Module 2: Linear Programs (Certificates)

Fundamental Theorem of Linear Programming

For any linear program, exactly one of the following holds:

- It is infeasible.
- It has an optimal solution.
- It is unbounded.

Fundamental Theorem of Linear Programming

For any linear program, exactly one of the following holds:

- It is infeasible.
- It has an optimal solution.
- It is unbounded.

Questions

Consider a linear program.

Fundamental Theorem of Linear Programming

For any linear program, exactly one of the following holds:

- It is infeasible.
- It has an optimal solution.
- It is unbounded.

Questions

Consider a linear program.

• If it is infeasible, how can we prove it?

Fundamental Theorem of Linear Programming

For any linear program, exactly one of the following holds:

- It is infeasible.
- It has an optimal solution.
- It is unbounded.

Questions

Consider a linear program.

- If it is infeasible, how can we prove it?
- If we have an optimal solution, how can we prove it is optimal?

Fundamental Theorem of Linear Programming

For any linear program, exactly one of the following holds:

- It is infeasible.
- It has an optimal solution.
- It is unbounded.

Questions

Consider a linear program.

- If it is infeasible, how can we prove it?
- If we have an optimal solution, how can we prove it is optimal?
- If it is unbounded, how can we prove it?

Fundamental Theorem of Linear Programming

For any linear program, exactly one of the following holds:

- It is infeasible.
- It has an optimal solution.
- It is unbounded.

Questions

Consider a linear program.

- If it is infeasible, how can we prove it?
- If we have an optimal solution, how can we prove it is optimal?
- If it is unbounded, how can we prove it?

This can be always be done!

The following linear program is infeasible:

$$\max (3, 4, -1, 2)^T x$$

s.t.
$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$
$$x \ge 0$$

The following linear program is infeasible:

$$\max (3, 4, -1, 2)^T x$$

s.t.
$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$
$$x \ge 0$$

Question

How can we prove this problem is, in fact, infeasible?

The following linear program is infeasible:

$$\max (3, 4, -1, 2)^T x$$

s.t.
$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$
$$x \ge 0$$

Question

How can we prove this problem is, in fact, infeasible?

We cannot try all possible assignments of values to x_1, x_2, x_3 , and x_4 .

There is no solution to (1), (2) and $x \ge 0$ where

$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$
(1) (2)

There is no solution to (1), (2) and $x \ge 0$ where

$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$
(1) (2)

Proof

Construct a new equation:

There is no solution to (1), (2) and $x \ge 0$ where

$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$
(1) (2)

Proof

Construct a new equation:

Suppose there exists $\bar{x} \ge 0$ satisfying (1), (2).

There is no solution to (1), (2) and $x \ge 0$ where

$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$
(1) (2)

Proof

Construct a new equation:

There is no solution to (1), (2) and $x \ge 0$ where

$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$
(1) (2)

Proof

Construct a new equation:

$$\begin{pmatrix} 1 & 0 & 2 & 1 \end{pmatrix} \bar{x} = -2.$$

There is no solution to (1), (2) and $x \ge 0$ where

$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$
(1) (2)

Proof

Construct a new equation:

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 & 1 \\ & & \\ &$$

There is no solution to (1), (2) and $x \ge 0$ where

$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$
(1) (2)

Proof

Construct a new equation:

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 & 1 \end{pmatrix} \bar{x}}_{\geq 0} = -2.$$

There is no solution to (1), (2) and $x \ge 0$ where

$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$
(1) (2)

Proof

Construct a new equation:

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 & 1 \end{pmatrix} \bar{x}}_{\geq 0} = \underbrace{-2}_{<0}.$$

There is no solution to (1), (2) and $x \ge 0$ where

$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$
(1) (2)

Proof

Construct a new equation:

Suppose there exists $\bar{x} \ge 0$ satisfying (1), (2). Then \bar{x} satisfies (*):

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 & 1 \end{pmatrix} \bar{x}}_{\geq 0} = \underbrace{-2}_{<0}.$$

Proof

Suppose for a contradiction there is a solution \bar{x} to $x \geq \mathbb{0}$ and

$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$

Proof

Suppose for a contradiction there is a solution \bar{x} to $x \geq \mathbb{O}$ and

$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$

Construct a new equation:

$$(-1 \ 2)\begin{pmatrix} 3 & -2 & -6 & 7\\ 2 & -1 & -2 & 4 \end{pmatrix} x = (-1 \ 2)\begin{pmatrix} 6\\ 2 \end{pmatrix}$$

