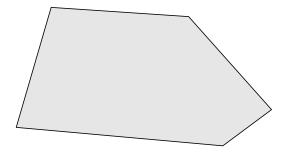
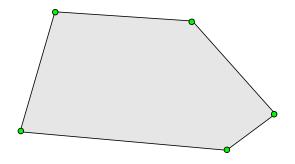


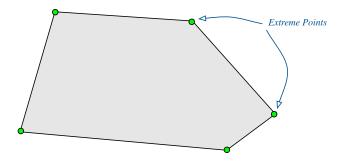
Consider the following convex set:



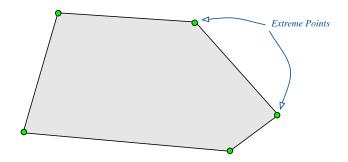
Consider the following convex set:



Consider the following convex set:



Consider the following convex set:



Question

How might we formally describe the "extreme points"?

Definition

Point $x \in \Re^n$ is properly contained in the line segment L if

Definition

Point $x \in \Re^n$ is properly contained in the line segment L if

• $x \in L$ and

Definition

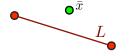
Point $x \in \Re^n$ is properly contained in the line segment L if

- $x \in L$ and
- ullet x is distinct from the endpoints of L.

Definition

Point $x \in \Re^n$ is properly contained in the line segment L if

- $x \in L$ and
- ullet x is distinct from the endpoints of L.



 \bar{x} is not contained in L.

Definition

Point $x \in \Re^n$ is properly contained in the line segment L if

- $x \in L$ and
- x is distinct from the endpoints of L.

 \bar{x} is contained in L, but NOT properly.

Definition

Point $x \in \Re^n$ is properly contained in the line segment L if

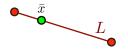
- $x \in L$ and
- x is distinct from the endpoints of L.

 \bar{x} is PROPERLY contained in L.

Definition

Point $x \in \Re^n$ is properly contained in the line segment L if

- $x \in L$ and
- x is distinct from the endpoints of L.



 \bar{x} is PROPERLY contained in L.

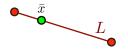
Definition

Let S be a convex set and $\bar{x} \in S$.

Definition

Point $x \in \Re^n$ is properly contained in the line segment L if

- $x \in L$ and
- x is distinct from the endpoints of L.



 \bar{x} is PROPERLY contained in L.

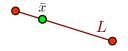
Definition

Let S be a convex set and $\bar{x} \in S$. Then \bar{x} is NOT an extreme point if

Definition

Point $x \in \Re^n$ is properly contained in the line segment L if

- $x \in L$ and
- x is distinct from the endpoints of L.

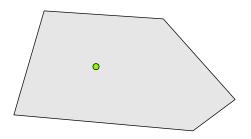


 \bar{x} is PROPERLY contained in L.

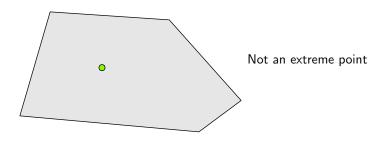
Definition

Definition

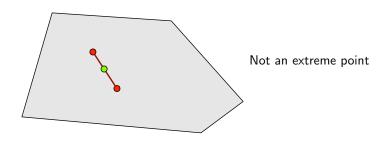
Definition



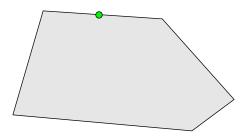
Definition



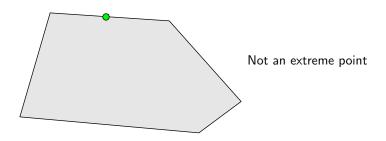
Definition



Definition



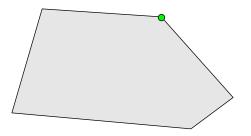
Definition



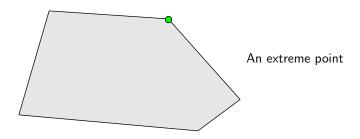
Definition



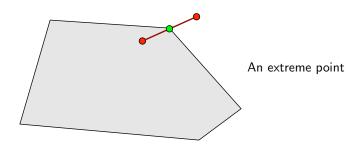
Definition

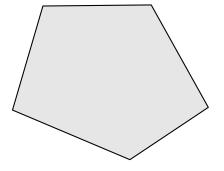


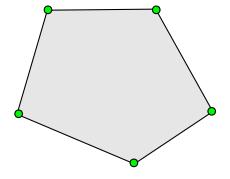
Definition

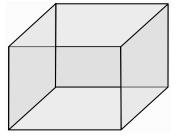


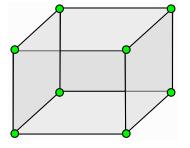
Definition

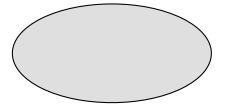




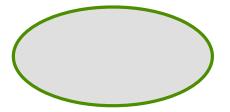






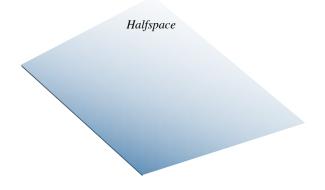


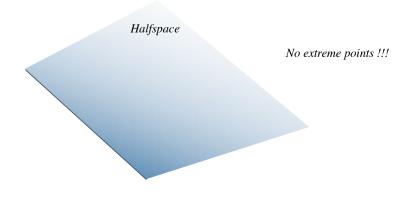
What are the extreme points in the following figure?



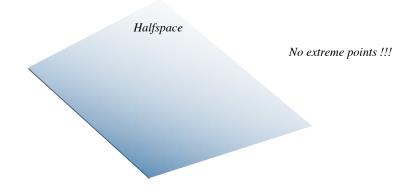
Remark

A convex set may have an infinite number of extreme points.





What are the extreme points in the following figure?



Remark

A convex set may have NO extreme points.

This Lecture

Goals:

Goals:

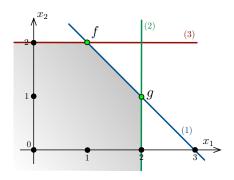
1. Characterize the extreme points in a polyhedron.

Goals:

- 1. Characterize the extreme points in a polyhedron.
- 2. Characterize an extreme point for LP in Standard Equality Form.

Goals:

- 1. Characterize the extreme points in a polyhedron.
- 2. Characterize an extreme point for LP in Standard Equality Form.
- 3. Gain a geometric understanding of the Simplex algorithm.



$$P = \left\{ x : \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \quad \begin{array}{c} (1) \\ (2) \\ (3) \end{array} \right\}$$

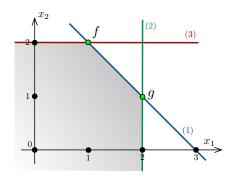
$$P = \left\{ x : \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \quad \begin{array}{c} (1) \\ (2) \\ (3) \end{array} \right\}$$

Question

What do the extreme points

$$f = (1,2)^\top \quad \text{and} \quad g = (2,1)^\top$$

have in common?



$$P = \left\{ x : \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \quad \begin{array}{c} (1) \\ (2) \\ (3) \end{array} \right\}$$

Question

What do the extreme points

$$f = (1,2)^\top \quad \text{and} \quad g = (2,1)^\top$$

have in common?

Each satisfy n=2 "independent" constraints with equality!

Let $P = \{x : Ax \leq b\}$ be a polyhedron and let $x \in P$.

Let $P = \{x : Ax \leq b\}$ be a polyhedron and let $x \in P$.

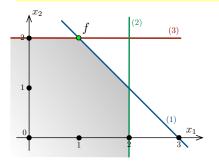
• A constraint is tight for x if it is satisfied with equality, and

Let $P = \{x : Ax \le b\}$ be a polyhedron and let $x \in P$.

- ullet A constraint is tight for x if it is satisfied with equality, and
- the set of all tight constraints is denoted $\bar{A}x \leq \bar{b}$.

