
CO 250: Introduction to Optimization
Module 3: Duality through examples (Weak Duality)



Recap: Feasible Widths

Suppose we are given an instance of
the shortest path problem. . .

• a graph G = (V,E),

• a non-negative length ce for
each edge e ∈ E, and

• a pair of vertices s and t in V .

A width-assignment is of the form

{yU : δ(U) s, t-cut}
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Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).
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Recap: Feasible Widths

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).

Seemingly, we used an adhoc
argument, taylormade for shortest
paths. . .
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Recap: Feasible Widths

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).

Seemingly, we used an adhoc
argument, taylormade for shortest
paths. . .

but, as we will now see, there is a
constructive and quite mechanical
way to derive the Proposition via
linear programming!
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An Instructive Example LP

The LP on the right is feasible. . .

E.g., x1 = (8, 16)> and
x2 = (5, 13)> are feasible.

Question

Can you find an optimal solution?

x1 has an objective of value 64 and
x2 has a value of 49 −→ x1 is
definitely not optimal, but is x2?

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

Feasible widths provide a
lower-bound on the length of a
shortest s, t-path. . .

Question

Can we find a good lower-bound on
the objective value of the above LP?
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Let’s suppose that x is feasible for
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Additionally, it satisfies

y1 · (2, 1)x ≥ y1 · 20

+ y2 · (1, 1)x ≥ y2 · 18

+ y3 · (−1, 1)x ≥ y3 · 8

= (2y1 + y2 − y3, y1 + y2 + y3)x

≥ 20y1 + 18y2 + 8y3

for y1, y2, y3 ≥ 0.



So, if x is feasible for the LP on the
right, it also satisfies

(y1, y2, y2)

 2 1
1 1
−1 1

x ≥

(y1, y2, y3)

20
18
8


for any y1, y2, y3 ≥ 0.
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Therefore,

z(x) = (2, 3)x

≥ (2, 3)x+ 44− (1, 3)x

= 44 + (1, 0)x

Since x ≥ 0, it follows that

z(x) ≥ 44

for every feasible solution x!
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State of Affairs

We now know that

(i) x2 = (5, 13)> is a solution to
the LP of value 49 and

(ii) z(x) ≥ 44 for every feasible
solution to the LP.

−→ The optimal value of the LP is
in the interval [44, 49].

Can we find a better lowerbound on
z(x) for a feasible x?
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We know that a feasible x satisfies
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Lowerbounding z(x) Systematically!

This is a Linear Program:

max (20, 18, 8)y

s.t.

 2 1
1 1
−1 1

 y ≤ (2, 3)

y ≥ 0

Solving it gives:

ȳ1 = 0

ȳ2 = 5/2

ȳ3 = 1/2

and the objective value is 49.

There is no feasible solution x to

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8


x ≥ 0

which has an objective value smaller
than 49.

Since x2 = (5, 13)> is a feasible
solution with value 49, it must be
optimal!
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for y ≥ 0, and hence also
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≤ ȳT (Ax̄) = (AT ȳ)T x̄ ≤ cT x̄

as ȳ ≥ 0 and b ≤ Ax̄, as x̄ ≥ 0 and AT ȳ ≤ c.
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bT ȳ ≤ cT x̄.

Proof:
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Let’s look at an example!



Shortest Path: Example

On the right, we see a sample instance of
the shortest-path problem.

Here is the corresponding IP:

min (3, 4, 1, 2, 2)x

s.t.


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{s} 1 1 0 0 0

{s, a} 0 1 1 1 0

{s, b} 1 0 1 0 1

{s, a, b} 0 0 0 1 1

x ≥ 1

x ≥ 0, x integer

s

a

b

t

3

4

1

2

2

Note that if P is an
s, t-path, then letting

x̄e =

{
1 if e is an edge of P

0 otherwise.

for all e ∈ E yields a feasible
IP solution and

its objective
value is c(P ).
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x = (1, 0, 1, 0, 1)T

is feasible for the IP, and its
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Remark

The optimal value of the shortest path IP is, at most, the length of a
shortest s, t-path.



min (3, 4, 1, 2, 2)x (P)

s.t.



sa sb ab at bt

{s} 1 1 0 0 0

{s, a} 0 1 1 1 0

{s, b} 1 0 1 0 1

{s, a, b} 0 0 0 1 1

x ≥ 1

x ≥ 0, x integer

Note that dropping the integrality
restriction can not increase the optimal
value.

s

a

b

t

3

4

1

2

2

Straight from Weak Duality theorem, we have that:

Remark

The dual of (P) has optimal value no larger than that of (P)!
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every s, t-cut δ(U)!
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Focus on the constraint for edge ab:

y{s,a} + y{s,b} ≤ 1
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Note that dual solutions
assign the value yU ≥ 0 to
every s, t-cut δ(U)!

Focus on the constraint for edge ab:

y{s,a} + y{s,b} ≤ 1

The left-hand side is precisely the y-value assigned to s, t-cuts containing
ab!
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Note that dual solutions
assign the value yU ≥ 0 to
every s, t-cut δ(U)!

Remark

y is feasible for the above LP if and only if it is a feasible width
assignment for the s, t-cuts in the given shortest path instance!
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Its dual is of the form
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Note that the dual has a constraint
for every edge e ∈ E. The left-hand
side of this constraint is∑

(yU : e ∈ δ(U))

and the right-hand side is ce.

Remark

Feasible solutions to (D) correspond precisely to feasible width
assignments. Weak duality implies that

∑
yU is, at most, the length of a

shortest s, t-path!
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