 $(1 \ 0 \ 2 \ 1)x = -2 \qquad (\star)$

Proof

Suppose for a contradiction there is a solution \bar{x} to $x \geq \mathbb{O}$ and

$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$

Construct a new equation:

$$(-1 \ 2)\begin{pmatrix} 3 & -2 & -6 & 7\\ 2 & -1 & -2 & 4 \end{pmatrix} x = (-1 \ 2)\begin{pmatrix} 6\\ 2 \end{pmatrix}$$

 $(1 \ 0 \ 2 \ 1)x = -2 \qquad (\star)$

Since \bar{x} satisfies the equations it satisfies (*):

Proof

Suppose for a contradiction there is a solution \bar{x} to $x \geq \mathbb{O}$ and

$$\begin{pmatrix} 3 & -2 & -6 & 7 \\ 2 & -1 & -2 & 4 \end{pmatrix} x = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$

Construct a new equation:

$$(-1 \ 2)\begin{pmatrix} 3 & -2 & -6 & 7\\ 2 & -1 & -2 & 4 \end{pmatrix} x = (-1 \ 2)\begin{pmatrix} 6\\ 2 \end{pmatrix}$$

 $(1 \ 0 \ 2 \ 1)x = -2$ (*)

Since \bar{x} satisfies the equations it satisfies (*):

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 & 1 \end{pmatrix}}_{>0^{\top}} \underbrace{\bar{x}}_{\geq 0} = \underbrace{-2}_{<0}.$$

Proof

Suppose for a contradiction there is a solution \bar{x} to $x \geq \mathbb{0}$ and

$$\underbrace{\begin{pmatrix} 3 & -2 & -6 & 7\\ 2 & -1 & -2 & 4 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6\\ 2 \end{pmatrix}}_{b}$$

Construct a new equation:

$$\underbrace{(-1\ 2)}_{y^{T}} \begin{pmatrix} 3 & -2 & -6 & 7\\ 2 & -1 & -2 & 4 \end{pmatrix} x = \underbrace{(-1\ 2)}_{y^{T}} \begin{pmatrix} 6\\ 2 \end{pmatrix}$$
$$(1\ 0\ 2\ 1)x = -2 \qquad (\star)$$

Since \bar{x} satisfies the equations it satisfies (*):

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 & 1 \end{pmatrix}}_{\geq 0^{\top}} \underbrace{\bar{x}}_{\geq 0} = \underbrace{-2}_{< 0} \cdot$$

Proof

Suppose for a contradiction there is a solution \bar{x} to $x \geq \mathbb{O}$ and

Ax = b

$$\underbrace{\begin{pmatrix} 3 & -2 & -6 & 7\\ 2 & -1 & -2 & 4 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6\\ 2 \end{pmatrix}}_{b}$$

Construct a new equation:

$$\underbrace{(-1\ 2)}_{y^{T}} \begin{pmatrix} 3 & -2 & -6 & 7\\ 2 & -1 & -2 & 4 \end{pmatrix} x = \underbrace{(-1\ 2)}_{y^{T}} \begin{pmatrix} 6\\ 2 \end{pmatrix}$$
$$(1\ 0\ 2\ 1)x = -2 \qquad (\star)$$

Since \bar{x} satisfies the equations it satisfies (*):

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 & 1 \end{pmatrix}}_{\geq 0^{\top}} \underbrace{\bar{x}}_{\geq 0} = \underbrace{-2}_{< 0} \cdot$$

Proof

Suppose for a contradiction there is a solution \bar{x} to $x \geq \mathbb{O}$ and

$$\underbrace{\begin{pmatrix} 3 & -2 & -6 & 7\\ 2 & -1 & -2 & 4 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6\\ 2 \end{pmatrix}}_{b} Ax$$

= b

Construct a new equation:

$$\underbrace{(-1 \ 2)}_{y^T} \begin{pmatrix} 3 & -2 & -6 & 7\\ 2 & -1 & -2 & 4 \end{pmatrix} x = \underbrace{(-1 \ 2)}_{y^T} \begin{pmatrix} 6\\ 2 \end{pmatrix}$$
$$(1 \ 0 \ 2 \ 1)x = -2 \qquad (\star) \qquad \qquad y^T A x = y^T b$$

Since \bar{x} satisfies the equations it satisfies (*):

