Module 1: Formulations (Shortest Paths)

Input:

Input:

• Graph G = (V, E)

Input:

- Graph G = (V, E)
- Non-negative edge lengths c_e for all $e \in E$

Input:

- Graph G = (V, E)
- Non-negative edge lengths c_e for all $e \in E$
- Vertices $s, t \in V$

Input:

- Graph G = (V, E)
- Non-negative edge lengths c_e for all $e \in E$
- Vertices $s, t \in V$

Goal: Compute an s, t-path of smallest total length.

Input:

- Graph G = (V, E)
- Non-negative edge lengths c_e for all $e \in E$
- Vertices $s, t \in V$

Goal: Compute an s, t-path of smallest total length.

Recall: P is an s, t-path if it is of the form

 $v_1v_2, v_2v_3, \ldots, v_{k-1}v_k$

Input:

- Graph G = (V, E)
- Non-negative edge lengths c_e for all $e \in E$
- Vertices $s, t \in V$

Goal: Compute an s, t-path of smallest total length.

Recall: P is an s, t-path if it is of the form

 $v_1v_2, v_2v_3, \ldots, v_{k-1}v_k$

1.
$$v_i v_{i+1} \in E$$
 for all $i \in \{1, \dots, k-1\}$,

Input:

- Graph G = (V, E)
- Non-negative edge lengths c_e for all $e \in E$
- Vertices $s, t \in V$

Goal: Compute an s, t-path of smallest total length.

Recall: P is an s, t-path if it is of the form

$$v_1v_2, v_2v_3, \ldots, v_{k-1}v_k$$

- 1. $v_i v_{i+1} \in E$ for all $i \in \{1, \dots, k-1\}$,
- 2. $v_i \neq v_j$ for all $i \neq j$, and

Input:

- Graph G = (V, E)
- Non-negative edge lengths c_e for all $e \in E$
- Vertices $s, t \in V$

Goal: Compute an s, t-path of smallest total length.

Recall: P is an s, t-path if it is of the form

$$v_1v_2, v_2v_3, \ldots, v_{k-1}v_k$$

- 1. $v_i v_{i+1} \in E$ for all $i \in \{1, \dots, k-1\}$,
- 2. $v_i \neq v_j$ for all $i \neq j$, and
- 3. $v_1 = s \text{ and } v_k = t$.

Input:

- Graph G = (V, E)
- Non-negative edge lengths c_e for all $e \in E$
- Vertices $s, t \in V$

Goal: Compute an s, t-path of smallest total length.

Recall: P is an s, t-path if it is of the form

 $v_1v_2, v_2v_3, \ldots, v_{k-1}v_k$

- 1. $v_i v_{i+1} \in E$ for all $i \in \{1, \dots, k-1\}$,
- 2. $v_i \neq v_j$ for all $i \neq j$, and
- 3. $v_1 = s \text{ and } v_k = t$.
- $\mathsf{E.g.,}\ P=sa,\ ab,\ bt$

Shortest Path Problem: Given G = (V, E), $c_e \ge 0$ for all $e \in E$, and $s, t \in V$, compute an s, t-path of smallest total length.

Shortest Path Problem: Given $G = (V, E), c_e \ge 0$ for all $e \in E$, and $s, t \in V$, compute an s, t-path of smallest total length.

Now: Formulate the problem as an IP!

Shortest Path Problem: Given $G = (V, E), c_e \ge 0$ for all $e \in E$, and $s, t \in V$, compute an s, t-path of smallest total length.

Now: Formulate the problem as an IP!

Useful Observation: Let $C \subseteq E$ be a set of edges whose removal disconnects s and t.

Shortest Path Problem: Given $G = (V, E), c_e \ge 0$ for all $e \in E$, and $s, t \in V$, compute an s, t-path of smallest total length.

Now: Formulate the problem as an IP!

Useful Observation: Let $C \subseteq E$ be a set of edges whose removal disconnects s and t.

Shortest Path Problem: Given $G = (V, E), c_e \ge 0$ for all $e \in E$, and $s, t \in V$, compute an s, t-path of smallest total length.

Now: Formulate the problem as an IP!

Useful Observation: Let $C \subseteq E$ be a set of edges whose removal disconnects s and t.

