Module 3: Duality through examples (Shortest Path Algorithm)

The figure on the right shows another simple instance of the shortest s, t-path problem.

The figure on the right shows another simple instance of the shortest s, t-path problem.

By inspection: shortest s, t-path (bold edges) has length 5

The figure on the right shows another simple instance of the shortest s, t-path problem.

By inspection: shortest s, t-path (bold edges) has length 5

There is a feasible width assignment of value 5, proving optimality!

The figure on the right shows another simple instance of the shortest s, t-path problem.

By inspection: shortest s, t-path (bold edges) has length 5

There is a feasible width assignment of value 5, proving optimality!

Shortest path LP:

min
$$\sum (x_e : e \in E)$$

s.t. $\sum (x_e : e \in \delta(S)) \ge 1$
 $(\delta(S) \ s, t\text{-cut})$
 $x \ge 0$

The figure on the right shows another simple instance of the shortest s, t-path problem.

By inspection: shortest s, t-path (bold edges) has length 5

There is a feasible width assignment of value 5, proving optimality!

Shortest path LP:

 $\begin{array}{ll} \min & \sum (x_e \, : \, e \in E) \\ \text{s.t.} & \sum (x_e \, : \, e \in \delta(S)) \geq 1 \\ & (\delta(S) \, \, s, t\text{-cut}) \\ & x \geq 0 \end{array}$

Shortest path dual:

$$\max \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$
$$(e \in E)$$
$$y \ge 0$$

Shortest path LP:

min
$$\sum (c_e x_e : e \in E)$$

s.t. $\sum (x_e : e \in \delta(S)) \ge 1$
 $(\delta(S) \ s, t$ -cut)
 $x \ge 0$

Shortest path dual:

 $\max \sum (y_S : \delta(S) \ s, t\text{-cut})$ s.t. $\sum (y_S : e \in \delta(S)) \le c_e$ $(e \in E)$ $y \ge 0$ Letting

$$x_e = \begin{cases} 1 & e \text{ bold in figure} \\ 0 & \text{otherwise} \end{cases}$$

for all $e \in E$ is feasible for shortest path LP.

Shortest path LP:

min
$$\sum (c_e x_e : e \in E)$$

s.t. $\sum (x_e : e \in \delta(S)) \ge 1$
 $(\delta(S) \ s, t$ -cut)
 $x \ge 0$

Shortest path dual:

 $\max \sum (y_S : \delta(S) \ s, t\text{-cut})$ s.t. $\sum (y_S : e \in \delta(S)) \le c_e$ $(e \in E)$ $y \ge 0$ Letting

$$y_{\{s\}} = y_{\{s,b\}} = 1, \ y_{\{s,a,b,c\}} = 3,$$

and $y_S = 0$ for all other s, t-cuts $\delta(S)$ yields a feasible dual solution of value 5!

Shortest path LP:

$$\begin{array}{ll} \min & \sum (x_e \, : \, e \in E) \\ \text{s.t.} & \sum (x_e \, : \, e \in \delta(S)) \geq 1 \\ & (\delta(S) \; s, t\text{-cut}) \\ & x \geq 0 \end{array}$$

Shortest path dual:

 $\max \quad \sum (y_S : \delta(S) \ s, t\text{-cut})$ s.t. $\sum (y_S : e \in \delta(S)) \le c_e$ $(e \in E)$ $y \ge 0$

Weak Duality Theorem

If \bar{x} is feasible for shortest path LP, and \bar{y} is feasible for its dual then $b^T \bar{y} \leq c^T \bar{x}$.