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 & 1 \end{pmatrix}}_{\geq 0^{\top}} \underbrace{\bar{x}}_{\geq 0} = \underbrace{-2}_{< 0} \cdot$$

Proof

Suppose for a contradiction there is a solution \bar{x} to $x \geq \mathbb{O}$ and

$$\underbrace{\begin{pmatrix} 3 & -2 & -6 & 7\\ 2 & -1 & -2 & 4 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6\\ 2 \end{pmatrix}}_{b} Ax$$

Construct a new equation:

$$\underbrace{(-1 \ 2)}_{y^T} \begin{pmatrix} 3 & -2 & -6 & 7\\ 2 & -1 & -2 & 4 \end{pmatrix} x = \underbrace{(-1 \ 2)}_{y^T} \begin{pmatrix} 6\\ 2 \end{pmatrix}$$
$$(1 \ 0 \ 2 \ 1)x = -2 \qquad (\star) \qquad \qquad y^T A x = y^T b$$

Since \bar{x} satisfies the equations it satisfies (\star):

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 & 1 \\ & \ge_0^\top & & \ge_0 \end{pmatrix}}_{\ge_0^\top} \underbrace{\bar{x}}_{\ge_0} = \underbrace{-2}_{<_0}.$$

 $\underbrace{y^T A}_{>0^{\top}} \underbrace{\bar{x}}_{\geq 0} = \underbrace{y^T b}_{<0}$

= b

Proof

Suppose for a contradiction there is a solution \bar{x} to $x \geq \mathbb{O}$ and

$$\underbrace{\begin{pmatrix} 3 & -2 & -6 & 7\\ 2 & -1 & -2 & 4 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6\\ 2 \end{pmatrix}}_{b} Ax$$

= b

 ^{I}A \bar{x}

Construct a new equation:

$$\underbrace{(-1 \ 2)}_{y^T} \begin{pmatrix} 3 & -2 & -6 & 7\\ 2 & -1 & -2 & 4 \end{pmatrix} x = \underbrace{(-1 \ 2)}_{y^T} \begin{pmatrix} 6\\ 2 \end{pmatrix}$$
$$(1 \ 0 \ 2 \ 1)x = -2 \qquad (\star) \qquad \qquad y^T A x = y^T b$$

Since \bar{x} satisfies the equations it satisfies (*):

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 & 1 \end{pmatrix}}_{\geq 0^{\top}} \underbrace{\bar{x}}_{\geq 0} = \underbrace{-2}_{< 0}.$$

Contradiction.

This suggests the following result...

There is no solution to $Ax = b, x \ge 0$, if there exists y where

 $y^TA \geq \mathbb{0}^\top \qquad \text{and} \qquad y^Tb < 0.$

There is no solution to $Ax = b, x \ge 0$, if there exists y where

 $y^T A \ge \mathbb{O}^\top$ and $y^T b < 0$.

Exercise

Give a proof of this proposition.

There is no solution to $Ax = b, x \ge 0$, if there exists y where

 $y^TA \geq \mathbb{O}^\top \qquad \text{and} \qquad y^Tb < 0.$

Exercise

Give a proof of this proposition.

Question

If no solution to $Ax = b, x \ge 0$ can we always prove it in that way?

There is no solution to $Ax = b, x \ge 0$, if there exists y where

 $y^T A \ge \mathbb{O}^\top \qquad \text{and} \qquad y^T b < 0.$

Exercise

Give a proof of this proposition.

Question

If no solution to $Ax = b, x \ge 0$ can we always prove it in that way?

YES!!!!!

There is no solution to $Ax = b, x \ge 0$, if there exists y where

 $y^TA \geq \mathbb{O}^\top \qquad \text{and} \qquad y^Tb < 0.$

Exercise

Give a proof of this proposition.

Question

If no solution to $Ax = b, x \ge 0$ can we always prove it in that way?

YES!!!!!

