
Module 1: Formulations (Shortest Paths)

Input:

Input:

 $\bullet \ \operatorname{Graph} \ G = (V,E)$

Input:

- $\bullet \ \ \mathsf{Graph} \ G = (V,E)$
- Non-negative edge lengths c_e for all $e \in E$

Input:

- $\bullet \ \ \mathsf{Graph} \ G = (V,E)$
- Non-negative edge lengths c_e for all $e \in E$
- $\bullet \ \ \mathsf{Vertices} \ s,t \in V$

Input:

- $\bullet \ \ \mathsf{Graph} \ G = (V,E)$
- Non-negative edge lengths c_e for all $e \in E$
- $\bullet \ \ \mathsf{Vertices} \ s,t \in V$

Goal: Compute an s, t-path of smallest total length.

Input:

- Graph G = (V, E)
- Non-negative edge lengths c_e for all $e \in E$
- $\bullet \ \ \mathsf{Vertices} \ s,t \in V$

Goal: Compute an s, t-path of smallest total length.

Recall: P is an s,t-path if it is of the form

$$v_1v_2, v_2v_3, \ldots, v_{k-1}v_k$$

Input:

- $\bullet \ \ \mathsf{Graph} \ G = (V,E)$
- Non-negative edge lengths c_e for all $e \in E$
- $\bullet \ \ \mathsf{Vertices} \ s,t \in V$

Goal: Compute an s,t-path of smallest total length.

Recall: P is an s,t-path if it is of the form

$$v_1v_2, v_2v_3, \ldots, v_{k-1}v_k$$

1.
$$v_i v_{i+1} \in E$$
 for all $i \in \{1, \dots, k-1\}$,

Input:

- $\bullet \ \ \mathsf{Graph} \ G = (V,E)$
- Non-negative edge lengths c_e for all $e \in E$
- $\bullet \ \ \mathsf{Vertices} \ s,t \in V$

Goal: Compute an s,t-path of smallest total length.

Recall: P is an s, t-path if it is of the form

$$v_1v_2, v_2v_3, \ldots, v_{k-1}v_k$$

- $\begin{aligned} 1. \ \ v_i v_{i+1} \in E \ \text{for all} \\ i \in \{1, \dots, k-1\}, \end{aligned}$
- 2. $v_i \neq v_j$ for all $i \neq j$, and

Input:

- $\bullet \ \ \mathsf{Graph} \ G = (V,E)$
- Non-negative edge lengths c_e for all $e \in E$
- $\bullet \ \ \mathsf{Vertices} \ s,t \in V$

Goal: Compute an s,t-path of smallest total length.

Recall: P is an s,t-path if it is of the form

$$v_1v_2, v_2v_3, \ldots, v_{k-1}v_k$$

- $\begin{aligned} 1. \ \ v_i v_{i+1} \in E \ \text{for all} \\ i \in \{1, \dots, k-1\}, \end{aligned}$
- 2. $v_i \neq v_j$ for all $i \neq j$, and
- 3. $v_1 = s \text{ and } v_k = t$.

Input:

- $\bullet \ \ \mathsf{Graph} \ G = (V,E)$
- Non-negative edge lengths c_e for all $e \in E$
- Vertices $s, t \in V$

Goal: Compute an s,t-path of smallest total length.

Recall: P is an s,t-path if it is of the form

$$v_1v_2, v_2v_3, \ldots, v_{k-1}v_k$$

- $\begin{aligned} 1. \ \ v_i v_{i+1} \in E \ \text{for all} \\ i \in \{1, \dots, k-1\}, \end{aligned}$
- 2. $v_i \neq v_j$ for all $i \neq j$, and
- 3. $v_1 = s \text{ and } v_k = t$.

E.g.,
$$P = sa, ab, bt$$

Shortest Path Problem: Given $G=(V,E),\ c_e\geq 0$ for all $e\in E,$ and $s,t\in V,$ compute an s,t-path of smallest total length.

Shortest Path Problem: Given $G=(V,E),\ c_e\geq 0$ for all $e\in E,$ and $s,t\in V,$ compute an s,t-path of smallest total length.

Now: Formulate the problem as an IP!

Shortest Path Problem: Given $G=(V,E),\ c_e\geq 0$ for all $e\in E,$ and $s,t\in V,$ compute an s,t-path of smallest total length.

Now: Formulate the problem as an IPI

Useful Observation: Let $C \subseteq E$ be a set of edges whose removal disconnects s and t.

Shortest Path Problem: Given $G=(V,E),\ c_e\geq 0$ for all $e\in E,$ and $s,t\in V,$ compute an s,t-path of smallest total length.

