Module 3: Duality through examples (Shortest Path Algorithm)

The figure on the right shows another simple instance of the shortest s, t -path problem.

The figure on the right shows another simple instance of the shortest s, t-path problem.

By inspection: shortest s, t -path (bold edges) has length 5

The figure on the right shows another simple instance of the shortest s, t-path problem.

By inspection: shortest s, t -path (bold edges) has length 5

There is a feasible width assignment of value 5, proving optimality!

The figure on the right shows another simple instance of the shortest s, t-path problem.

By inspection: shortest s, t -path (bold edges) has length 5

There is a feasible width assignment of value 5, proving optimality!

Shortest path LP:

min
$$
\sum (x_e : e \in E)
$$

s.t. $\sum (x_e : e \in \delta(S)) \ge 1$
 $(\delta(S) s, t\text{-cut})$
 $x \ge 0$

The figure on the right shows another simple instance of the shortest s, t-path problem.

By inspection: shortest s, t -path (bold edges) has length 5

There is a feasible width assignment of value 5, proving optimality!

Shortest path LP:

min $\sum (x_e : e \in E)$ s.t. $\sum (x_e : e \in \delta(S)) \geq 1$ $(\delta(S)$ s, t-cut) $x > 0$

Shortest path dual:

$$
\max \sum(y_S : \delta(S) \ s, t\text{-cut})
$$

s.t.
$$
\sum(y_S : e \in \delta(S)) \le c_e
$$

$$
(e \in E)
$$

$$
y \ge 0
$$

Shortest path LP:

min
$$
\sum (c_e x_e : e \in E)
$$

s.t. $\sum (x_e : e \in \delta(S)) \ge 1$
 $(\delta(S) s, t\text{-cut})$
 $x \ge 0$

Shortest path dual:

max $\sum(y_S : \delta(S) \ s, t$ -cut) s.t. $\sum(y_S : e \in \delta(S)) \leq c_e$ $(e \in E)$ $y > 0$

Letting

$$
x_e = \begin{cases} 1 & e \text{ bold in figure} \\ 0 & \text{otherwise} \end{cases}
$$

for all $e \in E$ is feasible for shortest path LP.

Shortest path LP:

min
$$
\sum (c_e x_e : e \in E)
$$

s.t. $\sum (x_e : e \in \delta(S)) \ge 1$
 $(\delta(S) s, t\text{-cut})$
 $x \ge 0$

Shortest path dual:

 \max $\sum(y_S : \delta(S) \ s, t$ -cut) s.t. $\sum(y_S : e \in \delta(S)) \leq c_e$ $(e \in E)$ $y > 0$

Letting

$$
y_{\{s\}} = y_{\{s,b\}} = 1, \ y_{\{s,a,b,c\}} = 3,
$$

and $y_S = 0$ for all other s, t-cuts $\delta(S)$ yields a feasible dual solution of value 5!

Shortest path LP:

min
$$
\sum (x_e : e \in E)
$$

s.t. $\sum (x_e : e \in \delta(S)) \ge 1$
 $(\delta(S) s, t\text{-cut})$
 $x \ge 0$

Shortest path dual:

max $\sum(y_S : \delta(S) \ s, t$ -cut) s.t. $\sum(y_S : e \in \delta(S)) \leq c_e$ $(e \in E)$ $y > 0$

Weak Duality Theorem

If \bar{x} is feasible for shortest path LP, and \bar{y} is feasible for its dual then $b^T \bar{y} \leq c^T \bar{x}.$

Shortest path LP:

min
$$
\sum (x_e : e \in E)
$$

s.t. $\sum (x_e : e \in \delta(S)) \ge 1$
 $(\delta(S) s, t\text{-cut})$
 $x \ge 0$

Shortest path dual:

max $\sum(y_S : \delta(S) \ s, t$ -cut) s.t. $\sum(y_S : e \in \delta(S)) \leq c_e$ $(e \in E)$ $y > 0$

Weak Duality Theorem

If \bar{x} is feasible for shortest path LP, and \bar{y} is feasible for its dual then $b^T \bar{y} \leq c^T \bar{x}.$

 \rightarrow Bold path in figure is shortest s, t -path!

