Module 3: Duality through examples (Weak Duality)
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Recap: Feasible Widths

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least

Z(yU : U s,t-cut).

Seemingly, we used an adhoc
argument, taylormade for shortest
paths. ..

but, as we will now see, there is a
constructive and quite mechanical
way to derive the Proposition via
linear programming!
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An Instructive Example LP

The LP on the right is feasible. ..

Eg., 2! =(8,16)" and
22 = (5,13)7 are feasible.

Question

Can you find an optimal solution?

z' has an objective of value 64 and

22 has a value of 49 — 21 is

definitely not optimal, but is 227

min (2,3)z
2 1 20
s.t. 1 1]Jz> |18
-1 1 8

x>0

Feasible widths provide a
lower-bound on the length of a
shortest s, t-path. ..

Question

Can we find a good lower-bound on
the objective value of the above LP?
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Deriving Valid Inequalities

Let's suppose that z is feasible for min  (2,3)z
the LP on the right.

It follows that z satisfies 2 1 20
s.t 1 1)lz> |18
2 1 20 -1 1 8

1 1)z> 118 >0

-1 1 8
Additionally, it satisfies
Y1 - (2»1)33 2 Y1 - 20

and it also satisfies

(2,1)z > 20

(1) > 18 +y2- (L, 1)z > yp - 18

(’1 1)‘> +ys- (=L, 1)z >ys-8

= (2,3)z >4 = (21 + Y2 — Y3, ¥1 + Y2 + Y3)x

> 20y; + 18y2 + 8ys

for y1,y2,y3 > 0.
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So, if x is feasible for the LP on the
right, it also satisfies

2 1

(y17y2ay2) 1 1 IZ
-1 1

20
(ylay27y3) 18
8
for any y1,¥2,y3 > 0.
E.g., fory = (0,2,1) ", we obtain
(1,3)z > 44

or
0> 44— (1,3)z (%)

min

s.t.

Therefore,
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2 1
1 1]lz>
-1 1

z>0

20
18
8



So, if x is feasible for the LP on the
right, it also satisfies

2 1

(y17y2ay2) 1 1 IZ
-1 1

20
(yla y2793) 18

8
for any y1,y2,y3 > 0.
E.g., fory = (0,2,1) ", we obtain
(1,3)z > 44

or
0> 44— (1,3)z (%)

min (2,3)z
2 1 20
s.t. 1 1])z>1]18
-1 1 8
z>0
Therefore,
z(x) = (2,3)x
> (2,3)x+44— (1,3)x
= 44+ (1,0)z

Since z > 0, it follows that
z(x) > 44

for every feasible solution z!
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State of Affairs

We now know that

(i) 22 = (5,13) T is a solution to
the LP of value 49 and

(ii) z(x) > 44 for every feasible
solution to the LP.

— The optimal value of the LP is
in the interval [44, 49].

Can we find a better lowerbound on
z(x) for a feasible z?

min

s.t.



Lowerbounding z(x) Systematically!

We know that a feasible z satisfies

20
0 2 (yhy?;y?)) 18] —
8
2 1
(yi,y2,92) | 1 1=
-1 1

for any y1,y2,y3 > 0.



Lowerbounding z(x) Systematically!

We know that a feasible z satisfies

20
0> (y1,92,93) | 18 | —
8
2 1
(y1,y2,92) | 1 1)z
-1 1

for any y1,%2,y3 > 0. Therefore,

20
2(x) > (y1,92,y3) | 18] +
8
2 1
(2,3) = (yy2,92) [ 1 1] )z (%)
-1 1



Lowerbounding z(x) Systematically!