Farkas' Lemma

If there is no solution to $Ax = b, x \ge 0$, then there exists y where

$$y^T A \ge 0^\top$$
 and $y^T b < 0$.

$$\begin{array}{ll} \max & z(x) := (-1 - 4 \ 0 \ 0)x + 4 \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 3 & 1 & 0 \\ -2 & 6 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \\ & x \ge 0 \end{array}$$

$$\begin{array}{ll} \max & z(x) := (-1 - 4 \ 0 \ 0)x + 4 \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 3 & 1 & 0 \\ -2 & 6 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \\ & x \ge 0 \end{array}$$

Optimal solution:

$$\bar{x}_1 = 0$$
$$\bar{x}_2 = 0$$
$$\bar{x}_3 = 4$$
$$\bar{x}_4 = 5$$

$$\begin{array}{ll} \max & z(x) := (-1 - 4 \ 0 \ 0)x + 4 \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 3 & 1 & 0 \\ -2 & 6 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \\ & x \ge \mathbb{O} \end{array}$$

Optimal solution:

$$\bar{x}_1 = 0$$
$$\bar{x}_2 = 0$$
$$\bar{x}_3 = 4$$
$$\bar{x}_4 = 5$$

Question

How can we prove this solution is, in fact, optimal?

$$\begin{array}{ll} \max & z(x) := (-1 - 4 \ 0 \ 0)x + 4 \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 3 & 1 & 0 \\ -2 & 6 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \\ & x \ge \mathbb{O} \end{array}$$

Optimal solution:

$$\bar{x}_1 = 0$$
$$\bar{x}_2 = 0$$
$$\bar{x}_3 = 4$$
$$\bar{x}_4 = 5$$

Question

How can we prove this solution is, in fact, optimal?

We cannot try all possible feasible solutions.

$$\begin{array}{ll} \max & z(x) := (-1 - 4 \ 0 \ 0)x + 4 \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 3 & 1 & 0 \\ -2 & 6 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \\ & x \ge 0 \end{array}$$

$$\bar{x}_1 = 0$$
$$\bar{x}_2 = 0$$
$$\bar{x}_3 = 4$$
$$\bar{x}_4 = 5$$

Claim

• \bar{x} is feasible solution of value 4.

$$\begin{array}{ll} \max & z(x) := (-1 - 4 \ 0 \ 0)x + 4 \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 3 & 1 & 0 \\ -2 & 6 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \\ & x \ge 0 \end{array}$$

$$\bar{x}_1 = 0$$
$$\bar{x}_2 = 0$$
$$\bar{x}_3 = 4$$
$$\bar{x}_4 = 5$$

Claim

• \bar{x} is feasible solution of value 4. (easy)

$$\begin{array}{cccc} \max & z(x) := (-1 - 4 & 0 & 0)x + 4 \\ \text{s.t.} & & \\ & \begin{pmatrix} 1 & 3 & 1 & 0 \\ -2 & 6 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \\ & x \ge 0 \end{array}$$

$$\bar{x}_1 = 0$$
$$\bar{x}_2 = 0$$
$$\bar{x}_3 = 4$$
$$\bar{x}_4 = 5$$

Claim

- \bar{x} is feasible solution of value 4. (easy)
- 4 is an upper bound.

max
$$z(x) := (-1 - 4 \ 0 \ 0)x + 4$$

s.t.
 $\begin{pmatrix} 1 & 3 & 1 & 0 \\ -2 & 6 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$
 $x \ge 0$

$$\bar{x}_1 = 0$$
$$\bar{x}_2 = 0$$
$$\bar{x}_3 = 4$$
$$\bar{x}_4 = 5$$

Claim

- \bar{x} is feasible solution of value 4. (easy)
- 4 is an upper bound.

Proof

Let x' be an arbitrary feasible solution.

$$\begin{array}{cccc} \max & z(x) := (-1 - 4 & 0 & 0)x + 4 \\ \text{s.t.} & & \\ & \begin{pmatrix} 1 & 3 & 1 & 0 \\ -2 & 6 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \\ & x \ge 0 \end{array}$$

$$\bar{x}_1 = 0$$
$$\bar{x}_2 = 0$$
$$\bar{x}_3 = 4$$
$$\bar{x}_4 = 5$$

Claim

- \bar{x} is feasible solution of value 4. (easy)
- 4 is an upper bound.

Proof

$$z(x') = (-1 - 4 \ 0 \ 0)x' + 4$$

$$\begin{array}{cccc} \max & z(x) := (-1 - 4 & 0 & 0)x + 4 \\ \text{s.t.} & & \\ & \begin{pmatrix} 1 & 3 & 1 & 0 \\ -2 & 6 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \\ & x \ge 0 \end{array}$$

$$\bar{x}_1 = 0$$
$$\bar{x}_2 = 0$$
$$\bar{x}_3 = 4$$
$$\bar{x}_4 = 5$$

Claim

- \bar{x} is feasible solution of value 4. (easy)
- 4 is an upper bound.

