

```
\min_{\mbox{s.t.}} f(x) s.t. g_i(x) \leq 0 \qquad (i=1,\ldots,k)
```

A Nonlinear Program (NLP) is a problem of the form:

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

where

$$f: \Re^n o \Re$$
, and

A Nonlinear Program (NLP) is a problem of the form:

$$\min \ f(x)$$
 s.t. $g_i(x) \leq 0 \ (i=1,\ldots,k)$

where

$$f: \Re^n o \Re$$
, and $q_i: \Re^n o \Re$ for $i=1,\ldots,k$.

A Nonlinear Program (NLP) is a problem of the form:

$$\min_{\textbf{s.t.}} \quad f(x)$$

$$\textbf{s.t.} \qquad \qquad g_i(x) \leq 0 \qquad (i=1,\ldots,k)$$

where

$$f: \Re^n \to \Re$$
, and $g_i: \Re^n \to \Re$ for $i=1,\ldots,k$.

Remark

There aren't any restrictions regarding the type of functions.

A Nonlinear Program (NLP) is a problem of the form:

where

$$f: \Re^n \to \Re$$
, and $g_i: \Re^n \to \Re$ for $i=1,\ldots,k$.

Remark

There aren't any restrictions regarding the type of functions.

This is a very general model, but NLPs can be very hard to solve!

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ g_i(x) \leq 0 \qquad (i=1,\dots,k) \end{array}$$

min
$$x_2$$

s.t.
$$-x_1^2 - x_2 + 2 \leq 0$$

$$x_2 - \frac{3}{2} \leq 0$$

$$x_1 - \frac{3}{2} \leq 0$$

$$-x_1 - 2 \leq 0$$

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ g_i(x) \leq 0 & \quad (i=1,\dots,k) \end{array}$$

min
$$\underbrace{x_2}_{f(x)}$$
s.t.
$$-x_1^2 - x_2 + 2 \leq 0$$

$$x_2 - \frac{3}{2} \leq 0$$

$$x_1 - \frac{3}{2} \leq 0$$

$$-x_1 - 2 \leq 0$$

$$\begin{aligned} & \min \quad f(x) \\ & \text{s.t.} \\ & g_i(x) \leq 0 \qquad (i=1,\dots,k) \end{aligned}$$

$$\begin{array}{cccc} \min & x_2 \\ \text{s.t.} & & \\ & \underbrace{-x_1^2 - x_2 + 2}_{g_1(x)} & \leq & 0 \\ & & \\ & x_2 - \frac{3}{2} & \leq & 0 \\ & & x_1 - \frac{3}{2} & \leq & 0 \\ & & -x_1 - 2 & \leq & 0 \end{array}$$

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ g_i(x) \leq 0 & \quad (i=1,\dots,k) \end{array}$$

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ g_i(x) \leq 0 & \quad (i=1,\dots,k) \end{array}$$

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ g_i(x) \leq 0 \qquad (i=1,\dots,k) \end{array}$$

$$\begin{array}{rcl} \min & x_2 \\ \text{s.t.} & & \\ & -x_1^2 - x_2 + 2 & \leq & 0 \\ & x_2 - \frac{3}{2} & \leq & 0 \\ & x_1 - \frac{3}{2} & \leq & 0 \\ & \underbrace{-x_1 - 2}_{g_4(x)} & \leq & 0 \end{array}$$

$$(1) x_2 \ge 2 - x_1^2.$$

- (1) $x_2 \ge 2 x_1$
- (2) $x_2 \leq \frac{3}{2}$.

|(3)

(2)

$$(1) x_2 \ge 2 - x_1^2.$$

(2)
$$x_2 \leq \frac{3}{2}$$
.

(3)
$$x_1 \leq \frac{3}{2}$$
.

- (1) $x_2 \ge 2 x_1^2$.
- (2) $x_2 \leq \frac{3}{2}$.
- (3) $x_1 \leq \frac{3}{2}$.
- (4) $x_1 \geq -2$.

FEASIBLE REGION

A Nonlinear Program (NLP) is a problem of the form:

min
$$f(x)$$

s.t. $g_i(x) \leq 0$ $(i = 1, ..., k)$

(P)

A Nonlinear Program (NLP) is a problem of the form:

$$\min \quad f(x)$$
 s.t. $g_i(x) \leq 0 \qquad (i=1,\ldots,k)$

(P)

Remark

We may assume f(x) is a linear function, i.e., $f(x) = c^{T}x$.

A Nonlinear Program (NLP) is a problem of the form:

(P)

(Q)

Remark

We may assume f(x) is a linear function, i.e., $f(x) = c^{T}x$.

We can rewrite (P) as

min
$$\lambda$$
 s.t.
$$\lambda \geq f(x)$$

$$g_i(x) \leq 0 \qquad (i=1,\ldots,k)$$

A Nonlinear Program (NLP) is a problem of the form:

$$\begin{bmatrix} \min & f(x) \\ \text{s.t.} & \\ g_i(x) \leq 0 & (i = 1, \dots, k) \end{bmatrix} \tag{P}$$

(Q)

Remark

We may assume f(x) is a linear function, i.e., $f(x) = c^{\top}x$.

