
CO 250: Introduction to Optimization
Module 2: Linear Programs (Basis)
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1 0 1 −1
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2
2
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Find a basic solution x for the basis B = , ?
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2
2

)

=

(
1 0 1 −1
0 1 1 1
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x

= x1

(
1
0

)

+ x2

=0

(
1
0

)

+ x3

=0

(
1
1

)

+ x4

(
−1
1

)

=

(
1 −1
0 1

)(
x1

x4

)

(
x1

x4

)

=

(
1 −1
0 1

)−1 (
2
2

)

=

(
1 1
0 1

)(
2
2

)

=

(
4
2

)

Thus, the basic solution is x = (4, 0, 0, 2)⊤.

Question

Did we have a choice for a basic solution x given B = {1, 4}?

NO!
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Basic Solutions – Uniqueness

Proposition

Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.

Before we proceed with the proof, let’s look at some conventions.

− −
−
−

A

x =

b
F r B = , , ,

B = and xB =
x1

x2

x4

(basic variables)

columns of B and elements of xB are rdered by B!
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Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.

Proof

b =Ax
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j
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=
∑

j∈B

jxj +
∑

j /∈B

j xj

=0

=
∑

j∈B

jxj = BxB

Since B is a basis, it implies B is non-singular, i.e., −1

B exists.

Hence, xB = −1

B b.
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When Is a Vector Basic?

Definition

Consider Ax = b with independent rows.
Vector x is a basic solution if it is a basic solution for some basis B.

(

−

)

A

x =

( )

b

Question

Is x = (0, , , , 3)⊤ basic? YES!

Is x basic for B = , ?
(1) Ax = b X

(2) x1 = x2 = x4 = X
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is a column submatrix of B . But the columns of {2,4} are dependent,
so B is singular and B is not a basis, a contradiction.



1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic?

NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = = implies ∈ B.

• x4 = = implies ∈ B.

Thus,

{2,4} =

( )

is a column submatrix of B . But the columns of {2,4} are dependent,
so B is singular and B is not a basis, a contradiction.



1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = = implies ∈ B.

• x4 = = implies ∈ B.

Thus,

{2,4} =

( )

is a column submatrix of B . But the columns of {2,4} are dependent,
so B is singular and B is not a basis, a contradiction.



1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = = implies ∈ B.

• x4 = = implies ∈ B.

Thus,

{2,4} =

( )

is a column submatrix of B . But the columns of {2,4} are dependent,
so B is singular and B is not a basis, a contradiction.



1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = 1 6= 0 implies 2 ∈ B.

• x4 = = implies ∈ B.

Thus,

{2,4} =

( )

is a column submatrix of B . But the columns of {2,4} are dependent,
so B is singular and B is not a basis, a contradiction.



1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = 1 6= 0 implies 2 ∈ B.

• x4 = 1 6= 0 implies 4 ∈ B.

Thus,

{2,4} =

( )

is a column submatrix of B . But the columns of {2,4} are dependent,
so B is singular and B is not a basis, a contradiction.



1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = 1 6= 0 implies 2 ∈ B.

• x4 = 1 6= 0 implies 4 ∈ B.

Thus,

A{2,4} =

(
2 4
1 2

)

is a column submatrix of AB .

But the columns of {2,4} are dependent,
so B is singular and B is not a basis, a contradiction.



1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = 1 6= 0 implies 2 ∈ B.

• x4 = 1 6= 0 implies 4 ∈ B.

Thus,

A{2,4} =

(
2 4
1 2

)

is a column submatrix of AB . But the columns of A{2,4} are dependent,

so B is singular and B is not a basis, a contradiction.



1 2 3 4 5
(

3 2 1 4 1
−1 1 0 2 1

)

︸ ︷︷ ︸

A

x =

(
6
3

)

︸︷︷︸

b

Question

Is x = (0, 1, 0, 1, 0)⊤ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

• x2 = 1 6= 0 implies 2 ∈ B.

• x4 = 1 6= 0 implies 4 ∈ B.

