Module 2: Linear programs (Possible outcomes)

$$\begin{array}{ll} \max & 2x_1 - 3x_2\\ \text{s.t.} & & \\ & x_1 + x_2 \leq 1\\ & x_1, x_2 \geq 0 \end{array}$$

$$\begin{array}{ll} \max & 2x_1 - 3x_2 \\ \text{s.t.} & & \\ & x_1 + x_2 \leq 1 \\ & x_1, x_2 \geq 0 \end{array}$$

 $x_1 = 1,$ Optimal $x_2 = 0$ Solution

Remark

Sometimes the answer is not so straightforward!!!

An assignment of values to each of the variables is a feasible solution if all the constraints are satisfied.

An assignment of values to each of the variables is a feasible solution if all the constraints are satisfied.

Definition

An optimization problem is feasible if it has at least one feasible solution. It is infeasible otherwise.

An assignment of values to each of the variables is a feasible solution if all the constraints are satisfied.

Definition

An optimization problem is feasible if it has at least one feasible solution. It is infeasible otherwise.

An assignment of values to each of the variables is a feasible solution if all the constraints are satisfied.

Definition

An optimization problem is feasible if it has at least one feasible solution. It is infeasible otherwise.

 $x_1 = 1$ $x_2 = 3$

An assignment of values to each of the variables is a feasible solution if all the constraints are satisfied.

Definition

An optimization problem is feasible if it has at least one feasible solution. It is infeasible otherwise.

Feasible solution

$$x_1 = 1$$

 $x_2 = 3$

Problem is feasible

An assignment of values to each of the variables is a feasible solution if all the constraints are satisfied.

Definition

An optimization problem is feasible if it has at least one feasible solution. It is infeasible otherwise.

NOT feasible solution But problem is feasible.

 $x_1 = 3$

 $x_2 = 0$

• For a maximization problem, an optimal solution is a feasible solution that maximizes the objective function.

- For a maximization problem, an optimal solution is a feasible solution that maximizes the objective function.
- For a minimization problem, an optimal solution is a feasible solution that minimizes the objective function.

- For a maximization problem, an optimal solution is a feasible solution that maximizes the objective function.
- For a minimization problem, an optimal solution is a feasible solution that minimizes the objective function.

max	x_1
s.t.	
	$x_1 \leq 1$
	$x_2 \ge 1$

$$x_1 = 1, x_2 = \alpha$$
 optimal for all $\alpha \ge 1$.

- For a maximization problem, an optimal solution is a feasible solution that maximizes the objective function.
- For a minimization problem, an optimal solution is a feasible solution that minimizes the objective function.

Remark

An optimization problem can have several optimal solutions.

Does the following linear program have an optimal solution?

$$\begin{array}{cccc} \max & x_1 \\ \text{s.t.} \\ & x_1 & \geq & 2 \\ & x_1 & \leq & 1 \end{array}$$

Does the following linear program have an optimal solution?

Infeasible problem, so no optimal solution

Does the following linear program have an optimal solution?

Infeasible problem, so no optimal solution

Question

Does every feasible optimization problem have an optimal solution?

Does the following linear program have an optimal solution?

Infeasible problem, so no optimal solution

Question

Does every feasible optimization problem have an optimal solution? NO

$$\begin{array}{ll} \max & x_1 \\ {\sf s.t.} & \\ & x_1 \geq 1 \end{array}$$

Does the following linear program have an optimal solution?

Infeasible problem, so no optimal solution

Question

Does every feasible optimization problem have an optimal solution? NO

$$\begin{array}{ccc} \max & x_1 \\ \text{s.t.} \\ & x_1 \geq 1 \end{array}$$

Feasible $(x_1 = 1)$, but still no optimal solution!!!

• A maximization problem is unbounded if for every value M there exists a feasible solution with objective value greater than M.

- A maximization problem is unbounded if for every value M there exists a feasible solution with objective value greater than M.
- A minimization problem is unbounded if for every value M there exists a feasible solution with objective value smaller than M.

- A maximization problem is unbounded if for every value M there exists a feasible solution with objective value greater than M.
- A minimization problem is unbounded if for every value M there exists a feasible solution with objective value smaller than M.

We have seen three possible outcomes for an optimization problem:

- A maximization problem is unbounded if for every value M there exists a feasible solution with objective value greater than M.
- A minimization problem is unbounded if for every value M there exists a feasible solution with objective value smaller than M.

We have seen three possible outcomes for an optimization problem:

• It has an optimal solution

- A maximization problem is unbounded if for every value M there exists a feasible solution with objective value greater than M.
- A minimization problem is unbounded if for every value M there exists a feasible solution with objective value smaller than M.