We can rewrite (P) as

$$\begin{array}{ll} \min & \lambda \\ \text{s.t.} & \\ & \lambda \geq f(x) \\ & g_i(x) \leq 0 \qquad (i=1,\dots,k) \end{array}$$

The optimal solution to (Q) will have $\lambda = f(x)$.

Nonlinear Programs can also generalize INTEGER PROGRAMS!

 $\max \quad c^\top x$ s.t. $Ax \leq b$ $x_j \in \{0,1\} \quad (j=1,\ldots,n)$

0,1 IP

 $\max \quad c^{\top}x$ s.t. $Ax \leq b$ $x_j \in \{0,1\} \quad (j=1,\ldots,n)$

0,1 IP

Idea

 $x_j \in \{0, 1\}$

$$\max \quad c^{\top}x$$
 s.t.
$$Ax \leq b$$

$$x_j \in \{0,1\} \quad (j=1,\ldots,n)$$

0,1 IP

Idea

$$x_j \in \{0, 1\} \qquad \Longleftrightarrow \qquad x_j(1 - x_j) = 0$$

$$\max \quad c^{\top}x$$
 s.t.
$$Ax \leq b$$

$$x_j \in \{0,1\} \quad (j=1,\dots,n)$$

0,1 IP

Idea

 $\min -c^{\top}x$

$$x_j \in \{0,1\} \qquad \Longleftrightarrow \qquad x_j(1-x_j) = 0$$

s.t.
$$\begin{array}{cccc} Ax & \leq & b \\ x_j(1-x_j) & \leq & 0 & (j=1,\dots,n) \\ -x_j(1-x_j) & \leq & 0 & (j=1,\dots,n) \end{array}$$

Quadratic NLP

$$\max \quad c^{\top}x$$
 s.t.
$$Ax \leq b$$

$$x_j \in \{0,1\} \quad (j=1,\ldots,n)$$

0,1 IP

Idea

$$x_j \in \{0,1\} \qquad \Longleftrightarrow \qquad x_j(1-x_j) = 0$$

s.t.
$$\begin{array}{cccc} Ax & \leq & b \\ x_j(1-x_j) & \leq & 0 & (j=1,\dots,n) \\ -x_j(1-x_j) & \leq & 0 & (j=1,\dots,n) \end{array}$$

Quadratic NLP

Remark

 $\min -c^{\top}x$

 $0,1\ \mbox{IPs}$ are hard to solve; thus, quadratic NLPs are also hard to solve.

 $\max \quad c^{\top}x$ s.t. $Ax \leq b$ $x_j \text{ integer} \quad (j=1,\ldots,n)$

pure IP

$$\begin{aligned} & \max \quad c^\top x \\ & \text{s.t.} & \\ & & Ax \leq b \\ & & x_j \text{ integer} \quad (j=1,\dots,n) \end{aligned}$$

pure IP

Idea

 x_j integer

$$\max \quad c^{ op} x$$
 s.t.
$$Ax \leq b \\ x_j \text{ integer} \quad (j=1,\dots,n)$$

pure IP

Idea

$$x_j$$
 integer \iff $\sin(\pi x_j) = 0.$

$$\max \quad c^{\top}x$$
 s.t.
$$Ax \leq b$$

$$x_{j} \text{ integer} \quad (j=1,\ldots,n)$$

pure IP

Idea

$$x_j$$
 integer \iff $\sin(\pi x_j) = 0.$

```
\min \quad -c^{\top}x s.t. Ax \leq b \\ \sin(\pi x_j) = 0 \quad (j=1,\ldots,n)
```

$$\max \quad c^{\top}x$$
 s.t.
$$Ax \leq b$$

$$x_j \text{ integer} \quad (j=1,\dots,n)$$

pure IP

Idea

$$x_j$$
 integer \iff $\sin(\pi x_j) = 0.$

```
\min \quad -c^{\top}x
s.t.
Ax \leq b
\sin(\pi x_j) = 0 \quad (j = 1, ..., n)
```

Remark

IPs are hard to solve; thus, NLPs are also hard to solve.

Question

What makes solving an NLP hard?

What makes solving an NLP hard?

What makes solving an NLP hard?

META STRATEGY FOR SOLVING AN OPTIMIZATION PROBLEM

ullet Find a feasible solution x.

What makes solving an NLP hard?

- ullet Find a feasible solution x.
- If x is optimal, STOP.

What makes solving an NLP hard?

- Find a feasible solution x.
- If x is optimal, STOP.
- Starting with x, find a "better" feasible solution.

What makes solving an NLP hard?

- Find a feasible solution x.
- If x is optimal, STOP.
- ullet Starting with x, find a "better" feasible solution.

- \bullet Find a feasible solution x.
- If x is optimal, STOP.
- Starting with x, find a "better" feasible solution.

