Module 3: Duality through examples (Correctness Shortest Path Algorithm)

Previous lecture: we showed an algorithm for the shortest path problem that computes

• An s, t-path P

Shortest path LP:

min
$$\sum (c_e x_e : e \in E)$$

s.t. $\sum (x_e : e \in \delta(S)) \ge 1$
 $(\delta(S) \ s, t\text{-cut})$
 $x \ge 0$

$$\max \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$
$$(e \in E)$$
$$y \ge 0$$

Previous lecture: we showed an algorithm for the shortest path problem that computes

• An s, t-path P whose characteristic vector, x^P , is feasible for the shortest path LP, and

Shortest path LP:

$$\begin{array}{ll} \min & \sum (c_e x_e \, : \, e \in E) \\ \text{s.t.} & \sum (x_e \, : \, e \in \delta(S)) \geq 1 \\ & (\delta(S) \, \, s, t\text{-cut}) \\ & x \geq 0 \end{array}$$

$$\max \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$
$$(e \in E)$$
$$y \ge 0$$

Previous lecture: we showed an algorithm for the shortest path problem that computes

- An s, t-path P whose characteristic vector, x^P , is feasible for the shortest path LP, and
- a feasible solution, *y*, for the dual of the shortest path LP.

Shortest path LP:

$$\begin{array}{ll} \min & \sum (c_e x_e \, : \, e \in E) \\ \text{s.t.} & \sum (x_e \, : \, e \in \delta(S)) \geq 1 \\ & (\delta(S) \, \, s, t\text{-cut}) \\ & x \geq 0 \end{array}$$

$$\max \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$
$$(e \in E)$$
$$y \ge 0$$

Previous lecture: we showed an algorithm for the shortest path problem that computes

- An s, t-path P whose characteristic vector, x^P , is feasible for the shortest path LP, and
- a feasible solution, *y*, for the dual of the shortest path LP.

Important: $c^T x = \mathbb{1}^T y$

Shortest path LP:

min
$$\sum (c_e x_e : e \in E)$$

s.t. $\sum (x_e : e \in \delta(S)) \ge 1$
 $(\delta(S) \ s, t\text{-cut})$
 $x \ge 0$

$$\max \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$
$$(e \in E)$$
$$y \ge 0$$

Previous lecture: we showed an algorithm for the shortest path problem that computes

- An *s*,*t*-path *P* whose characteristic vector, x^P , is feasible for the shortest path LP, and
- a feasible solution, *y*, for the dual of the shortest path LP.

Important: $c^T x = \mathbb{1}^T y \to P$ is a shortest path!

Shortest path LP:

min
$$\sum (c_e x_e : e \in E)$$

s.t. $\sum (x_e : e \in \delta(S)) \ge 1$
 $(\delta(S) \ s, t\text{-cut})$
 $x \ge 0$

$$\max \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$
$$(e \in E)$$
$$y \ge 0$$

Previous lecture: we showed an algorithm for the shortest path problem that computes

- An s, t-path P whose characteristic vector, x^P , is feasible for the shortest path LP, and
- a feasible solution, *y*, for the dual of the shortest path LP.

Important: $c^T x = \mathbb{1}^T y \to P$ is a shortest path!

We will start this lecture with another example!

Shortest path LP:

min
$$\sum (c_e x_e : e \in E)$$

s.t. $\sum (x_e : e \in \delta(S)) \ge 1$
 $(\delta(S) \ s, t\text{-cut})$
 $x \ge 0$

$$\max \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$
$$(e \in E)$$
$$y \ge 0$$

Recall the algorithm we developed previously:

Algorithm 3.2 Shortest path.

Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$.

Output: A shortest st-path P

- 1: $y_W := 0$ for all *st*-cuts $\delta(W)$. Set $U := \{s\}$
- 2: while $t \notin U$ do
- 3: Let *ab* be an edge in $\delta(U)$ of smallest slack for *y* where $a \in U$, $b \notin U$
- 4: $y_U := \operatorname{slack}_y(ab)$
- 5: $U := U \cup \{b\}$
- 6: change edge ab into an arc \vec{ab}
- 7: end while
- 8: return A directed st-path P.

Recall the algorithm we developed previously:

 \longrightarrow Run this on the example instance on the right.

Recall the algorithm we developed previously:

 \longrightarrow Run this on the example instance on the right.