Today:

1. How did we find the bold path?

Weak Duality Theorem

If \bar{x} is feasible for shortest path LP, and \bar{y} is feasible for its dual then $b^T \bar{y} \leq c^T \bar{x}.$

Weak Duality Theorem

If \bar{x} is feasible for shortest path LP, and \bar{y} is feasible for its dual then $b^T \bar{y} \leq c^T \bar{x}.$

 \longrightarrow Bold path in figure is shortest s, t -path!

Today:

- 1. How did we find the bold path?
- 2. How did we find the dual solution?

Weak Duality Theorem

If \bar{x} is feasible for shortest path LP, and \bar{y} is feasible for its dual then $b^T \bar{y} \leq c^T \bar{x}.$

 \longrightarrow Bold path in figure is shortest s, t -path!

Today:

- 1. How did we find the bold path?
- 2. How did we find the dual solution?
- 3. Is there always a shortest s, t -path and a dual solution whose value matches its length?

An Algorithm for the Shortest s, t -Path Problem

So far: edges of a graph $G = (V, E)$ are unordered pairs of vertices.

```
So far: edges of a graph G = (V, E) are
unordered pairs of vertices.
```
Now: introduce arcs – ordered pairs of vertices.

```
So far: edges of a graph G = (V, E) are
unordered pairs of vertices.
```
Now: introduce arcs – ordered pairs of vertices. Denote an arc from u to v as \overrightarrow{uv} , and draw it as arrow from u to v .

So far: edges of a graph $G = (V, E)$ are unordered pairs of vertices.

Now: introduce arcs – ordered pairs of vertices. Denote an arc from u to v as \overrightarrow{uv} . and draw it as arrow from u to v .

A directed path is then a sequence of arcs:

$$
\overrightarrow{v_1v_2},\overrightarrow{v_2v_3},\ldots,\overrightarrow{v_{k-1}v_k},
$$

where $\overrightarrow{v_i v_{i+1}}$ is an arc in the given graph, and $v_i \neq v_j$ for all $i \neq j$.

So far: edges of a graph $G = (V, E)$ are unordered pairs of vertices.

Now: introduce arcs – ordered pairs of vertices. Denote an arc from u to v as \overrightarrow{uv} . and draw it as arrow from u to v .

A directed path is then a sequence of arcs:

$$
\overrightarrow{v_1v_2},\overrightarrow{v_2v_3},\ldots,\overrightarrow{v_{k-1}v_k},
$$

where $\overrightarrow{v_i v_{i+1}}$ is an arc in the given graph, and $v_i \neq v_j$ for all $i \neq j$.

Example:

$$
\overrightarrow{uv}, \overrightarrow{vw}, \overrightarrow{wx}
$$

is a directed u, x -path.

Idea: Find an s, t -path P and a feasible dual y s.t. $c(P) = \mathbb{1}^T y$. How?

Recall the shortest path dual:

max $\sum(y_S : \delta(S) \ s, t$ -cut) s.t. $\sum(y_S : e \in \delta(S)) \leq c_e$ $(e \in E)$ $y \geq 0$

Idea: Find an s, t -path P and a feasible dual y s.t. $c(P) = \mathbb{1}^T y$. How?

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$
\begin{aligned} \mathrm{slack}_{y}(e) = c_e - \sum(y_U\,:\, \\ \delta(U)\,\,s, t\text{-cut},\, e \in \delta(U)) \end{aligned}
$$

Recall the shortest path dual:

$$
\max \sum(y_S : \delta(S) \ s, t\text{-cut})
$$
\n
$$
\text{s.t.} \quad \sum(y_S : e \in \delta(S)) \le c_e
$$
\n
$$
(e \in E)
$$
\n
$$
y \ge 0
$$

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$
\begin{aligned} \mathsf{slack}_{y}(e) = c_e - \sum(y_U\, : \\ \delta(U)\,\, s, t\text{-cut},\, e \in \delta(U)) \end{aligned}
$$