We know that a feasible x satisfies We want the second term to
be non-negative. Since
20 2 > 0, this amounts to
0> (y1,92,93) | 18 | — choosing y such that
8
9 1 2 1
(yi,92,92) | 1 1)z (o) [ 10 1] <(23)
1 -1 1

for any y1,%2,y3 > 0. Therefore,

20
2(x) > (y1,92,y3) | 18] +
8
2 1
(2,3) = (yy2,92) [ 1 1] )z (%)
-1 1
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We know that a feasible z satisfies

20
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8
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-1 1
for any y1,%2,y3 > 0. Therefore,
20
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8
2 1
(2,3) = (y,y2,92) [ 1 1] ]z (%)
-1 1

We want the second term to
be non-negative. Since
x > 0, this amounts to
choosing y such that

2 1
(Wi,y2p2) [ 1 1] <(2,3)
-1 1

With such a y we then have
from (x):

20

Z(SU) > (y17y27y3) 18
8
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Idea
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Lowerbounding z(x) Systematically!

So, we choose y > 0 such that

2 1
(yi,y2,92) [ 1 1] <(2,3) ()
11
yields
20
z(z) > (y1,92,v3) | 18 (0)
8

Idea

Find the best possible lower-bound
on z. l.e., find y > 0 such that (%)
holds, and the right-hand side of ({)
is maximized!

This is a Linear Program:
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Lowerbounding z(x) Systematically!

This is a Linear Program:

max (20, 18,8)y

2
s.t. 1
-1

y>0

Solving it gives:

71

Y2 =
Y3 =

0
5/2
1/2

There is no feasible solution x to

min (2,3)z
1 2 1 20
1y <(2,3) s.t. 1 1]z>1]18
1 -1 1 8
x>0

which has an objective value smaller
than 49.

Since 22 = (5,13) " is a feasible
solution with value 49, it must be
optimal!

and the objective value is 49.
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A General Argument

Suppose now we are given the LP

min ¢’z
st. Ax>b
x>0

Any feasible solution x must satisfy
y' Az >y'b,
for y > 0, and hence also

0>y b—y' Az

Therefore,

2(z) = c'z

> clz+y'b—y' Az

= y'b+(c' —y Az
If we also know that

Aly<e

then = > 0 implies that z(z) >y "b.

The best lower-bound on z(x) can
be found by the following LP:

max b'y

st. Aly<e
y=>0
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The Dual LP

The linear program

is called the dual of primal LP

min ¢’z
st. Az >b
x>0

[Weak Duality] If Z is feasible for (P) and g is feasible for (D), then

max by (D)
s.t. ATy <c
y=>0
Theorem
by <clz.
Proof:

Vlg=gtb <yt (Az) = (ATp))Tz < Tz

asy>0and b< A%, as 2 >0and ATy < c.

(P)
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Given a shortest path instance G = (V, E), s,t € V, ¢c. > 0 for all e € E,
the shortest-path LP is

min Cee i€ €EF
> )

st. Y (ze:e€d(U)) >1 (UCV,selUt¢U)

x > 0,z integer

Let's look at an example!
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Shortest Path: Example

On the right, we see a sample instance of
the shortest-path problem.

Here is the corresponding IP:
min (3,4,1,2,2)x

sa sb ab at bt

(s} 1 1 0 0 0

ot {s,a} 0 1 1 1 0 e>1
{s,b} 1 0 1 0 1
{8,¢,0} \ O 0 0 1 1

x > 0,z integer

Note that if P is an
s, t-path, then letting

B 1 if eis an edge of P
Te = .
0 otherwise.

for all e € F yields a feasible
IP solution and its objective
value is ¢(P).



min (3,4,1,2,2)x

sa sb ab at bt

{s} 1 1 0 0 0
or, {mab |0 1 1 10
{s,0} 1 0 1 0 1
{s,a,b} \ O 0 0 1 1
x > 0,2 integer
Example:
P = sa,ab, bt

is an s, t-path.
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min (3,4,1,2,2)x

sa sb ab at bt

{s} 1 1 0 0 0
.t {s,a} 0 1 1 1 0 >1

{s,b} 1 0 1 0 1

{8,¢,0} \ O 0 0 1 1

x > 0,z integer

_ T
Example: r=(1,0,1,0,1)
P = sa,ab, bt is feasible for the IP, and its

: value is 6.
is an s, t-path.

Remark

The optimal value of the shortest path IP is, at most, the length of a
shortest s, t-path.
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sa sb ab at bt

(s} 1 1 0 0 0
.t {s,a} 0 1 1 1 0
(s |1 0 1 0 1
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x > 0, x integer

Note that dropping the integrality
restriction can not increase the optimal
value.

