
CO 250: Introduction to Optimization
Module 3: Duality through examples (Correctness Shortest

Path Algorithm)

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes

• An s, t-path P

• a feasible solution, y, for the
dual of the shortest path LP.

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes

• An s, t-path P whose
characteristic vector, xP , is
feasible for the shortest path
LP, and

• a feasible solution, y, for the
dual of the shortest path LP.

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes

• An s, t-path P whose
characteristic vector, xP , is
feasible for the shortest path
LP, and

• a feasible solution, y, for the
dual of the shortest path LP.

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes

• An s, t-path P whose
characteristic vector, xP , is
feasible for the shortest path
LP, and

• a feasible solution, y, for the
dual of the shortest path LP.

Important: cTx = 1T y

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes

• An s, t-path P whose
characteristic vector, xP , is
feasible for the shortest path
LP, and

• a feasible solution, y, for the
dual of the shortest path LP.

Important: cTx = 1T y → P is a
shortest path!

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Recap: Shortest Path Algorithm

Previous lecture: we showed an
algorithm for the shortest path
problem that computes

• An s, t-path P whose
characteristic vector, xP , is
feasible for the shortest path
LP, and

• a feasible solution, y, for the
dual of the shortest path LP.

Important: cTx = 1T y → P is a
shortest path!

We will start this lecture with
another example!

Shortest path LP:

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(S)) ≥ 1

(δ(S) s, t-cut)

x ≥ 0

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Recall the algorithm we developed previously:

Recall the algorithm we developed previously:

−→ Run this on the example instance on the right.

2 1

13 3

43

s

t

v u

w
z

Recall the algorithm we developed previously:

−→ Run this on the example instance on the right.

Initially: y = 0 and U = {s}

2 1

13 3

43

s

t

v u

w
z

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)

−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv

−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw

−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz

−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv

−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw

−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz

−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv

−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw

−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz

−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw

−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz

−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw

−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz

−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz

−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz

−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz
−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz
−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt

−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz
−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt
−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz
−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt
−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Now: We have a directed
s, t-path P of length 7,

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz
−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt
−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Now: We have a directed
s, t-path P of length 7, and
a dual feasible solution of
the same value!

Initially: y = 0 and U = {s}

Step 1 su edge with smallest slack in
δ(U)
−→ increase yU by 1

Step 2 Now: U = {s, u}
Slack-minimal edge is sv
−→ increase yU by 1

Step 3 U = {s, v, u}
Slack minimizer is vw
−→ increase yU by 1

Step 4 U = {s, v, u, w}
Slack minimizer is vz
−→ increase yU by 2

Step 5 U = {s, v, u, w, z}
Slack minimizer is wt
−→ increase yU by 2

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Now: We have a directed
s, t-path P of length 7, and
a dual feasible solution of
the same value!

−→ P is a shortest path!

Question

Will the algorithm always terminate? 2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Question

Will the algorithm always terminate? Will it
always find an s, t-path P whose length is
equal to the value of a feasible dual
solution?

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Question

Will the algorithm always terminate? Will it
always find an s, t-path P whose length is
equal to the value of a feasible dual
solution?

This lecture: We will show the answers to
the above are yes & yes!

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Recall: the slack of an edge uv ∈ E for a
feasible dual solution y is

cuv −
∑

(yU : e ∈ δ(U))

.

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Recall: the slack of an edge uv ∈ E for a
feasible dual solution y is

cuv −
∑

(yU : e ∈ δ(U))

We call an edge uv ∈ E an equality edge if
its slack is 0.

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Recall: the slack of an edge uv ∈ E for a
feasible dual solution y is

cuv −
∑

(yU : e ∈ δ(U))

We call an edge uv ∈ E an equality edge if
its slack is 0.

Example: edge vz is an equality edge, and
zt is not!

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

We will also call a cut δ(U) active for a
dual solution y if yU > 0.

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

We will also call a cut δ(U) active for a
dual solution y if yU > 0.

Example: δ({s, v, u}) is active, while
δ({s, v}) is not!

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual solution, and P and
s, t-path. P is a shortest path if

(i) all edges on P are equality edges, and

(ii) every active cut δ(U) has exactly one
edge of P .

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual solution, and P and
s, t-path. P is a shortest path if

(i) all edges on P are equality edges, and

(ii) every active cut δ(U) has exactly one
edge of P .

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual solution, and P and
s, t-path. P is a shortest path if

(i) all edges on P are equality edges, and

(ii) every active cut δ(U) has exactly one
edge of P .