Initially: y = 0 and $U = \{s\}$

 $\begin{array}{lll} \mbox{Step 1} & su \mbox{ edge with smallest slack in} \\ & \delta(U) \\ & \longrightarrow \mbox{ increase } y_U \mbox{ by 1} \end{array}$

Step 2

Now: $U = \{s, u\}$ Slack-minimal edge is $sv \rightarrow$ increase y_U by 1

$$\begin{array}{lll} \mbox{Step 3} & U = \{s, v, u\} \\ & \mbox{Slack minimizer is } vw \end{array}$$

Step 1 su edge with smallest slack in $\delta(U)$ \longrightarrow increase y_U by 1

Step 2 Now: $U = \{s, u\}$ Slack-minimal edge is sv \rightarrow increase y_U by 1

Step 3

 $U = \{s, v, u\}$ Slack minimizer is vw \longrightarrow increase y_U by 1

Step 1 su edge with smallest slack in $\delta(U)$ \longrightarrow increase y_U by 1

Step 2 Now: $U = \{s, u\}$ Slack-minimal edge is sv \longrightarrow increase y_U by 1

 $\begin{array}{lll} \mbox{Step 4} & U = \{s, v, u, w\} \\ & \mbox{Slack minimizer is } vz \end{array}$

Step 1 su edge with smallest slack in $\delta(U)$ \longrightarrow increase y_U by 1

 $\begin{array}{lll} \mathsf{Step 3} & U = \{s, v, u\} \\ & \mathsf{Slack \ minimizer \ is \ } vw \\ & \longrightarrow \ \mathsf{increase \ } y_U \ \mathsf{by \ } 1 \end{array}$

Step 4

 $U = \{s, v, u, w\}$ Slack minimizer is vz \longrightarrow increase y_U by 2

Step 1 su edge with smallest slack in $\delta(U)$ \longrightarrow increase y_U by 1

 $\begin{array}{lll} \mathsf{Step 4} & U = \{s, v, u, w\} \\ & \mathsf{Slack \ minimizer \ is \ } vz} \\ & \longrightarrow \ \mathsf{increase \ } y_U \ \mathsf{by \ } 2 \end{array}$

 $\begin{array}{lll} \mathsf{Step 5} & U = \{s, v, u, w, z\} \\ & \mathsf{Slack \ minimizer \ is \ } wt \end{array}$

Step 4

 $U = \{s, v, u, w\}$ Slack minimizer is vz \longrightarrow increase y_U by 2

Step 5

 $U = \{s, v, u, w, z\}$ Slack minimizer is wt \longrightarrow increase y_U by 2

Step 1 su edge with smallest slack in $\delta(U)$ \longrightarrow increase y_U by 1

Step 4

 $\begin{array}{ll} \mathsf{U} = \{s, v, u, w\} \\ & \mathsf{Slack \ minimizer \ is \ } vz \\ & \longrightarrow \ \mathsf{increase \ } y_U \ \mathsf{by \ } 2 \end{array}$

Step 5

 $U = \{s, v, u, w, z\}$ Slack minimizer is wt \longrightarrow increase y_U by 2

Now: We have a directed s, t-path P of length 7,

Step 1 su edge with smallest slack in $\delta(U)$ \longrightarrow increase y_U by 1

Step 4

 $\begin{array}{ll} \mathsf{U} = \{s, v, u, w\} \\ & \mathsf{Slack \ minimizer \ is \ } vz \\ & \longrightarrow \ \mathsf{increase \ } y_U \ \mathsf{by \ } 2 \end{array}$

Step 5

 $U = \{s, v, u, w, z\}$ Slack minimizer is wt \longrightarrow increase y_U by 2

Now: We have a directed s, t-path P of length 7, and a dual feasible solution of the same value!

Step 1 su edge with smallest slack in $\delta(U)$ \longrightarrow increase y_U by 1

Step 4

 $\begin{array}{ll} \mathsf{U} = \{s, v, u, w\} \\ & \mathsf{Slack \ minimizer \ is \ } vz \\ & \longrightarrow \ \mathsf{increase \ } y_U \ \mathsf{by \ } 2 \end{array}$

Step 5

 $U = \{s, v, u, w, z\}$ Slack minimizer is wt \longrightarrow increase y_U by 2

Now: We have a directed s, t-path P of length 7, and a dual feasible solution of the same value!

 \longrightarrow *P* is a shortest path!

Question

Will the algorithm always terminate?

Question

Will the algorithm always terminate? Will it always find an s, t-path P whose length is equal to the value of a feasible dual solution?

Question

Will the algorithm always terminate? Will it always find an s, t-path P whose length is equal to the value of a feasible dual solution?

This lecture: We will show the answers to the above are yes & yes!

Recall: the slack of an edge $uv \in E$ for a feasible dual solution y is

$$c_{uv} - \sum (y_U : e \in \delta(U))$$

Recall: the slack of an edge $uv \in E$ for a feasible dual solution y is

$$c_{uv} - \sum (y_U : e \in \delta(U))$$

We call an edge $uv \in E$ an equality edge if its slack is 0.