Let $P = \{x : Ax \le b\}$ be a polyhedron and let $x \in P$.

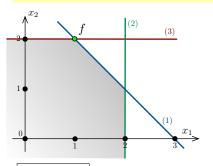
- A constraint is tight for x if it is satisfied with equality, and
- the set of all tight constraints is denoted $\bar{A}x \leq \bar{b}$.



$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \quad \begin{array}{c} (1) \\ (2) \\ 3 \end{array} \right\}$$

Let $P = \{x : Ax \leq b\}$ be a polyhedron and let $x \in P$.

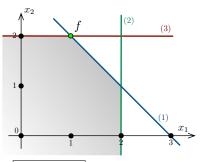
- A constraint is tight for x if it is satisfied with equality, and
- the set of all tight constraints is denoted $\bar{A}x \leq \bar{b}$.



$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}}_{(3)} \right\}$$

Let $P = \{x : Ax \leq b\}$ be a polyhedron and let $x \in P$.

- A constraint is tight for x if it is satisfied with equality, and
- the set of all tight constraints is denoted $\bar{A}x \leq \bar{b}$.



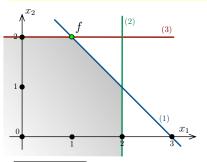
$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \quad (1)$$
(2)

Consider f:

Here (1) and (3) are tight.

Let $P = \{x : Ax \leq b\}$ be a polyhedron and let $x \in P$.

- A constraint is tight for x if it is satisfied with equality, and
- the set of all tight constraints is denoted $\bar{A}x \leq \bar{b}$.

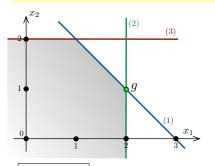


$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} (1) \\ (2) \\ (3) \end{pmatrix}}_{b} \right\}$$

Here (1) and (3) are tight.
$$\underbrace{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}}_{\overline{x}} x \leq \underbrace{\begin{pmatrix} 3 \\ 2 \end{pmatrix}}_{\overline{x}}.$$

Let $P = \{x : Ax \leq b\}$ be a polyhedron and let $x \in P$.

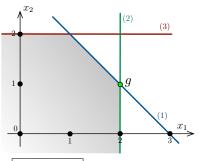
- A constraint is tight for x if it is satisfied with equality, and
- the set of all tight constraints is denoted $\bar{A}x \leq \bar{b}$.



$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}}_{b} \right\}$$

Let $P = \{x : Ax \leq b\}$ be a polyhedron and let $x \in P$.

- A constraint is tight for x if it is satisfied with equality, and
- the set of all tight constraints is denoted $\bar{A}x \leq \bar{b}$.



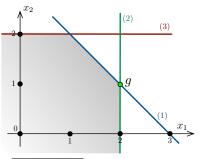
$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} 1) \\ (2) \\ (3) \end{pmatrix}}_{b} \right\}$$

 ${\sf Consider}\ g:$

Here (1) and (2) are tight.

Let $P = \{x : Ax \leq b\}$ be a polyhedron and let $x \in P$.

- A constraint is tight for x if it is satisfied with equality, and
- the set of all tight constraints is denoted $\bar{A}x \leq \bar{b}$.



$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \quad \stackrel{\text{(1)}}{\text{(2)}}_{b} \right\}$$

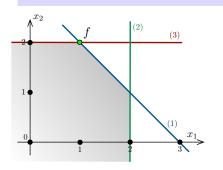
Here (1) and (2) are tight.
$$\underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}}_{\overline{t}} x \leq \underbrace{\begin{pmatrix} 3 \\ 2 \end{pmatrix}}_{\overline{t}}.$$

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

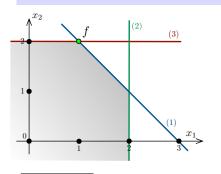
- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.



$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}}_{b} \right\}$$

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

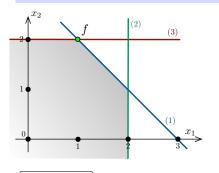
- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.



$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \quad {1 \choose 2}_{b} \right\}$$

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

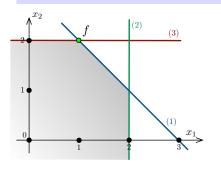


$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}}_{b} \right\}$$

$$\bar{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

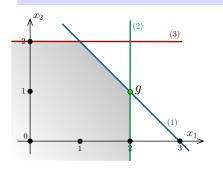


$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \quad \stackrel{\text{(1)}}{\underset{(3)}{(2)}} \right\}$$

$$ar{A}=egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}$$
 so, since $rank(ar{A})=2$, f is an extreme point.

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

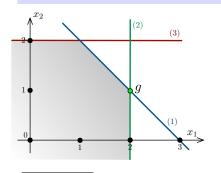
- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.



$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \quad {1 \choose 2}_{b} \right\}$$

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

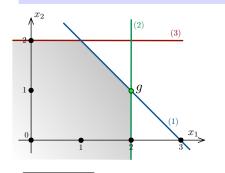
- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.



$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \quad {1 \choose 2}_{b} \right\}$$

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

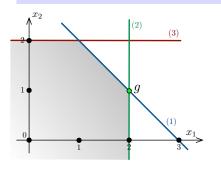


$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}}_{b} \right\}$$

$$\bar{A} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

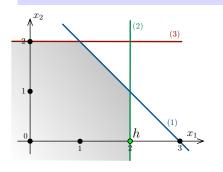


$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \quad \stackrel{\text{(1)}}{\underset{(3)}{(2)}} \right\}$$

$$ar{A}=egin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
 so, since $rank(ar{A})=2$, g is an extreme point.

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

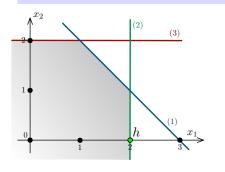
- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.



$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}}_{b} \right\}$$

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

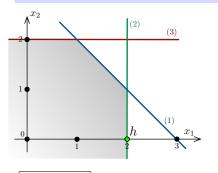
- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.



$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \quad {1 \choose 2}_{b} \right\}$$

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

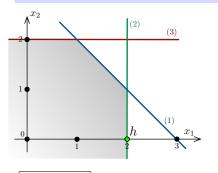


$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}}_{b} \right\}$$

$$\bar{A} = \begin{pmatrix} 1 & 0 \end{pmatrix}$$

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.



$$P = \left\{ x : \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} 1) \\ (2) \\ (3) \end{pmatrix}}_{b} \right\}$$

Consider h:

 $ar{A} = \begin{pmatrix} 1 & 0 \end{pmatrix}$ so, since $rank(ar{A}) < 2$, h is NOT an extreme point.

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Is the following true?

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Is the following true?

Let
$$P = \{x \in \Re^n : Ax \leq b\}$$
 be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point. 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Is the following true? NO!

Let
$$P = \{x \in \Re^n : Ax \leq b\}$$
 be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Is the following true? NO!

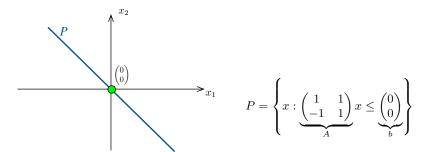
Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Is the following true? NO!

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

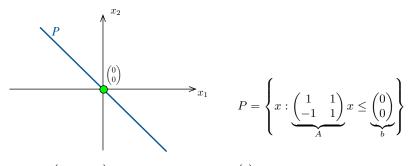
- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.



Is the following true? NO!

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.



 $\bar{A} = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ has n=2 rows, but $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is NOT extreme.

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Let's prove part (1).