- \bullet Find a feasible solution x.
- If x is optimal, STOP.

$$\begin{array}{rll} \min & x_2 \\ \text{s.t.} & \\ & -x_1^2 - x_2 + 2 & \leq & 0 \\ & x_2 - 3/2 & \leq & 0 \\ & x_1 - 3/2 & \leq & 0 \\ & -x_1 - 2 & \leq & 0 \end{array}$$

- \bullet Find a feasible solution x.
- If x is optimal, STOP.
- Starting with x, find a "better" feasible solution.

- Find a feasible solution x.
- If x is optimal, STOP.
- Starting with x, find a "better" feasible solution.

a is an optimal solution

- Find a feasible solution x.
- If x is optimal, STOP.
- Starting with x, find a "better" feasible solution.

 $\wedge x_2$ \hat{x}_1

a is an optimal solution no better solution around b

- Find a feasible solution x.
- If x is optimal, STOP.
- Starting with x, find a "better" feasible solution.

 $\wedge x_2$ \hat{x}_1

a is an optimal solution no better solution around b b is a local optimum

Consider

$$\min\left\{f(x):x\in S\right\}. \tag{P}$$

Consider

$$\min\left\{f(x):x\in S\right\}.\tag{P}$$

$$x \in S$$
 is a local optimum

Consider

$$\min\left\{f(x):x\in S\right\}.\tag{P}$$

 $x \in S$ is a local optimum if there exists $\delta > 0$ such that

Consider

$$\min\left\{f(x):x\in S\right\}.$$

(P)

 $x \in S$ is a local optimum if there exists $\delta > 0$ such that

$$\forall x' \in S \quad \text{where} \quad ||x' - x|| \le \delta \quad \text{we have} \quad f(x) \le f(x').$$

Consider

$$\min\left\{f(x):x\in S\right\}.\tag{P}$$

 $x \in S$ is a local optimum if there exists $\delta > 0$ such that

$$\forall x' \in S$$
 where $||x' - x|| \le \delta$ we have $f(x) \le f(x')$.

 $\min\{x_2:x\in S\}$

b is a local optimum

Consider

$$\min\left\{f(x):x\in S\right\}.\tag{P}$$

 $x \in S$ is a local optimum if there exists $\delta > 0$ such that

$$\forall x' \in S$$
 where $||x' - x|| \le \delta$ we have $f(x) \le f(x')$.

 $\min\{x_2:x\in S\}$

b is a local optimum

Convexity Helps

Definition

Consider

$$\min\left\{f(x):x\in S\right\}.\tag{P}$$

 $x \in S$ is a local optimum if there exists $\delta > 0$ such that

$$\forall x' \in S$$
 where $||x' - x|| \le \delta$ we have $f(x) \le f(x')$.

Convexity Helps

Definition

Consider

$$\min\left\{f(x):x\in S\right\}.\tag{P}$$

 $x \in S$ is a local optimum if there exists $\delta > 0$ such that

$$\forall x' \in S$$
 where $||x' - x|| \le \delta$ we have $f(x) \le f(x')$.

Proposition

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.\tag{P}$$

Convexity Helps

Definition

Consider

$$\min\left\{f(x):x\in S\right\}.\tag{P}$$

 $x \in S$ is a local optimum if there exists $\delta > 0$ such that

$$\forall x' \in S \quad \text{where} \quad ||x' - x|| \leq \delta \quad \text{we have} \quad f(x) \leq f(x').$$

Proposition

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.\tag{P}$$

If S is convex and x is a local optimum, then x is optimal.

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.\tag{P}$$

If S is convex and x is a local optimum, then x is optimal.

Proof

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.\tag{P}$$

If S is convex and x is a local optimum, then x is optimal.

Proof

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.\tag{P}$$

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose $\exists x' \in S \text{ with } c^{\top}x' < c^{\top}x.$

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.\tag{P}$$

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose $\exists x' \in S \text{ with } c^{\top}x' < c^{\top}x.$

Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small.

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.\tag{P}$$

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose $\exists x' \in S \text{ with } c^{\top}x' < c^{\top}x.$

Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small.

As λ small $||y - x|| \le \delta$.

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.\tag{P}$$

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose $\exists x' \in S \text{ with } c^{\top}x' < c^{\top}x.$

Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small.

As λ small $||y - x|| \le \delta$.

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.\tag{P}$$

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose $\exists x' \in S \text{ with } c^{\top}x' < c^{\top}x.$

Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small.

As λ small $||y - x|| \le \delta$.

$$c^{\mathsf{T}}y$$

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.\tag{P}$$

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose $\exists x' \in S \text{ with } c^{\top}x' < c^{\top}x.$

Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small.

As λ small $||y - x|| \le \delta$.

$$c^{\top}y = c^{\top}(\lambda x' + (1 - \lambda)x)$$

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.\tag{P}$$

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose $\exists x' \in S \text{ with } c^{\top}x' < c^{\top}x.$

Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small.

As λ small $||y - x|| \le \delta$.

$$c^{\top} y = c^{\top} (\lambda x' + (1 - \lambda)x)$$
$$= \underbrace{\lambda}_{>0} \underbrace{c^{\top} x'}_{< c^{\top} x} + (1 - \lambda)c^{\top} x$$

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.\tag{P}$$

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose $\exists x' \in S \text{ with } c^{\top}x' < c^{\top}x.$

Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small.