Recall: the slack of an edge $uv \in E$ for a feasible dual solution y is

$$c_{uv} - \sum (y_U : e \in \delta(U))$$

We call an edge $uv \in E$ an equality edge if its slack is 0.

Example: edge vz is an equality edge, and zt is not!

We will also call a cut $\delta(U)$ active for a dual solution y if $y_U > 0$.

We will also call a cut $\delta(U)$ active for a dual solution y if $y_U > 0$.

Example: $\delta(\{s, v, u\})$ is active, while $\delta(\{s, v\})$ is not!

Proposition

Let y be a feasible dual solution, and P and s, t-path. P is a shortest path if

Proposition

Let y be a feasible dual solution, and P and s, t-path. P is a shortest path if

(i) all edges on P are equality edges, and

Proposition

Let y be a feasible dual solution, and P and s, t-path. P is a shortest path if

- (i) all edges on P are equality edges, and
- (ii) every active cut $\delta(U)$ has exactly one edge of P.

Proposition

Let y be a feasible dual solution, and P and s, t-path. P is a shortest path if

- (i) all edges on P are equality edges, and
- (ii) every active cut $\delta(U)$ has exactly one edge of P.

Note: Both conditions are satisfied in the example on the right.

Proposition

Let y be a feasible dual solution, and P and s, t-path. P is a shortest path if

- (i) all edges on *P* are equality edges, and
- (ii) every active cut $\delta(U)$ has exactly one edge of P.

Proof: Let's suppose that P and y satisfy (i) and (ii) of the proposition.
Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual solution, and P and s, t-path. P is a shortest path if

- (i) all edges on *P* are equality edges, and
- (ii) every active cut $\delta(U)$ has exactly one edge of P.

Proof: Let's suppose that P and y satisfy (i) and (ii) of the proposition. Then,

$$\sum_{e \in P} c_e = \sum_{e \in P} (\sum (y_U : e \in \delta(U))$$

because every edge on P is an equality edge by (i).

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual solution, and P and s, t-path. P is a shortest path if

- (i) all edges on *P* are equality edges, and
- (ii) every active cut $\delta(U)$ has exactly one edge of P.

Proof: Let's suppose that P and y satisfy (i) and (ii) of the proposition. Then,

$$\sum_{e \in P} c_e = \sum_{e \in P} (\sum (y_U : e \in \delta(U))$$

because every edge on P is an equality edge by (i). The right-hand side equals

 $\sum (y_U \cdot |P \cap \delta(U)| \, : \, \delta(U))$

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual solution, and P and s, t-path. P is a shortest path if

- (i) all edges on *P* are equality edges, and
- (ii) every active cut $\delta(U)$ has exactly one edge of P.

Note: Both conditions are satisfied in the example on the right!

Proof: Let's suppose that P and y satisfy (i) and (ii) of the proposition. Then,

$$\sum_{e \in P} c_e = \sum_{e \in P} (\sum (y_U \, : \, e \in \delta(U))$$

because every edge on P is an equality edge by (i). The right-hand side equals

$$\sum (y_U \cdot |P \cap \delta(U)| \, : \, \delta(U))$$

But, by (ii), $y_U > 0$ only if $|P \cap \delta(U)| = 1$. Hence:

$$\sum_{e \in P} c_e = \sum_U y_U$$

Algorithm 3.2 Shortest path. Input: Graph G = (V, E), costs $c_{e} \ge 0$ for all $e \in E$, $s, t \in V$ where $s \neq t$. Output: A shortest st-path P1: $y_W := 0$ for all st-cuts $\delta(W)$. Set $U := \{s\}$ 2: while $t \notin U$ do 3: Let ab be an edge in $\delta(U)$ of smallest slack for y where $a \in U, b \notin U$ 4: $y_U := \operatorname{slack}_{i}(ab)$ 5: $U := U \cup \{b\}$ 6: change edge ab into an arc \overrightarrow{ab} 7: end while 8: return A directed st-path P.

Note: The algorithm terminates since one vertex is added to U in every step and V is finite.

Algorithm 3.2 Shortest path. Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$. Output: A shortest st-path P1: $y_W := 0$ for all st-cuts $\delta(W)$. Set $U := \{s\}$ 2: while $t \notin U$ do 3: Let ab be an edge in $\delta(U)$ of smallest slack for y where $a \in U, b \notin U$ 4: $y_U := \operatorname{slack}_s(ab)$ 5: $U := U \cup \{b\}$ 6: change edge ab into an arc \overrightarrow{ab} 7: end while 8: return A directed st-path P.

Note: The algorithm terminates since one vertex is added to U in every step and V is finite.

