running time can be bounded by a polynomial of the input size of the instance.
- While LPs admit efficient algorithms, IPs are unlikely to have efficient algorithms. Thus, whenever possible, formulate a problem as an LP!
- Variables that can take value 0 or 1 only are called binary.

- An integer program is obtained by adding integrality constraints for some/all of the variables to an LP.
- An algorithm is efficient if its running time can be bounded by a polynomial of the input size of the instance.
- While LPs admit efficient algorithms, IPs are unlikely to have efficient algorithms. Thus, whenever possible, formulate a problem as an LP!
- Variables that can take value 0 or 1 only are called binary.
- Binary variables are useful for expressing logical conditions.