Examples: for the dual y given on the right,

$$
\bullet\ \mathsf{slack}_{y}(sa) =
$$

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$
\begin{aligned} \mathsf{slack}_{y}(e) = c_e - \sum(y_U\, : \\ \delta(U)\, \, s, t\text{-cut},\, e \in \delta(U)) \end{aligned}
$$

Examples: for the dual y given on the right,

•
$$
slacky(sa) = 2 - 1 = 1
$$

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$
\begin{aligned} \mathsf{slack}_{y}(e) = c_e - \sum(y_U\, : \\ \delta(U)\, \, s, t\text{-cut},\, e \in \delta(U)) \end{aligned}
$$

Examples: for the dual y given on the right,

- slack_y $(sa) = 2 1 = 1$
- slack_y (sd) =

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$
\begin{aligned} \mathsf{slack}_{y}(e) = c_e - \sum(y_U\, : \\ \delta(U)\,\, s, t\text{-cut},\, e \in \delta(U)) \end{aligned}
$$

Examples: for the dual y given on the right,

- slack_y $(sa) = 2 1 = 1$
- slack_y $(sd) = 3 1 1 = 1$

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$
\begin{aligned} \mathsf{slack}_{y}(e) = c_e - \sum(y_U\, : \\ \delta(U)\,\, s, t\text{-cut},\, e \in \delta(U)) \end{aligned}
$$

Examples: for the dual y given on the right,

- slack_y $(sa) = 2 1 = 1$
- slack_y $(sd) = 3 1 1 = 1$
- slack_y (ct) =

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$
\begin{aligned} \mathsf{slack}_{y}(e) = c_e - \sum(y_U\, : \\ \delta(U)\,\, s, t\text{-cut},\, e \in \delta(U)) \end{aligned}
$$

Examples: for the dual y given on the right,

- slack_y $(sa) = 2 1 = 1$
- slack_y $(sd) = 3 1 1 = 1$
- slack_y $(ct) = 4 1 2 = 1$

Start with the trivial dual $y = 0$

Start with the trivial dual $y = 0$ Simplest s, t-cut: $\delta({s})$

Start with the trivial dual $y = 0$

Simplest s, t-cut: $\delta({s})$ \longrightarrow increase $y_{\{s\}}$ as much as we can maintaining feasibility

Start with the trivial dual $y = 0$

Simplest s, t-cut: $\delta({s})$ \longrightarrow increase $y_{\{s\}}$ as much as we can maintaining feasibility

$$
\longrightarrow y_{\{s\}} = 1
$$

Start with the trivial dual $y = 0$

Simplest s, t-cut: $\delta({s})$ \longrightarrow increase $y_{\{s\}}$ as much as we can maintaining feasibility

 $\longrightarrow y_{\{s\}} = 1$

Note: This decreases the slack of \mathfrak{sc} to $0!$

Start with the trivial dual $y = 0$

Simplest s, t-cut: $\delta({s})$ \longrightarrow increase $y_{\{s\}}$ as much as we can maintaining feasibility

 $\longrightarrow y_{\{s\}} = 1$

Note: This decreases the slack of sc to $0!$ \longrightarrow replace sc by \overrightarrow{sc}

Start with the trivial dual $y = 0$

Simplest s, t-cut: $\delta({s})$ \longrightarrow increase $y_{\{s\}}$ as much as we can maintaining feasibility $\longrightarrow y_{\{s\}} = 1$

Note: This decreases the slack of \mathfrak{sc} to $0!$ \longrightarrow replace sc by \overrightarrow{sc}

Next: Look at all vertices that are reachable from s via directed paths:

$$
U=\{s,c\}
$$

$$
\max \sum(y_S : \delta(S) \ s, t\text{-cut})
$$
\n
$$
\text{s.t.} \quad \sum(y_S : e \in \delta(S)) \le c_e
$$
\n
$$
(e \in E)
$$
\n
$$
y \ge 0
$$

Start with the trivial dual $y = 0$

Simplest s, t-cut: $\delta({s})$ \longrightarrow increase $y_{\{s\}}$ as much as we can maintaining feasibility $\longrightarrow y_{\{s\}} = 1$

Note: This decreases the slack of \mathfrak{sc} to $0!$ \longrightarrow replace sc by \overrightarrow{sc}

