
Integer Programming
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Module 1: Formulations (IP Models)
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Integer Programming

Recap: WaterTech

max 300x1 + 260x2 + 220x3 + 180x4 − 8ys − 6yu

s.t. 11x1 + 7x2 + 6x3 + 5x4 ≤ 700

4x1 + 6x2 + 5x3 + 4x4 ≤ 500

8x1 + 5x2 + 5x3 + 6x4 ≤ ys

7x1 + 8x2 + 7x3 + 4x4 ≤ yu

ys ≤ 600

yu ≤ 650

x1, x2, x3, x4, yu, ys ≥ 0.

Optimal solution: x = (16 + 2
3 , 50, 0, 33 + 1

3)T , ys = 583 + 1
3 ,

yu = 650

Fractional solutions are often not desirable! Can we force solution
to take on only integer values?
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Integer Programming

Yes!

An integer program is a
linear program with added
integrality constraints for
some/all variables.

We call an IP mixed if there
are integer and fractional
variables, and pure
otherwise.

Difference between LPs and
IPs is subtle. Yet: LPs are
easy to solve, IPs are not!

max x1 + x2 + 2x4

s.t. x1 + x2 ≤ 1

− x2 − x3 ≥ −1

x1 + x3 = 1

x1, x2, x3 ≥ 0
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Integer Programming

Can we solve IPs?

Integer programs are provably difficult to solve!

Every problem instance has a size which we normally denote
by n.
.

The running time of an algorithm is then the number of steps
that an algorithm takes.

It is stated as a function of n: f (n) measures the largest
number of steps an algorithm takes on an instance of size n.
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Integer Programming

Can we solve IPs?

An algorithm is efficient if its
running time f (n) is a polynomial
of n.

LPs can be solved efficiently.

IPs are very unlikely to admit
efficient algorithms!

It is very important to look for an
efficient algorithm for a problem.
The table states actual running
times of a computer that can
execute 1 million operations per
second on an instance of size
n = 100:
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Integer Programming

Can we solve IPs?

An algorithm is efficient if its
running time f (n) is a polynomial
of n.

LPs can be solved efficiently.

IPs are very unlikely to admit
efficient algorithms!

It is very important to look for an
efficient algorithm for a problem.
The table states actual running
times of a computer that can
execute 1 million operations per
second on an instance of size
n = 100:

f (n) n n log2(n) n3 1.5n 2n

Time < 1s < 1s 1s 12, 892y 4× 1016yCO 250: Introduction to Optimization



Integer Programming

IP Models: Knapsack
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Integer Programming

KitchTech Shipping

Company wishes to ship crates from Toronto to Kitchener.

Each crate type has weight and value:

Type 1 2 3 4 5 6

weight (lbs) 30 20 30 90 30 70
value ($) 60 70 40 70 20 90

Total weight of crates shipped must not exceed 10,000 lbs.

Goal: Maximize total value of shipped goods.
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Integer Programming

IP Model

Variables.

Constraints.

Objective function: Maximize total value.
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pack.
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IP Model

Variables. One variable xi for number of crates of type i to
pack.

Constraints. The total weight of a crates picked must not
exceed 10000 lbs.

30x1 + 20x2 + 30x3 + 90x4 + 30x5 + 70x6 ≤ 10000

Objective function: Maximize total value.

max 60x1 + 70x2 + 40x3 + 70x4 + 20x5 + 90x6
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Integer Programming

IP Model

max 60x1 + 70x2 + 40x3 + 70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3 + 90x4 + 30x5 + 70x6 ≤ 10000

xi ≥ 0 (i ∈ [6])

xi integer (i ∈ [6])
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Integer Programming

IP Model

max 60x1 + 70x2 + 40x3 + 70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3 + 90x4 + 30x5 + 70x6 ≤ 10000

xi ≥ 0 (i ∈ [6])

xi integer (i ∈ [6])

Let’s make this model a bit more interesting...
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Integer Programming

KitchTech: Added Conditions

Suppose that ...

We must not send
more than 10 crates
of the same type.