Shortest path LP:

$$\begin{array}{ll} \min & \sum (x_e \, : \, e \in E) \\ \text{s.t.} & \sum (x_e \, : \, e \in \delta(S)) \geq 1 \\ & (\delta(S) \; s, t\text{-cut}) \\ & x \geq 0 \end{array}$$

Shortest path dual:

 $\max \sum (y_S : \delta(S) \ s, t\text{-cut})$ s.t. $\sum (y_S : e \in \delta(S)) \le c_e$ $(e \in E)$ $y \ge 0$

Weak Duality Theorem

If \bar{x} is feasible for shortest path LP, and \bar{y} is feasible for its dual then $b^T \bar{y} \leq c^T \bar{x}$.

 \longrightarrow **Bold** path in figure is shortest s, t-path!

Today:

1. How did we find the bold path?

Weak Duality Theorem

If \bar{x} is feasible for shortest path LP, and \bar{y} is feasible for its dual then $b^T \bar{y} \leq c^T \bar{x}$.

Weak Duality Theorem

If \bar{x} is feasible for shortest path LP, and \bar{y} is feasible for its dual then $b^T \bar{y} \leq c^T \bar{x}$.

 \rightarrow **Bold** path in figure is shortest s, t-path!

Today:

- 1. How did we find the bold path?
- 2. How did we find the dual solution?

Weak Duality Theorem

If \bar{x} is feasible for shortest path LP, and \bar{y} is feasible for its dual then $b^T \bar{y} \leq c^T \bar{x}$.

 \rightarrow **Bold** path in figure is shortest s, t-path!

Today:

- 1. How did we find the bold path?
- 2. How did we find the dual solution?
- 3. Is there always a shortest s, t-path and a dual solution whose value matches its length?

An Algorithm for the Shortest s, t-Path Problem

So far: edges of a graph G = (V, E) are unordered pairs of vertices.

```
So far: edges of a graph G = (V, E) are unordered pairs of vertices.
```

Now: introduce arcs – ordered pairs of vertices.

```
So far: edges of a graph G = (V, E) are unordered pairs of vertices.
```

Now: introduce arcs – ordered pairs of vertices. Denote an arc from u to v as \overrightarrow{uv} , and draw it as arrow from u to v.

So far: edges of a graph G = (V, E) are unordered pairs of vertices.

Now: introduce arcs – ordered pairs of vertices. Denote an arc from u to v as \overrightarrow{uv} , and draw it as arrow from u to v.

A directed path is then a sequence of arcs:

$$\overrightarrow{v_1v_2}, \overrightarrow{v_2v_3}, \ldots, \overrightarrow{v_{k-1}v_k},$$

where $\overrightarrow{v_i v_{i+1}}$ is an arc in the given graph, and $v_i \neq v_j$ for all $i \neq j$.

So far: edges of a graph G = (V, E) are unordered pairs of vertices.

Now: introduce arcs – ordered pairs of vertices. Denote an arc from u to v as \overrightarrow{uv} , and draw it as arrow from u to v.

A directed path is then a sequence of arcs:

$$\overrightarrow{v_1v_2}, \overrightarrow{v_2v_3}, \dots, \overrightarrow{v_{k-1}v_k},$$

where $\overrightarrow{v_i v_{i+1}}$ is an arc in the given graph, and $v_i \neq v_j$ for all $i \neq j$.

Example:

$$\overrightarrow{uv}, \overrightarrow{vw}, \overrightarrow{wx}$$

is a directed u, x-path.

Idea: Find an s, t-path P and a feasible dual y s.t. $c(P) = \mathbb{1}^T y$. How?

Recall the shortest path dual:

$$\max \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$
$$(e \in E)$$
$$y \ge 0$$

Idea: Find an s, t-path P and a feasible dual y s.t. $c(P) = \mathbb{1}^T y$. How?