As λ small $||y - x|| \le \delta$.

$$c^{\top}y = c^{\top}(\lambda x' + (1 - \lambda)x)$$

$$= \underbrace{\lambda}_{>0} \underbrace{c^{\top}x'}_{< c^{\top}x} + (1 - \lambda)c^{\top}x$$

$$< \lambda c^{\top}x + (1 - \lambda)c^{\top}x$$

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.\tag{P}$$

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose $\exists x' \in S \text{ with } c^{\top}x' < c^{\top}x.$

Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small.

As λ small $||y - x|| \le \delta$.

$$c^{\top}y = c^{\top}(\lambda x' + (1 - \lambda)x)$$

$$= \underbrace{\lambda}_{>0} \underbrace{c^{\top}x'}_{< c^{\top}x} + (1 - \lambda)c^{\top}x$$

$$< \lambda c^{\top}x + (1 - \lambda)c^{\top}x$$

$$= c^{\top}x$$

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.\tag{P}$$

If S is convex and x is a local optimum, then x is optimal.

Proof

Suppose $\exists x' \in S \text{ with } c^{\top}x' < c^{\top}x.$

Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small.

As λ small $||y - x|| \le \delta$.

Since S is convex, $y \in S$.

$$c^{\top}y = c^{\top}(\lambda x' + (1 - \lambda)x)$$

$$= \underbrace{\lambda}_{>0} \underbrace{c^{\top}x'}_{< c^{\top}x} + (1 - \lambda)c^{\top}x$$

$$< \lambda c^{\top}x + (1 - \lambda)c^{\top}x$$

$$= c^{\top}x$$

A contradiction.

min
$$c^{\top}x$$

s.t. (P)

$$\begin{bmatrix} \min & c^{\top} x \\ \text{s.t.} & \\ & g_i(x) \le 0 \qquad (i = 1, \dots, k) \end{bmatrix}$$
 (P)

Goal: Study a case where the feasible region of (P) is convex.

min
$$c^{\top}x$$

s.t. $g_i(x) \leq 0$ $(i = 1, ..., k)$ (P)

Goal: Study a case where the feasible region of (P) is convex.

• We will define convex functions

$$\begin{array}{|c|c|c|}
\hline
\min & c^{\top} x \\
\text{s.t.} & \\
g_i(x) \le 0 & (i = 1, \dots, k)
\end{array}$$
(P)

Goal: Study a case where the feasible region of (P) is convex.

- We will define convex functions
- We will prove

Proposition

If g_1, \ldots, g_k are all convex, then the feasible region of (P) is convex.

Function $f: \Re^n \to \Re$ is convex

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$

$$f\big(\lambda a + (1-\lambda)b\big) \leq \lambda f(a) + (1-\lambda)f(b) \quad \text{for all} \quad 0 \leq \lambda \leq 1.$$

Function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for all $a, b \in \mathbb{R}^n$,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$
 for all $0 \le \lambda \le 1$.

CONVEX FUNCTION!

Function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for all $a, b \in \mathbb{R}^n$,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$
 for all $0 \le \lambda \le 1$.

CONVEX FUNCTION!

Function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for all $a, b \in \mathbb{R}^n$,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$
 for all $0 \le \lambda \le 1$.

CONVEX FUNCTION!

$$f\big(\lambda a + (1-\lambda)b\big) \leq \lambda f(a) + (1-\lambda)f(b) \quad \text{for all} \quad 0 \leq \lambda \leq 1.$$

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$
 for all $0 \le \lambda \le 1$.

Function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for all $a, b \in \mathbb{R}^n$,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$
 for all $0 \le \lambda \le 1$.

NOT A CONVEX FUNCTION!

$$f\big(\lambda a + (1-\lambda)b\big) \leq \lambda f(a) + (1-\lambda)f(b) \quad \text{for all} \quad 0 \leq \lambda \leq 1.$$

$$f\big(\lambda a + (1-\lambda)b\big) \leq \lambda f(a) + (1-\lambda)f(b) \quad \text{for all} \quad 0 \leq \lambda \leq 1.$$

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$
 for all $0 \le \lambda \le 1$.

Convex function!

We claim that $f(x) = x^2$ is convex.

We claim that $f(x) = x^2$ is convex.

Pick $a,b\in\Re$ and pick λ where $0\leq\lambda\leq1.$

We claim that $f(x) = x^2$ is convex.

Pick $a, b \in \Re$ and pick λ where $0 \le \lambda \le 1$.

 $[\lambda a + (1 - \lambda)b]^2 \stackrel{?}{\leq} \lambda a^2 + (1 - \lambda)b^2.$

To check:

We claim that $f(x) = x^2$ is convex.

We may assume that $\lambda \neq 0, 1$.

Pick $a, b \in \Re$ and pick λ where $0 \le \lambda \le 1$.