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual solution, and P and
s, t-path. P is a shortest path if

(i) all edges on P are equality edges, and

(ii) every active cut δ(U) has exactly one
edge of P .

Note: Both conditions are satisfied in the
example on the right.

2 1

13 3

43

s

t

v u

w
z

1

1
1

2

2

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual
solution, and P and s, t-path.
P is a shortest path if

(i) all edges on P are
equality edges, and

(ii) every active cut δ(U)
has exactly one edge of
P .

Proof: Let’s suppose that P and y satisfy
(i) and (ii) of the proposition.

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual
solution, and P and s, t-path.
P is a shortest path if

(i) all edges on P are
equality edges, and

(ii) every active cut δ(U)
has exactly one edge of
P .

Proof: Let’s suppose that P and y satisfy
(i) and (ii) of the proposition.Then,∑

e∈P

ce =
∑
e∈P

(
∑

(yU : e ∈ δ(U))

because every edge on P is an equality
edge by (i).

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual
solution, and P and s, t-path.
P is a shortest path if

(i) all edges on P are
equality edges, and

(ii) every active cut δ(U)
has exactly one edge of
P .

Proof: Let’s suppose that P and y satisfy
(i) and (ii) of the proposition.Then,∑

e∈P

ce =
∑
e∈P

(
∑

(yU : e ∈ δ(U))

because every edge on P is an equality
edge by (i). The right-hand side equals

∑
(yU · |P ∩ δ(U)| : δ(U))

Revisited: Shortest Path Optimality Conditions

Proposition

Let y be a feasible dual
solution, and P and s, t-path.
P is a shortest path if

(i) all edges on P are
equality edges, and

(ii) every active cut δ(U)
has exactly one edge of
P .

Note: Both conditions are
satisfied in the example on
the right!

Proof: Let’s suppose that P and y satisfy
(i) and (ii) of the proposition.Then,∑

e∈P

ce =
∑
e∈P

(
∑

(yU : e ∈ δ(U))

because every edge on P is an equality
edge by (i). The right-hand side equals

∑
(yU · |P ∩ δ(U)| : δ(U))

But, by (ii), yU > 0 only if |P ∩ δ(U)| = 1.
Hence: ∑

e∈P

ce =
∑
U

yU

Correctness of the Shortest Path Algorithm

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

2

1
1

3

3
4

3
s t

v

u w

z

1

It suffices to show:

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

2

1
1

3

3
4

3
s t

v

u w

z

1

It suffices to show:

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

2

1
1

3

3
4

3
s t

v

u w

z

1

It suffices to show:

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

2

1
1

3

3
4

3
s t

v

u w

z

1

It suffices to show:

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

2

1
1

3

3
4

3
s t

v

u w

z

1

It suffices to show:

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: The algorithm terminates since
one vertex is added to U in every step
and V is finite.

2

1
1

3

3
4

3
s t

v

u w

z

1

It suffices to show:

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Suppose the invariants hold when the
algorithm terminates. Then:

• t ∈ U and (I4) implies that there is
a directed s, t-path P ,

• y is feasible by (I1), and

• arcs on P are equality arcs by (I2)

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Suppose the invariants hold when the
algorithm terminates. Then:

• t ∈ U and (I4) implies that there is
a directed s, t-path P ,

• y is feasible by (I1), and

• arcs on P are equality arcs by (I2)

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Suppose the invariants hold when the
algorithm terminates. Then:

• t ∈ U and (I4) implies that there is
a directed s, t-path P ,

• y is feasible by (I1), and

• arcs on P are equality arcs by (I2)

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Suppose the invariants hold when the
algorithm terminates. Then:

• t ∈ U and (I4) implies that there is
a directed s, t-path P ,

• y is feasible by (I1), and

• arcs on P are equality arcs by (I2)

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Suppose the invariants hold when the
algorithm terminates. Then:

• t ∈ U and (I4) implies that there is
a directed s, t-path P ,

• y is feasible by (I1), and

• arcs on P are equality arcs by (I2)

To show: δ(U) active −→ P has
exactly one edge in δ(U).

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

For a contradiction suppose δ(U) active
and P has more than one edge in δ(U)

Let e and e′ be the first two edges on P
that leave δ(U)

.

Then, there must also be an arc f on P
that enters U ,

but this contradicts (I3)!