Proof

$$z(x') = \underbrace{(-1-4\ 0\ 0)}_{\leq 0} \underbrace{x'}_{\geq 0} + 4$$

$$\begin{array}{cccc} \max & z(x) := (-1 - 4 & 0 & 0)x + 4 \\ \text{s.t.} & & \\ & \begin{pmatrix} 1 & 3 & 1 & 0 \\ -2 & 6 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \\ & x \ge 0 \end{array}$$

$$\bar{x}_1 = 0$$
$$\bar{x}_2 = 0$$
$$\bar{x}_3 = 4$$
$$\bar{x}_4 = 5$$

Claim

- \bar{x} is feasible solution of value 4. (easy)
- 4 is an upper bound.

Proof

$$z(x') = \underbrace{(-1 - 4 \ 0 \ 0)x'}_{\leq 0} + 4$$

$$\begin{array}{cccc} \max & z(x) := (-1 - 4 & 0 & 0)x + 4 \\ \text{s.t.} & & \\ & \begin{pmatrix} 1 & 3 & 1 & 0 \\ -2 & 6 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \\ & x \ge 0 \end{array}$$

$$\bar{x}_1 = 0$$
$$\bar{x}_2 = 0$$
$$\bar{x}_3 = 4$$
$$\bar{x}_4 = 5$$

Claim

- \bar{x} is feasible solution of value 4. (easy)
- 4 is an upper bound.

Proof

$$z(x') = \underbrace{(-1 - 4 \ 0 \ 0)x'}_{\leq 0} + 4 \leq 4.$$

Proving Unboudedness

$$\begin{array}{ll} \max & z := (-1 \ 0 \ 0 \ 1)x \\ \text{s.t.} & \begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\ & x \ge 0 \end{array}$$

Proving Unboudedness

$$\begin{array}{ll} \max & z := (-1 \ 0 \ 0 \ 1)x \\ \text{s.t.} & \begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\ & x \ge 0 \end{array}$$

Problem is unbounded

Question

How can we prove that this problem is unbounded?

Proving Unboudedness

$$\begin{array}{ll} \max & z := (-1 \ 0 \ 0 \ 1)x \\ {\rm s.t.} & \\ & \begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\ & x \ge 0 \end{array}$$

Problem is unbounded

Question

How can we prove that this problem is unbounded?

Idea

Construct a family of feasible solutions x(t) for all $t \ge 0$ and show that as t goes to infinity, the value of the objective function goes to infinity.

$$\begin{array}{ll} \max & z := (-1 \ 0 \ 0 \ 1)x \\ {\sf s.t.} & \\ & \begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\ & x \ge 0 \end{array}$$

$$\begin{array}{ll} \max & z := (-1 \ 0 \ 0 \ 1)x \\ {\rm s.t.} & \\ & \begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\ & x \ge 0 \end{array}$$

$$x(t) := \begin{pmatrix} 0 \\ 0 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{array}{ll} \max & z := (-1 \ 0 \ 0 \ 1) x \\ \text{s.t.} & \begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\ & x \ge 0 \end{array}$$

$$x(t):=\begin{pmatrix} 0\\ 0\\ 2\\ 1 \end{pmatrix}+t\begin{pmatrix} 1\\ 0\\ 1\\ 2 \end{pmatrix}$$

Claim 1 x(t) is feasible for all $t \ge 0$.

$$\begin{array}{ll} \max & z := (-1 \ 0 \ 0 \ 1) x \\ \text{s.t.} & \begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\ & x \ge 0 \end{array}$$

$$x(t):=\begin{pmatrix} 0\\ 0\\ 2\\ 1 \end{pmatrix}+t\begin{pmatrix} 1\\ 0\\ 1\\ 2 \end{pmatrix}$$

x(t) is feasible for all $t \ge 0$.