Let $a,b,c\in\Re$, and

Let $a, b, c \in \Re$, and suppose

$$a = \frac{1}{2}b + \frac{1}{2}c \qquad \text{and} \qquad b \le a, \ c \le a.$$

Let $a, b, c \in \Re$, and suppose

 $a = \frac{1}{2}b + \frac{1}{2}c \qquad \text{ and } \qquad b \leq a, \ c \leq a.$

Then
$$a = b = c$$
.

Let $a, b, c \in \Re$, and suppose

$$a = \frac{1}{2}b + \frac{1}{2}c \qquad \text{and} \qquad b \le a, \ c \le a.$$

Then
$$a = b = c$$
.

Proof
$$a = \frac{1}{2} b + \frac{1}{2} c$$

Let $a, b, c \in \Re$, and suppose

 $a = \frac{1}{2}b + \frac{1}{2}c \qquad \text{and} \qquad b \le a, \ c \le a.$

Then a = b = c.

Proof
$$a = \frac{1}{2} \underbrace{b}_{\leq a} + \frac{1}{2} \underbrace{c}_{\leq a}$$

Let $a, b, c \in \Re$, and suppose

 $a = \frac{1}{2}b + \frac{1}{2}c \qquad \text{and} \qquad b \leq a, \ c \leq a.$

Then a = b = c.

$$a = \frac{1}{2} \underbrace{b}_{\leq a} + \frac{1}{2} \underbrace{c}_{\leq a} \leq \frac{1}{2}a + \frac{1}{2}a = a.$$

Let $a, b, c \in \Re$, and suppose

 $a = \frac{1}{2}b + \frac{1}{2}c \qquad \text{and} \qquad b \le a, \ c \le a.$

Then a = b = c.

Proof

$$a = \frac{1}{2} \underbrace{b}_{\leq a} + \frac{1}{2} \underbrace{c}_{\leq a} \leq \frac{1}{2}a + \frac{1}{2}a = a.$$

Thus, equality holds throughout

Let $a, b, c \in \Re$, and suppose

 $a = \frac{1}{2}b + \frac{1}{2}c$ and $b \le a, c \le a$.

Then a = b = c.

Proof

$$a = \frac{1}{2} \underbrace{b}_{\leq a} + \frac{1}{2} \underbrace{c}_{\leq a} \leq \frac{1}{2}a + \frac{1}{2}a = a.$$

Thus, equality holds throughout $\Rightarrow b = a$ and c = a.

Let $a,b,c\in\Re$,

Let $a,b,c\in\Re$, and let λ where $0<\lambda<1$.

Let $a, b, c \in \Re$, and let λ where $0 < \lambda < 1$. Suppose

$$a = \lambda b + (1 - \lambda)c$$
 and $b \le a, c \le a$.

Let $a, b, c \in \Re$, and let λ where $0 < \lambda < 1$. Suppose

$$a = \lambda b + (1 - \lambda)c$$
 and $b \le a, c \le a$.

Then a = b = c.

Let $a, b, c \in \Re$, and let λ where $0 < \lambda < 1$. Suppose

$$a = \lambda b + (1 - \lambda)c$$
 and $b \le a, c \le a$.

Then a = b = c.

Exercise

Prove the previous remark.

Let $a,b,c\in\Re^n$

Let $a,b,c\in\Re^{n}$, and let λ where $0<\lambda<1.$ Suppose

Let $a,b,c\in\Re^n$, and let λ where $0<\lambda<1$. Suppose

$$a = \lambda b + (1 - \lambda)c$$
 and $b \le a, c \le a.$

Let $a,b,c\in\Re^{\pmb{n}}$, and let λ where $0<\lambda<1.$ Suppose

$$a = \lambda b + (1 - \lambda)c$$
 and $b \le a, c \le a$.

Then a = b = c.

Let $a,b,c\in \Re^{\pmb{n}}$, and let λ where $0<\lambda<1.$ Suppose

$$a = \lambda b + (1 - \lambda)c$$
 and $b \le a, c \le a$.

Then a = b = c.

Exercise

Prove the previous remark.

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.

Proof

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.

Proof

Suppose \bar{x} is not an extreme point.

 \bar{x} is properly contained in a line segment with endpoints $x^{(1)}, x^{(2)} \in P$.

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

 \bar{x} is properly contained in a line segment with endpoints $x^{(1)}, x^{(2)} \in P$.

1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.

Proof

 $\bar{x} \neq x^{(1)}, x^{(2)} \in P$

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

 \bar{x} is properly contained in a line segment with endpoints $x^{(1)}, x^{(2)} \in P$.

1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.

 $\bar{x} \neq x^{(1)}, x^{(2)} \in P$ and for some $\lambda, 0 < \lambda < 1$,

Proof

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

 \bar{x} is properly contained in a line segment with endpoints $x^{(1)}, x^{(2)} \in P$. $\bar{x} \neq x^{(1)}, x^{(2)} \in P$ and for some λ , $0 < \lambda < 1$, $\bar{x} = \lambda x^{(1)} + (1 - \lambda)x^{(2)}$.

1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.

Proof

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

 $\bar{x} \neq x^{(1)}, x^{(2)} \in P$ and for some $\lambda, 0 < \lambda < 1, \bar{x} = \lambda x^{(1)} + (1 - \lambda)x^{(2)}$.

1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.

Proof

Suppose \bar{x} is not an extreme point.

Suppose
$$x$$
 is not an extreme point. \bar{x} is properly contained in a line segment with endpoints $x^{(1)}, x^{(2)} \in P$.

 $\bar{b} = \bar{A}\bar{x}$

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

 $\bar{x} \neq x^{(1)}, x^{(2)} \in P$ and for some $\lambda, 0 < \lambda < 1, \bar{x} = \lambda x^{(1)} + (1 - \lambda)x^{(2)}$.

1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.

 $\bar{b} = \bar{A}\bar{x} = \bar{A}\left(\lambda x^{(1)} + (1 - \lambda)x^{(2)}\right)$

Proof

$$\bar{x}$$
 is properly contained in a line segment with endpoints $x^{(1)}, x^{(2)} \in P$.

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

 $\bar{x} \neq x^{(1)}, x^{(2)} \in P$ and for some $\lambda, 0 < \lambda < 1, \bar{x} = \lambda x^{(1)} + (1 - \lambda)x^{(2)}$.

 $\bar{b} = \bar{A}\bar{x} = \bar{A}\left(\lambda x^{(1)} + (1-\lambda)x^{(2)}\right) = \lambda \bar{A}x^{(1)} + (1-\lambda)\bar{A}x^{(2)}.$

1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.

Proof

$$\bar{x}$$
 is properly contained in a line segment with endpoints $x^{(1)}, x^{(2)} \in P$.

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

 $\bar{x} \neq x^{(1)}, x^{(2)} \in P$ and for some $\lambda, 0 < \lambda < 1, \bar{x} = \lambda x^{(1)} + (1 - \lambda)x^{(2)}$.

 $\bar{b} = \bar{A}\bar{x} = \bar{A}\left(\lambda x^{(1)} + (1-\lambda)x^{(2)}\right) = \lambda \bar{A}x^{(1)} + (1-\lambda)\bar{A}x^{(2)}.$

1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.

Proof

Suppose \bar{x} is not an extreme point.

$$\bar{x}$$
 is properly contained in a line segment with endpoints $x^{(1)}, x^{(2)} \in P$.

 $\bar{A}x^{(1)} < \bar{b} \text{ and } \bar{A}x^{(2)} < \bar{b}$

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

 $\bar{x} \neq x^{(1)}, x^{(2)} \in P$ and for some $\lambda, 0 < \lambda < 1, \bar{x} = \lambda x^{(1)} + (1 - \lambda)x^{(2)}$.

1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.