 $[\lambda a + (1 - \lambda)b]^2 \stackrel{?}{\leq} \lambda a^2 + (1 - \lambda)b^2.$

To check:

We claim that $f(x) = x^2$ is convex.

Pick $a, b \in \Re$ and pick λ where $0 \le \lambda \le 1$.

To check:

After simplifying

eck:
$$\left[\lambda a + (1-\lambda)b\right]^2 \stackrel{?}{<} \lambda a^2 + (1-\lambda)b^2.$$

 $\lambda(1-\lambda)2ab \stackrel{?}{\leq} \lambda(1-\lambda)(a^2+b^2),$

We may assume that $\lambda \neq 0, 1$.

We may assume that
$$\lambda \neq 0, 1$$
.

We may assume that
$$\lambda \neq 0, 1$$
.

We claim that $f(x) = x^2$ is convex.

Pick $a, b \in \Re$ and pick λ where $0 \le \lambda \le 1$.

To check:

We may assume that $\lambda \neq 0, 1$.

After simplifying

or, equivalently, as λ , $(1 - \lambda) > 0$,

fying
$$\lambda \neq 0$$
,

$$[\lambda a + (1 - \lambda)b]^2 \stackrel{?}{\leq} \lambda a^2 + (1 - \lambda)b^2.$$

 $\lambda(1-\lambda)2ab \stackrel{?}{\leq} \lambda(1-\lambda)(a^2+b^2),$

 $a^2 + b^2 - 2ab \stackrel{?}{>} 0$

$$0 \le \lambda \le 1.$$

$$\lambda \leq 1$$
.

We claim that $f(x) = x^2$ is convex.

Pick $a, b \in \Re$ and pick λ where $0 \le \lambda \le 1$.

To check:

We may assume that $\lambda \neq 0, 1$.

or, equivalently, as λ , $(1 - \lambda) > 0$,

After simplifying

that
$$\lambda \neq 0, 1$$
.

which is the case as $a^2 + b^2 - 2ab = (a - b)^2 \ge 0$.

 $\lambda(1-\lambda)2ab \stackrel{?}{\leq} \lambda(1-\lambda)(a^2+b^2),$

 $a^2 + b^2 - 2ab \stackrel{?}{>} 0$

$$\left[\lambda a + (1-\lambda)b\right]^2 \stackrel{?}{\leq} \lambda a^2 + (1-\lambda)b^2.$$
 nat $\lambda \neq 0,1.$

Why Do We Care About Convex Functions?

Proposition

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex set.

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex <u>set</u>.

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex <u>set</u>.

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex set.

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S=\{x\in\Re^n:g(x)\leq\beta\}$ is a convex set.

Proof

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S=\{x\in\Re^n:g(x)\leq\beta\}$ is a convex set.

Proof

 ${\sf Pick}\ a,b\in S.$

Let $g:\Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S=\{x\in\Re^n:g(x)\leq\beta\}$ is a convex set.

Proof

Pick $a, b \in S$.

Pick λ where $0 \le \lambda \le 1$.

Let $g:\Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S=\{x\in\Re^n:g(x)\leq\beta\}$ is a convex set.

Proof

Pick $a, b \in S$.

Pick λ where $0 \le \lambda \le 1$.

Let $x = \lambda a + (1 - \lambda)b$.

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S=\{x\in\Re^n:g(x)\leq\beta\}$ is a convex set.

Proof

Pick $a, b \in S$.

Pick λ where $0 \le \lambda \le 1$.

Let $x = \lambda a + (1 - \lambda)b$.

Our goal is to show that $x \in S$, i.e., that $g(x) \le \beta$.

Let $q: \mathbb{R}^n \to \mathbb{R}$ be a convex function and $\beta \in \mathbb{R}$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex set.

Proof

Pick $a, b \in S$.

Pick λ where $0 \le \lambda \le 1$.

Let $x = \lambda a + (1 - \lambda)b$.

Let
$$x = \lambda a + (1 - \lambda)b$$

Our goal is to show that $x \in S$, i.e., that $g(x) \leq \beta$.

Our goal is to show that
$$x \in \mathcal{S}$$
, i.e., that $g(x) \leq \beta$.
$$q(x) = q(\lambda a + (1 - \lambda)b)$$

Let $q: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex set.

Proof

Pick $a, b \in S$.

Pick λ where $0 < \lambda < 1$.

Let $x = \lambda a + (1 - \lambda)b$.

Let
$$x = \lambda a + (1 - \lambda)b$$

Our goal is to show that $x \in S$, i.e., that $g(x) \leq \beta$.

$$g(x) = g(\lambda a + (1 - \lambda)b)$$

$$g(x) = g(\lambda a + (1 - \lambda)b)$$

$$\leq \lambda g(a) + (1 - \lambda)g(b) \qquad \text{(convexity of } g)$$

Let $g: \mathbb{R}^n \to \mathbb{R}$ be a convex function and $\beta \in \mathbb{R}$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex <u>set</u>.

Proof

Pick $a, b \in S$.

Pick λ where $0 \le \lambda \le 1$.