 $\longrightarrow \mathsf{Every}\ s, t\text{-path}\ P \ \mathsf{must}$ have at least

one edge in C.

Shortest Path Problem: Given G = (V, E), $c_e \ge 0$ for all $e \in E$, and $s, t \in V$, compute an s, t-path of smallest total length.

Now: Formulate the problem as an IP!

Useful Observation: Let $C \subseteq E$ be a set of edges whose removal disconnects s and t.

 $\longrightarrow \mathsf{Every}\ s, t\text{-path}\ P \ {\rm must}$ have at least

one edge in C.

Definition

For $S \subseteq V$, we let $\delta(S)$ be the set of edges with exactly one endpoint in S.

Shortest Path Problem: Given G = (V, E), $c_e \ge 0$ for all $e \in E$, and $s, t \in V$, compute an s, t-path of smallest total length.

Now: Formulate the problem as an IP!

Useful Observation: Let $C \subseteq E$ be a set of edges whose removal disconnects s and t.

 $\longrightarrow \mathsf{Every}\ s, t\text{-path}\ P \ {\rm must}$ have at least

one edge in C.

Definition

For $S \subseteq V$, we let $\delta(S)$ be the set of edges with exactly one endpoint in S.

$$\delta(S) = \{ uv \in E : u \in S, v \notin S \}$$

Examples:

Definition

For $S \subseteq V$, we let $\delta(S)$ be the set of edges with exactly one endpoint in S.

Examples:

1. $S = \{s\}$

Definition

For $S \subseteq V$, we let $\delta(S)$ be the set of edges with exactly one endpoint in S.

Examples:

1. $S=\{s\} \rightarrow \delta(S)=\{sa,sb\}$

Definition

For $S \subseteq V$, we let $\delta(S)$ be the set of edges with exactly one endpoint in S.

Examples:

1.
$$S=\{s\} \rightarrow \delta(S)=\{sa,sb\}$$

2.
$$S = \{s, a\}$$

Definition

For $S \subseteq V$, we let $\delta(S)$ be the set of edges with exactly one endpoint in S.

Examples:

1.
$$S=\{s\} \rightarrow \delta(S)=\{sa,sb\}$$

2.
$$S = \{s, a\} \rightarrow \delta(S) = \{ab, at, sb\}$$

Definition

For $S \subseteq V$, we let $\delta(S)$ be the set of edges with exactly one endpoint in S.

Examples:

1.
$$S = \{s\} \rightarrow \delta(S) = \{sa, sb\}$$

2.
$$S = \{s, a\} \rightarrow \delta(S) = \{ab, at, sb\}$$

3. $S = \{a, b\}$

Definition

For $S \subseteq V$, we let $\delta(S)$ be the set of edges with exactly one endpoint in S.

Examples:

1.
$$S = \{s\} \rightarrow \delta(S) = \{sa, sb\}$$

2. $S = \{s, a\} \rightarrow \delta(S) = \{ab, at, sb\}$
3. $S = \{a, b\} \rightarrow \delta(S) = \{sa, sb, at, bt\}$

Definition

For $S \subseteq V$, we let $\delta(S)$ be the set of edges with exactly one endpoint in S.

Examples:

1.
$$S = \{s\} \rightarrow \delta(S) = \{sa, sb\}$$

2.
$$S = \{s, a\} \rightarrow \delta(S) = \{ab, at, sb\}$$

3.
$$S = \{a, b\} \rightarrow \delta(S) = \{sa, sb, at, bt\}$$

Definition

 $\delta(S)$ is an s, t-cut if $s \in S$ and $t \notin S$.

Definition

For $S \subseteq V$, we let $\delta(S)$ be the set of edges with exactly one endpoint in S.

Examples:

1.
$$S = \{s\} \rightarrow \delta(S) = \{sa, sb\}$$

2.
$$S = \{s, a\} \rightarrow \delta(S) = \{ab, at, sb\}$$

3.
$$S = \{a, b\} \rightarrow \delta(S) = \{sa, sb, at, bt\}$$

Definition

 $\delta(S)$ is an s, t-cut if $s \in S$ and $t \notin S$.

E.g., 1 and 2 are s, t-cuts, 3 is not.

Definition

For $S \subseteq V$, we let $\delta(S)$ be the set of edges with exactly one endpoint in S.