Proof

Suppose \bar{x} is not an extreme point.

$$ar{x}$$
 is properly contained in a line se

 \bar{x} is properly contained in a line segment with endpoints $x^{(1)}, x^{(2)} \in P$.

$$\bar{b} = \bar{A}\bar{x} = \bar{A}\left(\lambda x^{(1)} + (1-\lambda)x^{(2)}\right) = \lambda \bar{A}x^{(1)} + (1-\lambda)\bar{A}x^{(2)}.$$

$$ar{A}x^{(1)} \leq ar{b}$$
 and $ar{A}x^{(2)} \leq ar{b}$. Previous remark implies that $ar{b} = ar{A}x^{(1)} = ar{A}x^{(2)}$.

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

 $\bar{x} \neq x^{(1)}, x^{(2)} \in P$ and for some $\lambda, 0 < \lambda < 1, \bar{x} = \lambda x^{(1)} + (1 - \lambda)x^{(2)}$.

1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.

Proof

Suppose \bar{x} is not an extreme point.

$$ar{x}$$
 is properly contained in a line se

 \bar{x} is properly contained in a line segment with endpoints $x^{(1)}, x^{(2)} \in P$.

 $\bar{b} = \bar{A}\bar{x} = \bar{A}\left(\lambda x^{(1)} + (1-\lambda)x^{(2)}\right) = \lambda \bar{A}x^{(1)} + (1-\lambda)\bar{A}x^{(2)}.$

 $\bar{A}x^{(1)} < \bar{b}$ and $\bar{A}x^{(2)} < \bar{b}$.

Previous remark implies that $\bar{b} = \bar{A}x^{(1)} = \bar{A}x^{(2)}$.

However, since $rank(\bar{A}) = n$, $x^{(1)} = x^{(2)}$.

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.

Proof

Suppose \bar{x} is not an extreme point.

 \bar{x} is properly contained in a line segment with endpoints $x^{(1)}, x^{(2)} \in P$.

$$ar{x}$$
 is properly contained in a line segment with endpoints $x^{(1)}, x^{(2)} \in P$. $ar{x} \neq x^{(1)}, x^{(2)} \in P$ and for some λ , $0 < \lambda < 1$, $ar{x} = \lambda x^{(1)} + (1 - \lambda)x^{(2)}$.

$$\bar{b} = \bar{A}\bar{x} = \bar{A}\left(\lambda x^{(1)} + (1-\lambda)x^{(2)}\right) = \lambda \bar{A}x^{(1)} + (1-\lambda)\bar{A}x^{(2)}.$$

$$\bar{A}x^{(1)} \leq \bar{b}$$
 and $\bar{A}x^{(2)} \leq \bar{b}$.

Previous remark implies that $\bar{b}=\bar{A}x^{(1)}=\bar{A}x^{(2)}$.

However, since $rank(\bar{A})=n, \ x^{(1)}=x^{(2)}.$ This is a contradiction.

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Let $P=\{x\in\Re^n:Ax\leq b\}$ be a polyhedron and let $\bar x\in P.$

2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Proof

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = \mathbf{0}$.

Pick a small $\epsilon > 0$.

Let $P=\{x\in\Re^n:Ax\leq b\}$ be a polyhedron and let $\bar x\in P.$

2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Proof

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = \mathbf{0}$.

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Proof

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

Pick a small $\epsilon > 0$.

Pick a small
$$\epsilon > 0$$
$$x^{(1)} = \bar{x} + \epsilon d$$

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Proof

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

Pick a small
$$\epsilon > 0$$
.

 $x^{(1)} = \bar{x} + \epsilon d$ $x^{(2)} = \bar{x} - \epsilon d$

Let $P=\{x\in\Re^n:Ax\leq b\}$ be a polyhedron and let $\bar x\in P.$

2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Proof

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = \mathbf{0}$.

Pick a small $\epsilon > 0$.

$$x^{(1)} = \bar{x} + \epsilon d$$

 $x^{(1)} = x + \epsilon a$

$$x^{(2)} = \bar{x} - \epsilon d$$



Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Proof

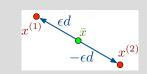
Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

Pick a small $\epsilon > 0$.

Pick a small
$$\epsilon > 0$$

 $x^{(1)} = \bar{x} + \epsilon d$ $x^{(2)} = \bar{x} - \epsilon d$

It suffices to prove the following:



Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Proof

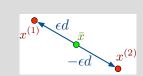
Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

Pick a small $\epsilon > 0$.

$$x^{(1)} = \bar{x} + \epsilon d$$

$$x^{(2)} = \bar{x} - \epsilon d$$

It suffices to prove the following:



Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Proof

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = \mathbf{0}$.

Pick a small $\epsilon > 0$.

$$x^{(1)} = \bar{x} + \epsilon d$$

$$x^{(2)} = \bar{x} - \epsilon d$$

It suffices to prove the following:

(b)
$$x^{(1)}, x^{(2)} \in P$$
.

Why?

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

Pick a small $\epsilon > 0$. Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$.

Why?

 $\frac{1}{2}x^{(1)} + \frac{1}{2}x^{(2)}$

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

nce
$$rank(A) < n$$
, there exists a non-zero vector d such that $Ad = \mathbf{0}$.

Pick a small
$$\epsilon>0$$
. Let $x^{(1)}=\bar{x}+\epsilon d$ and $x^{(2)}=\bar{x}-\epsilon d$.

ick a small
$$\epsilon>0$$
. Let $x^{(1)}=\bar x+\epsilon d$ and $x^{(2)}=\bar x-\epsilon d$.

ck a small
$$\epsilon > 0$$
. Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$.

Why?

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

ince
$$rank(A) < n$$
, there exists a non-zero vector a such that $Aa = \mathbf{0}$.

Pick a small
$$\epsilon>0$$
. Let $x^{(1)}=\bar{x}+\epsilon d$ and $x^{(2)}=\bar{x}-\epsilon d$.

(a) \bar{x} is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.

 $\frac{1}{2}x^{(1)} + \frac{1}{2}x^{(2)} = \frac{1}{2}(\bar{x} + \epsilon d) + \frac{1}{2}(\bar{x} - \epsilon d)$

ck a small
$$\epsilon>0$$
. Let $x^{(1)}=\bar{x}+\epsilon d$ and $x^{(2)}=\bar{x}-\epsilon d$.

ck a small
$$\epsilon>0$$
. Let $x^{(1)}=\bar x+\epsilon d$ and $x^{(2)}=\bar x-\epsilon d$.

ce
$$rank(A) < n$$
, there exists a non-zero vector d such that $Ad = 0$

Why?

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

ick a small
$$\epsilon > 0$$
 Let $r^{(1)} = \bar{r} + \epsilon d$ and $r^{(2)} = \bar{r} - \epsilon d$

Pick a small
$$\epsilon>0$$
. Let $x^{(1)}=\bar{x}+\epsilon d$ and $x^{(2)}=\bar{x}-\epsilon d$.

(a) \bar{x} is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.

 $\frac{1}{2}x^{(1)} + \frac{1}{2}x^{(2)} = \frac{1}{2}(\bar{x} + \epsilon d) + \frac{1}{2}(\bar{x} - \epsilon d) = \bar{x}.$

k a small
$$\epsilon>0$$
. Let $x^{(1)}=\bar{x}+\epsilon d$ and $x^{(2)}=\bar{x}-\epsilon d$.

ck a small
$$\epsilon>0$$
. Let $x^{(1)}=\bar{x}+\epsilon d$ and $x^{(2)}=\bar{x}-\epsilon d$.

$$x_0 \in \mathcal{T}_0$$
 and $x_0 \in \mathcal{T}_0$ let $x_0 = \bar{x} + \epsilon d$ and $x_0 = \bar{x} - \epsilon d$

Why?

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

nce
$$rank(A) < n$$
, there exists a non-zero vector d such that $Ad = \mathbf{0}$.

Pick a small
$$\epsilon>0$$
. Let $x^{(1)}=\bar{x}+\epsilon d$ and $x^{(2)}=\bar{x}-\epsilon d$.