Claim 2

 $z \to \infty$ when $t \to \infty$.

$$\begin{array}{cccc} \max & z := (-1 & 0 & 0 & 1)x \\ \text{s.t.} & \underbrace{\begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 1 \end{pmatrix}}_{b} \\ x \ge 0 \end{array}$$

$$x(t) := \underbrace{\begin{pmatrix} 0\\0\\2\\1 \end{pmatrix}}_{\bar{x}} + t \underbrace{\begin{pmatrix} 1\\0\\1\\2 \end{pmatrix}}_{r}$$

x(t) is feasible for all $t \ge 0$.

$$\max z := (-1 \ 0 \ 0 \ 1)x$$

s.t.
$$\underbrace{\begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 1 \end{pmatrix}}_{b}$$

 $x \ge 0$

$$x(t) := \underbrace{\begin{pmatrix} 0\\0\\2\\1 \end{pmatrix}}_{\bar{x}} + t \underbrace{\begin{pmatrix} 1\\0\\1\\2 \end{pmatrix}}_{r}$$

x(t) is feasible for all $t \ge 0$.

$$x(t) = \bar{x} + tr \ge 0 \quad \text{for all} \quad t \ge 0$$

$$\begin{array}{cccc} \max & z := (-1 & 0 & 0 & 1)x \\ \text{s.t.} & \underbrace{\begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 1 \end{pmatrix}}_{b} \\ x \ge 0 \end{array}$$

$$x(t) := \underbrace{\begin{pmatrix} 0\\0\\2\\1 \end{pmatrix}}_{\bar{x}} + t \underbrace{\begin{pmatrix} 1\\0\\1\\2 \end{pmatrix}}_{r}$$

x(t) is feasible for all $t \ge 0$.

$$x(t) = \bar{x} + tr \ge 0$$
 for all $t \ge 0$ as $\bar{x}, r \ge 0$.

$$\max z := (-1 \ 0 \ 0 \ 1)x$$

s.t.
$$\underbrace{\begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 1 \end{pmatrix}}_{b}$$

 $x \ge 0$

$$x(t) := \underbrace{\begin{pmatrix} 0\\0\\2\\1 \end{pmatrix}}_{\bar{x}} + t \underbrace{\begin{pmatrix} 1\\0\\1\\2 \end{pmatrix}}_{r}$$

x(t) is feasible for all $t \ge 0$.

$$x(t) = \bar{x} + tr \ge 0$$
 for all $t \ge 0$ as $\bar{x}, r \ge 0$.

$$Ax(t) =$$

$$\max z := (-1 \ 0 \ 0 \ 1)x$$

s.t.
$$\underbrace{\begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 1 \end{pmatrix}}_{b}$$

 $x \ge 0$

$$x(t) := \underbrace{\begin{pmatrix} 0\\0\\2\\1 \end{pmatrix}}_{x} + t \underbrace{\begin{pmatrix} 1\\0\\1\\2 \end{pmatrix}}_{r}$$

x(t) is feasible for all $t \ge 0$.

$$x(t) = \bar{x} + tr \ge 0$$
 for all $t \ge 0$ as $\bar{x}, r \ge 0$.

$$Ax(t) = A\left[\bar{x} + tr\right] =$$

$$\begin{array}{cccc} \max & z := (-1 & 0 & 0 & 1)x \\ \text{s.t.} & \underbrace{\begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 1 \end{pmatrix}}_{b} \\ x \ge 0 \end{array}$$

$$x(t) := \underbrace{\begin{pmatrix} 0\\0\\2\\1 \end{pmatrix}}_{x} + t \underbrace{\begin{pmatrix} 1\\0\\1\\2 \end{pmatrix}}_{r}$$

x(t) is feasible for all $t \ge 0$.

$$x(t) = \bar{x} + tr \ge 0$$
 for all $t \ge 0$ as $\bar{x}, r \ge 0$.

$$Ax(t) = A\left[\bar{x} + tr\right] = \underbrace{A\bar{x}}_{b} + t\underbrace{Ar}_{0} =$$

$$\begin{array}{cccc} \max & z := (-1 & 0 & 0 & 1)x \\ \text{s.t.} & \underbrace{\begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 1 \end{pmatrix}}_{b} \\ x \ge 0 \end{array}$$

$$x(t) := \underbrace{\begin{pmatrix} 0\\0\\2\\1 \end{pmatrix}}_{\bar{x}} + t \underbrace{\begin{pmatrix} 1\\0\\1\\2 \end{pmatrix}}_{r}$$

x(t) is feasible for all $t \ge 0$.

$$x(t) = \bar{x} + tr \ge 0$$
 for all $t \ge 0$ as $\bar{x}, r \ge 0$.

$$Ax(t) = A\left[\bar{x} + tr\right] = \underbrace{A\bar{x}}_{b} + t\underbrace{Ar}_{0} = b.$$

$$\max z := \underbrace{(-1 \ 0 \ 0 \ 1)}_{c^T} x$$

s.t.
$$\underbrace{\begin{pmatrix} -1 \ -1 \ 1 \ 0 \\ -2 \ 1 \ 0 \ 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 1 \end{pmatrix}}_{b}$$