It suffices to show:

Proposition

The Shortest Path Algorithm maintains throughout its execution that:

(11) y is a feasible dual,

Algorithm 3.2 Shortest path. Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$. Output: A shortest st-path P1: $y_W := 0$ for all st-cuts $\delta(W)$. Set $U := \{s\}$ 2: while $t \notin U$ do 3: Let ab be an edge in $\delta(U)$ of smallest slack for y where $a \in U, b \notin U$ 4: $y_U := slack_y(ab)$ 5: $U := U \cup \{b\}$ 6: change edge ab into an arc \overrightarrow{ab} 7: end while 8: return A directed st-path P.

Note: The algorithm terminates since one vertex is added to U in every step and V is finite.

It suffices to show:

Proposition

- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),

Algorithm 3.2 Shortest path. Input: Graph G = (V, E), costs $c_E \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$. Output: A shortest st-path P1: $y_W := 0$ for all st-cuts $\delta(W)$. Set $U := \{s\}$ 2: while $t \notin U$ do 3: Let ab be an edge in $\delta(U)$ of smallest slack for y where $a \in U, b \notin U$ 4: $y_U := \operatorname{slack}_q(ab)$ 5: $U := U \cup \{b\}$ 6: change edge ab into an arc \overrightarrow{ab} 7: end while 8: return A directed st-path P.

Note: The algorithm terminates since one vertex is added to U in every step and V is finite.

It suffices to show:

- The Shortest Path Algorithm maintains throughout its execution that:
- (11) y is a feasible dual,
- (12) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,

Algorithm 3.2 Shortest path. Input: Graph G = (V, E), costs $c_E \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$. Output: A shortest st-path P1: $y_W := 0$ for all st-cuts $\delta(W)$. Set $U := \{s\}$ 2: while $t \notin U$ do 3: Let ab be an edge in $\delta(U)$ of smallest slack for y where $a \in U, b \notin U$ 4: $y_U := \operatorname{slack}_q(ab)$ 5: $U := U \cup \{b\}$ 6: change edge ab into an arc \overrightarrow{ab} 7: end while 8: return A directed st-path P.

Note: The algorithm terminates since one vertex is added to U in every step and V is finite.

It suffices to show:

- The Shortest Path Algorithm maintains throughout its execution that:
- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (I4) for every $u \in U$ there is a directed s, u-path, and

Algorithm 3.2 Shortest path. Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$. Output: A shortest st-path P1: $y_W := 0$ for all st-cuts $\delta(W)$. Set $U := \{s\}$ 2: while $t \notin U$ do 3: Let ab be an edge in $\delta(U)$ of smallest slack for y where $a \in U, b \notin U$ 4: $y_U := slack_y(ab)$ 5: $U := U \cup \{b\}$ 6: change edge ab into an arc \overrightarrow{ab} 7: end while 8: return A directed st-path P.

Note: The algorithm terminates since one vertex is added to U in every step and V is finite.

It suffices to show:

- The Shortest Path Algorithm maintains throughout its execution that:
- (I1) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (I4) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

Suppose the invariants hold when the algorithm terminates. Then:

Proposition

- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (14) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

Suppose the invariants hold when the algorithm terminates. Then:

 t ∈ U and (I4) implies that there is a directed s, t-path P,

Proposition

- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (14) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

Suppose the invariants hold when the algorithm terminates. Then:

- t ∈ U and (I4) implies that there is a directed s, t-path P,
- y is feasible by (I1), and

Proposition

- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (14) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

Suppose the invariants hold when the algorithm terminates. Then:

- t ∈ U and (I4) implies that there is a directed s, t-path P,
- y is feasible by (I1), and
- arcs on P are equality arcs by (I2)

Proposition

- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (14) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

Suppose the invariants hold when the algorithm terminates. Then:

- t ∈ U and (I4) implies that there is a directed s, t-path P,
- y is feasible by (I1), and
- arcs on P are equality arcs by (I2)

To show: $\delta(U)$ active $\longrightarrow P$ has exactly one edge in $\delta(U)$.

Proposition

- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (14) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

For a contradiction suppose $\delta(U)$ active and P has more than one edge in $\delta(U)$

.

For a contradiction suppose $\delta(U)$ active and P has more than one edge in $\delta(U)$

Let e and e' be the first two edges on P that leave $\delta(U).$

For a contradiction suppose $\delta(U)$ active and P has more than one edge in $\delta(U)$

Let e and e' be the first two edges on P that leave $\delta(U).$

Then, there must also be an arc f on ${\cal P}$ that enters U,

For a contradiction suppose $\delta(U)$ active and P has more than one edge in $\delta(U)$

Let e and e' be the first two edges on P that leave $\delta(U).$

Then, there must also be an arc f on P that enters U, but this contradicts (I3)!