(a) \bar{x} is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.

 $\frac{1}{2}x^{(1)} + \frac{1}{2}x^{(2)} = \frac{1}{2}(\bar{x} + \epsilon d) + \frac{1}{2}(\bar{x} - \epsilon d) = \bar{x}.$

Pick a small
$$\epsilon>0$$
. Let $x^{(1)}=\bar{x}+\epsilon d$ and $x^{(2)}=\bar{x}-\epsilon d$.

The a small
$$\epsilon > 0$$
 Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

Pick a small $\epsilon > 0$. Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$.

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

Pick a small
$$\epsilon>0$$
. Let $x^{(1)}=\bar{x}+\epsilon d$ and $x^{(2)}=\bar{x}-\epsilon d$.

(a) \bar{x} is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.

(b) $x^{(1)}, x^{(2)} \in P$. (It is sufficient to show this for $x^{(1)}$ only.)

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = \mathbf{0}$.

Since rank(A) < n, there exists a non-zero vector a such that Aa = 0.

Pick a small
$$\epsilon > 0$$
. Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$.

Consider tight constraints $\bar{A}x \leq \bar{b}$.

(b)
$$x^{(1)}, x^{(2)} \in P$$
. (It is sufficient to show this for $x^{(1)}$ only.)

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

Pick a small $\epsilon > 0$. Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$.

(a) \bar{x} is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.

(b) $x^{(1)}, x^{(2)} \in P$. (It is sufficient to show this for $x^{(1)}$ only.)

Consider tight constraints $\bar{A}x \leq \bar{b}$.

 $\bar{A}x^{(1)}$

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

Since
$$rank(A) < n$$
, there exists a non-zero vector a such that $Aa = \mathbf{0}$.
Pick a small $\epsilon > 0$. Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$.

(a)
$$\bar{x}$$
 is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.

(b)
$$x^{(1)}, x^{(2)} \in P$$
. (It is sufficient to show this for $x^{(1)}$ only.)

Consider tight constraints
$$\bar{A}x < \bar{b}$$

Consider tight constraints
$$\bar{A}x \leq \bar{b}$$
.

 $\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d)$

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = \mathbf{0}$.

Pick a small
$$\epsilon>0$$
. Let $x^{(1)}=\bar{x}+\epsilon d$ and $x^{(2)}=\bar{x}-\epsilon d$.

(a)
$$\bar{x}$$
 is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.

(b)
$$x^{(1)}, x^{(2)} \in P$$
. (It is sufficient to show this for $x^{(1)}$ only.)

Consider tight constraints
$$\bar{A}x \leq \bar{b}$$
.

$$\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d) = \underbrace{\bar{A}\bar{x}}_{\bar{b}} + \epsilon \underbrace{\bar{A}d}_{\mathbf{0}}$$

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

Pick a small
$$\epsilon > 0$$
. Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$.

(a)
$$\bar{x}$$
 is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.

(b)
$$x^{(1)}, x^{(2)} \in P$$
. (It is sufficient to show this for $x^{(1)}$ only.)

Consider tight constraints
$$\bar{A}x \leq \bar{b}$$
.

$$\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d) = \underbrace{\bar{A}\bar{x}}_{\bar{b}} + \epsilon \underbrace{\bar{A}d}_{\mathbf{0}} =$$

$$\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d) = \underbrace{\bar{A}\bar{x}}_{\bar{b}} + \epsilon \underbrace{\bar{A}d}_{\mathbf{0}} = \bar{b}.$$

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

Since
$$rank(A) < n$$
, there exists a non-zero vector a such that $Aa = \mathbf{0}$.
Pick a small $\epsilon > 0$. Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$.

(a)
$$\bar{x}$$
 is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.

(b)
$$w(1) = w(2) \in D$$
 (it is sufficient to show this for $w(1)$ only)

(b)
$$x^{(1)}, x^{(2)} \in P$$
. (It is sufficient to show this for $x^{(1)}$ only.)

 $\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d) = \underbrace{\bar{A}\bar{x}}_{\bar{z}} + \epsilon \underbrace{\bar{A}d}_{0} = \bar{b}.$

Consider tight constraints
$$\bar{A}x \leq \bar{b}$$
.

Consider tight constraints
$$\bar{A}x \leq \bar{b}$$
.

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

Since
$$rank(A) < n$$
, there exists a non-zero vector a such that $Aa = \mathbf{0}$.
Pick a small $\epsilon > 0$. Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$.

(a)
$$\bar{x}$$
 is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.

(b)
$$x^{(1)}, x^{(2)} \in P$$
. (It is sufficient to show this for $x^{(1)}$ only.)

Consider tight constraints
$$\bar{A}x \leq \bar{b}$$
.

Consider non-tight constraint $a^{\top}x \leq \beta$.

$$\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d) = \bar{A}\bar{x} + \epsilon \ \bar{A}d = \bar{b}.$$

$$\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d) = \underbrace{\bar{A}\bar{x}}_{\bar{b}} + \epsilon \underbrace{\bar{A}d}_{\mathbf{0}} = \bar{b}.$$

$$\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d) = \underbrace{\bar{A}\bar{x}}_{\bar{b}} + \epsilon \underbrace{\bar{A}d}_{\mathbf{0}} = \bar{b}.$$

$$\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d) = \underbrace{\bar{A}\bar{x}}_{\bar{b}} + \epsilon \underbrace{\bar{A}d}_{\mathbf{0}} = \bar{b}.$$

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

Pick a small
$$\epsilon > 0$$
. Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$.

(a)
$$\bar{x}$$
 is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.

(b)
$$x^{(1)}, x^{(2)} \in P$$
. (It is sufficient to show this for $x^{(1)}$ only.)

Consider tight constraints
$$\bar{A}x \leq \bar{b}$$
.

Consider tight constraints
$$\bar{A}x \leq \bar{b}$$
.

$$\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d) = \underbrace{\bar{A}\bar{x}}_{} + \epsilon \underbrace{\bar{A}d}_{} = \bar{b}.$$

$$\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d) = \underbrace{\bar{A}\bar{x}}_{\bar{b}} + \epsilon \underbrace{\bar{A}d}_{\mathbf{0}} = \bar{b}.$$

Consider non-tight constraint
$$a^{\top}x \leq \beta$$
.

$$a^{\mathsf{T}}x^{(1)}$$

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

Pick a small
$$\epsilon > 0$$
. Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$.

(a) \bar{x} is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.

(b)
$$x^{(1)}, x^{(2)} \in P$$
. (It is sufficient to show this for $x^{(1)}$ only.)

Consider tight constraints
$$\bar{A}x \leq \bar{b}$$
.

$$\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d) = \underbrace{\bar{A}\bar{x}}_{\bar{t}} + \epsilon \underbrace{\bar{A}d}_{0} = \bar{b}.$$

Consider non-tight constraint $a^{\top}x \leq \beta$.

$$a^{\top} x^{(1)} = a^{\top} (\bar{x} + \epsilon d)$$

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

Pick a small
$$\epsilon > 0$$
. Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$.

(b)
$$x^{(1)}, x^{(2)} \in P$$
. (It is sufficient to show this for $x^{(1)}$ only.)

Consider tight constraints
$$\bar{A}x \leq \bar{b}$$
.

$$\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d) = \bar{A}\bar{x} + \epsilon \bar{A}d = \bar{b}.$$

$$\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d) = \underbrace{\bar{A}\bar{x}}_{\bar{b}} + \epsilon \underbrace{\bar{A}d}_{\mathbf{0}} = \bar{b}.$$

Consider non-tight constraint
$$a^{\top}x \leq \beta$$
.
$$a^{\top}x^{(1)} = a^{\top}(\bar{x} + \epsilon d) = \underbrace{a^{\top}\bar{x}}_{22} + \epsilon \underbrace{a^{\top}d}_{22}$$

$$a^{\top}x^{(1)} = a^{\top}(\bar{x} + \epsilon d) = \underbrace{a^{\top}\bar{x}}_{<\beta} + \epsilon \underbrace{a^{\top}d}_{??}$$

Since $rank(\bar{A}) < n$, there exists a non-zero vector d such that $\bar{A}d = 0$.