Proposition

The Shortest Path Algorithm maintains
throughout its execution that:

(I3) no active cut δ(U) has an entering
arc: an arc wu with w 6∈ U , and
u ∈ U

s

t

e

e’

fU
wu

Correctness of the Shortest Path Algorithm

For a contradiction suppose δ(U) active
and P has more than one edge in δ(U)

Let e and e′ be the first two edges on P
that leave δ(U).

Then, there must also be an arc f on P
that enters U ,

but this contradicts (I3)!

Proposition

The Shortest Path Algorithm maintains
throughout its execution that:

(I3) no active cut δ(U) has an entering
arc: an arc wu with w 6∈ U , and
u ∈ U

s

t

e

e’

fU
wu

Correctness of the Shortest Path Algorithm

For a contradiction suppose δ(U) active
and P has more than one edge in δ(U)

Let e and e′ be the first two edges on P
that leave δ(U).

Then, there must also be an arc f on P
that enters U ,

but this contradicts (I3)!

Proposition

The Shortest Path Algorithm maintains
throughout its execution that:

(I3) no active cut δ(U) has an entering
arc: an arc wu with w 6∈ U , and
u ∈ U

s

t

e

e’

fU
wu

Correctness of the Shortest Path Algorithm

For a contradiction suppose δ(U) active
and P has more than one edge in δ(U)

Let e and e′ be the first two edges on P
that leave δ(U).

Then, there must also be an arc f on P
that enters U , but this contradicts (I3)!

Proposition

The Shortest Path Algorithm maintains
throughout its execution that:

(I3) no active cut δ(U) has an entering
arc: an arc wu with w 6∈ U , and
u ∈ U

s

t

e

e’

fU
wu

Correctness of the Shortest Path Algorithm

Let’s now prove the proposition!

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering, arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Let’s now prove the proposition!

Trivial: (I1) – (I5) hold after Step 1.

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering, arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Let’s now prove the proposition!

Trivial: (I1) – (I5) hold after Step 1.
Suppose (I1) – (I5) hold before Step 3.

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering, arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Let’s now prove the proposition!

Trivial: (I1) – (I5) hold after Step 1.
Suppose (I1) – (I5) hold before Step 3.
We will show that they also hold after
Step 6.

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering, arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

(I1) y is Dual Feasible

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Note: In Step 3-6, only yU for the current U changes.

yU appears only on the left-hand sides of constraints for edges in δ(U).

The smallest slack of any of these constraints is precisely the increase in
yU .

−→ y remains feasible!

Also: The constraint of the newly created arc holds with equality after
the increase

−→ (I2) continues to hold and constraints for arcs have slack 0.

(I1) y is Dual Feasible

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Note: In Step 3-6, only yU for the current U changes.

yU appears only on the left-hand sides of constraints for edges in δ(U).

The smallest slack of any of these constraints is precisely the increase in
yU .

−→ y remains feasible!

Also: The constraint of the newly created arc holds with equality after
the increase

−→ (I2) continues to hold and constraints for arcs have slack 0.

(I1) y is Dual Feasible

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Note: In Step 3-6, only yU for the current U changes.

yU appears only on the left-hand sides of constraints for edges in δ(U).

The smallest slack of any of these constraints is precisely the increase in
yU .

−→ y remains feasible!

Also: The constraint of the newly created arc holds with equality after
the increase

−→ (I2) continues to hold and constraints for arcs have slack 0.

(I1) y is Dual Feasible

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Note: In Step 3-6, only yU for the current U changes.

yU appears only on the left-hand sides of constraints for edges in δ(U).

The smallest slack of any of these constraints is precisely the increase in
yU .

−→ y remains feasible!

Also: The constraint of the newly created arc holds with equality after
the increase

−→ (I2) continues to hold and constraints for arcs have slack 0.

(I1) y is Dual Feasible

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Note: In Step 3-6, only yU for the current U changes.

yU appears only on the left-hand sides of constraints for edges in δ(U).

The smallest slack of any of these constraints is precisely the increase in
yU .

−→ y remains feasible!

Also: The constraint of the newly created arc holds with equality after
the increase

−→ (I2) continues to hold and constraints for arcs have slack 0.

(I1) y is Dual Feasible

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Note: In Step 3-6, only yU for the current U changes.

yU appears only on the left-hand sides of constraints for edges in δ(U).

The smallest slack of any of these constraints is precisely the increase in
yU .

−→ y remains feasible!

Also: The constraint of the newly created arc holds with equality after
the increase

−→ (I2) continues to hold and constraints for arcs have slack 0.