Definition

 $\delta(S)$ is an s, t-cut if $s \in S$ and $t \notin S$.

Definition

 $\delta(S)$ is an s, t-cut if $s \in S$ and $t \notin S$.

E.g., $\delta(\{s,a\}) = \{sb,ab,at\}$ is an s,t-cut.

Definition

 $\delta(S)$ is an s, t-cut if $s \in S$ and $t \notin S$.

E.g., $\delta(\{s,a\}) = \{sb,ab,at\}$ is an s,t-cut.

Remark

If P is an $s,t\mbox{-path}$ and $\delta(S)$ is an $s,t\mbox{-cut},$ then P must have an edge from $\delta(S).$

Definition

 $\delta(S)$ is an s, t-cut if $s \in S$ and $t \notin S$.

E.g., $\delta(\{s,a\}) = \{sb,ab,at\}$ is an s,t-cut.

Remark

If P is an $s,t\mbox{-path}$ and $\delta(S)$ is an $s,t\mbox{-cut},$ then P must have an edge from $\delta(S).$

E.g., P = sa, ab, bt.

Remark

Remark

If $S \subseteq E$ contains at least one edge from every s, t-cut, then S contains an s, t-path.

Proof: (by contradiction)

Remark

If $S \subseteq E$ contains at least one edge from every s, t-cut, then S contains an s, t-path.

Proof: (by contradiction)

• Suppose S has an edge from every s, t-cut, but S has no s, t-path.

Remark

If $S \subseteq E$ contains at least one edge from every s, t-cut, then S contains an s, t-path.

Proof: (by contradiction)

- Suppose S has an edge from every s, t-cut, but S has no s, t-path.
- Let *R* be the set of vertices reachable from *s* in *S*:

$$R = \{ u \in V : S \text{ has an } s, u - \mathsf{path} \}.$$

Remark

If $S \subseteq E$ contains at least one edge from every s, t-cut, then S contains an s, t-path.

Proof: (by contradiction)

- Suppose S has an edge from every s,t-cut, but S has no s,t-path.
- Let *R* be the set of vertices reachable from *s* in *S*:

 $R = \{ u \in V : S \text{ has an } s, u - \mathsf{path} \}.$

• $\delta(R)$ is an s, t-cut since $s \in R$ and $t \notin R$.

Remark

If $S \subseteq E$ contains at least one edge from every s, t-cut, then S contains an s, t-path.

Proof: (by contradiction)

- Suppose S has an edge from every s,t-cut, but S has no s,t-path.
- Let *R* be the set of vertices reachable from *s* in *S*:

 $R = \{u \in V : S \text{ has an } s, u - \mathsf{path}\}.$

• $\delta(R)$ is an s, t-cut since $s \in R$ and $t \notin R$.

• Note: There cannot be an edge $uv \in S$ with $u \in R$ and $v \notin R$.

Remark

If $S \subseteq E$ contains at least one edge from every s, t-cut, then S contains an s, t-path.

Proof: (by contradiction)

- Suppose S has an edge from every s,t-cut, but S has no s,t-path.
- Let *R* be the set of vertices reachable from *s* in *S*:

 $R = \{u \in V : S \text{ has an } s, u - path\}.$

• $\delta(R)$ is an s, t-cut since $s \in R$ and $t \notin R$.

Note: There cannot be an edge uv ∈ S with u ∈ R and v ∉ R. Otherwise: v should have been in R!

Remark

If $S \subseteq E$ contains at least one edge from every s, t-cut, then S contains an s, t-path.

Proof: (by contradiction)

- Suppose S has an edge from every s, t-cut, but S has no s, t-path.
- Let *R* be the set of vertices reachable from *s* in *S*:

 $R = \{u \in V : S \text{ has an } s, u - \mathsf{path}\}.$

• $\delta(R)$ is an s, t-cut since $s \in R$ and $t \notin R$.

Note: There cannot be an edge uv ∈ S with u ∈ R and v ∉ R. Otherwise: v should have been in R!

$$\longrightarrow \delta(R) \cap S = \emptyset.$$

Contradiction!

Variables: We have one binary variable x_e for each edge $e \in E$.