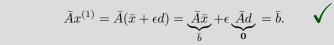
Pick a small
$$\epsilon > 0$$
. Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$.

(a)
$$\bar{x}$$
 is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.

(b)
$$x^{(1)}, x^{(2)} \in P$$
. (It is sufficient to show this for $x^{(1)}$ only.)

Consider tight constraints
$$\bar{A}x \leq \bar{b}$$
.

$$\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d) = \underbrace{\bar{A}\bar{x}}_{\bullet} + \epsilon \underbrace{\bar{A}d}_{\bullet} = \bar{b}.$$



$$Ax^{(+)} = A(x + \epsilon a) = \underbrace{Ax}_{\overline{b}} + \epsilon \underbrace{Aa}_{\overline{0}} = b.$$
Consider non-tight constraint $a^{\top}x \leq \beta$.

Consider non-tight constraint
$$a^{\top}x \leq \beta$$
.
$$a^{\top}x^{(1)} = a^{\top}(\bar{x} + \epsilon d) = \underbrace{a^{\top}\bar{x}}_{<\beta} + \epsilon \underbrace{a^{\top}d}_{??} < \beta$$

for a small enough ϵ .

$$P = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\}$$

$$P = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\} \qquad \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \text{ is a basic solution}$$

$$P = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\} \qquad \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \text{ is a basic solution}$$

Question

Is $(2,4,0)^{\top}$ an extreme point?

$$P = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\} \qquad \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \text{ is a basic solution}$$

Question

Is $(2,4,0)^{\top}$ an extreme point?

Let's use our theorem to find an answer.

$$P = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\} \qquad \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \text{ is a basic solution}$$

Question

Is $(2,4,0)^{\top}$ an extreme point?

Let's use our theorem to find an answer.

Theorem

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

$$P = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\} \qquad \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \text{ is a basic solution}$$

Question

Is $(2,4,0)^{\top}$ an extreme point?

Let's use our theorem to find an answer.

Theorem

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

$$P = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\} \qquad \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \text{ is a basic solution}$$

Question

Is $(2,4,0)^{\top}$ an extreme point?

$$P = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\} \qquad \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \text{ is a basic solution}$$

Question

Is $(2,4,0)^{\top}$ an extreme point?

$$P = \{x : Ax < b\}$$
, where

$$P = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\} \qquad \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \text{ is a basic solution}$$

Question

Is $(2,4,0)^{\top}$ an extreme point?

$$P = \{x : Ax \leq b\}$$
, where

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ \hline & & & \\ & & & \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 2 \\ 4 \\ \hline & \\ & \\ \end{pmatrix}$$

$$P = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\} \qquad \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \text{ is a basic solution}$$

Question

Is $(2,4,0)^{\top}$ an extreme point?

$$P = \{x : Ax \leq b\}$$
, where

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ \hline -1 & 0 & 1 \\ 0 & -1 & -3 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 2 \\ 4 \\ \hline -2 \\ \hline -4 \end{pmatrix}$$

Consider

$$P = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\} \qquad \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \text{ is a basic solution}$$

Question

Is $(2,4,0)^{\top}$ an extreme point?

We need to rewrite the constraints in P so they are all in the form " \leq ".

$$P = \{x : Ax \leq b\}$$
, where

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ \hline -1 & 0 & 1 \\ \hline 0 & -1 & -3 \\ \hline -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 2 \\ \hline 4 \\ \hline -2 \\ \hline -4 \\ \hline 0 \\ 0 \\ 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ \hline -1 & 0 & 1 \\ 0 & -1 & -3 \\ \hline -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} , b = \begin{pmatrix} 2 \\ 4 \\ \hline -2 \\ -4 \\ \hline 0 \\ 0 \\ 0 \end{pmatrix}$$

and $(2,4,0)^{\top}$, we have

$$f$$
, where f

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ \hline -1 & 0 & 1 \\ 0 & -1 & -3 \\ \hline -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} , b = \begin{pmatrix} 2 \\ 4 \\ \hline -2 \\ -4 \\ \hline 0 \\ 0 \\ 0 \end{pmatrix}$$

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

and $(2,4,0)^{\top}$, we have

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}$$

 $\bar{A} = \begin{pmatrix} \frac{1}{0} & \frac{1}{1} & \frac{3}{3} \\ -1 & 0 & 1 \\ 0 & -1 & -3 \end{pmatrix}$

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ \hline -1 & 0 & 1 \\ 0 & -1 & -3 \\ \hline -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} , b = \begin{pmatrix} 2 \\ 4 \\ \hline -2 \\ -4 \\ \hline 0 \\ 0 \\ 0 \end{pmatrix}$$

and $(2,4,0)^{\top}$, we have

$$\bar{A} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ \hline -1 & 0 & 1 \\ 0 & -1 & -3 \\ \hline 0 & 0 & -1 \end{pmatrix}$$

Since $rank(\bar{A}) = 3$, we know that $(2, 4, 0)^{\top}$ is an extreme point!

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ \hline -1 & 0 & 1 \\ 0 & -1 & -3 \\ \hline -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} , b = \begin{pmatrix} 2 \\ 4 \\ \hline -2 \\ -4 \\ \hline 0 \\ 0 \\ 0 \end{pmatrix}$$

and $(2,4,0)^{\top}$, we have

$$\bar{A} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ \hline -1 & 0 & 1 \\ 0 & -1 & -3 \\ \hline 0 & 0 & -1 \end{pmatrix}$$

Since $rank(\bar{A})=3$, we know that $(2,4,0)^{\top}$ is an extreme point! This is no accident...

Let $P = \{x \ge \mathbf{0} : Ax = b\}$ where rows of A are independent. The following are equivalent:

- 1. \bar{x} is an extreme point of P.
- 2. \bar{x} is a basic feasible solution of P.

Let $P = \{x \geq \mathbf{0} : Ax = b\}$ where rows of A are independent. The following are equivalent:

- 1. \bar{x} is an extreme point of P.
- 2. \bar{x} is a basic feasible solution of P.

Exercise

Prove the previous theorem.

Let $P = \{x \ge \mathbf{0} : Ax = b\}$ where rows of A are independent. The following are equivalent:

- 1. \bar{x} is an extreme point of P.
- 2. \bar{x} is a basic feasible solution of P.

Exercise

Prove the previous theorem.

Let $P = \{x \geq \mathbf{0} : Ax = b\}$ where rows of A are independent. The following are equivalent:

- 1. \bar{x} is an extreme point of P.
- 2. \bar{x} is a basic feasible solution of P.

Exercise

Prove the previous theorem.

The Simplex algorithm moves from extreme points to extreme points.

