
CO 250: Introduction to Optimization
Module 1: Formulations (Nonlinear Models)
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Nonlinear Programs

A non-linear program (NLP) is of the form

min f(x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0

. . .

gm(x) ≤ 0,

where

• x ∈ Rn,

• f : Rn → R, and

• gi : Rn → R.

Note: Linear programs are NLPs!



Example 1: Finding Close Points in an LP



Finding Close Points in an LP

Problem: we are given an LP (P), and an infeasible
point x̄.

min cTx

s.t. x ∈ P

P = {x : Ax ≤ b}



Finding Close Points in an LP

Problem: we are given an LP (P), and an infeasible
point x̄.

Goal: find a point x ∈ P that is as close as
possible to x̄.

min cTx

s.t. x ∈ P

P = {x : Ax ≤ b}



Finding Close Points in an LP

Problem: we are given an LP (P), and an infeasible
point x̄.

Goal: find a point x ∈ P that is as close as
possible to x̄.

e.g.: find a point x ∈ P that minimizes the
Euclidean distance to x̄:

‖x− x̄‖2 =

√√√√ n∑
i=1

(xi − x̄i)2

min cTx

s.t. x ∈ P

P = {x : Ax ≤ b}



Finding Close Points in an LP

Problem: we are given an LP (P), and an infeasible
point x̄.

Goal: find a point x ∈ P that is as close as
possible to x̄.

e.g.: find a point x ∈ P that minimizes the
Euclidean distance to x̄:

‖x− x̄‖2 =

√√√√ n∑
i=1

(xi − x̄i)2

Remark: ‖p‖2 is called the L2-norm of p

min cTx

s.t. x ∈ P

P = {x : Ax ≤ b}



Finding Close Points in an LP
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NLPs and Binary IPs

Suppose we are given a
binary IP (i.e., an integer
program all of whose
variables are binary).

Recall: (binary) IPs are
generally hard to solve!

Now: can write any binary IP
as an NLP!

Ideas?

max cTx

s.t. Ax ≤ b
x ≥ 0

sin(π xj) = 0 (j ∈ [n]) (∗)

Correctness: For j ∈ [n], (?) is holds iff
xj = 0 or xj = 1.

Q: Can you change the NLP to express the
fact that xj is any non-negative integer
instead of binary?

Correctness: note that sin(π xj) = 0 only
if xj is an integer.
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Fermat’s Last Theorem

Conjecture [Fermat, 1637]
There are no integers x, y, z ≥ 1 and n ≥ 3 such
that

xn + yn = zn.

In the margins of a copy of a 1670 article of
Diophantus Arithmetica he wrote that he had a
proof that was a bit too large to fit.

Some 358 years later, Sir Andrew Wiles gave the
first accepted proof of the theorem. The proof is
over 150 pages long!
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min (xx4
1 + xx4

2 − x
x4
3 )

2

+ (sinπ x1)2 + (sinπ x2)2 + (sinπ x3)2 + (sinπ x4)2

s.t. xi ≥ 1 (i = 1 . . . 3)

x4 ≥ 3

Remark

Fermat’s Last Theorem is true iff the NLP has optimal value greater than
0.

Note: well known that there is an infinite sequence of feasible solutions
whose objective value converges to 0!

Proving Fermat’s Last Theorem amounts to showing that the value 0 can
not be attained!
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