Thus,

A{2,4} =

(
2 4
1 2

)

is a column submatrix of AB . But the columns of A{2,4} are dependent,
so AB is singular and B is not a basis, a contradiction.



Multiple Bases for a Basic Solution
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Note: x = (0, , , , 0)⊤ is a basic solution for

• basis B = , ,

• basis B′ = , ,

• basis B′′ = , , ....

Remark

A basic solution can be the basic solution for more than one basis.
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Relation to LPs

Problem in SEF:
max c⊤x : Ax = b, x ≥ 0 (P)

Remark

If the rows of are dependent, then either

• there is no solution to Ax = b; (P) is infeasible, OR

• a constraint of Ax = b can be removed
without changing the solutions.

Remark

We may assume, when solving (P), that rows of are independent.

Definition

A basic solution x of Ax = b is feasible if x ≥ , i.e., if it is feasible
for (P).



Relation to LPs

Problem in SEF:
max{c⊤x : Ax = b, x ≥ 0} (P)

Remark

If the rows of are dependent, then either

• there is no solution to Ax = b; (P) is infeasible, OR

• a constraint of Ax = b can be removed
without changing the solutions.

Remark

We may assume, when solving (P), that rows of are independent.

Definition

A basic solution x of Ax = b is feasible if x ≥ , i.e., if it is feasible
for (P).



Relation to LPs

Problem in SEF:
max{c⊤x : Ax = b, x ≥ 0} (P)

Remark

If the rows of A are dependent, then either

• there is no solution to Ax = b; (P) is infeasible, OR

• a constraint of Ax = b can be removed
without changing the solutions.

Remark

We may assume, when solving (P), that rows of are independent.

Definition

A basic solution x of Ax = b is feasible if x ≥ , i.e., if it is feasible
for (P).



Relation to LPs

Problem in SEF:
max{c⊤x : Ax = b, x ≥ 0} (P)

Remark

If the rows of A are dependent, then either

• there is no solution to Ax = b; (P) is infeasible,

OR

• a constraint of Ax = b can be removed
without changing the solutions.

Remark

We may assume, when solving (P), that rows of are independent.

Definition

A basic solution x of Ax = b is feasible if x ≥ , i.e., if it is feasible
for (P).



Relation to LPs

Problem in SEF:
max{c⊤x : Ax = b, x ≥ 0} (P)

Remark

If the rows of A are dependent, then either

• there is no solution to Ax = b; (P) is infeasible, OR

• a constraint of Ax = b can be removed
without changing the solutions.

Remark

We may assume, when solving (P), that rows of are independent.

Definition

A basic solution x of Ax = b is feasible if x ≥ , i.e., if it is feasible
for (P).



Relation to LPs

Problem in SEF:
max{c⊤x : Ax = b, x ≥ 0} (P)

Remark

If the rows of A are dependent, then either

• there is no solution to Ax = b; (P) is infeasible, OR

• a constraint of Ax = b can be removed
without changing the solutions.

Remark

We may assume, when solving (P), that rows of are independent.

Definition

A basic solution x of Ax = b is feasible if x ≥ , i.e., if it is feasible
for (P).



Relation to LPs

Problem in SEF:
max{c⊤x : Ax = b, x ≥ 0} (P)

Remark

If the rows of A are dependent, then either

• there is no solution to Ax = b; (P) is infeasible, OR

• a constraint of Ax = b can be removed
without changing the solutions.

Remark

We may assume, when solving (P), that rows of A are independent.

Definition

A basic solution x of Ax = b is feasible if x ≥ , i.e., if it is feasible
for (P).



Relation to LPs

Problem in SEF:
max{c⊤x : Ax = b, x ≥ 0} (P)

Remark
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Consider the system
Ax = b

where the rows of A are independent.

Recap

(1) B is a basis if B is a square, non-singular matrix.

(2) a solution x to Ax = b, is basic for B, if xj = when j ∈ B.

(3) x is basic if it is basic for some basis B.

(4) Each basis has a unique associated basic solution.

(5) Several bases can have the same basic solution.

(6) A basic solution is feasible if it is non-negative.
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