 $\max_{\textbf{s.t.}} \quad (2,3,0,0,0)x$ s.t. $x \in P_1$

$$\max_{x \in P_1} (2, 3, 0, 0, 0)x$$

$$\max_{\textbf{s.t.}} \quad (2,3,0,0,0)x$$

$$\mathbf{s.t.} \quad x \in P_1$$

$$\max_{\text{s.t.}} \quad (2, 3, 0, 0, 0)x$$
 $x \in P_1$

SOLVE USING SIMPLEX:

• Basis $B = \{3, 4, 5\}$, basic solution $(0, 0, 10, 6, 4)^{\top}$

$$\max_{\textbf{s.t.}} \quad (2, 3, 0, 0, 0)x$$

$$\textbf{s.t.}$$

$$x \in P_1$$

SOLVE USING SIMPLEX:

- Basis $B = \{3, 4, 5\}$, basic solution $(0, 0, 10, 6, 4)^{\top}$
- Basis $B = \{1, 4, 5\}$, basic solution $(5, 0, 0, 1, 9)^{\top}$

$$\max_{\textbf{s.t.}} \quad (2,3,0,0,0)x$$

$$\textbf{s.t.}$$

$$x \in P_1$$

- Basis $B = \{3, 4, 5\}$, basic solution $(0, 0, 10, 6, 4)^{\top}$
- Basis $B = \{1, 4, 5\}$, basic solution $(5, 0, 0, 1, 9)^{\top}$
- Basis $B = \{1, 2, 5\}$, basic solution $(4, 2, 0, 0, 6)^{\top}$

$$\max_{\text{s.t.}} \quad (2, 3, 0, 0, 0)x$$
 $x \in P_1$

$$P_1 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

- Basis $B = \{3, 4, 5\}$, basic solution $(0, 0, 10, 6, 4)^{\top}$
- Basis $B = \{1, 4, 5\}$, basic solution $(5, 0, 0, 1, 9)^{\top}$
- Basis $B = \{1, 2, 5\}$, basic solution $(4, 2, 0, 0, 6)^{\mathsf{T}}$
- Basis $B = \{1,2,3\}$, basic solution $(1,5,3,0,0)^{\top}$:

$$\max_{\textbf{s.t.}} \quad (2,3,0,0,0)x$$

$$\textbf{s.t.} \quad x \in P_1$$

- Basis $B = \{3, 4, 5\}$, basic solution $(0, 0, 10, 6, 4)^{\top}$
- Basis $B = \{1, 4, 5\}$, basic solution $(5, 0, 0, 1, 9)^{\top}$
- Basis $B = \{1, 2, 5\}$, basic solution $(4, 2, 0, 0, 6)^{\top}$
- Basis $B = \{1, 2, 3\}$, basic solution $(1, 5, 3, 0, 0)^{\mathsf{T}}$: optimal

$$\max_{\textbf{s.t.}} \quad (2,3,0,0,0)x$$

$$\text{s.t.} \quad x \in P_1$$

$$P_1 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

SOLVE USING SIMPLEX:

- Basis $B = \{3,4,5\}$, basic solution $(0,0,10,6,4)^{\top}$
- Basis $B = \{1, 4, 5\}$, basic solution $(5, 0, 0, 1, 9)^{\top}$
- Basis $B = \{1, 2, 5\}$, basic solution $(4, 2, 0, 0, 6)^{\mathsf{T}}$
- Basis $B = \{1, 2, 3\}$, basic solution $(1, 5, 3, 0, 0)^{\mathsf{T}}$: optimal

$$\max_{\textbf{s.t.}} \quad (2,3,0,0,0)x$$

$$s.t. \quad x \in P_1$$

$$\begin{array}{|c|c|c|c|c|c|}\hline \max & (2,3,0,0,0)x\\ \text{s.t.} & & \\ & x \in P_1 & & \\ \hline \end{array} \qquad P_1 = \left\{ x \geq \mathbf{0} : \begin{pmatrix} 2 & 1 & 1 & 0 & 0\\ 1 & 1 & 0 & 1 & 0\\ -1 & 1 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 10\\ 6\\ 4 \end{pmatrix} \right\}$$

- Basis $B = \{3, 4, 5\}$, basic solution $(0, 0, 10, 6, 4)^{\top}$
- Basis $B = \{1, 4, 5\}$, basic solution $(5, 0, 0, 1, 9)^{\top}$
- Basis $B = \{1, 2, 5\}$, basic solution $(4, 2, 0, 0, 6)^{\top}$
- Basis $B = \{1, 2, 3\}$, basic solution $(1, 5, 3, 0, 0)^{\mathsf{T}}$: optimal
- Simplex visits extreme points of P_1 in order:

$$\begin{pmatrix} 0 \\ 0 \\ 10 \\ 6 \\ 4 \end{pmatrix},$$

$$\max_{\text{s.t.}} \quad (2,3,0,0,0)x$$

$$x \in P_1$$

- Basis $B = \{3, 4, 5\}$, basic solution $(0, 0, 10, 6, 4)^{\top}$
- Basis $B = \{1, 4, 5\}$, basic solution $(5, 0, 0, 1, 9)^{\top}$
- Basis $B = \{1, 2, 5\}$, basic solution $(4, 2, 0, 0, 6)^{\top}$
- Basis $B = \{1, 2, 3\}$, basic solution $(1, 5, 3, 0, 0)^{\mathsf{T}}$: optimal
- Simplex visits extreme points of P_1 in order:

$$\begin{pmatrix} 0 \\ 0 \\ 10 \\ 6 \\ 4 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ 0 \\ 1 \\ 9 \end{pmatrix},$$

$$\max_{\text{s.t.}} \quad (2,3,0,0,0)x$$

$$x \in P_1$$

- Basis $B = \{3, 4, 5\}$, basic solution $(0, 0, 10, 6, 4)^{\top}$
- Basis $B = \{1, 4, 5\}$, basic solution $(5, 0, 0, 1, 9)^{\top}$
- Basis $B = \{1, 2, 5\}$, basic solution $(4, 2, 0, 0, 6)^{\top}$
- Basis $B = \{1, 2, 3\}$, basic solution $(1, 5, 3, 0, 0)^{\mathsf{T}}$: optimal
- Simplex visits extreme points of P_1 in order:

$$\begin{pmatrix} 0 \\ 0 \\ 10 \\ 6 \\ 4 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ 0 \\ 1 \\ 9 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \\ 0 \\ 0 \\ 6 \end{pmatrix},$$

$$\max_{\textbf{s.t.}} \quad (2,3,0,0,0)x$$

$$s.t. \quad x \in P_1$$

SOLVE USING SIMPLEX:

- Basis $B = \{3, 4, 5\}$, basic solution $(0, 0, 10, 6, 4)^{\top}$
- Basis $B = \{1, 4, 5\}$, basic solution $(5, 0, 0, 1, 9)^{\top}$
- Basis $B = \{1, 2, 5\}$, basic solution $(4, 2, 0, 0, 6)^{\top}$
- Basis $B = \{1, 2, 3\}$, basic solution $(1, 5, 3, 0, 0)^{\mathsf{T}}$: optimal
- Simplex visits extreme points of P_1 in order:

$$\begin{pmatrix} 0 \\ 0 \\ 10 \\ 6 \\ 4 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ 0 \\ 1 \\ 9 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \\ 0 \\ 0 \\ 6 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \\ 3 \\ 0 \\ 0 \end{pmatrix}.$$

$$\max_{\textbf{s.t.}} \quad (2,3,0,0,0)x$$

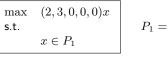
$$\textbf{s.t.} \quad x \in P_1$$

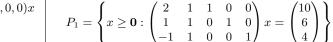
Solve using Simplex:

- Basis $B = \{3, 4, 5\}$, basic solution $(0, 0, 10, 6, 4)^{\top}$
- Basis $B = \{1, 4, 5\}$, basic solution $(5, 0, 0, 1, 9)^{\top}$
- Basis $B = \{1, 2, 5\}$, basic solution $(4, 2, 0, 0, 6)^{\top}$
- Basis $B = \{1, 2, 3\}$, basic solution $(1, 5, 3, 0, 0)^{\mathsf{T}}$: optimal
- Simplex visits extreme points of P_1 in order:

$$\begin{pmatrix} 0 \\ 0 \\ 10 \\ 6 \\ 4 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ 0 \\ 1 \\ 9 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \\ 0 \\ 0 \\ 6 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \\ 3 \\ 0 \\ 0 \end{pmatrix}.$$

However, we cannot draw a picture of this...