Now: Formulate the problem as an IPI

Useful Observation: Let $C \subseteq E$ be a set of edges whose removal disconnects s and t.

Shortest Path Problem: Given $G=(V,E),\ c_e\geq 0$ for all $e\in E,$ and $s,t\in V,$ compute an s,t-path of smallest total length.

Now: Formulate the problem as an IP!

Useful Observation: Let $C \subseteq E$ be a set of edges whose removal disconnects s and t.

 $\longrightarrow \mathsf{Every}\ s, t\text{-path}\ P\ \mathsf{must}\ \mathsf{have}\ \mathsf{at}$ least

one edge in C.

Shortest Path Problem: Given $G=(V,E),\ c_e\geq 0$ for all $e\in E$, and $s,t\in V$, compute an s,t-path of smallest total length.

Now: Formulate the problem as an IP!

Useful Observation: Let $C \subseteq E$ be a set of edges whose removal disconnects s and t.

 \longrightarrow Every s,t-path P must have at least

one edge in C.

Definition

Shortest Path Problem: Given $G=(V,E),\ c_e\geq 0$ for all $e\in E,$ and $s,t\in V,$ compute an s,t-path of smallest total length.

Now: Formulate the problem as an IPI

Useful Observation: Let $C \subseteq E$ be a set of edges whose removal disconnects s and t.

 $\longrightarrow \mathsf{Every}\ s, t\text{-path}\ P\ \mathsf{must}\ \mathsf{have}\ \mathsf{at}$ least

one edge in C.

Definition

$$\delta(S) = \{uv \in E : u \in S, v \not\in S\}$$

Examples:

Definition

$$\delta(S) = \{uv \in E \,:\, u \in S, v \not\in S\}$$

Examples:

1. $S = \{s\}$

Definition

$$\delta(S) = \{uv \in E \,:\, u \in S, v \not\in S\}$$

Examples:

1.
$$S = \{s\} \rightarrow \delta(S) = \{sa, sb\}$$

Definition

$$\delta(S) = \{uv \in E \,:\, u \in S, v \not\in S\}$$

Examples:

- 1. $S = \{s\} \rightarrow \delta(S) = \{sa, sb\}$
- 2. $S = \{s, a\}$

Definition

$$\delta(S) = \{uv \in E \,:\, u \in S, v \not\in S\}$$

Examples:

- 1. $S = \{s\} \rightarrow \delta(S) = \{sa, sb\}$
- 2. $S = \{s, a\} \rightarrow \delta(S) = \{ab, at, sb\}$

Definition

$$\delta(S) = \{uv \in E \,:\, u \in S, v \not\in S\}$$

Examples:

1.
$$S = \{s\} \rightarrow \delta(S) = \{sa, sb\}$$

2.
$$S = \{s, a\} \rightarrow \delta(S) = \{ab, at, sb\}$$

3.
$$S = \{a, b\}$$

Definition

$$\delta(S) = \{uv \in E \, : \, u \in S, v \not \in S\}$$

Examples:

1.
$$S = \{s\} \rightarrow \delta(S) = \{sa, sb\}$$

2.
$$S = \{s, a\} \rightarrow \delta(S) = \{ab, at, sb\}$$

3.
$$S=\{a,b\} \rightarrow \delta(S)=\{sa,sb,at,bt\}$$

Definition

$$\delta(S) = \{uv \in E \,:\, u \in S, v \not\in S\}$$

Examples:

1.
$$S = \{s\} \rightarrow \delta(S) = \{sa, sb\}$$

2.
$$S = \{s, a\} \rightarrow \delta(S) = \{ab, at, sb\}$$

3.
$$S=\{a,b\} \rightarrow \delta(S)=\{sa,sb,at,bt\}$$

Definition

 $\delta(S)$ is an s,t-cut if $s\in S$ and $t\not\in S$.

Definition

$$\delta(S) = \{uv \in E \,:\, u \in S, v \not\in S\}$$

Examples:

1.
$$S = \{s\} \to \delta(S) = \{sa, sb\}$$

2.
$$S = \{s, a\} \rightarrow \delta(S) = \{ab, at, sb\}$$

3.
$$S=\{a,b\} \rightarrow \delta(S)=\{sa,sb,at,bt\}$$

Definition

 $\delta(S)$ is an s, t-cut if $s \in S$ and $t \notin S$.

E.g., 1 and 2 are s, t-cuts, 3 is not.