Next: Look at all vertices that are reachable from s via directed paths:

$$
U=\{s,c\}
$$

and consider increasing y_U

Start with the trivial dual $y = 0$

Simplest s, t-cut: $\delta({s})$ \longrightarrow increase $y_{\{s\}}$ as much as we can maintaining feasibility $\longrightarrow y_{\{s\}} = 1$

Note: This decreases the slack of \mathfrak{sc} to $0!$ \longrightarrow replace sc by \overrightarrow{sc}

Next: Look at all vertices that are reachable from s via directed paths:

$$
U=\{s,c\}
$$

and consider increasing y_U

Q: By how much can you increase y_U ?

Q: By how much can you increase y_U ? The maximum increase possible for $y_{\{s,c\}}$ is determined by the slack of edges in $\delta({s, c})!$

Q: By how much can you increase y_U ? The maximum increase possible for $y_{\{s,c\}}$ is determined by the slack of edges in $\delta({s, c})!$

$$
\begin{array}{lcl} \mathsf{slack}_y(sa) & = \\ \mathsf{slack}_y(cb) & = \\ \mathsf{slack}_y(ct) & = \\ \mathsf{slack}_y(cd) & = \\ \mathsf{slack}_y(sd) & = \end{array}
$$

Q: By how much can you increase y_U ? The maximum increase possible for $y_{\{s,c\}}$ is determined by the slack of edges in $\delta({s, c})!$

$$
slacky(sa) = 2 - 1 = 1
$$

\n
$$
slacky(cb) =
$$

\n
$$
slacky(ct) =
$$

\n
$$
slacky(cd) =
$$

\n
$$
slacky(sd) =
$$

Q: By how much can you increase y_U ? The maximum increase possible for $y_{\{s,c\}}$ is determined by the slack of edges in $\delta({s, c})!$

$$
slacky(sa) = 2 - 1 = 1
$$

\n
$$
slacky(cb) = 2
$$

\n
$$
slacky(ct) =
$$

\n
$$
slacky(cd) =
$$

\n
$$
slacky(sd) =
$$

Q: By how much can you increase y_U ? The maximum increase possible for $y_{\{s,c\}}$ is determined by the slack of edges in $\delta({s, c})!$

$$
slacky(sa) = 2 - 1 = 1
$$

\n
$$
slacky(cb) = 2
$$

\n
$$
slacky(ct) = 4
$$

\n
$$
slacky(cd) =
$$

\n
$$
slacky(sd) =
$$

Q: By how much can you increase y_U ? The maximum increase possible for $y_{\{s,c\}}$ is determined by the slack of edges in $\delta({s, c})!$

$$
slacky(sa) = 2 - 1 = 1
$$

\n
$$
slacky(cb) = 2
$$

\n
$$
slacky(ct) = 4
$$

\n
$$
slacky(cd) = 1
$$

\n
$$
slacky(sd) =
$$

Q: By how much can you increase y_U ? The maximum increase possible for $y_{\{s,c\}}$ is determined by the slack of edges in $\delta({s, c})!$

$$
slacky(sa) = 2 - 1 = 1
$$

\n
$$
slacky(cb) = 2
$$

\n
$$
slacky(ct) = 4
$$

\n
$$
slacky(cd) = 1
$$

\n
$$
slacky(sd) = 3 - 1 = 2
$$

Q: By how much can you increase y_U ? The maximum increase possible for $y_{\{s,c\}}$ is determined by the slack of edges in $\delta({s, c})!$

$$
slacky(sa) = 2 - 1 = 1
$$

\n
$$
slacky(cb) = 2
$$

\n
$$
slacky(ct) = 4
$$

\n
$$
slacky(cd) = 1
$$

\n
$$
slacky(sd) = 3 - 1 = 2
$$

Edges cd and sa minimize slack. Pick one arbitrarily: sa.