Can only send crates
of type 3, if we send
at least 1 crate of
type 4.

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

xi ≥ 0 (i ∈ [6])

xi integer (i ∈ [6])
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Integer Programming

KitchTech: Added Conditions

Correctness:

x4 ≥ 1 −→ new
constraint is
redundant!

x4 = 0 −→ new
constraint becomes

x3 ≤ 0.
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Integer Programming

KitchTech: One More Tricky Case

Suppose that we must

1 take a total of at
least 4 crates of type
1 or 2, or

2 take at least 4 crates
of type 5 or 6.
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Suppose that we must
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KitchTech: One More Tricky Case
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Integer Programming

KitchTech: One More Tricky Case

Create a new variable y
s.t.

1 y = 1 −→
x1 + x2 ≥ 4,

2 y = 0 −→
x5 + x6 ≥ 4.

Force y to take on values
0 or 1.

Add constraints:

1 x1 + x2 ≥ 4y

2 x5 + x6 ≥ 4(1− y)

3 0 ≤ y ≤ 1

4 y integer

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

x3 ≤ 10x4

x1 + x2 ≥ 4y

x5 + x6 ≥ 4(1− y)

0 ≤ y ≤ 1

0 ≤ xi ≤ 10 (i ∈ [6])

y integer

xi integer (i ∈ [6])
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Integer Programming

Binary Variables

Variable y is called a
binary variable.

These are very useful for
modeling logical
constraints of the form:

[Condition (A or B) and
C] −→ D

Will see more examples ...

max 60x1 + 70x2 + 40x3+

70x4 + 20x5 + 90x6

s.t. 30x1 + 20x2 + 30x3+

90x4 + 30x5 + 70x6 ≤ 10000

x3 ≤ 10x4

x1 + x2 ≥ 4y

x5 + x6 ≥ 4(1− y)

0 ≤ y ≤ 1

0 ≤ xi ≤ 10 (i ∈ [6])

y integer

xi integer (i ∈ [6])
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Integer Programming

IP Models: Scheduling
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Integer Programming

The neighbourhood coffee
shop is open on workdays.

Daily demand for workers:

Mon Tues Wed Thurs Fri

3 5 9 2 7

Each worker works for 4
consecutive days and has
one day off.

Goal: hire the smallest
number of workers so that
the demand can be met!
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The neighbourhood coffee
shop is open on workdays.

Daily demand for workers:

Mon Tues Wed Thurs Fri

3 5 9 2 7

Each worker works for 4
consecutive days and has
one day off.
e.g.: work: Mon, Tue, Wed,
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Integer Programming

The neighbourhood coffee
shop is open on workdays.

Daily demand for workers:

Mon Tues Wed Thurs Fri

3 5 9 2 7

Each worker works for 4
consecutive days and has
one day off.
e.g.: work: Mon, Tue, Wed,
Thu; off: Fri
or work: Wed, Thu, Fri,
Mon; off: Tue

Goal: hire the smallest
number of workers so that
the demand can be met!

Can we solve this
using IP?
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Integer Programming

1 Variables. What do we need to decide on?

2 Objective function. What do we want to minimize?

3 Constraints. Need to ensure that enough people work on each
of the days.
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→ introduce variable xd for every d ∈ {M,T ,W ,Th,F}
counting the number of people to hire with starting day d .

2 Objective function. What do we want to minimize?

3 Constraints. Need to ensure that enough people work on each
of the days.
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Integer Programming

1 Variables. What do we need to decide on?
→ introduce variable xd for every d ∈ {M,T ,W ,Th,F}
counting the number of people to hire with starting day d .

2 Objective function. What do we want to minimize?
→ the total number of people hired:

min xM + xT + xW + xTh + xF .

3 Constraints. Need to ensure that enough people work on each
of the days.

Question: Given a solution (xM , xT , xW , xTh, xF ), how many
people work on Monday?
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1 Variables. What do we need to decide on?
→ introduce variable xd for every d ∈ {M,T ,W ,Th,F}
counting the number of people to hire with starting day d .