Definition

$$\delta(S) = \{uv \in E \,:\, u \in S, v \not\in S\}$$

Definition

 $\delta(S)$ is an s, t-cut if $s \in S$ and $t \notin S$.

Definition

 $\delta(S)$ is an s, t-cut if $s \in S$ and $t \notin S$.

E.g.,
$$\delta(\{s,a\}) = \{sb,ab,at\}$$
 is an $s,t\text{-cut}.$

Definition

 $\delta(S)$ is an s, t-cut if $s \in S$ and $t \notin S$.

E.g., $\delta(\{s,a\}) = \{sb,ab,at\}$ is an s,t-cut.

Remark

If P is an s,t-path and $\delta(S)$ is an s,t-cut, then P must have an edge from $\delta(S).$

Definition

 $\delta(S)$ is an s, t-cut if $s \in S$ and $t \notin S$.

E.g., $\delta(\{s,a\}) = \{sb,ab,at\}$ is an s,t-cut.

Remark

If P is an s,t-path and $\delta(S)$ is an s,t-cut, then P must have an edge from $\delta(S).$

E.g., P = sa, ab, bt.

Remark

If $S\subseteq E$ contains at least one edge from every s,t-cut, then S contains an s,t-path.

Remark

If $S\subseteq E$ contains at least one edge from every s,t-cut, then S contains an s,t-path.

Proof: (by contradiction)

Remark

If $S\subseteq E$ contains at least one edge from every s,t-cut, then S contains an s,t-path.

Proof: (by contradiction)

• Suppose S has an edge from every s,t-cut, but S has no s,t-path.

Remark

If $S\subseteq E$ contains at least one edge from every s,t-cut, then S contains an s,t-path.

Proof: (by contradiction)

- Suppose S has an edge from every s,t-cut, but S has no s,t-path.
- Let R be the set of vertices reachable from s in S:

$$R = \{u \in V \,:\, S \text{ has an } s, u\text{-path}\}.$$

Remark

If $S\subseteq E$ contains at least one edge from every s,t-cut, then S contains an s,t-path.

Proof: (by contradiction)

- Suppose S has an edge from every s,t-cut, but S has no s,t-path.
- Let R be the set of vertices reachable from s in S:

$$R = \{u \in V \,:\, S \text{ has an } s, u\text{-path}\}.$$

 $\bullet \ \, \delta(R) \text{ is an } s,t\text{-cut since } s \in R \text{ and } \\ t \not \in R.$

Cuts

Remark

If $S\subseteq E$ contains at least one edge from every s,t-cut, then S contains an s,t-path.

Proof: (by contradiction)

- Suppose S has an edge from every s,t-cut, but S has no s,t-path.
- Let R be the set of vertices reachable from s in S:

$$R=\{u\in V\,:\, S \text{ has an } s,u\text{-path}\}.$$

 $\bullet \ \, \delta(R) \text{ is an } s,t\text{-cut since } s \in R \text{ and } \\ t \not \in R.$

• Note: There cannot be an edge $uv \in S$ with $u \in R$ and $v \notin R$.

Cuts

Remark

If $S\subseteq E$ contains at least one edge from every s,t-cut, then S contains an s,t-path.

Proof: (by contradiction)

- Suppose S has an edge from every s,t-cut, but S has no s,t-path.
- Let R be the set of vertices reachable from s in S:

$$R=\{u\in V\,:\, S \text{ has an } s,u\text{-path}\}.$$

 $\bullet \ \, \delta(R) \text{ is an } s,t\text{-cut since } s \in R \text{ and } \\ t \not \in R.$

• Note: There cannot be an edge $uv \in S$ with $u \in R$ and $v \notin R$. Otherwise: v should have been in R!

Cuts

Remark

If $S\subseteq E$ contains at least one edge from every s,t-cut, then S contains an s,t-path.

Proof: (by contradiction)

- Suppose S has an edge from every s,t-cut, but S has no s,t-path.
- Let R be the set of vertices reachable from s in S:

$$R=\{u\in V\,:\, S \text{ has an } s,u\text{-path}\}.$$

 $\bullet \ \, \delta(R) \text{ is an } s,t\text{-cut since } s \in R \text{ and } \\ t \not \in R.$

• Note: There cannot be an edge $uv \in S$ with $u \in R$ and $v \notin R$. Otherwise: v should have been in R!

$$\longrightarrow \delta(R) \cap S = \emptyset.$$
Contradiction!

Variables: We have one binary variable x_e for each edge $e \in E$.