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$\label{eq:slack} \begin{split} \mathsf{slack}_y(e) &= c_e - \sum(y_U \, : \\ \delta(U) \; s, t\text{-cut, } e \in \delta(U)) \end{split}$$

Recall the shortest path dual:

$$\max \quad \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$
$$(e \in E)$$
$$y \ge 0$$

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$\mathsf{slack}_y(e) = c_e - \sum_{\delta(U)} (y_U : \delta(U) \ s, t\text{-cut, } e \in \delta(U))$$

•
$$slack_y(sa) =$$

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$\mathsf{slack}_y(e) = c_e - \sum_{\delta(U)} (y_U : \delta(U) \ s, t\text{-cut, } e \in \delta(U))$$

•
$$slack_y(sa) = 2 - 1 = 1$$

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$\mathsf{slack}_y(e) = c_e - \sum (y_U : \delta(U) \ s, t\text{-cut}, \ e \in \delta(U))$$

- $\operatorname{slack}_y(sa) = 2 1 = 1$
- $slack_y(sd) =$

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$\mathsf{slack}_y(e) = c_e - \sum_{\delta(U)} (y_U : \delta(U) \ s, t\text{-cut}, \ e \in \delta(U))$$

- $slack_y(sa) = 2 1 = 1$
- $slack_y(sd) = 3 1 1 = 1$

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$\mathsf{slack}_y(e) = c_e - \sum_{\delta(U)} (y_U : \delta(U) \ s, t\text{-cut}, \ e \in \delta(U))$$

- $slack_y(sa) = 2 1 = 1$
- $slack_y(sd) = 3 1 1 = 1$
- $slack_y(ct) =$

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$\mathsf{slack}_y(e) = c_e - \sum_{\delta(U)} (y_U : \delta(U) \ s, t\text{-cut}, \ e \in \delta(U))$$

- $slack_y(sa) = 2 1 = 1$
- $slack_y(sd) = 3 1 1 = 1$
- $slack_y(ct) = 4 1 2 = 1$

Start with the trivial dual y = 0

Start with the trivial dual y = 0Simplest s, t-cut: $\delta(\{s\})$

Start with the trivial dual y = 0

 $\begin{array}{l} \text{Simplest } s,t\text{-cut: } \delta(\{s\}) \\ \longrightarrow \text{ increase } y_{\{s\}} \text{ as much as we can} \\ \text{maintaining feasibility} \end{array}$

 $y \geq \mathbb{0}$

Start with the trivial dual y = 0

 $\begin{array}{l} \text{Simplest } s,t\text{-cut: } \delta(\{s\}) \\ \longrightarrow \text{ increase } y_{\{s\}} \text{ as much as we can } \\ \text{maintaining feasibility} \end{array}$

$$\longrightarrow y_{\{s\}} = 1$$

Start with the trivial dual y = 0

 $\begin{array}{l} \text{Simplest } s,t\text{-cut: } \delta(\{s\}) \\ \longrightarrow \text{ increase } y_{\{s\}} \text{ as much as we can } \\ \text{maintaining feasibility} \end{array}$

 $\longrightarrow y_{\{s\}} = 1$

Note: This decreases the slack of sc to 0!

Start with the trivial dual y = 0

 $\begin{array}{l} \text{Simplest } s,t\text{-cut: } \delta(\{s\}) \\ \longrightarrow \text{ increase } y_{\{s\}} \text{ as much as we can} \\ \text{maintaining feasibility} \\ \longrightarrow y_{\{s\}} = 1 \end{array}$

Note: This decreases the slack of sc to 0! \longrightarrow replace sc by \overrightarrow{sc}

Start with the trivial dual y = 0

 $\begin{array}{l} \text{Simplest } s,t\text{-cut: } \delta(\{s\}) \\ \longrightarrow \text{ increase } y_{\{s\}} \text{ as much as we can} \\ \text{maintaining feasibility} \\ \longrightarrow y_{\{s\}} = 1 \end{array}$

Note: This decreases the slack of sc to 0! \rightarrow replace sc by \overrightarrow{sc}

Next: Look at all vertices that are reachable from *s* via directed paths:

$$U=\{s,c\}$$

$$\max \quad \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$
$$(e \in E)$$
$$y \ge 0$$