(P)




min (3,4,1,2,2)x (P)

sa sb ab at bt

{s} 1 1 0 0 O
.t {s,a} 0 1 1 1 0 >1
{s, b} 1 0 1 0 1
{s,a,6} \ O 0 0 1 1
x > 0, x integer
The resulting LP is called the

. . . linear programming

Note_ that dropplng_the integrality _ relaxation of the IP.
restriction can not increase the optimal

value.



min (3,4,1,2,2)x (P)

sa sb ab at bt

{s}

1 1 0 0 O
.t {s,a} 0 1 1 1 0 >1
{s, b} 1 0 1 0 1
{8,¢,0} \ O 0 0 1 1
x > 0, x integer
The resulting LP is called the

. . . linear programming

Note_ that dropplng_the integrality _ relaxation of the IP.
restriction can not increase the optimal

value.

Straight from Weak Duality theorem, we have that:
Remark

The dual of (P) has optimal value no larger than that of (P)!
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The dual of the shortest path LP on the
previous slide is given by

max 1Ty

s.t.

{sHs,a}{s,b} {5,a,0}

sa
sb
ab

at

y >0

1

o O O

[ B = B =)

1

_ o = O

0 3
0 4
0 y< |1
1 2

2
1

Focus on the constraint for edge ab:

Y{s,a} + Y{s,b} <1

Note that dual solutions
assign the value yy > 0 to
every s, t-cut 6(U)!



The dual of the shortest path LP on the
previous slide is given by

max

s.t.

1Ty

{sHs,a}{s,b} {5,a,0}

sa
sb
ab

at

y >0

1

o O O

O = = = O

1

_ O = O

0 3
0 4
0 y< |1
1 2

2
1

Focus on the constraint for edge ab:

Yis,a} T Y0y <1

Note that dual solutions
assign the value yy > 0 to
every s, t-cut 6(U)!

The left-hand side is precisely the y-value assigned to s, t-cuts containing

ab!



The dual of the shortest path LP on the
previous slide is given by

max 17y

{sHs,a}{s,b} {5,a,0}

sa [ 1 0 1 0 3
sb|l 1 1 0 0 4
st. ab| 0 1 1 0 y<|1
at | 0 1 0 1 ; Note that dual solutions
bt \0 0 1 1 assign the value yyy > 0 to
5 1- S(U))
y>0 every s, t-cut §(U)!
Remark

vy is feasible for the above LP if and only if it is a feasible width
assignment for the s, t-cuts in the given shortest path instance!
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General Shortest Path Instances

Input: G = (V, E), ¢, > 0 for all
ecFE, s,teV.

Shortest path LP:

min Z(cexe e€ E)

st Y (ze:ecdU) =1
(6(U) s,t — cut)
x>0

The LP is of the form

min ¢’z (P)
st. Arxr>1
x>0

where

(i) A has a column for every edge
and a row for every s, t-cut

s(U).

(i) A[U,e]=1ifecd(U)and 0
otherwise.
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The LP is of the form
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(i) A[U,e] =1ifeed(U), and 0
otherwise.

Remark

Its dual is of the form
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Note that the dual has a constraint
for every edge e € E. The left-hand
side of this constraint is

D yw e €d(U))

and the right-hand side is c..

Feasible solutions to (D) correspond precisely to feasible width
assignments. Weak duality implies that > yy is, at most, the length of a

shortest s, t-path!






Recap

e The dual LP of
min{c’z : Az > b,z > 0} (P)

is given by
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e If 2 is feasible for (P) and y feasible for (D), then b7y < c¢T'z.
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is given by
max{b’y : ATy <c,y > 0} (D)

e If 2 is feasible for (P) and y feasible for (D), then b7y < c¢T'z.

e The LP relaxation of an integer program is obtained by dropping the
integrality restriction.

e The dual of the shortest path LP is given by
max Z(yU : (U) s, t-cut)

st. Y (w:eedlU)<c (e€E)
y=>0
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