Proposition

The Shortest Path Algorithm maintains throughout its execution that:

(13) no active cut $\delta(U)$ has an entering arc: an arc wu with $w \notin U$, and $u \in U$

Algorithm 3.2 Shortest path.

Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$.

Output: A shortest st-path P

1:
$$y_W := 0$$
 for all *st*-cuts $\delta(W)$. Set $U := \{s\}$

- 2: while $t \notin U$ do
- 3: Let *ab* be an edge in $\delta(U)$ of smallest slack for *y* where $a \in U$, $b \notin U$
- 4: $y_U := \operatorname{slack}_y(ab)$
- 5: $U := U \cup \{b\}$
- 6: change edge ab into an arc \vec{ab}
- 7: end while
- 8: return A directed st-path P.

Let's now prove the proposition!

- The Shortest Path Algorithm maintains throughout its execution that:
- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering, arc: an arc wu with $w \notin U$, and $u \in U$,
- (I4) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

Algorithm 3.2 Shortest path. **Input:** Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$. **Output:** A shortest *st*-path *P* 1: $y_W := 0$ for all *st*-cuts $\delta(W)$. Set $U := \{s\}$ 2: while $t \notin U$ do 3: Let *ab* be an edge in $\delta(U)$ of smallest slack for *y* where $a \in U, b \notin U$ 4: $y_U := \text{slack}_y(ab)$ 5: $U := U \cup \{b\}$ 6: change edge *ab* into an arc \overrightarrow{ab} 7: end while

8: return A directed st-path P.

Let's now prove the proposition!

Trivial: (I1) - (I5) hold after Step 1.

- The Shortest Path Algorithm maintains throughout its execution that:
- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering, arc: an arc wuwith $w \notin U$, and $u \in U$,
- (I4) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

Algorithm 3.2 Shortest path.

Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$.

Output: A shortest st-path P

1:
$$y_W := 0$$
 for all *st*-cuts $\delta(W)$. Set $U := \{s\}$

- 2: while $t \notin U$ do
- 3: Let *ab* be an edge in $\delta(U)$ of smallest slack for *y* where $a \in U$, $b \notin U$
- 4: $y_U := \operatorname{slack}_y(ab)$
- 5: $U := U \cup \{b\}$
- 6: change edge ab into an arc \overrightarrow{ab}
- 7: end while
- 8: return A directed st-path P.

Let's now prove the proposition!

Trivial: (I1) - (I5) hold after Step 1. Suppose (I1) - (I5) hold before Step 3.

- The Shortest Path Algorithm maintains throughout its execution that:
- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering, arc: an arc wuwith $w \notin U$, and $u \in U$,
- (I4) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

Algorithm 3.2 Shortest path.

Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$.

Output: A shortest st-path P

1:
$$y_W := 0$$
 for all *st*-cuts $\delta(W)$. Set $U := \{s\}$

- 2: while $t \notin U$ do
- 3: Let *ab* be an edge in $\delta(U)$ of smallest slack for *y* where $a \in U$, $b \notin U$
- 4: $y_U := \operatorname{slack}_y(ab)$
- 5: $U := U \cup \{b\}$
- 6: change edge ab into an arc \overrightarrow{ab}
- 7: end while
- 8: return A directed st-path P.

Let's now prove the proposition!

Trivial: (I1) - (I5) hold after Step 1. Suppose (I1) - (I5) hold before Step 3. We will show that they also hold after Step 6.

- The Shortest Path Algorithm maintains throughout its execution that:
- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering, arc: an arc wuwith $w \notin U$, and $u \in U$,
- (I4) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

Algorithm 3.2 Shortest path.

Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$.

Output: A shortest st-path P

1: $y_W := 0$ for all *st*-cuts $\delta(W)$. Set $U := \{s\}$

2: while $t \notin U$ do

3: Let ab be an edge in $\delta(U)$ of smallest slack for y where $a \in U$, $b \notin U$

- 4: $y_U := \operatorname{slack}_y(ab)$
- 5: $U := U \cup \{b\}$
- 6: change edge ab into an arc \vec{ab}
- 7: end while
- 8: return A directed st-path P.

Shortest path dual:

$$\max \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$
$$(e \in E)$$
$$y \ge 0$$

Shortest path dual: Algorithm 3.2 Shortest path. **Input:** Graph G = (V, E), costs $c_e > 0$ for all $e \in E$, $s, t \in V$ where $s \neq t$. max $\sum (y_S : \delta(S) \ s, t\text{-cut})$ Output: A shortest st-path P 1: $y_W := 0$ for all st-cuts $\delta(W)$. Set $U := \{s\}$ 2: while $t \notin U$ do s.t. $\sum (y_S : e \in \delta(S)) \le c_e$ Let ab be an edge in $\delta(U)$ of smallest slack for v where $a \in U, b \notin U$ 3: $y_U := \operatorname{slack}_v(ab)$ 4. $(e \in E)$ $U := U \cup \{b\}$ 5: change edge ab into an arc \vec{ab} 6: y > 07: end while 8: return A directed st-path P.