Start with the trivial dual y = 0

 $\begin{array}{l} \text{Simplest } s,t\text{-cut: } \delta(\{s\}) \\ \longrightarrow \text{ increase } y_{\{s\}} \text{ as much as we can} \\ \text{maintaining feasibility} \\ \longrightarrow y_{\{s\}} = 1 \end{array}$

Note: This decreases the slack of sc to 0! \rightarrow replace sc by \overrightarrow{sc}

Next: Look at all vertices that are reachable from *s* via directed paths:

$$U=\{s,c\}$$

and consider increasing y_U

Start with the trivial dual y = 0

 $\begin{array}{l} \text{Simplest } s,t\text{-cut: } \delta(\{s\}) \\ \longrightarrow \text{ increase } y_{\{s\}} \text{ as much as we can} \\ \text{maintaining feasibility} \\ \longrightarrow y_{\{s\}} = 1 \end{array}$

Note: This decreases the slack of sc to 0! \rightarrow replace sc by \overrightarrow{sc}

Next: Look at all vertices that are reachable from *s* via directed paths:

$$U=\{s,c\}$$

and consider increasing y_U

Q: By how much can you increase y_U ?

$$\begin{aligned} \mathsf{slack}_y(sa) &=\\ \mathsf{slack}_y(cb) &=\\ \mathsf{slack}_y(ct) &=\\ \mathsf{slack}_y(cd) &=\\ \mathsf{slack}_y(sd) &= \end{aligned}$$

$$\begin{aligned} \mathsf{slack}_y(sa) &= 2-1 = 1\\ \mathsf{slack}_y(cb) &= \\ \mathsf{slack}_y(ct) &= \\ \mathsf{slack}_y(cd) &= \\ \mathsf{slack}_y(sd) &= \end{aligned}$$

$$\begin{aligned} \mathsf{slack}_y(sa) &= 2 - 1 = 1\\ \mathsf{slack}_y(cb) &= 2\\ \mathsf{slack}_y(ct) &= \\ \mathsf{slack}_y(cd) &= \\ \mathsf{slack}_y(sd) &= \end{aligned}$$

$$\begin{aligned} \mathsf{slack}_y(sa) &= 2 - 1 = 1\\ \mathsf{slack}_y(cb) &= 2\\ \mathsf{slack}_y(ct) &= 4\\ \mathsf{slack}_y(cd) &=\\ \mathsf{slack}_y(sd) &= \end{aligned}$$

$$\begin{aligned} \mathsf{slack}_y(sa) &= 2 - 1 = 1\\ \mathsf{slack}_y(cb) &= 2\\ \mathsf{slack}_y(ct) &= 4\\ \mathsf{slack}_y(cd) &= 1\\ \mathsf{slack}_y(sd) &= \end{aligned}$$

$$slack_y(sa) = 2 - 1 = 1$$

$$slack_y(cb) = 2$$

$$slack_y(ct) = 4$$

$$slack_y(cd) = 1$$

$$slack_u(sd) = 3 - 1 = 2$$

Q: By how much can you increase y_U ? The maximum increase possible for $y_{\{s,c\}}$ is determined by the slack of edges in $\delta(\{s,c\})!$

$$\begin{aligned} \mathsf{slack}_y(sa) &= 2 - 1 = 1\\ \mathsf{slack}_y(cb) &= 2\\ \mathsf{slack}_y(ct) &= 4\\ \mathsf{slack}_y(cd) &= 1\\ \mathsf{slack}_y(sd) &= 3 - 1 = 2 \end{aligned}$$

Edges *cd* and *sa* minimize slack. Pick one arbitrarily: *sa*.