Remark

Variables: We have one binary variable x_e for each edge $e \in E$. We want:

$$x_e = \begin{cases} 1 : e \in P \\ 0 : \text{otherwise} \end{cases}$$

Remark

Variables: We have one binary variable x_e for each edge $e \in E$. We want:

$$x_e = \begin{cases} 1 : e \in P \\ 0 : \text{otherwise} \end{cases}$$

Constraints: We have one constraint for each s, t-cut $\delta(U)$, forcing P to have an edge from $\delta(S)$.

Remark

Variables: We have one binary variable x_e for each edge $e \in E$. We want:

$$x_e = \begin{cases} 1 : e \in P \\ 0 : \text{otherwise} \end{cases}$$

Constraints: We have one constraint for each s,t-cut $\delta(U)$, forcing P to have an edge from $\delta(S)$.

$$\sum (x_e : e \in \delta(U)) \ge 1 \tag{1}$$

for all s, t-cuts $\delta(U)$.

Remark

Variables: We have one binary variable x_e for each edge $e \in E$. We want:

$$x_e = \left\{ \begin{array}{l} 1 : e \in P \\ 0 : \text{otherwise} \end{array} \right.$$

Constraints: We have one constraint for each s,t-cut $\delta(U)$, forcing P to have an edge from $\delta(S)$.

$$\sum (x_e : e \in \delta(U)) \ge 1 \tag{1}$$

for all s, t-cuts $\delta(U)$.

Objective:
$$\sum (c_e x_e : e \in E)$$

Remark

$$\begin{split} & \min \ \sum (c_e x_e \,:\, e \in E) \\ & \text{s.t.} \ \sum (x_e \,:\, e \in \delta(U)) \geq 1 \ (U \subseteq V, s \in U, t \not\in U) \\ & x_e \geq 0, x_e \ \text{integer} \quad (e \in E) \end{split}$$

$$\begin{split} & \min \ \sum (c_e x_e \ : \ e \in E) \\ & \text{s.t.} \ \sum (x_e \ : \ e \in \delta(U)) \geq 1 \ (U \subseteq V, s \in U, t \not\in U) \\ & x_e \geq 0, x_e \ \text{integer} \quad (e \in E) \end{split}$$

$$\begin{array}{ccc}
\min & (3,4,1,2,2)x \\
& sa & sb
\end{array}$$

s.t.
$$\begin{cases} s, a \\ \{s, b\} \\ \{s, a, b\} \end{cases} \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} x \geq 1$$
$$x \geq 0 \quad x \text{ integer}$$

$$\begin{split} & \min \ \sum (c_e x_e \,:\, e \in E) \\ & \text{s.t.} \ \sum (x_e \,:\, e \in \delta(U)) \geq 1 \ (U \subseteq V, s \in U, t \not\in U) \\ & x_e \geq 0, x_e \ \text{integer} \quad (e \in E) \end{split}$$

$$\begin{split} & \min \; \sum (c_e x_e \, : \, e \in E) \\ & \text{s.t.} \; \sum (x_e \, : \, e \in \delta(U)) \geq 1 \; (U \subseteq V, s \in U, t \not\in U) \\ & x_e \geq 0, x_e \; \text{integer} \quad (e \in E) \end{split}$$

Suppose: $c_e > 0$ for all $e \in E$

$$\begin{split} & \min \ \sum (c_e x_e \ : \ e \in E) \\ & \text{s.t.} \ \sum (x_e \ : \ e \in \delta(U)) \geq 1 \ (U \subseteq V, s \in U, t \not\in U) \\ & x_e \geq 0, x_e \ \text{integer} \quad (e \in E) \end{split}$$

Suppose: $c_e > 0$ for all $e \in E$

Then: In an optimal solution, $x_e \leq 1$ for all $e \in E$. Why?

$$\begin{split} & \min \ \sum (c_e x_e \ : \ e \in E) \\ & \text{s.t.} \ \sum (x_e \ : \ e \in \delta(U)) \geq 1 \ (U \subseteq V, s \in U, t \not\in U) \\ & x_e \geq 0, x_e \ \text{integer} \quad (e \in E) \end{split}$$

Suppose: $c_e > 0$ for all $e \in E$

Then: In an optimal solution, $x_e \leq 1$ for all $e \in E$. Why?

Suppose $x_e > 1$.

$$\begin{split} & \min \ \sum (c_e x_e \ : \ e \in E) \\ & \text{s.t.} \ \sum (x_e \ : \ e \in \delta(U)) \geq 1 \ (U \subseteq V, s \in U, t \not\in U) \\ & x_e \geq 0, x_e \ \text{integer} \quad (e \in E) \end{split}$$

Suppose: $c_e > 0$ for all $e \in E$

Then: In an optimal solution, $x_e \leq 1$ for all $e \in E$. Why?