Note: In Step 3-6, only y_U for the current U changes.

	Shortest nath dual		
Algorithm 3.2 Shortest path.	Shorte	sot putil addit	
Input: Graph $G = (V, E)$, costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$.		5	
Output: A shortest st-path P	\max	$\sum (y_S : \delta(S) \ s, t\text{-cut})$	
1: $y_W := 0$ for all <i>st</i> -cuts $\delta(W)$. Set $U := \{s\}$			
2: while $t \notin U$ do		$\sum_{i=1}^{n}$	
3: Let ab be an edge in $\delta(U)$ of smallest slack for y where $a \in U, b \notin U$	s.t.	$\sum (y_S : e \in \delta(S)) \le c_e$	
4: $y_U := \operatorname{slack}_y(ab)$			
5: $U := U \cup \{b\}$		$(e \in E)$	
6: change edge ab into an arc \overrightarrow{ab}		$\sim > 0$	
7: end while		$y \geq 0$	
8: return A directed st-path P.			

Note: In Step 3-6, only y_U for the current U changes.

 y_U appears only on the left-hand sides of constraints for edges in $\delta(U)$.

	Shortest nath dual		
Algorithm 3.2 Shortest path.	0110110		
Input: Graph $G = (V, E)$, costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$.		5	
Output: A shortest st-path P	max	$\sum (y_S : \delta(S) \ s, t$ -cut)	
1: $y_W := 0$ for all <i>st</i> -cuts $\delta(W)$. Set $U := \{s\}$			
2: while $t \notin U$ do		$\sum_{i=1}^{n}$	
3: Let ab be an edge in $\delta(U)$ of smallest slack for y where $a \in U, b \notin U$	s.t.	$\sum (y_S : e \in \delta(S)) \le c_e$	
4: $y_U := \operatorname{slack}_y(ab)$			
5: $U := U \cup \{b\}$		$(e \in E)$	
6: change edge ab into an arc \overrightarrow{ab}		$u \ge 0$	
7: end while		$y \ge 0$	
8: return A directed st-path P.			

Note: In Step 3-6, only y_U for the current U changes.

 y_U appears only on the left-hand sides of constraints for edges in $\delta(U)$. The smallest slack of any of these constraints is precisely the increase in y_U .

	Shortest nath dual	
Algorithm 3.2 Shortest path.	0110110	
Input: Graph $G = (V, E)$, costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$.		5
Output: A shortest st-path P	max	$\sum (y_S : \delta(S) \ s, t$ -cut)
1: $y_W := 0$ for all <i>st</i> -cuts $\delta(W)$. Set $U := \{s\}$		
2: while $t \notin U$ do		$\sum_{i=1}^{n}$
3: Let ab be an edge in $\delta(U)$ of smallest slack for y where $a \in U, b \notin U$	s.t.	$\sum (y_S : e \in \delta(S)) \le c_e$
4: $y_U := \operatorname{slack}_y(ab)$		
5: $U := U \cup \{b\}$		$(e \in E)$
6: change edge ab into an arc \overrightarrow{ab}		$\sim > 0$
7: end while		$y \geq 0$
8: return A directed st-path P.		

Note: In Step 3-6, only y_U for the current U changes.

 y_U appears only on the left-hand sides of constraints for edges in $\delta(U)$. The smallest slack of any of these constraints is precisely the increase in y_U .

 $\longrightarrow y$ remains feasible!

Shortest nath dual	
Shortest path dual.	
	-
max	$\sum (y_S : \delta(S) \ s, t$ -cut)
	$\sum_{i=1}^{n}$
s.t.	$\sum (y_S : e \in \delta(S)) \le c_e$
	$(e \in E)$
	$\sim > 0$
	$y \leq v$
	s.t.

Note: In Step 3-6, only y_U for the current U changes.

 y_U appears only on the left-hand sides of constraints for edges in $\delta(U)$.

The smallest slack of any of these constraints is precisely the increase in $y_U.$

 $\longrightarrow y$ remains feasible!

Also: The constraint of the newly created arc holds with equality after the increase

	Shortest nath dual		
Algorithm 3.2 Shortest path.	Shortest path dual.		
Input: Graph $G = (V, E)$, costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$.		-	
Output: A shortest st-path P	max	$\sum (y_S : \delta(S) \ s, t\text{-cut})$	
1: $y_W := 0$ for all <i>st</i> -cuts $\delta(W)$. Set $U := \{s\}$			
2: while $t \notin U$ do		$\sum_{i=1}^{n}$	
3: Let ab be an edge in $\delta(U)$ of smallest slack for y where $a \in U, b \notin U$	s.t.	$\sum (y_S : e \in \delta(S)) \le c_e$	
4: $y_U := \operatorname{slack}_y(ab)$			
5: $U := U \cup \{b\}$		$(e \in E)$	
6: change edge ab into an arc \overrightarrow{ab}		$\sim > 0$	
7: end while		$y \geq 0$	
8: return A directed st-path P.			