We have seen three possible outcomes for an optimization problem:

- It has an optimal solution
- It is infeasible

- A maximization problem is unbounded if for every value M there exists a feasible solution with objective value greater than M.
- A minimization problem is unbounded if for every value M there exists a feasible solution with objective value smaller than M.

We have seen three possible outcomes for an optimization problem:

- It has an optimal solution
- It is infeasible
- It is unbounded

- A maximization problem is unbounded if for every value M there exists a feasible solution with objective value greater than M.
- A minimization problem is unbounded if for every value M there exists a feasible solution with objective value smaller than M.

We have seen three possible outcomes for an optimization problem:

- It has an optimal solution
- It is infeasible
- It is unbounded

Question

Can anything else happen?

- A maximization problem is unbounded if for every value M there exists a feasible solution with objective value greater than M.
- A minimization problem is unbounded if for every value M there exists a feasible solution with objective value smaller than M.

We have seen three possible outcomes for an optimization problem:

- It has an optimal solution
- It is infeasible
- It is unbounded

Question

Can anything else happen? YES

 $\begin{array}{ccc} \max & x\\ \mathsf{s.t.} & \\ & x < 1 \end{array}$

• Feasible: set x = 0.

- Feasible: set x = 0.
- Not unbounded: 1 is an upper bound.

 $\begin{array}{ccc} \max & x\\ \mathsf{s.t.} & \\ & x < 1 \end{array}$

- Feasible: set x = 0.
- Not unbounded: 1 is an upper bound.
- But no optimal solution!

- Feasible: set x = 0.
- Not unbounded: 1 is an upper bound.
- But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution.

 $\begin{array}{c|c} \max & x\\ \mathsf{s.t.}\\ & x < 1 \end{array}$

- Feasible: set x = 0.
- Not unbounded: 1 is an upper bound.
- But no optimal solution!

Proof

Suppose for a contradiction \boldsymbol{x} is optimal solution. Let

$$x' := \frac{x+1}{2}.$$

 $\begin{array}{|c|c|c|} \max & x \\ \text{s.t.} \\ x < 1 \end{array}$

- Feasible: set x = 0.
- Not unbounded: 1 is an upper bound.
- But no optimal solution!

Proof

Suppose for a contradiction \boldsymbol{x} is optimal solution. Let

$$x' := \frac{x+1}{2}.$$

Then x' < 1 feasible.

 $\begin{array}{|c|c|c|} \max & x \\ \text{s.t.} \\ x < 1 \end{array}$

- Feasible: set x = 0.
- Not unbounded: 1 is an upper bound.
- But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution. Let

$$x' := \frac{x+1}{2}$$

Then x' < 1 feasible. Moreover, x' > x.

 $\begin{array}{c|c} \max & x\\ \mathsf{s.t.}\\ & x < 1 \end{array}$

- Feasible: set x = 0.
- Not unbounded: 1 is an upper bound.
- But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution. Let

$$x' := \frac{x+1}{2}$$

Then x' < 1 feasible. Moreover, x' > x.

Thus x not optimal, contradiction.

 $\begin{array}{c|c} \max & x\\ \text{s.t.}\\ & x < 1 \end{array}$

- Feasible: set x = 0.
- Not unbounded: 1 is an upper bound.
- But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution. Let

$$x' := \frac{x+1}{2}$$

Then x' < 1 feasible. Moreover, x' > x.

Thus x not optimal, contradiction.

Question

Any other example without strict inequalities?

 $\begin{array}{|c|c|c|c|} \max & x \\ \text{s.t.} \\ x < 1 \end{array}$

- Feasible: set x = 0.
- Not unbounded: 1 is an upper bound.
- But no optimal solution!

Proof

Suppose for a contradiction x is optimal solution. Let

$$x' := \frac{x+1}{2}$$

Then x' < 1 feasible. Moreover, x' > x.

Thus x not optimal, contradiction.

Question

Any other example without strict inequalities? YES

$$\begin{array}{c|cc}
\min & \frac{1}{x} \\
\text{s.t.} \\
& x \ge 1
\end{array}$$

$$\begin{array}{|c|c|c|}
\min & \frac{1}{x} \\
\text{s.t.} \\
& x \ge 1
\end{array}$$

• Feasible: set x = 1.

$$\begin{array}{|c|c|c|} \min & \frac{1}{x} \\ \text{s.t.} \\ & x \ge 1 \end{array}$$

- Feasible: set x = 1.
- Not unbounded: 0 is a lower bound.

- Feasible: set x = 1.
- Not unbounded: 0 is a lower bound.
- But no optimal solution!

 $\begin{array}{|c|c|} \min & \frac{1}{x} \\ \text{s.t.} \\ & x \ge 1 \end{array}$

- Feasible: set x = 1.
- Not unbounded: 0 is a lower bound.
- But no optimal solution!