2 Objective function. What do we want to minimize?
→ the total number of people hired:

min xM + xT + xW + xTh + xF .

3 Constraints. Need to ensure that enough people work on each
of the days.

Question: Given a solution (xM , xT , xW , xTh, xF ), how many
people work on Monday?
All but those that start on Tuesday; i.e.,

xM + xW + xTh + xF .
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Integer Programming

Constraints

[Daily Demand]
Mon Tues Wed Thurs Fri

3 5 9 2 7

Monday: xM + xW + xTh + xF ≥ 3
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Constraints

[Daily Demand]
Mon Tues Wed Thurs Fri

3 5 9 2 7

Monday: xM + xW + xTh + xF ≥ 3
Tuesday: xM + xT + xTh + xF ≥ 5
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Constraints

[Daily Demand]
Mon Tues Wed Thurs Fri

3 5 9 2 7

Monday: xM + xW + xTh + xF ≥ 3
Tuesday: xM + xT + xTh + xF ≥ 5

Wednesday: xM + xT + xW + xF ≥ 9
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Constraints

[Daily Demand]
Mon Tues Wed Thurs Fri

3 5 9 2 7

Monday: xM + xW + xTh + xF ≥ 3
Tuesday: xM + xT + xTh + xF ≥ 5

Wednesday: xM + xT + xW + xF ≥ 9
Thursday: xM + xT + xW + xT ≥ 2
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Integer Programming

Constraints

[Daily Demand]
Mon Tues Wed Thurs Fri

3 5 9 2 7

Monday: xM + xW + xTh + xF ≥ 3
Tuesday: xM + xT + xTh + xF ≥ 5

Wednesday: xM + xT + xW + xF ≥ 9
Thursday: xM + xT + xW + xT ≥ 2

Friday: xT + xW + xTh + xF ≥ 7
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Integer Programming

Scheduling LP

min xM + xT + xW + xTh + xF

s.t. xM + xW + xTh + xF ≥ 3

xM + xT + xTh + xF ≥ 5

xM + xT + xW + xF ≥ 9

xM + xT + xW + xT ≥ 2

xT + xW + xTh + xF ≥ 7

x ≥ 0, x integer
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Integer Programming

Quiz

Given an integer program with integer variables x1, . . . , x6. Let

S := {127, 289, 1310, 2754}.

We want to add constraints and/or variables to the IP that enforce
that the x1 + . . . + x6 is in S. How?

Add binary variables y127, y289, y1310, y2754, one for each i ∈ S.

Want: Exactly one of these variables is 1 in a feasible solution.

If yn = 1 for n ∈ S then
∑6

i=1 xi = n
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Integer Programming

Quiz

Given an integer program with integer variables x1, . . . , x6. Let

S := {127, 289, 1310, 2754}.

We want to add constraints and/or variables to the IP that enforce
that the x1 + . . . + x6 is in S. How?

Add binary variables y127, y289, y1310, y2754, one for each i ∈ S.

Want: Exactly one of these variables is 1 in a feasible solution.

If yn = 1 for n ∈ S then
∑6

i=1 xi = n
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Integer Programming

Quiz

Add the following constraints:

y127 + y289 + y1310 + y2754 = 1

6∑
i=1

xi =
∑
i∈S

iyi

0 ≤ yi ≤ 1, yi integer ∀i ∈ S
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Integer Programming

Quiz

Add the following constraints:

y127 + y289 + y1310 + y2754 = 1

6∑
i=1

xi =
∑
i∈S

iyi

0 ≤ yi ≤ 1, yi integer ∀i ∈ S

Why is the resulting IP correct?
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Integer Programming

Recap:

An integer program is obtained by adding integrality
constraints for some/all of the variables to an LP.

An algorithm is efficient if its running time can be bounded by
a polynomial of the input size of the instance.

While LPs admit efficient algorithms, IPs are unlikely to have
efficient algorithms. Thus, whenever possible, formulate a
problem as an LP!

Variables that can take value 0 or 1 only are called binary.

Binary variables are useful for expressing logical conditions.
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