Q: By how much can you increase y_U ? The maximum increase possible for $y_{\{s,c\}}$ is determined by the slack of edges in $\delta({s, c})!$

> slack_y $(sa) = 2 - 1 = 1$ $\mathsf{slack}_{\mathcal{U}}(cb) = 2$ $\mathsf{slack}_{\mathfrak{u}}(ct) = 4$ $\mathsf{slack}_{\mathcal{U}}(cd) = 1$ slack_y $(sd) = 3 - 1 = 2$

Edges cd and sa minimize slack. Pick one arbitrarily: sa. Set $y_U =$ slack_y $(sa) = 1$ and convert sa into arc \overrightarrow{sa}

 Q : Which vertices are reachable from s via directed paths?

 Q : Which vertices are reachable from s via directed paths?

$$
U = \{s, a, c\}
$$

 Q : Which vertices are reachable from s via directed paths?

 $U = \{s, a, c\}$

Natural idea: Increase $y_{\{s,a,c\}}$ by as much as we can. How much?

 $Q:$ Which vertices are reachable from s via directed paths?

 $U = \{s, a, c\}$

Natural idea: Increase $y_{\{s,a,c\}}$ by as much as we can. How much? \longrightarrow the slack of cd is 0, and hence

$$
y_{\{s,a,c\}} = 0
$$

 Q : Which vertices are reachable from s via directed paths?

 $U = \{s, a, c\}$

Natural idea: Increase $y_{\{s,a,c\}}$ by as much as we can. How much? \longrightarrow the slack of cd is 0, and hence

$$
y_{\{s,a,c\}} = 0
$$

Also: $\;$ change cd into \overrightarrow{cd} , and let

 $U = \{s, a, c, d\}$

be the reachable vertices from s

Vertices reachable from s by directed paths:

 $U = \{s, a, c, d\}$

Vertices reachable from s by directed paths:

 $U = \{s, a, c, d\}$

$$
\begin{aligned} &\mathrm{slack}_{y}(ab) &= \\ &\mathrm{slack}_{y}(cb) &= \\ &\mathrm{slack}_{y}(ct) &= \\ &\mathrm{slack}_{y}(dt) &= \end{aligned}
$$

Vertices reachable from s by directed paths:

 $U = \{s, a, c, d\}$

$$
slacky(ab) = 1
$$

\n
$$
slacky(cb) =
$$

\n
$$
slacky(ct) =
$$

\n
$$
slacky(dt) =
$$

Vertices reachable from s by directed paths:

 $U = \{s, a, c, d\}$

$$
slacky(ab) = 1
$$

\n
$$
slacky(cb) = 2 - 1 = 1
$$

\n
$$
slacky(ct) =
$$

\n
$$
slacky(dt) =
$$

Vertices reachable from s by directed paths:

 $U = \{s, a, c, d\}$

$$
slacky(ab) = 1
$$

\n
$$
slacky(cb) = 2 - 1 = 1
$$

\n
$$
slacky(ct) = 4 - 1 = 3
$$

\n
$$
slacky(dt) =
$$

Vertices reachable from s by directed paths:

 $U = \{s, a, c, d\}$

Let us compute the slack of edges in $\delta(U)$:

$$
slacky(ab) = 1
$$

\n
$$
slacky(cb) = 2 - 1 = 1
$$

\n
$$
slacky(ct) = 4 - 1 = 3
$$

\n
$$
slacky(dt) = 2
$$

Let $y_{\{s,a,c,d\}} = 1$, add equality arc \overrightarrow{cb} , and update the set

$$
U = \{s, a, b, c, d\}
$$

of vertices reachable from s

Vertices reachable from s by directed paths:

 $U = \{s, a, b, c, d\}$

Vertices reachable from s by directed paths:

 $U = \{s, a, b, c, d\}$

$$
\begin{aligned} &\mathrm{slack}_{y}(bt) &= \\ &\mathrm{slack}_{y}(ct) &= \\ &\mathrm{slack}_{y}(dt) &= \end{aligned}
$$

Vertices reachable from s by directed paths:

 $U = \{s, a, b, c, d\}$

$$
slacky(bt) = 4
$$

\n
$$
slacky(ct) =
$$

\n
$$
slacky(dt) =
$$

Vertices reachable from s by directed paths:

 $U = \{s, a, b, c, d\}$

\n $\text{slack}_y(bt) = 4$ \n	\n $4 - 2 = 2$ \n
\n $\text{slack}_y(dt) = 4 - 2 = 2$ \n	\n $\text{slack}_y(dt) = 2$ \n