Suppose $x_e > 1$.

Then let $x_e = 1$. This is cheaper and maintains feasibility!

$$\begin{split} & \min \ \sum (c_e x_e \,:\, e \in E) \\ & \text{s.t.} \ \sum (x_e \,:\, e \in \delta(U)) \geq 1 \ (U \subseteq V, s \in U, t \not\in U) \\ & x_e \geq 0, x_e \ \text{integer} \quad (e \in E) \end{split}$$

Suppose: $c_e > 0$ for all $e \in E$

Then: In an optimal solution, $x_e \leq 1$ for all $e \in E$. Why?

Suppose $x_e > 1$.

Then let $x_e = 1$. This is cheaper and maintains feasibility!

For a binary solution x, define

$$S_x = \{ e \in E : x_e = 1 \}.$$

Note: If x is feasible for an IP, then S_x satisfies the remark, but S_x may contain more than just an s,t-path!

Remark

Note: If x is feasible for an IP, then S_x satisfies the remark, but S_x may contain more than just an s,t-path!

E.g., $x_e = 1$ for all blue edges in the figure and $x_e = 0$ otherwise.

Remark

Note: If x is feasible for an IP, then S_x satisfies the remark, but S_x may contain more than just an s,t-path!

E.g., $x_e = 1$ for all blue edges in the figure and $x_e = 0$ otherwise. Then,

$$S_x = \{sa, ab, at\}$$

Remark

Note: If x is feasible for an IP, then S_x satisfies the remark, but S_x may contain more than just an s,t-path!

E.g., $x_e = 1$ for all blue edges in the figure and $x_e = 0$ otherwise. Then,

$$S_x = \{sa, ab, at\}$$

Note: x cannot be optimal for the IP!

Remark

Note: If x is feasible for an IP, then S_x satisfies the remark, but S_x may contain more than just an s,t-path!

E.g., $x_e = 1$ for all blue edges in the figure and $x_e = 0$ otherwise. Then,

$$S_x = \{sa, ab, at\}$$

Note: x cannot be optimal for the IP!

Why?

Remark

$$\begin{split} & \min \ \sum (c_e x_e \ : \ e \in E) \\ & \text{s.t.} \ \sum (x_e \ : \ e \in \delta(U)) \geq 1 \ (U \subseteq V, s \in U, t \not\in U) \\ & x_e \geq 0, x_e \ \text{integer} \quad (e \in E) \end{split}$$

Remark

If x is an optimal solution for the above IP and $c_e>0$ for all $e\in E$, then S_x contains the edges of a shortest s,t-path.

$$\delta(U) = \{ uv \in E : u \in U, v \notin U \}.$$

• Given G = (V, E) and $U \subseteq V$, we define

$$\delta(U) = \{ uv \in E : u \in U, v \notin U \}.$$

 $\bullet \ \ \delta(U) \ \text{is an} \ s,t\text{-cut if} \ s\in U \ \text{and} \ t\not\in U.$

$$\delta(U) = \{ uv \in E : u \in U, v \notin U \}.$$

- $\bullet \ \delta(U) \text{ is an } s,t\text{-cut if } s\in U \text{ and } t\not\in U.$
- If $S \subseteq E$ intersects every s,t-cut $\delta(U)$, then S contains an s,t-path.

$$\delta(U) = \{uv \in E : u \in U, v \notin U\}.$$

- $\delta(U)$ is an s, t-cut if $s \in U$ and $t \notin U$.
- $\bullet \ \ \text{If} \ S\subseteq E \ \text{intersects} \ \underbrace{\mathsf{every}} \ s, t\text{-cut} \ \delta(U) \text{, then} \ S \ \text{contains an} \ s, t\text{-path}.$
- \bullet Feasible solutions to the shortest path LP correspond to edge-sets that intersect every $s,t\mbox{-cut};$

$$\delta(U) = \{ uv \in E : u \in U, v \notin U \}.$$

- $\delta(U)$ is an s, t-cut if $s \in U$ and $t \notin U$.
- $\bullet \ \ \text{If} \ S\subseteq E \ \text{intersects} \ \underbrace{\mathsf{every}} \ s, t\text{-cut} \ \delta(U) \text{, then} \ S \ \text{contains an} \ s, t\text{-path}.$
- Feasible solutions to the shortest path LP correspond to edge-sets that intersect every s,t-cut; optimal solutions are minimal in this respect if $c_e>0$ for all $e\in E$.