Q: By how much can you increase y_U ? The maximum increase possible for $y_{\{s,c\}}$ is determined by the slack of edges in $\delta(\{s,c\})!$

 $\begin{aligned} \mathsf{slack}_y(sa) &= 2-1 = 1\\ \mathsf{slack}_y(cb) &= 2\\ \mathsf{slack}_y(ct) &= 4\\ \mathsf{slack}_y(cd) &= 1\\ \mathsf{slack}_y(sd) &= 3-1 = 2 \end{aligned}$

Edges cd and sa minimize slack. Pick one arbitrarily: sa. Set $y_U = \text{slack}_y(sa) = 1$ and convert sainto arc \overrightarrow{sa}

Q: Which vertices are reachable from s via directed paths?

Q: Which vertices are reachable from s via directed paths?

$$U=\{s,a,c\}$$

 $y \geq \mathbb{0}$

Q: Which vertices are reachable from s via directed paths?

 $U=\{s,a,c\}$

Natural idea: Increase $y_{\{s,a,c\}}$ by as much as we can. How much?

Q: Which vertices are reachable from s via directed paths?

 $U=\{s,a,c\}$

Natural idea: Increase $y_{\{s,a,c\}}$ by as much as we can. How much? \longrightarrow the slack of cd is 0, and hence

$$y_{\{s,a,c\}} = 0$$

Q: Which vertices are reachable from s via directed paths?

 $U=\{s,a,c\}$

Natural idea: Increase $y_{\{s,a,c\}}$ by as much as we can. How much? \longrightarrow the slack of cd is 0, and hence

$$y_{\{s,a,c\}} = 0$$

Also: change cd into \overrightarrow{cd} , and let

 $U = \{s, a, c, d\}$

be the reachable vertices from s

Vertices reachable from s by directed paths:

 $U = \{s, a, c, d\}$

Vertices reachable from s by directed paths:

 $U = \{s, a, c, d\}$

$$slack_y(ab) =$$

 $slack_y(cb) =$
 $slack_y(ct) =$
 $slack_y(dt) =$

Vertices reachable from s by directed paths:

 $U = \{s, a, c, d\}$

$$slack_y(ab) = 1$$

 $slack_y(cb) =$
 $slack_y(ct) =$
 $slack_y(dt) =$

Vertices reachable from s by directed paths:

 $U = \{s, a, c, d\}$

$$\begin{aligned} \mathsf{slack}_y(ab) &= 1\\ \mathsf{slack}_y(cb) &= 2-1 = 1\\ \mathsf{slack}_y(ct) &=\\ \mathsf{slack}_y(dt) &= \end{aligned}$$

Vertices reachable from s by directed paths:

 $U = \{s, a, c, d\}$

$$\begin{aligned} \mathsf{slack}_y(ab) &= 1\\ \mathsf{slack}_y(cb) &= 2-1=1\\ \mathsf{slack}_y(ct) &= 4-1=3\\ \mathsf{slack}_y(dt) &= \end{aligned}$$

Vertices reachable from s by directed paths:

 $U = \{s, a, c, d\}$

Let us compute the slack of edges in $\delta(U)$:

$$slack_y(ab) = 1$$

$$slack_y(cb) = 2 - 1 = 1$$

$$slack_y(ct) = 4 - 1 = 3$$

$$slack_y(dt) = 2$$

Let $y_{\{s,a,c,d\}} = 1$, add equality arc \overrightarrow{cb} , and update the set

$$U = \{s, a, b, c, d\}$$

of vertices reachable from \boldsymbol{s}

Vertices reachable from s by directed paths:

 $U = \{s, a, b, c, d\}$

Vertices reachable from s by directed paths:

 $U = \{s, a, b, c, d\}$

$$\begin{array}{ll} {\sf slack}_y(bt) & = \\ {\sf slack}_y(ct) & = \\ {\sf slack}_y(dt) & = \end{array}$$

Vertices reachable from s by directed paths:

 $U = \{s, a, b, c, d\}$

$$slack_y(bt) = 4$$

 $slack_y(ct) =$
 $slack_y(dt) =$

Vertices reachable from s by directed paths:

 $U = \{s, a, b, c, d\}$

Vertices reachable from s by directed paths:

 $U = \{s, a, b, c, d\}$

$$\begin{aligned} \mathsf{slack}_y(bt) &= 4\\ \mathsf{slack}_y(ct) &= 4-2=2\\ \mathsf{slack}_y(dt) &= 2-1=1 \end{aligned}$$

Vertices reachable from s by directed paths:

 $U = \{s, a, b, c, d\}$

Let us compute the slack of edges in $\delta(U)$:

$$\begin{split} \mathsf{slack}_y(bt) &= 4\\ \mathsf{slack}_y(ct) &= 4-2=2\\ \mathsf{slack}_y(dt) &= 2-1=1 \end{split}$$

Let $y_{\{s,a,b,c,d\}} = 1$, add equality arc \overrightarrow{dt} .

Note: we now have a directed s, t-path in our graph:

$$P = \overrightarrow{sc}, \overrightarrow{cd}, \overrightarrow{dt},$$

and its length is 4!

Note: we now have a directed s, t-path in our graph:

$$P = \overrightarrow{sc}, \overrightarrow{cd}, \overrightarrow{dt},$$

and its length is 4!

We also have a feasible dual solution:

$$y_{\{s\}} = y_{\{s,c\}} = y_{\{s,a,c,d\}} = y_{\{s,a,b,c,d\}} = 1$$

and $y_U = 0$ otherwise.

 $\max \sum (y_S : \delta(S) \ s, t\text{-cut})$ s.t. $\sum (y_S : e \in \delta(S)) \le c_e$ $(e \in E)$ $y \ge 0$

Note: we now have a directed s, t-path in our graph:

$$P = \overrightarrow{sc}, \overrightarrow{cd}, \overrightarrow{dt},$$

and its length is 4!

We also have a feasible dual solution:

$$y_{\{s\}} = y_{\{s,c\}} = y_{\{s,a,c,d\}} = y_{\{s,a,b,c,d\}} = 1,$$

and $y_U = 0$ otherwise. Its value is 4!

y > 0

Note: we now have a directed s, t-path in our graph:

$$P = \overrightarrow{sc}, \overrightarrow{cd}, \overrightarrow{dt},$$

and its length is 4!

We also have a feasible dual solution:

$$y_{\{s\}} = y_{\{s,c\}} = y_{\{s,a,c,d\}} = y_{\{s,a,b,c,d\}} = 1,$$

and $y_U = 0$ otherwise. Its value is 4!

 \longrightarrow Path P is a shortest path!

Shortest Path Algorithm

To compute the shortest Path for the instance on the right, we used the following algorithm:

Algorithm 3.2 Shortest path.

Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$.

Output: A shortest st-path P

- 1: $y_W := 0$ for all *st*-cuts $\delta(W)$. Set $U := \{s\}$
- 2: while $t \notin U$ do
- 3: Let *ab* be an edge in $\delta(U)$ of smallest slack for *y* where $a \in U$, $b \notin U$
- 4: $y_U := \operatorname{slack}_y(ab)$
- 5: $U := U \cup \{b\}$
- 6: change edge ab into an arc \overrightarrow{ab}
- 7: end while
- 8: return A directed st-path P.

Recap

• We saw a shortest path algorithm that computes

(a) an s, t-path P, and (b) a feasible solution y for the dual of the shortest path LP simultaneously

Recap

• We saw a shortest path algorithm that computes

(a) an *s*, *t*-path *P*, and(b) a feasible solution *y* for the dual of the shortest path LP simultaneously

• We will soon show, that the length of the output path P, and the value of the dual solution y are the same, showing that both P and y are optimal

Recap

• We saw a shortest path algorithm that computes

(a) an s, t-path P, and (b) a feasible solution y for the dual of the shortest path LP simultaneously

- We will soon show, that the length of the output path P, and the value of the dual solution y are the same, showing that both P and y are optimal
- Have a look at the book. It has another full example run of the shortest path algorithm