Let $x = \lambda a + (1 - \lambda)b$.

Our goal is to show that $x \in S$, i.e., that $g(x) \leq \beta$.

$$g(x) = g(\lambda a + (1 - \lambda)b)$$

$$\leq \underbrace{\lambda}_{\geq 0} \underbrace{g(a)}_{\leq a} + \underbrace{(1 - \lambda)}_{\geq 0} \underbrace{g(b)}_{\leq a} \qquad (\text{since } a, b \in S)$$

Let $q: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex set.

Proof

Pick $a, b \in S$.

Pick λ where $0 < \lambda < 1$.

Let $x = \lambda a + (1 - \lambda)b$.

Our goal is to show that
$$x \in S$$
, i.e., that $g(x) \leq \beta$.

Our goal is to show that
$$x \in S$$
, i.e., that $g(x) \leq \beta$

$$g(x) = g(\lambda a + (1 - \lambda)b)$$

$$< \lambda \quad g(a) + (1 - \lambda)$$

$$\leq \underbrace{\lambda}_{\geq 0} \underbrace{g(a)}_{\leq \beta} + \underbrace{(1-\lambda)}_{> 0} \underbrace{g(b)}_{\leq \beta} \qquad (\text{since } a, b \in S)$$

$$\leq \lambda \beta + (1 - \lambda)\beta = \beta.$$

 $\min \ c^{\top}x$

s.t.

c' x $g_i(x) \le 0 \qquad (i = 1, \dots, k)$

(P)

min
$$c^{\top}x$$

s.t. $g_i(x) \leq 0$ $(i = 1, \dots, k)$

(P)

If all functions g_i are convex, then the feasible region of (P) is convex.

min $c^{\top}x$ s.t. $g_i(x) \leq 0$ (i = 1, ..., k)

(P)

If all functions g_i are convex, then the feasible region of (P) is convex.

Proof

 $\min \quad c^{\top} x$ s.t. $g_i(x) \le 0 \qquad (i = 1, \dots, k)$

(P)

If all functions g_i are convex, then the feasible region of (P) is convex.

Proof

Let $S_i = \{x : g_i(x) \le 0\}.$

 $\min \ c^{ op} x$ s.t. $g_i(x) \leq 0 \qquad (i=1,\ldots,k)$

(P)

If all functions g_i are convex, then the feasible region of (P) is convex.

Proof

Let $S_i = \{x : g_i(x) \le 0\}.$

By the previous result, S_i is convex.

 $\begin{array}{|c|c|c|}\hline \min & c^\top x\\ \text{s.t.} \\ \end{array}$

If all functions g_i are convex, then the feasible region of (P) is convex.

 $g_i(x) \le 0 \qquad (i = 1, \dots, k)$

(P)

Proof

Let $S_i = \{x : g_i(x) \le 0\}.$

By the previous result, S_i is convex.

The feasible region of (P) is $S_1 \cap S_2 \cap \ldots \cap S_k$.

 $\min \quad c^{\top}x$ s.t. $g_i(x) \leq 0 \qquad (i = 1, \dots, k)$

(P)

If all functions g_i are convex, then the feasible region of (P) is convex.

Proof

Let $S_i = \{x : g_i(x) \le 0\}.$

By the previous result, S_i is convex.

The feasible region of (P) is $S_1 \cap S_2 \cap \ldots \cap S_k$.

Since the intersection of convex sets is convex, the result follows.

Definition

Let $f: \Re^n \to \Re$ be a function.

Definition

Let $f: \Re^n \to \Re$ be a function. The epigraph of f is then given by,

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Definition

Let $f:\Re^n \to \Re$ be a function. The epigraph of f is then given by,

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Definition

Let $f: \Re^n \to \Re$ be a function. The epigraph of f is then given by,

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Definition

Let $f:\Re^n \to \Re$ be a function. The epigraph of f is then given by,

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Definition

Let $f: \Re^n \to \Re$ be a function. The epigraph of f is then given by,

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Definition

Let $f:\Re^n \to \Re$ be a function. The epigraph of f is then given by,

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Definition

Let $f: \Re^n \to \Re$ be a function. The epigraph of f is then given by,

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

f is NOT convex

Definition

Let $f:\Re^n \to \Re$ be a function. The epigraph of f is then given by,

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

f is NOT convex

epi(f) is NOT convex

Definition

Let $f: \Re^n \to \Re$ be a function. The epigraph of f is then given by,

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Proposition

Let $f: \Re^n \to \Re$ be a function. Then

Definition

Let $f:\Re^n \to \Re$ be a function. The epigraph of f is then given by,

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Proposition

Let $f: \Re^n \to \Re$ be a function. Then

- 1. f is convex $\Longrightarrow epi(f)$ is convex.
- 2. epi(f) is convex \implies f is convex.