Note: In Step 3-6, only y_U for the current U changes.

 y_U appears only on the left-hand sides of constraints for edges in $\delta(U)$.

The smallest slack of any of these constraints is precisely the increase in $y_U.$

 $\longrightarrow y$ remains feasible!

Also: The constraint of the newly created arc holds with equality after the increase

 \rightarrow (I2) continues to hold and constraints for arcs have slack 0.

Algorithm 3.2 Shortest path.

Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$.

Output: A shortest st-path P

1:
$$y_W := 0$$
 for all *st*-cuts $\delta(W)$. Set $U := \{s\}$

- 2: while $t \notin U$ do
- 3: Let *ab* be an edge in $\delta(U)$ of smallest slack for *y* where $a \in U$, $b \notin U$
- 4: $y_U := \operatorname{slack}_y(ab)$
- 5: $U := U \cup \{b\}$
- 6: change edge ab into an arc \vec{ab}
- 7: end while

8: return A directed st-path P.

- the only new active cut created is $\delta(U)$

Proposition

- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (I4) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

Algorithm 3.2 Shortest path.

Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$.

Output: A shortest st-path P

1:
$$y_W := 0$$
 for all *st*-cuts $\delta(W)$. Set $U := \{s\}$

- 2: while $t \notin U$ do
- 3: Let *ab* be an edge in $\delta(U)$ of smallest slack for *y* where $a \in U$, $b \notin U$
- 4: $y_U := \operatorname{slack}_y(ab)$
- 5: $U := U \cup \{b\}$
- 6: change edge ab into an arc \overrightarrow{ab}
- 7: end while

8: return A directed st-path P.

- the only new active cut created is $\delta(U)$
- (15) \longrightarrow all old arcs have both ends in U

- The Shortest Path Algorithm maintains throughout its execution that:
- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (I4) for every $u \in U$ there is a directed s, u-path, and
- (15) arcs have both ends in U.

Algorithm 3.2 Shortest path.

```
Input: Graph G = (V, E), costs c_e \ge 0 for all e \in E, s, t \in V where s \ne t.
```

Output: A shortest st-path P

1:
$$y_W := 0$$
 for all *st*-cuts $\delta(W)$. Set $U := \{s\}$

- 2: while $t \notin U$ do
- 3: Let *ab* be an edge in $\delta(U)$ of smallest slack for *y* where $a \in U$, $b \notin U$
- 4: $y_U := \operatorname{slack}_y(ab)$
- 5: $U := U \cup \{b\}$
- 6: change edge ab into an arc \overrightarrow{ab}
- 7: end while

8: return A directed st-path P.

- the only new active cut created is $\delta(U)$
- (I5) \longrightarrow all old arcs have both ends in U
- $\bullet\,$ one new arc has tail in U, and head outside U

- The Shortest Path Algorithm maintains throughout its execution that:
- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (I4) for every $u \in U$ there is a directed s, u-path, and
- (15) arcs have both ends in U.

Algorithm 3.2 Shortest path.

Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$.

Output: A shortest st-path P

1:
$$y_W := 0$$
 for all *st*-cuts $\delta(W)$. Set $U := \{s\}$

- 2: while $t \notin U$ do
- 3: Let *ab* be an edge in $\delta(U)$ of smallest slack for *y* where $a \in U$, $b \notin U$
- 4: $y_U := \operatorname{slack}_y(ab)$
- 5: $U := U \cup \{b\}$
- 6: change edge ab into an arc \overrightarrow{ab}
- 7: end while

8: return A directed st-path P.

- the only new active cut created is $\delta(U)$
- (I5) \longrightarrow all old arcs have both ends in U
- $\bullet\,$ one new arc has tail in U, and head outside U

Proposition

- The Shortest Path Algorithm maintains throughout its execution that:
- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (I4) for every $u \in U$ there is a directed s, u-path, and
- (15) arcs have both ends in U.

 \rightarrow (I3) holds after Step 6

Note: Algorithms adds arc ab in current step, and (I4) implies that there is a directed s, a-path P.

Proposition

- (11) y is a feasible dual,
- (12) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (14) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

Note: Algorithms adds arc ab in current step, and (I4) implies that there is a directed s, a-path P.

Proposition

- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (14) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

Note: Algorithms adds arc ab in current step, and (I4) implies that there is a directed s, a-path P.