Vertices reachable from s by directed paths:

 $U = \{s, a, b, c, d\}$

\n $\text{slack}_y(bt) = 4$ \n	\n $\text{slack}_y(ct) = 4 - 2 = 2$ \n	\n $\text{slack}_y(dt) = 2 - 1 = 1$ \n
--------------------------------	--	--

Vertices reachable from s by directed paths:

 $U = \{s, a, b, c, d\}$

Let us compute the slack of edges in $\delta(U)$:

$$
slacky(bt) = 4
$$

\n
$$
slacky(ct) = 4 - 2 = 2
$$

\n
$$
slacky(dt) = 2 - 1 = 1
$$

Let $y_{\{s,a,b,c,d\}} = 1$, add equality arc \overrightarrow{dt} .

Note: we now have a directed s, t -path in our graph:

$$
P = \overrightarrow{sc}, \overrightarrow{cd}, \overrightarrow{dt},
$$

and its length is 4!

Note: we now have a directed s, t -path in our graph:

$$
P = \overrightarrow{sc}, \overrightarrow{cd}, \overrightarrow{dt},
$$

and its length is 4!

We also have a feasible dual solution:

$$
y_{\{s\}} = y_{\{s,c\}} = y_{\{s,a,c,d\}} = y_{\{s,a,b,c,d\}} = 1,
$$

and $y_U = 0$ otherwise.

max $\sum(y_S : \delta(S) \ s, t$ -cut) s.t. $\sum(y_S : e \in \delta(S)) \leq c_e$ $(e \in E)$ $y > 0$

Note: we now have a directed s, t -path in our graph:

$$
P = \overrightarrow{sc}, \overrightarrow{cd}, \overrightarrow{dt},
$$

and its length is 4!

We also have a feasible dual solution:

$$
y_{\{s\}} = y_{\{s,c\}} = y_{\{s,a,c,d\}} = y_{\{s,a,b,c,d\}} = 1,
$$

and $y_U = 0$ otherwise. Its value is 4!

 $y > 0$

Note: we now have a directed s, t -path in our graph:

$$
P = \overrightarrow{sc}, \overrightarrow{cd}, \overrightarrow{dt},
$$

and its length is 4!

We also have a feasible dual solution:

$$
y_{\{s\}} = y_{\{s,c\}} = y_{\{s,a,c,d\}} = y_{\{s,a,b,c,d\}} = 1,
$$

and $y_U = 0$ otherwise. Its value is 4!

 \longrightarrow Path P is a shortest path!

 $y > 0$

Shortest Path Algorithm

To compute the shortest Path for the instance on the right, we used the following algorithm:

Algorithm 3.2 Shortest path.

Input: Graph $G = (V, E)$, costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$.

Output: A shortest st -path P

- 1: $y_W := 0$ for all st-cuts $\delta(W)$. Set $U := \{s\}$
- 2: while $t \notin U$ do
- Let ab be an edge in $\delta(U)$ of smallest slack for y where $a \in U$, $b \notin U$ $3₁$
- $y_U := \text{slack}_{\nu}(ab)$ $4¹$
- $U := U \cup \{b\}$ $5:$
- change edge *ab* into an arc \overrightarrow{ab} 6:
- $7₁$ end while
- 8: return A directed st -path P .

Recap

• We saw a shortest path algorithm that computes

(a) an s, t -path P , and (b) a feasible solution y for the dual of the shortest path LP

simultaneously

Recap

• We saw a shortest path algorithm that computes

(a) an s, t -path P , and (b) a feasible solution y for the dual of the shortest path LP simultaneously

• We will soon show, that the length of the output path P , and the value of the dual solution y are the same, showing that both P and y are optimal

Recap

• We saw a shortest path algorithm that computes

(a) an s, t -path P , and (b) a feasible solution y for the dual of the shortest path LP simultaneously

- We will soon show, that the length of the output path P , and the value of the dual solution y are the same, showing that both P and y are optimal
- Have a look at the book. It has another full example run of the shortest path algorithm