 $x \ge 0$

$$x(t) := \underbrace{\begin{pmatrix} 0\\0\\2\\1\\\\ \hline x\\ \hline x \end{pmatrix}}_{\bar{x}} + t \underbrace{\begin{pmatrix} 1\\0\\1\\2\\\\ \hline r\\ \hline r \end{pmatrix}}_{r}$$

 $z \to \infty$ when $t \to \infty$.

$$\begin{array}{ccc} \max & z := \underbrace{(-1 & 0 & 0 & 1)}_{c^{T}} x \\ \text{s.t.} & \underbrace{\begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 1 \end{pmatrix}}_{b} \\ x \ge 0 \end{array}$$

$$x(t) := \underbrace{\begin{pmatrix} 0\\0\\2\\1 \end{pmatrix}}_{\bar{x}} + t \underbrace{\begin{pmatrix} 1\\0\\1\\2 \end{pmatrix}}_{r}$$

 $z \to \infty$ when $t \to \infty$.

$$z = c^T x(t)$$

$$\begin{array}{ccc} \max & z := \underbrace{(-1 & 0 & 0 & 1)}_{c^{T}} x \\ \text{s.t.} & \underbrace{\begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 1 \end{pmatrix}}_{b} \\ x \ge 0 \end{array}$$

$$x(t) := \underbrace{\begin{pmatrix} 0\\0\\2\\1 \end{pmatrix}}_{\bar{x}} + t \underbrace{\begin{pmatrix} 1\\0\\1\\2 \end{pmatrix}}_{r}$$

 $z \to \infty$ when $t \to \infty$.

$$z = c^T x(t) = c^T [\bar{x} + tr]$$

$$\begin{array}{ccc} \max & z := \underbrace{(-1 & 0 & 0 & 1)}_{c^{T}} x \\ \text{s.t.} & \underbrace{\begin{pmatrix} -1 & -1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 1 \end{pmatrix}}_{b} \\ x \ge 0 \end{array}$$

$$x(t) := \underbrace{\begin{pmatrix} 0\\0\\2\\1 \end{pmatrix}}_{\bar{x}} + t \underbrace{\begin{pmatrix} 1\\0\\1\\2 \end{pmatrix}}_{r}$$

 $z \to \infty$ when $t \to \infty$.

$$z = c^T x(t) = c^T [\bar{x} + tr] = c^T \bar{x} + t \underbrace{c^T r}_{=1>0}$$
.

Exercise

Generalize and prove the following proposition.

Exercise

Generalize and prove the following proposition.

Proposition

The linear program,

$$\max\{c^T x : Ax = b, x \ge 0\}$$

is unbounded if we can find \bar{x} and r such that

$$\bar{x} \ge 0, \quad r \ge 0, \quad A\bar{x} = b, \quad Ar = 0 \quad \text{and} \quad c^T r > 0.$$

- 1. For linear programs, exactly one of the following holds. It is
 - (A) infeasible,
 - (B) unbounded, or
 - (C) has an optimal solution.

- 1. For linear programs, exactly one of the following holds. It is
 - (A) infeasible,
 - (B) unbounded, or
 - (C) has an optimal solution.
- 2. If (A) occurs, there is a short proof of that fact.

- 1. For linear programs, exactly one of the following holds. It is
 - (A) infeasible,
 - (B) unbounded, or
 - (C) has an optimal solution.
- 2. If (A) occurs, there is a short proof of that fact.
- 3. If (B) occurs, there is a short proof of that fact.

- 1. For linear programs, exactly one of the following holds. It is
 - (A) infeasible,
 - (B) unbounded, or
 - (C) has an optimal solution.
- 2. If (A) occurs, there is a short proof of that fact.
- 3. If (B) occurs, there is a short proof of that fact.
- 4. For an optimal solution, there is a short proof that it is optimal.

- 1. For linear programs, exactly one of the following holds. It is
 - (A) infeasible,
 - (B) unbounded, or
 - (C) has an optimal solution.
- 2. If (A) occurs, there is a short proof of that fact.
- 3. If (B) occurs, there is a short proof of that fact.
- 4. For an optimal solution, there is a short proof that it is optimal.

Remark

We have not yet shown you how to find such proofs.