Let $f: \Re^n \to \Re$ be a function. Then

- $1. \begin{tabular}{ll} f \text{ is convex} \\ \hline \end{tabular} \implies epi(f) \text{ is convex}.$
- $2. \ epi(f) \ {\rm is \ convex} \quad \Longrightarrow \quad f \ {\rm is \ convex}.$

Let $f: \Re^n \to \Re$ be a function. Then

- 1. f is convex $\Longrightarrow epi(f)$ is convex.
- $2. \ epi(f) \ {\rm is \ convex} \quad \Longrightarrow \quad f \ {\rm is \ convex}.$

Proof

Let $f: \Re^n \to \Re$ be a function. Then

1.
$$f$$
 is convex $\implies epi(f)$ is convex.

2.
$$epi(f)$$
 is convex $\implies f$ is convex.

Proof

Proof
$$\operatorname{Pick} \binom{\alpha}{a} \binom{\beta}{b} \in epi(f).$$

Let $f: \Re^n \to \Re$ be a function. Then

1.
$$f$$
 is convex $\implies epi(f)$ is convex.

2.
$$epi(f)$$
 is convex \implies f is convex.

Proof

Pick $\binom{\alpha}{a}\binom{\beta}{b}\in epi(f)$. Pick λ where $0\leq\lambda\leq1$.

Let $f: \Re^n \to \Re$ be a function. Then

1.
$$f$$
 is convex $\Longrightarrow epi(f)$ is convex.

2.
$$epi(f)$$
 is convex \implies f is convex.

Proof

 $\operatorname{Pick} \, \binom{\alpha}{a} \, \binom{\beta}{b} \in epi(f). \, \operatorname{Pick} \, \lambda \, \operatorname{where} \, 0 \leq \lambda \leq 1.$

To show:
$$epi(f)$$
 contains

$$\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \beta \\ b \end{pmatrix}$$

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Then

1.
$$f$$
 is convex $\implies epi(f)$ is convex.

2.
$$epi(f)$$
 is convex $\implies f$ is convex.

Proof

Pick $\binom{\alpha}{a}\binom{\beta}{b} \in epi(f)$. Pick λ where $0 \le \lambda \le 1$.

(*)

To show: epi(f) contains

To show:
$$epi(f)$$
 contains
$$\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \beta \\ b \end{pmatrix} = \begin{pmatrix} \lambda \alpha + (1 - \lambda)\beta \\ \lambda a + (1 - \lambda)b \end{pmatrix}$$

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Then

1.
$$f$$
 is convex $\Longrightarrow epi(f)$ is convex.

2.
$$epi(f)$$
 is convex $\implies f$ is convex.

Proof

Pick $\binom{\alpha}{a}\binom{\beta}{b} \in epi(f)$. Pick λ where $0 \le \lambda \le 1$.

(*)

To show: epi(f) contains

Io show:
$$epi(f)$$
 contains

$$\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \beta \\ b \end{pmatrix} = \begin{pmatrix} \lambda \alpha + (1 - \lambda)\beta \\ \lambda a + (1 - \lambda)b \end{pmatrix}$$

Consider
$$f(\lambda a + (1 - \lambda)b)$$

$$f\left(\lambda a + (1-\lambda)b\right)$$

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Then

1.
$$f$$
 is convex $\implies epi(f)$ is convex.

2. epi(f) is convex \implies f is convex.

Proof

Pick $\binom{\alpha}{a}\binom{\beta}{b} \in epi(f)$. Pick λ where $0 \le \lambda \le 1$.

To show: epi(f) contains

10 snow:
$$epi(f)$$
 contains

$$\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \beta \\ b \end{pmatrix} = \begin{pmatrix} \lambda \alpha + (1 - \lambda)\beta \\ \lambda a + (1 - \lambda)b \end{pmatrix}$$

Consider

$$f\left(\lambda a + (1-\lambda)b\right) \leq \left(\text{convexity of } f\right)$$

$$\lambda f(a) + (1-\lambda)f(b)$$

 $\lambda f(a) + (1 - \lambda) f(b)$

(convexity of
$$f$$
)

(*)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Then

1.
$$f$$
 is convex $\Longrightarrow epi(f)$ is convex.

2. epi(f) is convex \implies f is convex.

Proof

Pick $\binom{\alpha}{a}\binom{\beta}{b} \in epi(f)$. Pick λ where $0 \le \lambda \le 1$.

To show: epi(f) contains

Io show:
$$epi(f)$$
 contains

$$\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \beta \\ b \end{pmatrix} = \begin{pmatrix} \lambda \alpha + (1 - \lambda)\beta \\ \lambda a + (1 - \lambda)b \end{pmatrix}$$

$$\lambda \begin{pmatrix} a \\ a \end{pmatrix}$$
 Consider

$$f\left(\lambda a + (1-\lambda)b\right) \leq \text{(convexity of } f)$$

$$\underbrace{\lambda}_{\geq 0} f(a) + \underbrace{(1-\lambda)}_{\geq 0} f(b)$$

$$\leq$$
 (convexity o $f(b)$

 (\star)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Then

1.
$$f$$
 is convex $\implies epi(f)$ is convex.

2. epi(f) is convex \implies f is convex.

Proof

Consider

Pick $\binom{\alpha}{a} \binom{\beta}{b} \in epi(f)$. Pick λ where $0 \le \lambda \le 1$.