Remark

Variables: We have one binary variable x_e for each edge $e \in E$. We want:

$$x_e = \begin{cases} 1 : e \in P \\ 0 : \text{otherwise} \end{cases}$$

Remark

Variables: We have one binary variable x_e for each edge $e \in E$. We want:

$$x_e = \begin{cases} 1 : e \in P \\ 0 : \text{otherwise} \end{cases}$$

Constraints: We have one constraint for each s, t-cut $\delta(U)$, forcing P to have an edge from $\delta(S)$.

Remark

Variables: We have one binary variable x_e for each edge $e \in E$. We want:

$$x_e = \begin{cases} 1 : e \in P \\ 0 : \text{otherwise} \end{cases}$$

Constraints: We have one constraint for each s, t-cut $\delta(U)$, forcing P to have an edge from $\delta(S)$.

$$\sum (x_e : e \in \delta(U)) \ge 1 \qquad (1)$$

for all s, t-cuts $\delta(U)$.

Remark

Variables: We have one binary variable x_e for each edge $e \in E$. We want:

$$x_e = \begin{cases} 1 : e \in P \\ 0 : \text{otherwise} \end{cases}$$

Constraints: We have one constraint for each s, t-cut $\delta(U)$, forcing P to have an edge from $\delta(S)$.

$$\sum (x_e : e \in \delta(U)) \ge 1 \qquad (1)$$

for all s, t-cuts $\delta(U)$.

Objective: $\sum (c_e x_e : e \in E)$

Remark

$$\begin{array}{l} \min \; \sum (c_e x_e \; : \; e \in E) \\ \text{s.t.} \; \sum (x_e \; : \; e \in \delta(U)) \geq 1 \; (U \subseteq V, s \in U, t \not\in U) \\ \; x_e \geq 0, x_e \; \text{integer} \quad (e \in E) \end{array}$$

$$\min \sum_{e \in E} (c_e x_e : e \in E)$$
s.t.
$$\sum_{e \in V} (x_e : e \in \delta(U)) \ge 1 \ (U \subseteq V, s \in U, t \notin U)$$

$$x_e \ge 0, x_e \text{ integer } (e \in E)$$

$$\begin{array}{l} \min \; \sum (c_e x_e \; : \; e \in E) \\ \text{s.t.} \; \sum (x_e \; : \; e \in \delta(U)) \geq 1 \; (U \subseteq V, s \in U, t \not\in U) \\ \; x_e \geq 0, x_e \; \text{integer} \quad (e \in E) \end{array}$$

$$\min \sum_{e \in E} (c_e x_e : e \in E)$$
s.t.
$$\sum_{e \in V} (x_e : e \in \delta(U)) \ge 1 \ (U \subseteq V, s \in U, t \notin U)$$

$$x_e \ge 0, x_e \text{ integer } (e \in E)$$

Suppose: $c_e > 0$ for all $e \in E$

$$\min \sum_{e \in E} (c_e x_e : e \in E)$$
s.t.
$$\sum_{e \in V} (x_e : e \in \delta(U)) \ge 1 \ (U \subseteq V, s \in U, t \notin U)$$

$$x_e \ge 0, x_e \text{ integer } (e \in E)$$

 $\label{eq:suppose} \begin{array}{l} \mbox{Suppose:} \ c_e > 0 \mbox{ for all } e \in E \\ \mbox{Then: In an optimal solution, } x_e \leq 1 \mbox{ for all } e \in E. \mbox{ Why?} \end{array}$

$$\min \sum_{e \in E} (c_e x_e : e \in E)$$
s.t.
$$\sum_{e \in V} (x_e : e \in \delta(U)) \ge 1 \ (U \subseteq V, s \in U, t \notin U)$$

$$x_e \ge 0, x_e \text{ integer } (e \in E)$$

Suppose: $c_e > 0$ for all $e \in E$ Then: In an optimal solution, $x_e \leq 1$ for all $e \in E$. Why? Suppose $x_e > 1$.

$$\begin{array}{l} \min \; \sum (c_e x_e \; : \; e \in E) \\ \text{s.t.} \; \sum (x_e \; : \; e \in \delta(U)) \geq 1 \; (U \subseteq V, s \in U, t \not\in U) \\ x_e \geq 0, x_e \; \text{integer} \quad (e \in E) \end{array}$$

