
CO 250: Introduction to Optimization
Module 2: Linear Programs (Extreme Points)
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Ā

x ≤

( )

b̄

.



Definition

Let P = {x : Ax ≤ b} be a polyhedron and let x ∈ P .

• A constraint is tight for x if it is satisfied with equality, and

• the set of all tight constraints is denoted Āx ≤ b̄.
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2. If rank(Ā) < n, then x̄ is NOT an extreme point.

x1

x2

1

3

2

1 2

0

(1)

(2)
(3)

h

P =







x :





1 1
1 0
0 1





︸ ︷︷ ︸
A

x ≤





3
2
2





︸ ︷︷ ︸
b

(1)
(2)
(3)







Consider h:

=
( )

so, since rank( ) < , h is NOT an extreme point.



Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .
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1. If rank(Ā) = n, then x̄ is an extreme point.

2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Let’s prove part (1).
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Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x is not an extreme point.

x is properly contained in a line segment with endpoints x(1), x(2) ∈ .
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b = x =
(
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= λAx(1) + (1− λ)Ax(2).

Ax(1) ≤ b and Ax(2) ≤ b.

Previous remark implies that b = Ax(1) = Ax(2).

However, since rank( ) = n, x(1) = x(2). This is a contradiction.
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1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x̄ is not an extreme point.

x̄ is properly contained in a line segment with endpoints x(1), x(2) ∈ P .

x̄ 6= x(1), x(2) ∈ P and for some λ, 0 < λ < 1, x̄ = λx(1) + (1− λ)x(2).

b = x =
(

λx(1) + (1− λ)x(2)
)

= λAx(1) + (1− λ)Ax(2).

Ax(1) ≤ b and Ax(2) ≤ b.

Previous remark implies that b = Ax(1) = Ax(2).

However, since rank( ) = n, x(1) = x(2). This is a contradiction.



Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .

1. If rank(Ā) = n, then x̄ is an extreme point.

Proof

Suppose x̄ is not an extreme point.

x̄ is properly contained in a line segment with endpoints x(1), x(2) ∈ P .

x̄ 6= x(1), x(2) ∈ P and for some λ, 0 < λ < 1, x̄ = λx(1) + (1− λ)x(2).

b̄ = Āx̄
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b̄ = Āx̄ = Ā
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(

λx(1) + (1− λ)x(2)
)
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2. If rank(Ā) < n, then x̄ is NOT an extreme point.

Proof

Since rank( ) < n, there exists a non-zero vector d such that Ad = .

Pick a small ǫ > .

x(1) = x+ ǫd

x(2) = x− ǫd

It suffices to prove the following:

(a) x is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ .



Theorem

Let P = {x ∈ ℜn : Ax ≤ b} be a polyhedron and let x̄ ∈ P .
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Pick a small ǫ > 0. Let x(1) = x̄+ ǫd and x(2) = x̄− ǫd.

(a) x̄ is properly contained in the line segment between x(1) and x(2).

(b) x(1), x(2) ∈ . (It is sufficient to show this for x(1) only.)

Consider tight constraints Ax ≤ b.

Ax(1) = (x+ ǫd) = x

b̄

+ǫ Ad

0

= b. X

Consider non-tight constraint a⊤x ≤ β.

a⊤x(1) = a⊤(x+ ǫd) = a⊤x

<β

+ǫ a⊤d

??

< β

for a small enough ǫ.



Proof
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︸︷︷︸
0

= b̄. X

Consider non-tight constraint a⊤x ≤ β.

a⊤x(1) = a⊤(x̄+ ǫd) = a⊤x̄
︸︷︷︸

<β

+ǫ a⊤d
︸︷︷︸

??

< β

for a small enough ǫ.



Consider

P =

{

x ≥ 0 :

(
1 0 −1
0 1 3

)

=

(
2
4

)}

(
2
4
0

)

is a basic solution

Question

Is (2, , 0)⊤ an extreme p int?

Let’s use our theorem to find an answer.

Theorem

Let = x ∈ ℜn : Ax ≤ b be a polyhedron and let x ∈ .

1. If rank( ) = n, then x is an extreme point.

2. If rank( ) < n, then x is NOT an extreme point.

We need to rewrite the constraints in so they are all in the form ≤”.
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Theorem

Let P = {x ≥ 0 : Ax = b} where rows of A are independent. The
following are equivalent:

1. x̄ is an extreme point of P .

2. x̄ is a basic feasible solution of P .

Exercise

Prove the previous theorem.

The Simplex algorithm moves from extreme points to extreme points.
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Solve using Simplex:

• Basis B = , , , basic solution (0, , , , 4)⊤

• Basis B = , , , basic solution (5, , , , 9)⊤

• Basis B = , , , basic solution (4, , , , 6)⊤

• Basis B = , , , basic solution (1, , , , 0)⊤: optimal

Simplex visits extreme points of 1 in rder:

0
0
10
6
4

,

5
0
0
1
9

,

4
2
0
0
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1
5
3
0
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.

However, we cannot draw a picture of this...
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Recap

• We defined extreme points of convex sets.

• We characterized extreme points in polyhedra.

• We saw that extreme points = basic solutions for problems in SEF.

• We showed that the Simplex algorithm moves from extreme point to
extreme point.
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