(I5) \longrightarrow arcs different from ab have both ends in U

Proposition

- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (I4) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.
Note: Algorithms adds arc ab in current step, and (I4) implies that there is a directed s, a-path P.

(15) \longrightarrow arcs different from ab have both ends in U \longrightarrow since b is outside U, it cannot be

on P, and thus, P together with ab is a directed s, b-path

Proposition

- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (I4) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

Note: Algorithms adds arc ab in current step, and (I4) implies that there is a directed s, a-path P.

(I5) \longrightarrow arcs different from ab have both ends in U

 \rightarrow since b is outside U, it cannot be

on P, and thus, P together with ab is a directed s, b-path

 \rightarrow (I4) holds at the end of loop

Proposition

- (11) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (I4) for every $u \in U$ there is a directed s, u-path, and
- (15) arcs have both ends in U.

Finally, the only new arc added is ab. As b is added to U, (15) continues to hold.

Proposition

- (11) y is a feasible dual,
- (12) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (14) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

Finally, the only new arc added is ab. As b is added to U, (15) continues to hold.

We are now done!

Proposition

- (11) y is a feasible dual,
- (12) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut $\delta(U)$ has an entering arc: an arc wuwith $w \notin U$, and $u \in U$,
- (I4) for every $u \in U$ there is a directed s, u-path, and
- (I5) arcs have both ends in U.

Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$. Output: A shortest st-path P1: $y_W := 0$ for all st-cuts $\delta(W)$. Set $U := \{s\}$ 2: while $t \notin U$ do 3: Let ab be an edge in $\delta(U)$ of smallest slack for y where $a \in U, b \notin U$ 4: $y_U := \text{slack}_y(ab)$ 5: $U := U \cup \{b\}$ 6: change edge ab into an arc \overrightarrow{ab} 7: end while 8: return A directed st-path P.

Recap

• We saw that the shortest path algorithm

Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$. **Output:** A shortest *st*-path *P* 1: $y_W := 0$ for all *st*-cuts $\delta(W)$. Set $U := \{s\}$ 2: while $t \notin U$ do 3: Let *ab* be an edge in $\delta(U)$ of smallest slack for *y* where $a \in U, b \notin U$ 4: $y_U := \text{slack}_y(ab)$ 5: $U := U \cup \{b\}$ 6: change edge *ab* into an arc \overrightarrow{ab} 7: end while 8: return A directed *st*-path *P*.

- We saw that the shortest path algorithm
 - (i) always produces an s, t-path P, and

Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$. **Output:** A shortest *st*-path *P* 1: $y_W := 0$ for all *st*-cuts $\delta(W)$. Set $U := \{s\}$ 2: while $t \notin U$ do 3: Let *ab* be an edge in $\delta(U)$ of smallest slack for *y* where $a \in U, b \notin U$ 4: $y_U := \text{slack}_y(ab)$ 5: $U := U \cup \{b\}$ 6: change edge *ab* into an arc \overrightarrow{ab} 7: end while 8: return A directed *st*-path *P*.

- We saw that the shortest path algorithm
 - (i) always produces an s, t-path P, and
 - (ii) a feasible dual solution y.

Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$. **Output:** A shortest *st*-path *P* 1: $y_W := 0$ for all *st*-cuts $\delta(W)$. Set $U := \{s\}$ 2: while $t \notin U$ do 3: Let *ab* be an edge in $\delta(U)$ of smallest slack for *y* where $a \in U, b \notin U$ 4: $y_U := \text{slack}_y(ab)$ 5: $U := U \cup \{b\}$ 6: change edge *ab* into an arc \overrightarrow{ab} 7: end while 8: return A directed *st*-path *P*.

- We saw that the shortest path algorithm
 - (i) always produces an s, t-path P, and
 - (ii) a feasible dual solution y.
- Moreover, the length of P equals the objective value of y, and hence, P must be a shortest s, t-path.

Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$. **Output:** A shortest *st*-path *P* 1: $y_W := 0$ for all *st*-cuts $\delta(W)$. Set $U := \{s\}$ 2: while $t \notin U$ do 3: Let *ab* be an edge in $\delta(U)$ of smallest slack for *y* where $a \in U, b \notin U$ 4: $y_U := \text{slack}_y(ab)$ 5: $U := U \cup \{b\}$ 6: change edge *ab* into an arc \overrightarrow{ab} 7: end while 8: return A directed *st*-path *P*.

- We saw that the shortest path algorithm
 - (i) always produces an s, t-path P, and
 - (ii) a feasible dual solution y.
- Moreover, the length of P equals the objective value of y, and hence, P must be a shortest s, t-path.
- Implicitly, we therefore showed that the shortest path LP always has an optimal integer solution!