
CO 250: Introduction to Optimization
Module 2: Linear Programs (Certificates)



Recap and a Question

Fundamental Theorem of Linear Programming

For any linear program, exactly one of the following holds:

• It is infeasible.

• It has an optimal solution.

• It is unbounded.

Questions

Consider a linear program.

• If it is infeasible, how can we prove it?

• If we have an optimal solution, how can we prove it is optimal?

• If it is unbounded, how can we prove it?

This can be always be done!
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Proving Infeasibility

The following linear program is infeasible:

max (3, 4,−1, 2)Tx

s.t. (
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
x ≥ 0

Question

How can we prove this problem is, in fact, infeasible?

We cannot try all possible assignments of values to x1, x2, x3, and x4.
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Claim

There is no solution to (1), (2) and x ≥ 0 where(
3 −2 −6 7
2 −1 −2 4

)
x =

(
6
2

)
(1)
(2)

Proof

Construct a new equation:

−1× (1) : (−3 2 6 −7)x = −6
+ 2× (2) : (4 −2 −4 8)x = 4

(1 0 2 1)x = −2 (?)

Suppose there exists x̄ ≥ 0 satisfying (1), (2). Then x̄ satisfies (?):(
1 0 2 1

)
x̄ = −2.
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Repeat using matrix formulations.

Proof

Suppose for a contradiction there is a solution x̄ to x ≥ 0 and(
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Proposition

There is no solution to Ax = b, x ≥ 0, if there exists y where

yTA ≥ 0> and yT b < 0.

Exercise

Give a proof of this proposition.

Question

If no solution to Ax = b, x ≥ 0 can we always prove it in that way?

YES!!!!!

Farkas’ Lemma

If there is no solution to Ax = b, x ≥ 0, then there exists y where

yTA ≥ 0> and yT b < 0.
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Proving Optimality

max z(x) := (−1− 4 0 0)x + 4

s.t. (
1 3 1 0
−2 6 0 1

)
x =

(
4
5

)
x ≥ 0

Optimal solution:

x̄1 = 0

x̄2 = 0

x̄3 = 4

x̄4 = 5

Question

How can we prove this solution is, in fact, optimal?

We cannot try all possible feasible solutions.
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x =

(
4
5
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x ≥ 0

Optimal solution:

x̄1 = 0

x̄2 = 0

x̄3 = 4

x̄4 = 5

Claim

• x̄ is feasible solution of value 4.

(easy)

• 4 is an upper bound.

Proof

Let x′ be an arbitrary feasible solution. Then

z(x′) = (−1− 4 0 0)x′ + 4
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Proving Unboudedness

max z := (−1 0 0 1)x

s.t. (
−1 −1 1 0
−2 1 0 1

)
x =

(
2
1

)
x ≥ 0

Problem
is unbounded

Question

How can we prove that this problem is unbounded?

Idea

Construct a family of feasible solutions x(t) for all t ≥ 0 and show that
as t goes to infinity, the value of the objective function goes to infinity.
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Exercise

Generalize and prove the following proposition.

Proposition

The linear program,

max{cTx : Ax = b, x ≥ 0}

is unbounded if we can find x̄ and r such that

x̄ ≥ 0, r ≥ 0, Ax̄ = b, Ar = 0 and cT r > 0.



Exercise

Generalize and prove the following proposition.

Proposition

The linear program,

max{cTx : Ax = b, x ≥ 0}

is unbounded if we can find x̄ and r such that

x̄ ≥ 0, r ≥ 0, Ax̄ = b, Ar = 0 and cT r > 0.



Recap

1. For linear programs, exactly one of the following holds. It is

(A) infeasible,
(B) unbounded, or
(C) has an optimal solution.

2. If (A) occurs, there is a short proof of that fact.

3. If (B) occurs, there is a short proof of that fact.

4. For an optimal solution, there is a short proof that it is optimal.

Remark

We have not yet shown you how to find such proofs.
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