(I1) y is Dual Feasible

Shortest path dual:

max
∑

(yS : δ(S) s, t-cut)

s.t.
∑

(yS : e ∈ δ(S)) ≤ ce
(e ∈ E)

y ≥ 0

Note: In Step 3-6, only yU for the current U changes.

yU appears only on the left-hand sides of constraints for edges in δ(U).

The smallest slack of any of these constraints is precisely the increase in
yU .

−→ y remains feasible!

Also: The constraint of the newly created arc holds with equality after
the increase
−→ (I2) continues to hold and constraints for arcs have slack 0.

Correctness of the Shortest Path Algorithm

• the only new active cut created is
δ(U)

• (I5) −→ all old arcs have both
ends in U

• one new arc has tail in U , and head
outside U

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

• the only new active cut created is
δ(U)

• (I5) −→ all old arcs have both
ends in U

• one new arc has tail in U , and head
outside U

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

• the only new active cut created is
δ(U)

• (I5) −→ all old arcs have both
ends in U

• one new arc has tail in U , and head
outside U

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

• the only new active cut created is
δ(U)

• (I5) −→ all old arcs have both
ends in U

• one new arc has tail in U , and head
outside U

−→ (I3) holds after Step 6

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: Algorithms adds arc ab in current
step, and (I4) implies that there is a
directed s, a-path P .

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: Algorithms adds arc ab in current
step, and (I4) implies that there is a
directed s, a-path P .

U

s

a b

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: Algorithms adds arc ab in current
step, and (I4) implies that there is a
directed s, a-path P .

U

s

a b

(I5) −→ arcs different from ab have
both ends in U

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: Algorithms adds arc ab in current
step, and (I4) implies that there is a
directed s, a-path P .

U

s

a b

(I5) −→ arcs different from ab have
both ends in U

−→ since b is outside U , it cannot be
on P , and thus, P together with ab is a

directed s, b-path

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

Note: Algorithms adds arc ab in current
step, and (I4) implies that there is a
directed s, a-path P .

U

s

a b

(I5) −→ arcs different from ab have
both ends in U

−→ since b is outside U , it cannot be
on P , and thus, P together with ab is a

directed s, b-path

−→ (I4) holds at the end of loop

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

U

s

a b

Finally, the only new arc added is ab. As
b is added to U , (I5) continues to hold.

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Correctness of the Shortest Path Algorithm

U

s

a b

Finally, the only new arc added is ab. As
b is added to U , (I5) continues to hold.

We are now done!

Proposition

The Shortest Path Algorithm
maintains throughout its
execution that:

(I1) y is a feasible dual,

(I2) arcs are equality arcs (i.e.,
have 0 slack),

(I3) no active cut δ(U) has an
entering arc: an arc wu
with w 6∈ U , and u ∈ U ,

(I4) for every u ∈ U there is a
directed s, u-path, and

(I5) arcs have both ends in U .

Recap

• We saw that the shortest path algorithm

(i) always produces an s, t-path P , and
(ii) a feasible dual solution y.

• Moreover, the length of P equals the objective value of y, and
hence, P must be a shortest s, t-path.

• Implicitly, we therefore showed that the shortest path LP always has
an optimal integer solution!

Recap

• We saw that the shortest path algorithm

(i) always produces an s, t-path P , and

(ii) a feasible dual solution y.

• Moreover, the length of P equals the objective value of y, and
hence, P must be a shortest s, t-path.

• Implicitly, we therefore showed that the shortest path LP always has
an optimal integer solution!

Recap

• We saw that the shortest path algorithm

(i) always produces an s, t-path P , and
(ii) a feasible dual solution y.

• Moreover, the length of P equals the objective value of y, and
hence, P must be a shortest s, t-path.

• Implicitly, we therefore showed that the shortest path LP always has
an optimal integer solution!

Recap

• We saw that the shortest path algorithm

(i) always produces an s, t-path P , and
(ii) a feasible dual solution y.

• Moreover, the length of P equals the objective value of y, and
hence, P must be a shortest s, t-path.

• Implicitly, we therefore showed that the shortest path LP always has
an optimal integer solution!

Recap

• We saw that the shortest path algorithm

(i) always produces an s, t-path P , and
(ii) a feasible dual solution y.

• Moreover, the length of P equals the objective value of y, and
hence, P must be a shortest s, t-path.

• Implicitly, we therefore showed that the shortest path LP always has
an optimal integer solution!

	Computing Shortest Paths