Suppose: $c_e > 0$ for all $e \in E$ Then: In an optimal solution, $x_e \leq 1$ for all $e \in E$. Why? Suppose $x_e > 1$. Then let $x_e = 1$. This is cheaper and maintains feasibility!

$$\begin{array}{l} \min \; \sum (c_e x_e \; : \; e \in E) \\ \text{s.t.} \; \sum (x_e \; : \; e \in \delta(U)) \geq 1 \; (U \subseteq V, s \in U, t \notin U) \\ x_e \geq 0, x_e \; \text{integer} \quad (e \in E) \end{array}$$

Suppose: $c_e > 0$ for all $e \in E$ Then: In an optimal solution, $x_e \leq 1$ for all $e \in E$. Why? Suppose $x_e > 1$. Then let $x_e = 1$. This is cheaper and maintains feasibility! For a binary solution x, define

$$S_x = \{ e \in E : x_e = 1 \}.$$

Note: If x is feasible for an IP, then S_x satisfies the remark, but S_x may contain more than just an s, t-path!

Remark

Note: If x is feasible for an IP, then S_x satisfies the remark, but S_x may contain more than just an s, t-path!

E.g., $x_e = 1$ for all blue edges in the figure and $x_e = 0$ otherwise.

Remark

Note: If x is feasible for an IP, then S_x satisfies the remark, but S_x may contain more than just an s, t-path!

E.g., $x_e = 1$ for all blue edges in the figure and $x_e = 0$ otherwise. Then,

$$S_x = \{sa, ab, at\}$$

Remark

Note: If x is feasible for an IP, then S_x satisfies the remark, but S_x may contain more than just an s, t-path!

E.g., $x_e = 1$ for all blue edges in the figure and $x_e = 0$ otherwise. Then,

 $S_x = \{sa, ab, at\}$

Note: x cannot be optimal for the IP!

Remark

Note: If x is feasible for an IP, then S_x satisfies the remark, but S_x may contain more than just an s, t-path!

E.g., $x_e = 1$ for all blue edges in the figure and $x_e = 0$ otherwise. Then,

 $S_x = \{sa, ab, at\}$

Note: x cannot be optimal for the IP!

Why?

Remark

$$\min \sum_{e \in E} \sum_{e \in E} (c_e x_e : e \in E)$$
s.t.
$$\sum_{e \in V} (x_e : e \in \delta(U)) \ge 1 \ (U \subseteq V, s \in U, t \notin U)$$

$$x_e \ge 0, x_e \text{ integer } (e \in E)$$

Remark

If x is an optimal solution for the above IP and $c_e>0$ for all $e\in E$, then S_x contains the edges of a shortest s,t-path.

• Given G = (V, E) and $U \subseteq V$, we define

• Given G = (V, E) and $U \subseteq V$, we define

 $\delta(U) = \{ uv \in E : u \in U, v \notin U \}.$

• $\delta(U)$ is an s, t-cut if $s \in U$ and $t \notin U$.

• Given G = (V, E) and $U \subseteq V$, we define

$$\delta(U) = \{ uv \in E : u \in U, v \notin U \}.$$

- $\delta(U)$ is an s, t-cut if $s \in U$ and $t \notin U$.
- If $S \subseteq E$ intersects every s, t-cut $\delta(U)$, then S contains an s, t-path.

• Given G = (V, E) and $U \subseteq V$, we define

$$\delta(U) = \{ uv \in E : u \in U, v \notin U \}.$$

- $\delta(U)$ is an s, t-cut if $s \in U$ and $t \notin U$.
- If $S \subseteq E$ intersects every s, t-cut $\delta(U)$, then S contains an s, t-path.
- Feasible solutions to the shortest path LP correspond to edge-sets that intersect every *s*, *t*-cut;

• Given G = (V, E) and $U \subseteq V$, we define

$$\delta(U) = \{ uv \in E : u \in U, v \notin U \}.$$

- $\delta(U)$ is an s, t-cut if $s \in U$ and $t \notin U$.
- If $S \subseteq E$ intersects every s, t-cut $\delta(U)$, then S contains an s, t-path.
- Feasible solutions to the shortest path LP correspond to edge-sets that intersect every s, t-cut; optimal solutions are minimal in this respect if $c_e > 0$ for all $e \in E$.