$$P_1 = \begin{cases} x \ge \mathbf{0} : \begin{pmatrix} 1 & 1 & 0 & 1 \\ -1 & 1 & 0 & 0 \end{cases}$$

max	(2,3,0,0,0)x
s.t.	
	$x \in P_1$

 $P_1 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$

is obtained by adding slack variables to

$$\begin{bmatrix} \max & (2,3,0,0,0)x \\ \text{s.t.} & \\ & x \in P_1 \end{bmatrix} \qquad P_1 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

$$\max_{\mathbf{x} \in P_1} (2, 3, 0, 0, 0)x$$

$$P_1 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

$$(0,0,10,6,4)^{\top}$$
 extreme point of $P_1 \Rightarrow (0,0)^{\top}$ extreme point of P_2 ,

$$P_1 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

$$\max_{\mathbf{s.t.}} \quad (2,3)x$$

$$\mathbf{s.t.}$$

$$x \in P_2$$

$$P_2 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} x \le \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

Remark

$$\max_{\text{s.t.}} \quad (2,3,0,0,0)x$$

$$x \in P_1$$

$$P_1 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

$$\max_{\mathsf{s.t.}} \quad (2,3)x$$
$$\mathsf{s.t.}$$
$$x \in P_2$$

$$P_2 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} x \le \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

Remark

$$\max_{\textbf{s.t.}} \quad \begin{array}{ll} (2,3,0,0,0)x \\ \text{s.t.} \\ x \in P_1 \end{array}$$

$$P_1 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

$$\max_{\mathbf{s.t.}} \quad (2,3)x$$

$$\mathbf{s.t.}$$

$$x \in P_2$$

$$P_2 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} x \le \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

Remark

$$\begin{array}{lll} (0,0,10,6,4)^\top & \text{extreme point of } P_1 & \Rightarrow & (0,0)^\top & \text{extreme point of } P_2, \\ (5,0,0,1,9)^\top & \text{extreme point of } P_1 & \Rightarrow & (5,0)^\top & \text{extreme point of } P_2, \\ (4,2,0,0,6)^\top & \text{extreme point of } P_1 & \Rightarrow & (4,2)^\top & \text{extreme point of } P_2, \\ (1,5,3,0,0)^\top & \text{extreme point of } P_1 & \Rightarrow & (1,5)^\top & \text{extreme point of } P_2. \end{array}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\max_{\textbf{s.t.}} \quad \begin{array}{ll} (2,3,0,0,0)x \\ \text{s.t.} \\ x \in P_1 \end{array}$$

$$P_1 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

$$\max_{\mathbf{s.t.}} \quad (2,3)x$$

$$\mathbf{s.t.}$$

$$x \in P_2$$

$$P_2 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} x \le \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

Remark

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \end{pmatrix},$$

$$\max_{\textbf{s.t.}} \quad \begin{array}{ll} (2,3,0,0,0)x \\ \text{s.t.} \\ x \in P_1 \end{array}$$

$$P_1 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

$$\max_{\mathbf{s.t.}} \quad (2,3)x$$

$$\mathbf{s.t.}$$

$$x \in P_2$$

$$P_2 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} x \le \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

Remark

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \end{pmatrix},$$

$$\max_{\textbf{s.t.}} \quad \begin{array}{ll} (2,3,0,0,0)x \\ \text{s.t.} \\ x \in P_1 \end{array}$$

$$P_1 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

$$\max_{\mathbf{s.t.}} \quad (2,3)x$$

$$\mathbf{s.t.}$$

$$x \in P_2$$

$$P_2 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} x \le \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

Remark

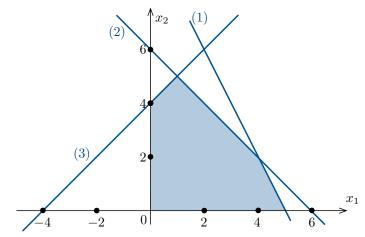
$$\begin{array}{lll} (0,0,10,6,4)^\top & \text{extreme point of } P_1 & \Rightarrow & (0,0)^\top & \text{extreme point of } P_2, \\ (5,0,0,1,9)^\top & \text{extreme point of } P_1 & \Rightarrow & (5,0)^\top & \text{extreme point of } P_2, \\ (4,2,0,0,6)^\top & \text{extreme point of } P_1 & \Rightarrow & (4,2)^\top & \text{extreme point of } P_2, \\ (1,5,3,0,0)^\top & \text{extreme point of } P_1 & \Rightarrow & (1,5)^\top & \text{extreme point of } P_2. \end{array}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \end{pmatrix}.$$

Simplex visits extreme points of P_2 in order: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \end{pmatrix}$.

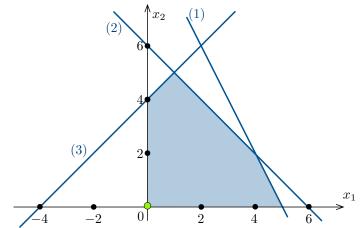
$$\begin{array}{ccc}
\max & (2,3)x \\
\text{s.t.} & \\
& x \in P_2
\end{array}
\qquad P_2 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} x \le \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

Simplex visits extreme points of P_2 in order: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \end{pmatrix}$.



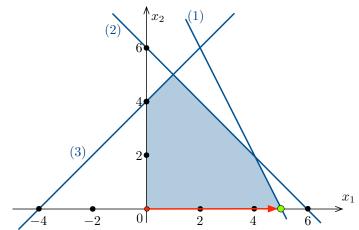
$$\begin{array}{ccc}
\max & (2,3)x \\
\text{s.t.} & \\
& x \in P_2
\end{array}
\qquad P_2 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} x \le \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

Simplex visits extreme points of P_2 in order: $\begin{bmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{bmatrix}, \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \end{pmatrix}$.



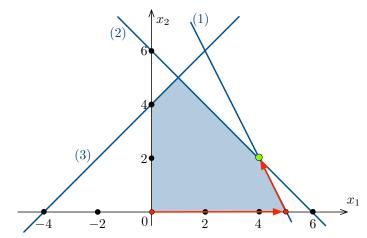
$$\begin{array}{ccc}
\max & (2,3)x \\
\text{s.t.} & \\
& x \in P_2
\end{array}
\qquad P_2 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} x \le \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

Simplex visits extreme points of P_2 in order: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 5 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 5 \end{pmatrix}$.



$$\begin{array}{c|c}
\max & (2,3)x \\
\text{s.t.} & \\
 & x \in P_2
\end{array}
\qquad P_2 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} x \le \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

Simplex visits extreme points of P_2 in order: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \begin{vmatrix} 4 \\ 2 \end{vmatrix}, \begin{pmatrix} 1 \\ 5 \end{pmatrix}$.



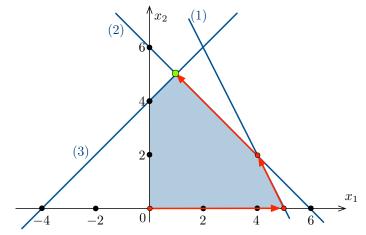
$$\max_{\mathbf{s.t.}} \quad (2,3)x$$

$$\mathbf{s.t.}$$

$$x \in P_2$$

$$P_2 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} x \le \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

Simplex visits extreme points of P_2 in order: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \boxed{\begin{pmatrix} 1 \\ 5 \end{pmatrix}}$.



• We defined extreme points of convex sets.

- We defined extreme points of convex sets.
- We characterized extreme points in polyhedra.

- We defined extreme points of convex sets.
- We characterized extreme points in polyhedra.
- We saw that extreme points = basic solutions for problems in SEF.

- We defined extreme points of convex sets.
- We characterized extreme points in polyhedra.
- We saw that extreme points = basic solutions for problems in SEF.
- We showed that the Simplex algorithm moves from extreme point to extreme point.