Exercise

Check this optimization problem has no optimal solution.

Not a linear program Strict inequality

Not a linear program Objective function non-linear

Not a linear program Objective function non-linear

Remark

Linear programs are nicer than general optimization problems.

$\begin{array}{ll} \min & \frac{1}{x} \\ \text{s.t.} \\ & x \ge 1 \end{array}$

Not a linear program Objective function non-linear

Remark

Linear programs are nicer than general optimization problems.

Fundamental theorem of linear programming

For any linear program one of the following holds:

- It has an optimal solution
- It is infeasible
- It is unbounded

$\begin{array}{ll} \min & \frac{1}{x} \\ \text{s.t.} \\ & x \ge 1 \end{array}$

Not a linear program Objective function non-linear

Remark

Linear programs are nicer than general optimization problems.

Fundamental theorem of linear programming

For any linear program exactly one of the following holds:

- It has an optimal solution
- It is infeasible
- It is unbounded

$\begin{array}{ll} \min & \frac{1}{x} \\ \text{s.t.} \\ & x \ge 1 \end{array}$

Not a linear program Objective function non-linear

Remark

Linear programs are nicer than general optimization problems.

Fundamental theorem of linear programming

For any linear program exactly one of the following holds:

- It has an optimal solution
- It is infeasible
- It is unbounded

We will prove it later in the course.

LP has an optimal solution

Return an optimal solution $\bar{\boldsymbol{x}}$

LP has an optimal solution

Return an optimal solution $\bar{\boldsymbol{x}}$

LP is infeasible.

LP has an optimal solution

Return an optimal solution \bar{x}

LP is infeasible.

Say the LP is infeasible

LP has an optimal solution

Return an optimal solution \bar{x}

LP is infeasible.

Say the LP is infeasible

LP is unbounded.

LP has an optimal solution

Return an optimal solution \bar{x}

LP is infeasible.

Say the LP is infeasible

LP is unbounded.

Say the LP is unbounded

LP has an optimal solution

Return an optimal solution \bar{x}

LP is infeasible.

Say the LP is infeasible

LP is unbounded.

Say the LP is unbounded

Remark

Algorithms should justify their answers !!!

LP has an optimal solution

Return an optimal solution $\bar{x} + \text{proof}$ that \bar{x} is optimal.

LP is infeasible.

Return a proof the LP is infeasible.

LP is unbounded.

Return a proof the LP is unbounded.

Remark

Algorithms always need to justify their answers !!!

1. Optimization problems can be:

 Optimization problems can be: (A) infeasible,

- 1. Optimization problems can be:
 - (A) infeasible,
 - (B) unbounded, or

- 1. Optimization problems can be:
 - (A) infeasible,
 - (B) unbounded, or
 - (C) have an optimal solution.

- 1. Optimization problems can be:
 - (A) infeasible,
 - (B) unbounded, or
 - (C) have an optimal solution.
- 2. There are optimization where none of (A), (B), (C) hold,

- 1. Optimization problems can be:
 - (A) infeasible,
 - (B) unbounded, or
 - (C) have an optimal solution.
- 2. There are optimization where none of (A), (B), (C) hold,
- 3. For LPs exactly one of (A), (B), (C) holds,

- 1. Optimization problems can be:
 - (A) infeasible,
 - (B) unbounded, or
 - (C) have an optimal solution.
- 2. There are optimization where none of (A), (B), (C) hold,
- 3. For LPs exactly one of (A), (B), (C) holds,
- 4. By solving an LP we mean

- 1. Optimization problems can be:
 - (A) infeasible,
 - (B) unbounded, or
 - (C) have an optimal solution.
- 2. There are optimization where none of (A), (B), (C) hold,
- 3. For LPs exactly one of (A), (B), (C) holds,
- 4. By solving an LP we mean
 - indicating which of (A), (B), (C) holds,

- 1. Optimization problems can be:
 - (A) infeasible,
 - (B) unbounded, or
 - (C) have an optimal solution.
- 2. There are optimization where none of (A), (B), (C) hold,
- 3. For LPs exactly one of (A), (B), (C) holds,
- 4. By solving an LP we mean
 - indicating which of (A), (B), (C) holds,
 - if (C) holds give an optimal solution,

- 1. Optimization problems can be:
 - (A) infeasible,
 - (B) unbounded, or
 - (C) have an optimal solution.
- 2. There are optimization where none of (A), (B), (C) hold,
- 3. For LPs exactly one of (A), (B), (C) holds,
- 4. By solving an LP we mean
 - indicating which of (A), (B), (C) holds,
 - if (C) holds give an optimal solution,
 - give a proof the answer is correct.