 (\star)

To show: epi(f) contains

Io snow:
$$epi(f)$$
 contains

$$\alpha$$

 $\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \beta \\ b \end{pmatrix} = \begin{pmatrix} \lambda \alpha + (1 - \lambda)\beta \\ \lambda a + (1 - \lambda)b \end{pmatrix}$

$$f(\lambda a + (1 - \lambda)b) \leq$$
 (convexity of f)
$$\lambda f(a) + (1 - \lambda)f(b)$$

$$f(\lambda a + (1 - \lambda)b)$$

$$\underbrace{\lambda}_{\geq 0} \underbrace{f(a)}_{\geq 0} + \underbrace{(1 - \lambda)}_{\geq 0} \underbrace{f(b)}_{\leq 0}$$

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Then

1.
$$f$$
 is convex $\implies epi(f)$ is convex.

2. epi(f) is convex \implies f is convex.

Pick $\binom{\alpha}{a}\binom{\beta}{b} \in epi(f)$. Pick λ where $0 \le \lambda \le 1$.

To show: epi(f) contains

Io show:
$$epi(f)$$
 contain

$$\lambda \begin{pmatrix} \alpha \\ \alpha \end{pmatrix} + ($$

$$\lambda \begin{pmatrix} \alpha \\ \alpha \end{pmatrix} + ($$

 $\lambda \alpha + (1 - \lambda) \beta$.

$$-\lambda$$
) (

$$= \begin{pmatrix} \lambda \alpha + (1 - \lambda \alpha) + (1 - \lambda \alpha) \end{pmatrix}$$

$$(1 - \lambda)$$
$$(1 - \lambda)$$

$$\begin{pmatrix} -\lambda \beta \\ -\lambda b \end{pmatrix}$$

$$f\left(\lambda a + (1-\lambda)b\right) \leq \text{(convexity of } f)$$

$$\underbrace{\lambda}_{\geq 0} \underbrace{f(a)}_{\leq 0} + \underbrace{(1-\lambda)}_{\geq 0} \underbrace{f(b)}_{\leq \beta} \leq$$

(convexity of
$$f$$
)

 (\star)

exity of
$$f$$
)

$$\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \beta \\ b \end{pmatrix} = \begin{pmatrix} \lambda \alpha + (1 - \lambda)\beta \\ \lambda a + (1 - \lambda)b \end{pmatrix}$$

$$\rightarrow epi(J)$$

$$epi(f)$$
 is

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Then

1.
$$f$$
 is convex $\Longrightarrow epi(f)$ is convex.

2. epi(f) is convex \implies f is convex.

Proof

show:
$$epi(f)$$
 contain

To show:
$$epi(f)$$
 contains

$$\lambda \begin{pmatrix} \alpha \\ \end{pmatrix} +$$

$$\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} +$$

Thus (\star) is in epi(f).

$$\lambda \binom{a}{a} + \binom{a}{b}$$

$$\lambda \begin{pmatrix} a \\ a \end{pmatrix} + 0$$

Pick $\binom{\alpha}{a} \binom{\beta}{b} \in epi(f)$. Pick λ where $0 \le \lambda \le 1$.

 $\lambda \underset{\geq 0}{\underbrace{\lambda}} \underbrace{f(a)} + \underbrace{(1-\lambda)} \underbrace{f(b)} \leq$

 $\lambda \alpha + (1 - \lambda) \beta$.

$$(\lambda \alpha + \lambda \alpha)$$

$$\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \beta \\ b \end{pmatrix} = \begin{pmatrix} \lambda \alpha + (1 - \lambda)\beta \\ \lambda a + (1 - \lambda)b \end{pmatrix}$$

$$-(1-\lambda)$$

$$-(1-\lambda)$$

$$-\lambda b$$

$$f(\lambda a + (1 - \lambda)b) \leq (convexity of f)$$

$$(-\lambda)b$$

$$+(1-\lambda)b$$

$$(-\lambda)^{b}$$

$$(-\lambda)b$$

$$(1-\lambda)\beta$$

1. NLPs are hard in general.

- 1. NLPs are hard in general.
- 2. We may assume the objective function of NLPs is linear.

- 1. NLPs are hard in general.
- 2. We may assume the objective function of NLPs is linear.
- 3. Local optimum = optimal sol when the feasible region is convex.

- 1. NLPs are hard in general.
- 2. We may assume the objective function of NLPs is linear.
- 3. Local optimum = optimal sol when the feasible region is convex.
- 4. We defined convex functions.

- 1. NLPs are hard in general.
- 2. We may assume the objective function of NLPs is linear.
- 3. Local optimum = optimal sol when the feasible region is convex.
- 4. We defined convex functions.
- 5. Convex functions yield a convex feasible region.

- 1. NLPs are hard in general.
- 2. We may assume the objective function of NLPs is linear.
- 3. Local optimum = optimal sol when the feasible region is convex.
- 4. We defined convex functions.
- 5. Convex functions yield a convex feasible region.
- 6. Convex functions and convex sets are related by epigraphs.